离散数学 ( 第1次 )
- 格式:doc
- 大小:97.00 KB
- 文档页数:15
第1部分命题逻辑一、单项选择题1. 下列哪个语句是真命题( )。
(A)我正在说谎(B)如果1+2 = 3,则雪是黑色的(C)如果1+2 = 5,则雪是黑色的(D)上网了吗2 .命题公式为P > (Q > P)( )。
(A)重言式(B)可满足式(C)矛盾式(D)等值式3. 设命题公式P (Q厂P),记作G,则使G的真值指派为1的P, Q 的取值是( )。
(A) (0,0) (B) (0,1) (C) (1,0) (D) (1,1)4. 与命题公式P > (Q > R)等值的公式是( )。
(A) (P Q) > R (B)(P Qp R (C)(P > Q) > R (D)P》(Q R)5 .命题公式(P Q) > P是( )。
(A)永真式(B)永假式(C)可满足式(D)合取范式二、填空题1. ____________________________________________ P, Q为两个命题,当且仅当 _________________________________________ 时,P Q的真值为1,当且仅当_______________________ 时,P Q的真值为0。
2. 给定两个命题公式A, B,若 ________________________________ 时,则称A和B是等值的,记为A= B。
3. ________________________________ 任意两个不同极小项的合取为_______ 式。
4 .设P:天下雨,Q:我们去郊游。
贝S⑴命题如果天不下雨,我们就去郊游”可符号化为_______ 。
第1页(共16页)⑵命题只有天不下雨,我们才去郊游”可符号化为_______ 。
⑶命题我们去郊游,仅当天不下雨”可符号化为_________ 。
5 .设命题公式G = P (-Q R),则使G取真值为1的指派6. 已知命题公式为G = (-P Q) > R,则命题公式G的析取范式是三、计算题1.将下列命题符号化:⑴ 李强不是不聪明,而是不用功;⑵ 如果天不下雨,我们就去郊游;⑶ 只有不下雨,我们才去郊游。
自学考试:离散数学复习(一)自学考试是一种能够让没有条件参加全日制学习的人继续学习的方式。
与传统的大学学习相比,它更为灵活和自由。
在自学考试中,离散数学是一门必修的科目,也是考试难点之一。
本文将从离散数学的定义、内容、复习方法以及注意事项等方面进行讲解。
一、离散数学的定义离散数学是研究数量的离散性质的数学分支学科,主要研究对象是离散的集合、函数、算法、逻辑、图论等。
它的研究对象并不是连续的,而是由一些个别的、离散的数量组成的。
二、离散数学的内容离散数学主要包括以下几个方面:1. 逻辑与集合论:又称数理逻辑,是离散数学的重要组成部分。
它主要涉及命题逻辑、谓词逻辑、逻辑推理等内容。
2. 离散数学的代数结构:主要包括半群、群、环、域等内容。
3. 布尔代数与逻辑设计:主要涉及布尔运算、代数基本定理、逻辑电路设计等方面。
4. 图论:涉及图的定义、图的类型、基本概念和定理、图的遍历等方面。
5. 计算机科学中的重要应用:涉及图论和逻辑设计等方面。
三、离散数学的复习方法1. 系统地复习课本,强调对每个概念和定理的理解和记忆。
2. 刻意练习,做大量的练习题,以此巩固知识点。
3. 找到与离散数学相关的书籍,进行阅读和学习,补充知识点。
4. 制定学习计划并严格执行,不断检查自己的学习进度。
四、注意事项1. 离散数学比较抽象,需要认真思考并理解其概念和定理。
2. 多做题,不要死记硬背,应该结合题目进行思考,理解知识点。
3. 有时间限制的考试需要注重时间管理,做题的时候应该合理分配时间。
