有答案-数列综合练习(错位相减法、裂项相消法)
- 格式:docx
- 大小:47.57 KB
- 文档页数:6
错位相减法[典例](2017·山东高考)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3.(1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1n 项和T n .[解](1)设{a n }的公比为q ,由题意知:a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2,所以a n =2n .(2)由题意知,S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b n a n ,则c n =2n +12n ,因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n ,又12T n =322+523+724+…+2n -12n +2n +12n +1,两式相减得12T n =32++122+…-2n +12n +1=32+1-1-2n +12n +1=52-2n +52n +1,所以T n =5-2n +52n .[变透练清]1.(变结论)若本例中a n ,b n 不变,求数列{a n b n }的前n 项和T n .解:由本例解析知a n =2n ,b n =2n +1,故T n =3×21+5×22+7×23+…+(2n +1)×2n ,2T n =3×22+5×23+7×24+…+(2n +1)×2n +1,上述两式相减,得,-T n =3×2+2×22+2×23+…+2×2n -(2n +1)2n +1=6+8(1-2n-1)1-2-(2n+1)2n+1=(1-2n)2n+1-2得T n=(2n-1)×2n+1+2.1.用裂项法求和的裂项原则及消项规律2.常见的拆项公式(1)1n(n+1)=1n-1n+1;(2)1(2n-1)(2n+1)=(3)1n+n+1=n+1-n;1.在等差数列{a n}中,a3+a5+a7=6,a11=8n项和为()A.n+1n+2B.nn+2C.n n+1D.2n n+1解析:选C因为a3+a5+a7=6,所以3a5=6,a5=2,又a11=8,所以等差数列{a n}的公差d=a11-a511-5=1,所以a n=a5+(n-5)d=n-3,所以1a n+3·a n+4=1n(n+1)=1n-1n+1,n项和为1-12+12-13+…+1n-1n+1=1-1n+1=nn+1,故选C.2.各项均为正数的等比数列{a n}中,a1=8,且2a1,a3,3a2成等差数列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=1n log2a n,求{b n}的前n项和S n.解:(1)设等比数列{a n}的公比为q(q>0).∵2a1,a3,3a2成等差数列,∴2a3=2a1+3a2,即2a1q2=2a1+3a1q,∴2q 2-3q -2=0,解得q =2或q =-12(舍去),∴a n =8×2n -1=2n +2.(2)由(1)可得b n =1n log 22n +2=1n (n +2)=∴S n =b 1+b 2+b 3+…+b n-13+12-14+13-15+…+1n -+12-1n +1-=34-=34-2n +32(n +1)(n +2).。
数列专题 数列求和常用方法一、公式法例1在数列{a n }中,2a n =a n -1+a n +1(n ≥2),且a 2=10,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 的最大值.解: (1)因为2a n =a n -1+a n +1(n ≥2),所以a n +1-a n =a n -a n -1(n ≥2),所以数列{a n }为等差数列,设首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 2=a 1+d =10,a 5=a 1+4d =-5,解得⎩⎪⎨⎪⎧a 1=15,d =-5, 所以a n =a 1+(n -1)d =15-5(n -1)=-5n +20.(2)由(1)可知S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-52n 2+352n ,因为对称轴n =72, 所以当n =3或4时,S n 取得最大值为S 3=S 4=30. 跟踪练习1、已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求b 1+b 3+b 5+…+b 2n -1. 解 (1)设等差数列{a n }的公差为d . 因为a 1=1,a 2+a 4=10, 所以2a 1+4d =10, 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5, 所以b 1q ·b 1q 3=9. 又b 1=1,所以q 2=3.所以b 2n -1=b 1q 2n -2=3n -1.则b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.二、分组转化法例2、已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n ={b n −n 2,n 为偶数2a n,n 为奇数,求数列{c n }的前2n 项的和T 2n .解:(1)设数列{a n }的公差为d ,由题意得,⎩⎪⎨⎪⎧5a 1+10d =20,(a 1+2d )2=(a 1+d )(a 1+4d ),化简得⎩⎪⎨⎪⎧a 1+2d =4,a 1d =0, 因为d ≠0,所以a 1=0,d =2,所以a n =2n -2(n ∈N *),S n =n 2-n ,n ∈N *, 因为S n +b n =2n 2,所以b n =n 2+n (n ∈N *).(2)由(1)知,c n ={b n −n 2,n 为偶数2a n ,n 为奇数=⎩⎪⎨⎪⎧n ,n 为偶数,4n -1,n 为奇数,所以T 2n =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =(2+4+…+2n )+(40+42+…+42n -2) =n (2+2n )2+1-16n 1-16=n (n +1)+115(16n -1).跟踪练习1、已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49. (1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7, 故公差d =a 4-a 3=7-5=2, 故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1, T n =21+1+23+3+…+22n -1+2n -1 =21+23+…+22n -1+(1+3+…+2n -1) =21-22n +11-4+n (1+2n -1)2=22n +13+n 2-23.易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000, 故T n ≥1 000,解得n ≥6,n ∈N *.三、并项求和法例3、已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25. (1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5, 又a 5=9=a 1+4d ,所以d =2,a 1=1, 所以a n =2n -1,S n =n (1+2n -1)2=n 2.