4. 总结每次考试的弱点,找到自己的不足之处,并及时进行复习和巩固。
总之,离散数学是一门重要的学科,它具有广泛的应用领域,并且在计算机科学领域中具有重要地位。
对于自学考试的学生而言,掌握好离散数学的知识点是非常重要的。
希望本文对自学考试的离散数学复习有所帮助。
离散数学(1)复习笔记Ch1 命题逻辑的基本概念1.1 命题命题:能判断真假且⾮真即假的陈述句。
命题的真值,真命题,假命题。
* 真值待定 *简单命题 | 原⼦命题,复合命题。
1.2 常⽤的5个命题联结词否定,合取,析取,蕴涵,双蕴涵。
* 异或 | 排斥或 | 不可兼或 * 注意语义判断。
* p→q = ﹁ p∨q ** 必要条件 * 只有……才……;仅当……,……;……,仅当……。
注意命题符号化的蕴涵⽅向。
* domain * A horse is white. (×)联结词集,⼀元联结词,⼆元联结词。
* 优先顺序 * (),﹁,∧,∨,→,↔1.3 合式公式及其赋值命题常项 | 命题常元(值是确定的),命题变项 | 命题变元(真值可以变化的陈述句)。
合式公式 | 命题公式 | 命题形式 | 公式(wff)(well formed formulas),原⼦命题公式(单个命题变项),⼦公式。
* 单个命题变项是合式公式,没说命题常项。
*赋值 | 解释,成真赋值,成假赋值。
真值表。
* 真值表要点:赋值从00…0开始,按照⼆进制加法,直到11…1为⽌;按照运算的优先次序写出各⼦公式。
*命题公式的分类:重⾔式 | 永真式,⽭盾式 | 永假式,可满⾜式。
1.4 重⾔式与代⼊规则代⼊规则。
* 1. 公式中被代换的只能是命题变项(原⼦命题),⽽不能是复合命题。
2.对公式中某命题变项施以代⼊,必须对该公式中出现的所有同⼀命题变项施以相同的代换。
* 1.5 命题形式化命题形式化 | 符号化。
* 注意充分条件和必要条件的区别 ** 注意语义是否考虑完整 *1.6 波兰表达式中置式 | 中缀式,前置式 | 前缀式 | 波兰式,后置式 | 后缀式 | 逆波兰式。
Ch2 命题逻辑的等值和推理演算2.1 等值定理等值 | 等价,等值定理:设A,B为两个命题公式,A = B的充分必要条件是 A↔B为⼀个重⾔式。
习题1. 下列句子中,哪些是命题?哪些不是命题?如果是命题,指出它的真值。
⑴中国有四大发明。
⑵计算机有空吗?⑶不存在最大素数。
⑷ 21+3<5。
⑸老王是山东人或河北人。
⑹ 2与3都是偶数。
⑺小李在宿舍里。
⑻这朵玫瑰花多美丽呀!⑼请勿随地吐痰!⑽圆的面积等于半径的平方乘以。
⑾只有6是偶数,3才能是2的倍数。
⑿雪是黑色的当且仅当太阳从东方升起。
⒀如果天下大雨,他就乘班车上班。
解:⑴⑶⑷⑸⑹⑺⑽⑾⑿⒀是命题,其中⑴⑶⑽⑾是真命题,⑷⑹⑿是假命题,⑸⑺⒀的真值目前无法确定;⑵⑻⑼不是命题。
2. 将下列复合命题分成若干原子命题。
⑴李辛与李末是兄弟。
⑵因为天气冷,所以我穿了羽绒服。
⑶天正在下雨或湿度很高。
⑷刘英与李进上山。
⑸王强与刘威都学过法语。
⑹如果你不看电影,那么我也不看电影。
⑺我既不看电视也不外出,我在睡觉。
⑻除非天下大雨,否则他不乘班车上班。
解:⑴本命题为原子命题;⑵p:天气冷;q:我穿羽绒服;⑶p:天在下雨;q:湿度很高;⑷p:刘英上山;q:李进上山;⑸p:王强学过法语;q:刘威学过法语;⑹p:你看电影;q:我看电影;⑺p:我看电视;q:我外出;r:我睡觉;⑻p:天下大雨;q:他乘班车上班。
3. 将下列命题符号化。
⑴他一面吃饭,一面听音乐。
⑵ 3是素数或2是素数。
⑶若地球上没有树木,则人类不能生存。
⑷ 8是偶数的充分必要条件是8能被3整除。
⑸停机的原因在于语法错误或程序错误。
⑹四边形ABCD是平行四边形当且仅当它的对边平行。