(2)结合(1)知b n =(-1)n n 2,当n 为偶数时, T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)] =1+2+3+…+n =n (n +1)2.当n 为奇数时,n -1为偶数, T n =T n -1+(-1)n·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2.四、裂项相消法例4、已知数列{a n }的前n 项和为S n ,且2S n =3a n -3(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =1log 3a n ·log 3a n +1,求数列{b n }的前n 项和T n .解:(1)当n =1时,2a 1=3a 1-3,解得a 1=3;当n ≥2时,2a n =2S n -2S n -1=3a n -3-3a n -1+3=3a n -3a n -1,得a n =3a n -1, 因为a n ≠0,所以a na n -1=3,因为a 1=3, 所以数列{a n }是以3为首项,3为公比的等比数列,所以a n =3n . (2)因为log 3a n =log 33n =n ,所以b n =1log 3a n ·log 3a n +1=1n (n +1)=1n -1n +1,所以数列{b n }的前n 项和T n =⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1. 跟踪练习1、已知数列{a n }的前n 项和为S n ,S n =2a n -1,数列{b n }是等差数列,且b 1=a 1,b 6=a 5.(1)求数列{a n }和{b n }的通项公式;(2)若c n =1b n b n +1,记数列{c n }的前n 项和为T n ,证明:3T n <1.解: (1)由S n =2a n -1,可得n =1时,a 1=2a 1-1,解得a 1=1;n ≥2时,S n -1=2a n -1-1,又S n =2a n -1,两式相减可得a n =S n -S n -1=2a n -1-2a n -1+1,即有a n =2a n -1,所以数列{a n }是首项为1,公比为2的等比数列,所以a n =2n -1.设等差数列{b n }的公差为d ,且b 1=a 1=1,b 6=a 5=16,可得d =b 6-b 16-1=3,所以b n =1+3(n -1)=3n -2.(2)证明:c n =1b n b n +1=1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,所以T n =13⎝ ⎛⎭⎪⎫1-14+14-17+17-110+…+13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1<13,则3T n <1.2、设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =1a n -1,求数列{b n }的前n 项和S n .解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *,所以a n +1+a n -2a n +1a n =4,即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列, 所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列, 所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.3、已知数列{a n }满足:a 1=2,a n +1=a n +2n . (1)求{a n }的通项公式; (2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n . 解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n .又a 1=2,也满足上式,故a n =2n . (2)由(1)可知,b n =log 2a n =n , 1b n b n +1=1n (n +1)=1n -1n +1,T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1,故T n =nn +1.五、错位相减法例5、在数列{a n }中,a 1=1,a n +1=a n -2a n a n +1. (1)求{a n }的通项公式;(2)若b n =3na n ,求数列{b n }的前n 项和S n .解:(1)∵a 1=1,a n +1=a n -2a n a n +1,∴a n ≠0,∴1a n =1a n +1-2⇒1a n +1-1a n =2,又∵1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列, ∴1a n =1+2(n -1)=2n -1,∴a n =12n -1(n ∈N *). (2)由(1)知:b n =(2n -1)×3n ,∴S n =1×3+3×32+5×33+7×34+…+(2n -1)×3n , 3S n =1×32+3×33+5×34+7×35+…+(2n -1)×3n +1,两式相减得-2S n =3+2×32+2×33+2×34+…+2×3n -(2n -1)×3n +1 =3+2(32+33+34+…+3n )-(2n -1)×3n +1 =3+2×32(1-3n -1)1-3-(2n -1)×3n +1=3+3n +1-9-(2n -1)×3n +1=2(1-n )×3n +1-6 ∴S n =(n -1)×3n +1+3. 跟踪练习1、已知数列{a n }满足:a 1=1,a n +1=2a n +n -1.(1)证明:数列{a n +n }是等比数列并求数列{a n }的前n 项和S n ; (2)设b n =(2n -1)·(a n +n ),求数列{b n }的前n 项和T n .解: (1)因为a n +1=2a n +n -1,所以a n +1+(n +1)=2a n +2n ,即a n +1+(n +1)a n +n=2,又a 1+1=2,所以数列{a n +n }是以2为首项2为公比的等比数列, 则a n +n =2·2n -1=2n ,故a n =2n -n ,所以S n =(2+22+…+2n )-(1+2+…+n )=2·(1-2n )1-2-n (1+n )2=2n +1-2-n (1+n )2.