⑺如果a和b是偶数,则a+b是偶数。
解:⑴p:他吃饭;q:他听音乐;原命题符号化为:p∧q⑵p:3是素数;q:2是素数;原命题符号化为:p∨q⑶p:地球上有树木;q:人类能生存;原命题符号化为:p→q⑷p:8是偶数;q:8能被3整除;原命题符号化为:p↔q⑸p:停机;q:语法错误;r:程序错误;原命题符号化为:q∨r→p⑹p:四边形ABCD是平行四边形;q:四边形ABCD的对边平行;原命题符号化为:p↔q。
离散数学常考题型梳理第1章 集合及其运算一、题型分析本章主要介绍集合论的基本概念和结论,集合的运算及其性质,以及利用运算性质进行集合表达式的化简和集合恒等式的证明等内容.经常涉及到的题型有:1-1集合与集合之间的包含、元素与集合之间的属于关系1-2幂集的计算1-3集合之间的运算1-4利用集合运算性质证明集合恒等式因此,在本章学习过程中希望大家要清楚地知道:1.集合与集合之间存在一种包含关系,当两个集合A 和B 存在关系A 包含B ,用A ⊇B 表示,或存在关系B 被A 包含,用B ⊆A 表示,这时称B 为A 的子集.注意空集∅是任意一个集合的子集,集合A 也是自己的子集.当B ⊆A 且B ≠A ,也就是说,只有B ⊂A 或A ⊃B 成立,则称B 为A 的真子集.若B 不是A 的子集,即B ⊆A 不成立时,则称A 不包含B ,记作B ⊆A .然而,元素与集合之间存在一种从属关系,当a 是集合A 中的元素,则称a 属于A ,记作a∈A ;若a 不是集合A 中的元素,则称a 不属于A ,记作a ∉A .因此,这两种关系一定不要混淆.2.由集合A 的所有子集组成的集合,称为A 的幂集,记作P (A )或2A .若集合A 是由n 个元素所组成的集合,则A 的幂集由2n 元素组成.当n =3时,A 的幂集由23=8个元素组成.例如,设集合A = {0, 1, 2 },则A 的全部子集由以下子集组成:0元子集(即空集):∅;1元子集:{0},{1},{2};2元子集:{0, 1},{0, 2},{1, 2};3元子集(即集合A ):{0, 1, 2}.因此,计算集合A 的幂集时,首先要按照上述方法写出集合A 的全部子集,然后检验写出的子集个数是否等于2n 个,其中n 是集合A 的元素个数.3.集合之间的运算有并(⋃)、交(⋂)、差(-)、补(~)和对称差(⊕)等五种运算,在做集合运算的题目时,一定要按照它们的定义进行计算.(1) 集合A 和B 的并集A B x x A ⋃=∈{或 x B ∈} 特点:由集合A 和B 的所有元素组成的集合.见图1 图1 图2(2) 集合A 和B 的交集A B x x A ⋂=∈{ 且 x B ∈}特点:由集合A 和B 的公共元素组成的集合.见图2(3) 集合A 与B 的差集A B -=∈∉{}x x A x B 且 特点:由属于A ,而不属于B 的所有元素组成的集合.见图3(4) 集合A 的补集~A ={}x x E x A ∈∉且特点:由属于全集E 但不属于集合A 的元素组成的集合.见图4补集总相对于一个全集而言,可以看作是全集E 与集合A 的差集.(5) 集合A 与B 的对称差A ⊕B =(A -B )⋃(B -A )或 A ⊕B =(A ⋃B )-(A ⋂B )特点:由分别属于集合A 与B 的元素但不属于它们公共元素组成的集合.见图5(6) 把集合A ,B 合成集合A ×B 叫做笛卡儿积,规定A ×B ={<x , y >∣x ∈A 且y ∈B }注意:由于有序对<x , y >中x ,y 的位置是确定的,因此A ×B 的记法也是确定的,不能写成B ×A..笛卡儿积的运算一般不能交换..虽然,笛卡儿积的内容是第2章2.1.1目的内容,是二元关系的预备知识,但我们认为把它作为集合的一种运算考虑更好些。