(2)由(1)得,b n =(2n -1)·(a n +n )=(2n -1)·2n , 则T n =2+3×22+5×23+…+(2n -1)·2n ,①2T n =22+3×23+5×24+…+(2n -3)·2n +(2n -1)·2n +1,②①-②得-T n =2+2×22+2×23+…+2×2n -(2n -1)·2n +1=2×(2+22+…+2n )-2-(2n -1)·2n +1=-(2n -3)·2n +1-6,所以T n =(2n -3)·2n +1+6.2、已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式; (2)设b n =na n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n =3S n -1-2(n -1)+2,又S n +1=3S n -2n +2, 两式相减可得S n +1-S n =3S n -3S n -1-2,即a n +1=3a n -2, 即有a n +1-1=3(a n -1),令n =1,可得a 1+a 2=3a 1,解得a 2=2a 1=4,也符合a n +1-1=3(a n -1), 则数列{a n -1}是首项为1,公比为3的等比数列, 则a n -1=3n -1,故a n =1+3n -1. (2)由(1)知b n =na n =n +n ·3n -1,则T n =(1+2+…+n )+(1·30+2·31+3·32+…+n ·3n -1), 设M n =1·30+2·31+3·32+…+n ·3n -1, 3M n =1·3+2·32+3·33+…+n ·3n ,两式相减可得-2M n =1+3+32+…+3n -1-n ·3n =1-3n1-3-n ·3n , 化简可得M n =(2n -1)·3n +14.所以T n =12n (n +1)+(2n -1)·3n +14.3、设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和. 解 (1)设{a n }的公比为q , ∵a 1为a 2,a 3的等差中项, ∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0, ∴q 2+q -2=0, ∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n , a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n =1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n3,∴S n =1-(1+3n )(-2)n9,n ∈N *.4、设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜想{a n }的通项公式; (2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5, a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1. (2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,①2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1 =6+2×22×(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2, 即S n =(2n -1)·2n +1+2.5、已知正项数列{a n }的前n 项和为S n ,且a 2n +1=2S n +n +1,a 2=2. (1)求数列{a n }的通项公式a n ;(2)若b n =a n ·2n ,数列{b n }的前n 项和为T n ,求使T n >2 022的最小的正整数n 的值. 解 (1)当n ≥2时,由a 2n +1=2S n +n +1,a 2=2, 得a 2n =2S n -1+n -1+1,两式相减得a 2n +1-a 2n =2a n +1, 即a 2n +1=a 2n +2a n +1=(a n +1)2.∵{a n }是正项数列,∴a n +1=a n +1. 当n =1时,a 22=2a 1+2=4, ∴a 1=1,∴a 2-a 1=1,∴数列{a n }是以a 1=1为首项,1为公差的等差数列,∴a n =n . (2)由(1)知b n =a n ·2n =n ·2n ,∴T n =1×21+2×22+3×23+…+n ·2n , 2T n =1×22+2×23+…+(n -1)·2n +n ·2n +1, 两式相减得-T n =2·(1-2n )1-2-n ·2n +1=(1-n )2n +1-2, ∴T n =(n -1)2n +1+2.∴T n -T n -1=n ·2n >0, ∴T n 单调递增.当n =7时,T 7=6×28+2=1 538<2 022, 当n =8时,T 8=7×29+2=3 586>2 022, ∴使T n >2 022的最小的正整数n 的值为8.6、已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34.当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9,解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列,所以a n =-94×⎝⎛⎭⎫34n -1=-3n+14n .(2)因为3b n +(n -4)a n =0, 所以b n =(n -4)×⎝⎛⎭⎫34n.所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3. 所以-3≤λ≤1.。
数列求和综合(经典总结版)含答案详解包括四种题型:分组求和、并项法、错位相减、裂项相消一、分组求和例1.求和.练1已知数列{}n x 的首项13x =,通项2n n x p n q =⋅+⋅(*n ∈N ,,p q 是常数),且145,,x x x 成等差数列.(1)求,p q 的值;(2)求数列{}n x 的前n 项和n S .例2.(奇偶性)已知等差数列{a n }中,a 1=1,且a 1,a 2,a 4+2成等比数列.(Ⅰ)求数列{a n }的通项公式及前n 项和S n ;(Ⅱ)设b n =,求数列{b n }的前2n 项和T 2n .二、并项法例1.已知数列的前项和,求,的值以及Sn 的值.练1.求,,,,…,,…的前50项之和以及前项之和.三、错位相减例1 已知数列{a n }的前n 项和为S n ,且有a 1=2,3S n =11543(2)n n n a a S n ---+≥(I )求数列a n 的通项公式; (Ⅱ)若b n =n ·a n ,求数列{b n }的前n 项和T n 。
11111232482n n ⎛⎫+++⋅⋅⋅++ ⎪⎝⎭{}n a n 1159131721...(1)(43)n n S n -=-+-+-++--15S 22S 21-2223-242(1)n n •-50S n n S练1 等比数列{a n }的前n 项和为S n .已知S 1,S 3,S 2成等差数列.若a 1-a 3=-32,求数列{n ·a n }的前n 项和T n .练2 设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .例2已知数列{}n a 的首项123a =,121n n n a a a +=+,1,2,3,n =…. (Ⅰ)证明:数列1{1}na -是等比数列;(Ⅱ)数列{}n n a 的前n 项和n S .练1 已知各项均为正数的数列{}n a 前n 项和为n S ,首项为1a ,且n n S a ,,21等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若n bn a )21(2=,设nnn a b c =,求数列{}n c 的前n 项和n T .练2、已知递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求S n .例3 在等比数列{a n }中,a 2a 3=32,a 5=32.