1-1,1-2(1)指出下列哪些语句是命题,那些不是命题,如果是命题,指出它的真值。
a)离散数学是计算机科学系的一门必修课。
是命题,真值为T。
b)计算机有空吗?不是命题。
c)明天我去看电影。
是命题,真值要根据具体情况确定。
d)请勿随地吐痰。
不是命题。
e)不存在最大的质数。
是命题,真值为T。
f)如果我掌握了英语,法语,那么学习其他欧洲语言就容易多了。
是命题,真值为T。
g)9+5≤12.是命题,真值为F。
h)X=3.不是命题。
i)我们要努力学习。
不是命题。
(2)举例说明原子命题和复合命题。
原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。
(3)设P 表示命题“天下雪。
”Q 表示“我将去镇上。
”R 表示命题“我有时间。
”以符号形式写出下列命题a)如果天不下雪和我有时间,那么我将去镇上。
(┓P ∧R)→Q b)我将去镇上,仅当我有时间时。
Q→R c)天不下雪。
┓P d)天下雪,那么我不去镇上。
P→┓Q(4)用汉语写出一些句子,对应下列每一个命题。
a)()Q R P ∧¬�Q:我将去参加舞会。
R:我有时间。
P:天下雨。
Q ↔(R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。
b)R Q∧R:我在看电视。
Q:我在吃苹果。
R∧Q:我在看电视边吃苹果。
c)()()Q R R Q →∧→Q:一个数是奇数。
R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。
(5)将下列命题符号化。
a)王强身体很好,成绩也很好。
设P:王强身体很好。
Q:王强成绩很好。
P∧Qb)小李一边看书,一边听音乐。
设P:小李看书。
Q:小李听音乐。
P∧Qc)气候很好或很热。
设P:气候很好。
Q:气候很热。
P∨Qd)如果a 和b 是偶数,则a b +是偶数。
设P:a 和b 是偶数。
Q:a+b 是偶数。
P→Qe)四边形ABCD 是平行四边形,当且仅当它的对边平行。
国开大学、各地开放大学形考、终考、期末复习资料答案由【电大题园】微信公众号提供,禁止复制盗取。
答案由【电大题园】微信公众号提供,禁止复制盗取。
答案由【电大题园】微信公众号提供,禁止复制盗取。
国开电大2024秋《离散数学》形考任务1-6以及大作业离散数学(本)·形考任务一1.若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A.{a,{a}}ÎAB.{1,2}ÏAC.{a}ÍAD.ÆÎA正确答案:C2.若集合A={1, 2, 3, 4},则下列表述正确的是().A.{1, 2}ÎAB.{1, 2, 3 } Í AC.AÌ{1, 2, 3 }D.{1, 2, 3}ÎA正确答案:B3.若集合A={2,a,{ a },4},则下列表述正确的是( ).A.{a,{ a }}ÎAB.ÎAC.{2}ÎAD.{ a }ÍA正确答案:D4.若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).A.AÌB,且AÎBB.BÌA,且AÎBC.AÌB,且AÏBD.AËB,且AÎB正确答案:A5.若集合A={a,b},B={a,{a,b}},则下列表述正确的是( ).A.AÌBB.BÌAC.AÏBD.AÎB正确答案:D6.若集合A的元素个数为5,则其幂集的元素个数为().A.5B.16C.32D.64正确答案:C7.设集合A={1, 2, 3, 4, 5, 6},B={1, 2, 3},A到B的关系R={<x,y>| x A,yB且x=y2},则R=( ).A.{<1, 1>, <2, 4>}B.