(1)求数列{a n }的通项公式; (2)设数列{a n }的前n 项和为S n ,求S 1+2S 2+…+nS n .例4.已知数列{a n }的前n 项和为S n =3n ,数列{b n }满足b 1=-1,b n +1=b n +(2n -1)(n ∈N *). (1)求数列{a n }的通项公式a n ;(2)求数列{b n }的通项公式b n ;(3)若c n =a n ·b nn ,求数列{c n }的前n 项和T n .四、裂项相消裂项相消的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,以达到求和的目的. 常见的裂项相消形式有: 1. 111(1)1n a n n n n ==-++ 1111()(2)22n a n n n n ==-++ ┈┈1111()()n a n n k k n n k ==-++2n p a An Bn C ⇒=++(分母可分解为n 的系数相同的两个因式)2. 1111()(21)(21)22121n a n n n n ==--+-+ 1111()(21)(23)22123n a n n n n ==-++++1111()(65)(61)66561n a n n n n ==--+-+3. 1111(1)(2)2(1)(1)(2)n a n n n n n n n ⎡⎤==-⎢⎥+++++⎣⎦4.)121121(211)12)(12()2(2+--+=+-n n n n n 5. 111211(21)(21)2121n n n n n n a ---==-++++ +1+1211(21)(21)2121nnn n n n a ==-++++122(1)111(1)2(1)22(1)2n n n n n n n n a n n n n n n -++-==⋅=-++⋅+6.=┈┈12=1k=- 例1.正项数列}{n a 满足02)12(2=---n a n a n n .(Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令,)1(1nn a n b +=求数列}{n b 的前n 项和n T .练1.等比数列}{n a 的各项均为正数,且6223219,132a a a a a ==+.(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1{nb 的前n 项和.例2.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S .(Ⅰ)求n a 及n S ; (Ⅱ)令),(11*2N n a b n n ∈-=求数列}{n b 的前n 项和n T .例3.已知等差数列}{n a 的公差为2,前n 项和为n S ,且421,,S S S 成等比数列.(1)求数列}{n a 的通项公式;(2)令,4)1(112+--=n n n a a nb 求数列}{n b 的前n 项和n T .例4.正项数列}{n a 的前n 项和n S 满足:0)()1(222=+--+-n n S n n S n n .(1)求数列}{n a 的通项公式n a ;(2)令,)2(122n n a n n b ++=数列}{n b 的前n 项和为n T ,证明:对于,*N n ∈∀都有645<n T .练1、已知数列{}n a 是首相为1,公差为1的等差数列,21n n n b a a +=⋅,n S 为{}n b 的前n 项和,证明:1334n S ≤<.例5.已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8.(1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =,求数列{b n }的前n 项和T n .例6. (无理型)设数列{}n a 满足01=a 且111111=---+nn a a ,(1)求{}n a 的通项公式;(2)设na b n n 11+-=,记∑==nk kn bS 1,证明:1<n S .例7.(指数型).已知数列{a n }的前n 项和为S n ,且a 2=8,S n =﹣n ﹣1.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)求数列{}的前n 项和T n .例8.设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(Ⅰ)求{a n }和{b n }的通项公式; (Ⅱ)设数列{S n }的前n 项和为T n (n ∈N *), (i )求T n ;(ii )证明=﹣2(n ∈N *)作业:1.设231()2222()n f n n N ++=++++∈,则()f n 等于( )A.21n -B.22n -C. 122n +-D. 222n +-2.满足*12121,log log 1()n n a a a n +==+∈N ,它的前n 项和为n S ,则满足1025n S >的最小n 值是( )A .9B .10C .11D .123.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1{1+n n a a 的前100项和为( A ) A .100101 B .99101 C .99100 D .1011004.求和2345672223242526272+⨯+⨯+⨯+⨯+⨯+⨯= . 5.定义在上的函数满足, 则6.已知数列{a n }的前n 项和S n 与通项a n 满足S n =12-12a n .(1)求数列{a n }的通项公式;(2)设f (x )=log 3x ,b n =f (a 1)+f (a 2)+…+f (a n ),T n =1b 1+1b 2+…+1b n ,求T 2 012;(3)若c n =a n ·f (a n ),求{c n }的前n 项和U n .7.已知数列{a n }为公差不为零的等差数列,a 1=1,各项均为正数的等比数列{b n }的第1项,第3项,第5项分别是a 1,a 3,a 21.(1)求数列{a n }与{b n }的通项公式;(2)求数列{a n b n }的前n 项和S n .8. 已知数列{an}的前n 项和Sn =-12n 2+kn(其中k ∈N +),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和Tn.R )(x f 2)21()21(=-++x f x f )83()82()81(f f f ++67()()_______88f f +++=数列求和综合答案详解版一、分组求和例1.求和. 【解析】(1+2+3+…+n)+ =【总结升华】1. 一般数列求和,先认真理解分析所给数列的特征规律,联系所学,考虑化归为等差、等比数列或常数列,然后用熟知的公式求解.2. 一般地,如果等差数列与等比数列的对应项相加而形成的数列都用分组求和的办法来求前项之和.练1已知数列{}n x 的首项13x =,通项2n n x p n q =⋅+⋅(*n ∈N ,,p q 是常数),且145,,x x x 成等差数列.(1)求,p q 的值;(2)求数列{}n x 的前n 项和n S . 【解析】(1)232(164)2325p q p q p q p p +=⎧⎨+=+++⎩ 解得11q p =⎧⎨=⎩(2)12212(21)(22)+(2)n n S x x x n =+++=+++++………… =12(22+2)(123+n)n ++++++…………=1(1)222n n n ++-+ 例2.(奇偶性)已知等差数列{a n }中,a 1=1,且a 1,a 2,a 4+2成等比数列.