{<1, 1>, <4, 2>}C.{<1, 1>, <6, 3>}D.{<1, 1>, <2, 1>}8.设集合A={2, 4, 6, 8},B={1, 3, 5, 7},A到B的关系R={<x,y>|xA, y B且 y=x +1},则R= ().A.{<2, 3>, <4,5>, <6, 7>}B.{<2, 1>, <4, 3>, <6, 5>}C.{<2, 1>, <3, 2>, <4, 3>}D.{<2, 2>, <3, 3>, <4, 6>}正确答案:A9.设A={1, 2, 3},B={1, 2, 3, 4},A到B的关系R={〈x,y〉| xÎA,yÎB,x=y},则R= ( ) .A.{<1, 2>, <2, 3>}B. {<1, 1>, <1, 2>, <1, 3>, <1, 4>, <1, 5>}C. {<1, 1>, <2, 1>}D.{<1, 1>, <2, 2>, <3, 3 >}正确答案:D10.设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为()A.2B.3C.6D.8正确答案:D11.空集的幂集是空集.()A.正确B.错误12.存在集合A与B,可以使得AÎB与AÍB同时成立.A.正确B.错误正确答案:A13.集合的元素可以是集合.A.正确B.错误正确答案:A14.如果A是集合B的元素,则A不可能是B的子集.A.正确B.错误正确答案:B15.设集合A={a},那么集合A的幂集是{Æ, {a}}A.正确B.错误正确答案:A16.若集合A的元素个数为4,则其幂集的元素个数为16A.正确B.错误正确答案:A17.设A={1, 2, 3},B ={1, 2, 3, 4},A到B的关系R ={<x,y> |xÎA,yÎB,x>y},则R ={<2,1>, <3, 1>, <3, 2 >}A.正确B.错误正确答案:A18.设A={1, 6,7},B={2, 4,8,10},A到B的关系R={〈x,y〉|xÎA,yÎB,且x=y},则R={<2, 2>, <4, 4>, <8, 8>, <10, 10>}A.正确B.错误正确答案:B19.设A={a,b,c},B={1,2,3},作f:A→B,则共有9个不同的函数.A.正确B.错误正确答案:B20.设A={1,2},B={ a,b,c },则A´B的元素个数为8.()A.正确B.错误正确答案:B离散数学(本)·形考任务二1.n阶无向完全图Kn的边数是().A.nB. n(n-1)/2C. n-1D.n(n-1)正确答案:B2.n阶无向完全图Kn每个结点的度数是().A.nB. n(n-1)/2C.n-1D.n(n-1)正确答案:C3.已知无向图G的结点度数之和为20,则图G的边数为().A.5B.15C.20D.10正确答案:D4.已知无向图G 有15条边,则G的结点度数之和为().A.10B.20C.30D.5正确答案:C5.图G如图所示,以下说法正确的是( ) .A.{(a, e)}是割边B.{(a, e)}是边割集C.{(a, e) ,(b, c)}是边割集D.{(d,e)}是边割集正确答案:D6.若图G=<V,E>,其中V={ a,b,c,d },E={ (a,b), (b,c) , (b,d)},则该图中的割点为().A.aB.bC.cD.d正确答案:B7.设无向完全图K有n个结点(n≥2),m条边,当()时,K 中存在欧拉回路.A.m为奇数B.n为偶数C.n为奇数D.m为偶数正确答案:C8.设G是欧拉图,则G的奇数度数的结点数为( )个.A.0B.1C.2D.4正确答案:A9.设G为连通无向图,则()时,G中存在欧拉回路.A.G不存在奇数度数的结点B.G存在偶数度数的结点C.G存在一个奇数度数的结点D.G存在两个奇数度数的结点正确答案:A10.