(Ⅰ)求数列{a n }的通项公式及前n 项和S n ; (Ⅱ)设b n =,求数列{b n }的前2n 项和T 2n .【解答】解:(I )设等差数列{a n }的过程为d ,∵a 1=1,且a 1,a 2,a 4+2成等比数列. ∴=a 1•(a 4+2),即(1+d )2=1×(1+3d +2),化为:d 2﹣d ﹣2=0,解得d =2或﹣1.其中d =﹣1时,a 2=0,舍去.∴d =2.a n =1+2(n ﹣1)=2n ﹣1,S n ==n 2.(Ⅱ)设b n ==,∴n 为偶数时,==16,b 2=8;11111232482n n ⎛⎫+++⋅⋅⋅++ ⎪⎝⎭11111232482n n S n ⎛⎫=+++⋅⋅⋅++= ⎪⎝⎭111242n ⎛⎫++⋅⋅⋅+ ⎪⎝⎭(1)1122n n n ++-{}n a {}n b {}n n a b +n n Sn 为奇数时,==,b 1=.∴数列{b n }的奇数项是首项为,公比为.数列{b n }的偶数项是首项为8,公比为16.∴数列{b n }的前2n 项和T 2n =+=.二、并项法例1.已知数列的前项和,求,的值以及Sn 的值.【思路点拨】该数列{}n a 的特征:1(1)(43)n n a n -=--,既非等差亦非等比,但也有规律:所有奇数项构成以1为首项8为公差的等差数列,偶数项构成以-5为首项-8为公差的等差数列,因而可以对奇数项和偶数项分组求和;还有规律:1234561...4n n a a a a a a a a ++=+=+==+=-(n 为奇数),可以将相邻两项组合在一起. 【解析】(1)法1(分组)由可得,法2(并项)a1+a2=−4,a3+a4=−4(2)由∴当为奇数,时, ,Sn=( a1+a2)+ a3+a4……(a n-2-a n-1)+an=−4(n−12)+4n-3=2n-1当为偶数,时,,Sn=( a1+a2)+ a3+a4……(a n-1+an )=−4×n2=−2n 【总结升华】1.对通项公式中含有或的一类数列,在求时要注意讨论的奇偶情况.2. 对正负相间的项中的相邻两项进行恰当的组合,可能会有意料之结. 举一反三:【变式1】求,,,,…,,…的前50项之和以及前项之和.{}n a n 1159131721...(1)(43)n n S n -=-+-+-++--15S 22S 1(1)(43)n n a n -=--158(157)7(553)[19...(4153)][513...(4143)]2922S ++=+++⨯--+++⨯-=-=2211(181)11(585)[19...(4213)][513...(4223)]4422S ++=+++⨯--+++⨯-=-=-1(1)(43)n n a n -=--n n N +∈1(43)(41)4n n a a n n ++=--+=-n n N +∈1(43)(41)4n n a a n n ++=--++=n )1(-1n )1(+-n S n 21-2223-242(1)n n •-50S n n S【解析】(1)设,则数列为等差数列,且是的前25项之和, 所以.(2)当为偶数即时,.当为奇数即时,.三、错位相减例1 已知数列{a n }的前n 项和为S n ,且有a 1=2,3S n =11543(2)n n n a a S n ---+≥ (I )求数列a n 的通项公式;(Ⅱ)若b n =n ·a n ,求数列{b n }的前n 项和T n 。
专题一(2)裂项相消法求数列前n 项和学习目标 1裂项相消法求和的步骤和注意事项 2使学生能用裂项相消法来解决分式数列的求和探究(一)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.例1、说明:(1)裂项相消法的关键就是将数列的每一项拆成二项或多项,使数列中的项出现有规律的抵消项,进而达到求和的目的。
即:把数列的通项拆成两项之差,在求和时一些正负项相互抵消,于是前n 项和变成首尾若干项之和. 适合于分式型数列的求和。
(2)利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.(3)一般地若{a n }是等差数列,则1a n a n +1=1d (1a n -1a n +1),1a n ·a n +2=12d (1a n -1a n +2).(4)此外根式在分母上时可考虑利用有理化因式相消求和.变式练习:项和的前)2(1,,531,421,311求数列n n n +⋅⋅⋅⨯⨯⨯.变式与拓展:1、项和的前)13)(23(1,,,741,411求数列n n n +-⋅⋅⋅⨯⨯例2、设{a n }是等差数列,且a n ≠0.求证1a 1a 2+1a 2a 3+…+1a n a n +1=na 1a n +1.证明:设{a n }的公差为d ,则1a 1a 2+1a 2a 3+…+1a n a n +1=⎝ ⎛⎭⎪⎫1a 1-1a 2·1a 2-a 1+⎝ ⎛⎭⎪⎫1a 2-1a 3·1a 3-a 2+…+⎝ ⎛⎭⎪⎫1a n -1a n +1·1a n +1-a n=1d ⎝ ⎛⎭⎪⎫1a 1-1a 2+1a 2-1a 3+…+1a n -1a n +1=1d ⎝ ⎛⎭⎪⎫1a 1-1a n +1=1d ·a 1+nd -a 1a 1a n +1=na 1a n +1. 所以1a 1a 2+1a 2a 3+…+1a n a n +1=n a 1a n +1.常见的拆项公式有:例3、已知数列{a n }:11,211+,3211++,…1123n+++,…,求它的前n 项和。
高三数学倒序相加错位相减裂项抵消求和试题答案及解析1.数列的前项和为,若,则等于A.B.C.D.【答案】D【解析】因为.所以.【考点】1.数列的通项的裂项.2.数列的求和.2.求下面各数列的前n项和:(1),…(2) ,…【答案】(1)(2)【解析】(1)∵a=,n∴S=n==.==1+,(2)∵an∴S=n+n3.在等差数列中,已知,.(1)求;(2)若,设数列的前项和为,试比较与的大小.【答案】(1) ;(2)当时,;当时,.【解析】(1)根据等差数列的通项公式把已知转化成关于和的方程,再利用公式,求出;(2)由(1)的结果,代入得到,观察形式,利用裂项相消求和,得到,再用做差法比较和的大小,分解因式后,讨论的范围,得到大小关系,此题考察等差数列的基础知识,以及求和的方法,比较大小时,不要忘记讨论,再比较大小,总体属于基础题型. 试题解析:(1)由题意得: 2分解得 4分. 6分(2)因为,所以, 7分10分所以= =, 12分所以当时,;当时,. 14分【考点】1.等差数列的公式;2裂项相消;3.比较法.4.在数列中,,.(1)设,求数列的通项公式;(2)求数列的前项和.【答案】(1);(2).【解析】(1)在题中等式两边同时除以得,则,即,利用累加法得;(2)根据第(1)题求出,利用分组求和,,后面括号式子利用错位相加法求得结果.试题解析:(1)由已知得,原式同除以得,则,即,所以……累加,得所以由(1)得,所以设,①,②①-②,得所以,所以【考点】1.累加法求通项公式;2.分组求和法和错误相减法求和.5.已知数列,满足,,(1)求的值;(2)猜想数列的通项公式,并用数学归纳法证明;(3)己知,设,记,求.【答案】(1);;(2),证明见解析;(3)3..【解析】(1)这属于已知数列的递推关系式,求数列的项的问题,我们只要在已知递推关系式中依次令就可以依次求出;(2)用归纳法归纳数列的通项公式,我们可以由数列的前几项想象各项与项数之间的联系,如,,,,从而归纳出结论,然后数学归纳法证明,这里数学归纳法的基础即第一步已经不需另证了,关键是第二步,假设时,,然后由已知条件求出,那么结论就是正确的;(3)按常规方法,先求,,接着求数列的前项和,根据其通项公式的形式(它是一个等差数列所一个等比数列对应项相乘所得),求和用乘公比经错位相减法,求得,然后借助已知极限可求出极限.试题解析:(1),∴.,分别令,可得,(2)猜想数列的通项公式为.用数学归纳法证明如下:证明 (i)当时,由(1)知结论成立;当时,,结论成立.(ii)假设时,结论成立,即.当时,.所以,,即时,结论也成立.根据(i)和(ii)可以断定,结论对一切正整数都成立.(3)由(2)知,,.于是,,.所以,.【考点】(1)数列的项;(2)数学归纳法;(3)借位相减法,极限.6.设数列满足,.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【解析】(1)先令求出的值,然后令时,在原式中用得到一个新的等式,并将该等式与原等式作差,求出数列在时的通项公式,并对的值是否符合上述通项公式进行检验,从而最终确定数列的通项公式;(2)先求出数列的通项公式,并根据数列的通项公式结构选择裂项法求和.试题解析:(1)因为,,①所以当时,.当时,,②,①-②得,,所以.因为,适合上式,所以;(2)由(1)得,所以,所以.【考点】1.定义法求数列的通项公式;2.裂项法求和7.设,的所有非空子集中的最小元素的和为,则= .【答案】【解析】这个问题主要是研究集合中的每个元素在和中分别出现多少次,事实上,以为例,集合中比大的所有元素组成的集合的所有子集共有个,把加进这些子集里形成新的集合,每个都是最小元素为的集合的子集,而最小元素为的集合的子集也就是这些,故在中出现次,同理出现次,…,出现1次,所以有,这个和用错位相减法可求得.【考点】子集的个数,借位相减法求数列的和.8.已知数列的前项和为,且,则______________.【答案】.【解析】由题意知,所以,下式减上式得.【考点】错位相减求和9.已知数列,,,,,为数列的前项和,为数列的前项和.(1)求数列的通项公式;(2)求数列的前项和;(3)求证:.【答案】(1);(2);(3)详见解析.【解析】(1)解法一是根据数列递推式的结构选择累加法求数列的通项公式;解法二是在数列的递推式两边同时除以,然后利用待定系数法求数列的通项公式,进而求出数列的通项公式;(2)先求出数列的通项公式,然后根据数列的通项结构,选择裂项相消法求数列的前项和;(3)对数列中的项利用放缩法,然后利用累加法即可证明所要证的不等式.试题解析:(1)法一:,法二:(2)(3)证明:,.【考点】1.累加法求数列的通项公式;2.待定系数法求数列的通项公式;3.裂项相消法求数列的和;4.利用放缩法证明数列不等式10.已知数列具有性质:①为整数;②对于任意的正整数,当为偶数时,;当为奇数时,.(1)若为偶数,且成等差数列,求的值;(2)设(且N),数列的前项和为,求证:;(3)若为正整数,求证:当(N)时,都有.【答案】(1) 0或2;(2)证明见试题解析;(3)证明见试题解析.【解析】(1)根据数列具有性质,为偶数,要,这时要求,必须讨论的奇偶性,分类讨论;(2)要证不等式,最好能求出,那么也就要求出数列的各项,那么我们根据数列定义,由为奇数,则为奇数,为偶数,接下来各项都是偶数,一起到某项为1,下面一项为0,以后全部为0.实际上项为1的项是第项(成等比数列),故可求;(3)由于是正整数,要证明从某一项开始,数列各项均为0,这提示我们可首先证明为非负(这可用数学归纳法加以证明),然后由于数列的关系,可见数列在出现0之前,是递减的,下面要考虑的是递减的速度而已.当为偶数时,;当为奇数时,,因此对所有正整数,都有,依此类推有,只要,则有.试题解析:(1)∵为偶数,∴可设,故,若为偶数,则,由成等差数列,可知,即,解得,故;(2分)若为奇数,则,由成等差数列,可知,即,解得,故;∴的值为0或2.(4分)(2)∵是奇数,∴,,,依此类推,可知成等比数列,且有,又,,,∴当时,;当时,都有.(3分)故对于给定的,的最大值为,所以.(6分)(3)当为正整数时,必为非负整数.证明如下:当时,由已知为正整数,可知为非负整数,故结论成立;假设当时,为非负整数,若,则;若为正偶数,则必为正整数;若为正奇数,则必为非负整数.故总有为非负整数.(3分)当为奇数时,;当为偶数时,.故总有,所以,当时,,即.( 6分)又必为非负整数,故必有.(8分)【另法提示:先证“若为整数,且,则也为整数,且”,然后由是正整数,可知存在正整数,使得,由此推得,,及其以后的项均为0,可得当时,都有】【考点】(1)递推数列与等差数列;(2)数列的前项和;(3)数列的通项与综合问题.11.数列中,,前项的和是,且,.(1)求数列的通项公式;(2)记,求.【答案】(1);(2).【解析】(1)先利用与之间的关系对时,利用求出数列在时的表达式,然后就进行检验,从而求出数列的通项公式;(2)在(1)的基础下,先求出数列的通项公式,然后利用公式法求出数列的通项公式.试题解析:(1)当且时,由,得,上述两式相减得,,故数列是以为首项,以为公比的等比数列,;(2),.【考点】1.定义法求数列通项;2.等差数列求和12.已知数列中,前和(1)求证:数列是等差数列(2)求数列的通项公式(3)设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求的最小值,若不存在,试说明理由。
数列求和专题一.公式法(已知数列是等差或等比数列可以直接使用等差或等比的求和公式求和) 二.分组求和法若数列的通项是若干项的代数和,可将其分成几部分来求.例1:求数列11111246248162n n ++L ,,,,,…的前n 项和n S .- 23411111111(2462)(1)222222n n n S n n n ++⎛⎫=+++++++++=++- ⎪⎝⎭L L .例2: 求数列5,55,555,…,55…5 的前n 项和S n解: 因为55…5=)110(95-n 所以 S n =5+55+555+...+55 (5)=[])110()110()110(952-+⋅⋅⋅+-+-n=⎥⎦⎤⎢⎣⎡---n n 110)110(1095 =815095108150--⨯n n 练习:、求数列11111,2,3,4,392781L 的前n 项和。
解:211223nn n ++-⋅三.错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.例: 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………(0x ≠)解: 当x=1时,23121315171(21)1135(21)n n S n n n -=+∙+∙+∙+⋅⋅⋅+-∙=++++-=当x ≠1时, 132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………. ① ①式两边同乘以x 得n xS = 231135(23)(21)n n x x x n x n x -+++⋅⋅⋅+-+-………② (设制错位)①-②得 n n n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+n练习: 1:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. 1224-+-=n n n S2. 已知数列.}{,)109()1(n n nn S n a n a 项和的前求⨯+=四.裂项相消法 常见的拆项公式有:1()n n k =+111()k n n k -+=1k,1(21)(21)n n =-+111()22121n n --+,等. 