设连通平面图G有v个结点,e条边,r个面,则.A.v + e - r=2B.r +v - e =2C.v +e - r=4D.v +e – r = –4正确答案:B11.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是15.( )A.正确B.错误正确答案:A12. 设G是一个无向图,结点集合为V,边集合为E,则G的结点度数之和为2|E|.( )A.正确B.错误正确答案:A13. 若图G=<V,E>,其中V={ a,b,c,d },E={ (a,b), (a,d),(b,c), (b,d)},则该图中的割边为(b,c).( )A.正确B.错误正确答案:A14. 边数相等与度数相同的结点数相等是两个图同构的必要条件.A.正确B.错误正确答案:A15. 若图G中存在欧拉路,则图G是一个欧拉图.A.正确B.错误正确答案:B16. 无向图G存在欧拉回路,当且仅当G连通且结点度数都是偶数.( )A.正确B.错误正确答案:A17. 设G是具有n个结点m条边k个面的连通平面图,则n-m=2-k.A.正确B.错误正确答案:A18.设G是一个有6个结点13条边的连通图,则G为平面图.A.正确B.错误正确答案:B19. 完全图K5是平面图.A.正确B.错误正确答案:B20. 设G是汉密尔顿图,S是其结点集的一个子集,若S的元素个数为6,则在G-S中的连通分支数不超过6A.正确B.错误正确答案:A离散数学(本)·形考任务三1.无向图G是棵树,边数为12,则G的结点数是().A.12B.24C.11D.13正确答案:D2.无向图G是棵树,边数是12,则G的结点度数之和是().A.12B.13C.24D.6正确答案:C3.无向图G是棵树,结点数为10,则G的边数是().A.9B.10C.11D.12正确答案:A4.设G是有10个结点,边数为20的连通图,则可从G中删去()条边后使之变成树.A.12B.9C.10D.11正确答案:D5.设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G 的一棵生成树.A.m-n+1B.m-nC.m+n+1D.n-m+1正确答案:A6.设A(x):x是金属,B(x):x是金子,则命题“有的金属是金子”可符号化为().A.(x)(A(x)∧B(x))B.┐("x)(A(x)→B(x))C.(x)(A(x)∧B(x))D.┐(x)(A(x)∧┐B(x))正确答案:C7.设A(x):x是学生,B(x):x去跑步,则命题“所有人都去跑步”可符号化为().A.($x)(A(x)∧B(x))B.("x)(A(x)→B(x))C.($x)(A(x)∧┐B(x))D.("x)(A(x)∧B(x))正确答案:B8.设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().A.┐("x)(A(x)→B(x))B.┐($x)(A(x)∧B(x))C.("x)(A(x)∧B(x))D.┐($x)(A(x)∧┐B(x))正确答案:A9.("x)( P(x,y)∨Q(z))∧($y) (R(x,y) → ("z) Q(z))中量词“"”的辖域是().A.P(x,y)B.P(x,y)∨Q(z)C.R(x,y)D.P(x,y)∧R(x,y)正确答案:B10.设个体域D={a,b,c},那么谓词公式($x)A(x)∨("y)B(y)消去量词后的等值式为( ).A.(A(a)∨A(b)∨A(c))∨(B(a)∧B(b)∧B(c))B.(A(a)∧A(b)∧A(c))∨(B(a)∨B(b)∨B(c))C.(A(a)∨A(b)∨A(c))∨(B(a)∨B(b)∨B(c))D.(A(a)∧A(b)∧A(c))∨(B(a)∧B(b)∧B(c))正确答案:A11.若无向图G的边数比结点数少1,则G是树.A.正确B.错误正确答案:B12.无向图G是树当且仅当无向图G是连通图.A.正确B.错误正确答案:B13.无向图G是棵树,结点度数之和是20,则G的边数是9A.正确B.错误正确答案:B14.设G是有8个结点的连通图,结点的度数之和为24,则可从G中删去5条边后使之变成树.A.正确B.错误正确答案:A15.设个体域D={1,2,3},则谓词公式("x)A(x)消去量词后的等值式为A(1)∧A(2)∧A(3).A.正确B.错误正确答案:A16.设个体域D={1, 2, 3, 4},则谓词公式($x)A(x)消去量词后的等值式为A(1 ) ∨A(2) ∨ A(3) ∨ A(4)A.正确B.错误正确答案:A17.设个体域D={1, 2},则谓词公式("x)P(x) ∨($x)Q(x)消去量词后的等值式为(P (1)∧P (2)) ∨(Q(1)∨Q(2)).A.正确B.错误正确答案:A18.("x)(P(x)∧Q(y)→R(x))中量词“"” 的辖域为(P(x)∧Q(y)).A.正确B.错误正确答案:B19. ("x)(P(x)∧Q(y))→R(x)中量词“"” 的辖域为(P(x)∧Q(y)).A.正确B.错误正确答案:A20.设A(x):x是人,B(x):x是学生,则命题“有的人是学生”可符号化为┐( x)(A(x)∧┐B(x))A.正确B.错误正确答案:B大作业1. 在线提交word文档第一部分一、公式翻译题(每小题2分,共10分)1.将语句“我会英语,并且会德语.”翻译成命题公式.参考答案:设p.我学英语Q:我学法语则命题公式为:pΛQ2.将语句“如果今天是周三,则昨天是周二.”翻译成命题公式.参考答案:设P:今天是周三Q:昨天是周二则命题公式为:P→Q3.将语句“小王是个学生,小李是个职员.”翻译成命题公式.参考答案:设P:小王是个学生Q:小李是个职员则命题公式为:P∧Q4.将语句“如果明天下雨,我们就去图书馆.”翻译成命题公式.参考答案:设P:如果明天下雨Q:我们就去图书馆则命题公式为:P→Q5.将语句“当大家都进入教室后,讨论会开始进行.”翻译成命题公式.参考答案:设P:当大家都进入教室后Q:讨论会开始进行则命题公式为:P→Q二、计算题(每小题10分,共50分)1.设集合A={1, 2, 3},B={2, 3, 4},C={2, {3}},试计算(1)A-C;(2)A∩B;(3)(A∩B)×C.参考答案:(1)A-C={l,3};(2)A∩B={2,3};(3)(A∩B)×C= { <2,2>,<2, {3} > ,<3,2> ,<3, {3} >}.2. 设G=<V,E>,V={v1,v2,v3,v4,v5},E={(v1,v3) , (v1,v5) , (v2,v3) , (v3,v4) , (v4,v5) },试(1)给出G的图形表示;(2)求出每个结点的度数;(3)画出其补图的图形.参考答案:(1)关系图编辑(2)deg(v1)=3deg(v2)=2deg(v3)=3deg(v4)=2deg(v5)=2(3)补图编辑3.试画一棵带权为1, 2, 3, 3, 4的最优二叉树,并计算该最优二叉树的权.参考答案:编辑权为1×3+2×3+3×2+3×2+4×2=294.求出如下所示赋权图中的最小生成树(要求写出求解步骤),并求此最小生成树的权.编辑参考答案:解:用Kruskal 算法求产生的最小生成树,步骤为:w(v2,v6)=1 选(v2,v6)w(v4,v5)=1 选(v4,v5)w(v1,v6)=2 选(v1,v6)w(v3,v5)=2 选(v3,v5)w(v2,v3)=4 选(v2,v3)最小生成树如图所示:编辑最小生成树的权w(T)=1+1+2+2+4=10. 5. 求P→(Q∧R) 的析取范式与合取范式. 参考答案:解:(P∨Q)→R⇔┐(P∨Q)∨R⇔(┐P∧┐Q)∨R(析取范式)⇔(┐P∨R)∧(┐Q∨R)(合取范式)。