例1:求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S. 解:∵)2(1+n n =211(21+-n n )S n =⎥⎦⎤⎢⎣⎡+-+⋅⋅⋅+-+-)211()4121()311(21n n =)2111211(21+-+--n n =42122143+-+-n n 例2:设9)(2+=x x f ,(1)若;),2(),(,111n n n u n u f u u 求≥==-(2)若;}{,,3,2,1,11n n k k k S n a k u u a 项和的前求数列 =+=+解:(1)}{),2(9122121n n nu n u u u ∴⎩⎨⎧≥+==- 是公差为9的等差数列,,89,0,892-=∴>-=∴n u u n u n n n(2)),8919(9119891--+=++-=k k k k a k);119(91)]8919()1019()110[(91-+=--+++-+-=∴n n n S n练习: 1、 求数列2112+,2124+,2136+,2148+,…的前n 项和n S .2、求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.五.倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.例1:求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5例2: 求222222222222123101102938101++++++++的和. 解:设222222222222123101102938101S =++++++++ 则222222222222109811012938101S =++++++++.两式相加,得 2111105S S =+++=∴=,.练习:设221)(xx x f +=,求:⑴)4()3()2()()()(111f f f f f f +++++; ⑵).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++ 【解题思路】观察)(x f 及⎪⎭⎫ ⎝⎛x f 1的特点,发现1)1()(=+xf x f 六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .例6: 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ cos(180)cos n n -=- (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0练习:已知:n S n n ⋅-++-+-+-=+1)1(654321 .求n S .(⎪⎪⎩⎪⎪⎨⎧-+=)(2)(21为正偶数为正奇数n n n n S n )。
数列的求和1.直接法:即直接用等差、等比数列的求和公式求和。
(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。
常见拆项公式:111)1(1+-=+n n n n ;1111()(2)22n n n n =-++ )121121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=⋅5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。
6.合并求和法:如求22222212979899100-++-+- 的和。
7.倒序相加法:8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:例1.求和:①个n n S 111111111++++= ②22222)1()1()1(n n n xx x x x x S ++++++= ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。
解:①)110(9110101011112-=++++==kkk k a个])101010[(91)]110()110()110[(9122n S n n n -+++=-++-+-= 8110910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++=nnn x x x x x x S n xx x x x x n n 2)111()(242242++++++++=(1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)1()1)(1(21)1(1)1(22222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时 ③kk k k k k k k k k a k 23252)]23()12[()]1()12[()12(2)12(2-=-+-=-+-+++++-=2)1(236)12)(1(25)21(23)21(2522221+-++⋅=+++-+++=+++=n n n n n n n a a a S n n)25)(1(61-+=n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。
数列难题专题一.解答题(共13小题)1.已知等差数列{a n}满足a2=2,a1+a4=5.(I)求数列{a n}的通项公式;(II)若数列{b n}满足:b1=3,b2=6,{b n﹣a n}为等比数列,求数列{b n}的前n 项和T n.2.已知数列{a n}的前n项和为S n满足S n=,且a1﹣1,2a2,a3+7成等差数列.(1)求数列{a n}的通项公式;(2)令b n=2log9a n(n∈N*),求数列的前n项和T n.3.已知等比数列{a n}的前n项和为S n,a1=2,a n>0(n∈N*),S6+a6是S4+a4,S5+a5的等差中项.(1)求数列{a n}的通项公式;(2)设,数列的前n项和为T n,求T n.4.已知数列{a n}的前n项和为.(1)求数列{a n}的通项公式;(2)设b n=log2a n,求.5.各项均为正数的等比数列{a n}的前n项和为S n.已知a1=3,S3=39.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{c n}满足,求数列{c n}的前n项和T n.6.已知数列{a n}的前n项和为S n=n2+1,在等比数列{b n}中,b1=,公比q=;(Ⅰ)求a n;(Ⅱ)令c n=a n•b n,设T n为{c n}的前n项和,求T n.7.已知数列{a n}的前n项和是S n,且S n=1(n∈N),数列{b n}是公差d 不等于0的等差数列,且满足:b1=,b2,b5,b14成等比数列.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)设c n=a n•b n,求数列{c n}的前n项和T n.8.已知等差数列{a n}满足a3=6,前7项和为S7=49.(1)求{a n}的通项公式;(2)设数列{b n}满足,求{b n}的前n项和T n.9.已知正数等比数列{a n}的前n项和S n满足:.(1)求数列{a n}的首项a1和公比q;(2)若b n=na n,求数列{b n}的前n项和T n.10.已知等比数列{a n}的公比q>0,a2a3=8a1,且a4,36,2a6成等差数列.(1)求数列{a n}的通项公式;(2)记,求数列{b n}的前n项和T n.11.