离散数学作业1_集合与关系1. 设A、B、C为任意三个集合,判断下列命题的真与假。
如命题为真,则证明之;否则,举反例说明。
(1)若A⋂C=B⋂C,则A=B(假命题)(2)若A⋃C=B⋃C ,则A=B(假命题)(3)若A⋂C=B⋂C 且A⋃C=B⋃C ,则A=B(真命题,参考ppt 1.2节例8)2.证明A-B=A∩~B.证明思路:任取x∈A-B⇔……⇔ x∈A∩~B证明:任取x∈A-B⇔x∈A且x/∈B(根据相对补的定义)⇔ x∈A且x∈~B(根据绝对补的定义)⇔ x∈A∩~B3. 设A={1,2,3,4,5,6},下面各式定义的R都是A上的二元关系。
试分别以序偶、关系矩阵、关系图三种形式分别写出R。
(1) R={<x,y>|x整除y};(2) R={<x,y>|x是y的倍数};(3) R={<x,y>|(x-y)2∈A};(4) R={<x,y>|x/ y是素数}。
解:(1)R={<1,1>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,2>,<2,4.>,<2,6>,<3,3 >,<3,6>,<4,4>,<5,5>,<6,6>}(2)R={<1,1>,<2,1>,<2,2>,<3,1>,<3,3>,<4,1>,<4,2>,<4,4>,<5,1>,<5,5>,<6,1>,<6,2>,<6,3>,<6,6>}(3)R={<1,2>,<1,3>,<2,1>,<2,3>,<2,4>,<3,2>,<3,4>,<3,1>,<3,5>,<4,3 >,<4,5>,<4,2>,<4,6>,<5,4>,<5,6>,<5,3>,<6,5>,<6,4>}(4) 质数又称素数。
1 / 6离散数学(1)复习题一、填空题1、集合S={n 100 | n ∈N}的基数为( 0ℵ )。
2、设R 是集合A 上的二元关系,则R 是对称的,当且仅当其关系矩阵( 为对称矩阵 )。
3、集合P={Ф,{a}}的幂集ρ(P)=( {Ф,{Ф},{a}, {Ф,{a}} } )。
4、设A={1,2,7,8},B={i │i ∈N 且i 2<50},则A —B=( {8} )。
5、设(A ,≤)是一个有界格,只要满足( 每个元素均有补元 ),它也是有补格。
6、设S 为非空有限集,代数系统(ρ(S),Y ,I )中,ρ(S)对Y 的零元为( S ),ρ(S)对I 的单位元为( Ф )。
7、重言式的否定式是( 矛盾 )。
8、设A=φ,B={φ,{φ}},则B -A=( {}{}φφ, )。
9、集合A={1,2,…,10}上的关系R={(x ,y )│x+y=10且x 、y ∈A},则R 的性质为( 对称的 )。
10、有界格(P ,∧,∨)对于“∧”运算的零元为( 0 )。
11、设P :张三可以做这件事,Q :李四可以做这件事。
则命题“张三或李四可以做这件事”符号化为( P Q ∨ )。
12、设M={x| f 1(x )=0},N={x| f 2(x )=0},则方程f 1(x )·f 2(x )=0的答案为( M N U )。
13、设 |A|=m ,|B|=n ,则 |ρ(A ×B) | 等于( 2m n ⨯ )。
二、计算与证明题1、设A={0,1},B={a ,b},求:(1)A ×B ;(2)B ×A答:(1)()()()(){}0,,0,,1,,1,A B a b a b ⨯=(2)()()()(){},0,,0,,1,,1B A a b a b ⨯=2、(1)叙述幂集的定义;(2)求集合P={Ф,{a}}的幂集ρ(P).。