已知正项数列{a n}的前n项和为S n,且(1+a n)2=4S n+4,等比数列{b n}的首项为1,公比为q(q≠1),且3b1,2b2,b3成等差数列.(1)求{a n}的通项公式;(2)求数列{a n b n}的前n项和T n.12.已知数列{a n}的前n项和为S n,a n>0且满足a n=2S n﹣﹣(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和T n.13.已知数列{a n}的前n项和为S n,且a1=2,2S n=(n+1)2a n﹣n2a n+1,数列{b n}满足b1=a1,nb n+1=a n b n.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)若数列{c n}满足c n=a n+b n(n∈N*),求数列{c n}的前n项和T n.参考答案与试题解析一.解答题(共13小题)1.已知等差数列{a n}满足a2=2,a1+a4=5.(I)求数列{a n}的通项公式;(II)若数列{b n}满足:b1=3,b2=6,{b n﹣a n}为等比数列,求数列{b n}的前n 项和T n.【分析】(Ⅰ)由题意可得,解得a1=d=1,即可求出通项公式,(Ⅱ)b1=3,b2=6,{b n﹣a n}为等比数列,求出b n=n+2n,再分组求和即可.【解答】解:(Ⅰ)等差数列{a n}满足a2=2,a1+a4=5,则,解得a1=d=1,∴a n=1+(n﹣1)=n,(Ⅱ)∵b1=3,b2=6,{b n﹣a n}为等比数列,设公比为q,∴b1﹣a1=3﹣1=2,b2﹣a2=6﹣2=4,∴q=2,∴b n﹣a n=2×2n﹣1=2n,∴b n=n+2n,∴数列{b n}的前n项和T n=(1+2+3+…+n)+(2+22+…++2n)=+=+2n+1﹣2.【点评】本题考查了等差数列和等比数列的通项公式和求和公式,考查了运算能力,属于基础题.2.已知数列{a n}的前n项和为S n满足S n=,且a1﹣1,2a2,a3+7成等差数列.(1)求数列{a n}的通项公式;(2)令b n=2log9a n(n∈N*),求数列的前n项和T n.【分析】(1)根据a n=S n﹣S n﹣1可得出{a n}的递推公式,于是{a n}为等比数列,根据a1﹣1,2a2,a3+7成等差数列解方程计算a1即可得出a n;(2)计算b n=,使用裂项法求和.【解答】解:(1)由得2S n=3a n﹣a1,由,做差得a n=3a n﹣1(n≥2),∴数列{a n}是公比为3的等比数列,又a1﹣1,2a2,a3+7成等差数列,4a2=a1+a3+6,即12a1=a1+9a1+6,解得a1=3,∴.(2)b n=2log93n=n,∴,∴.【点评】本题考查了等比数列的性质,裂项法求和,属于基础题.3.已知等比数列{a n}的前n项和为S n,a1=2,a n>0(n∈N*),S6+a6是S4+a4,S5+a5的等差中项.(1)求数列{a n}的通项公式;(2)设,数列的前n项和为T n,求T n.【分析】(1)根据S6+a6是S4+a4,S5+a5的等差中项建立关系,a1=2,即可求解数列{a n}的通项公式(2)设,将{a n}的通项公式带入化简可得{b n}的通项公式,利用裂项相消法前n项和为T n,【解答】解:(1)∵S6+a6是S4+a4,S5+a5的等差中项.∴2(S4+a4)=S4+a4+S5+a5化简得4a6=a4∵a1=2,{a n}是等比数列,设公比为q,则.∵a n>0(n∈N*),∴q>0∴q=∴数列{a n}的通项公式a n==;(2)由==2n﹣3.∴数列{b n}的通项公式b n=2n﹣3.那么:==数列的前n项和为T n=(﹣1﹣1)+(1﹣)+()+……+()=﹣1﹣=.【点评】本题考查了等比数列的通项公式与前n项和公式,考查了推理能力与计算能力,属于基础题.4.已知数列{a n}的前n项和为.(1)求数列{a n}的通项公式;(2)设b n=log2a n,求.【分析】(1)根据数列的递推公式即可求出,(2)根据对数的运算性质和裂项求和,即可求出结果.【解答】解:(1)当n≥2时,a n=S n﹣S n﹣1=(23n+1﹣2)﹣(23n﹣2﹣2)=23n﹣2,当n=1时,a1=S1=23×1﹣2,符合上式∴a n=23n﹣2,(n∈N*).(2)由(1)得b n=log2a n=3n﹣2,∴==(﹣),∴=[(1﹣)+(﹣)+…+(﹣)]=(1﹣)=【点评】本题考查了数列的递推公式和裂项求和,考查了运算能力,属于中档题5.各项均为正数的等比数列{a n}的前n项和为S n.已知a1=3,S3=39.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{c n}满足,求数列{c n}的前n项和T n.【分析】(Ⅰ)由a1=3,S3=39,知q2+q﹣12=0.故q=3,或q=﹣4,由此能求出,(Ⅱ)根据等差数列和等比数列的求和公式计算即可.【解答】解:(Ⅰ)设{a n}的公比为q,由a1=3,S3=39得,于是q2+q﹣12=0,解得q=3(q=﹣4不符合题意,舍去)故.(Ⅱ)由(Ⅰ)得,则,则…=.【点评】本题考查数列的通项及前n项和,考查等比数列的求和公式,属于中档题.6.已知数列{a n}的前n项和为S n=n2+1,在等比数列{b n}中,b1=,公比q=;(Ⅰ)求a n;(Ⅱ)令c n=a n•b n,设T n为{c n}的前n项和,求T n.【分析】(Ⅰ)由数列{a n}的前n项和为S n=n2+1,利用,由此能求出a n.(Ⅱ)利用等比数列{b n}中,b1=,公比q=,求出=()n,从而c n=a n•b n=,由此利用错位相减法能求出T n.【解答】解:(Ⅰ)∵数列{a n}的前n项和为S n=n2+1,∴a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=(n2+1)=[(n﹣1)2+1]=2n,当n=1时,a n=2=a1,∴a n=2n.(Ⅱ)∵在等比数列{b n}中,b1=,公比q=,∴=()n,∴c n=a n•b n=,∴{c n}的前n项和:T n=+,①=+6×+…+2n×()n+1,②①﹣②,得:=2[+…+()n]﹣2n×()n+1=2×﹣2n×()n+1=1﹣(1+)×()n,∴T n=﹣(n+)×()n.【点评】本题考查数列的通项公式、前n项和公式的求法,考查等比数列、错位相减法等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.7.已知数列{a n}的前n项和是S n,且S n=1(n∈N),数列{b n}是公差d 不等于0的等差数列,且满足:b1=,b2,b5,b14成等比数列.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)设c n=a n•b n,求数列{c n}的前n项和T n.【分析】(I)S n=1(n∈N),n≥2时,S n﹣1+a n﹣1=1,相减可得:a n﹣a n﹣1=0,化为:a n=a n﹣1.利用等比数列的通项公式可得a n.数列{b n}是公差d不等于0的等差数列,且满足:b1==1.由b2,b5,b14成等比数列.可得=b2•b14,(1+4d)2=(1+d)(1+13d),d≠0.解得d.即可得出.(Ⅱ)设c n=a n•b n=.利用错位相减法即可得出.【解答】解:(I)S n=1(n∈N),n≥2时,S n﹣1+a n﹣1=1,相减可得:a n﹣a n﹣1=0,化为:a n=a n﹣1.n=1时,a1+=1,解得a1=.∴数列{a n}是等比数列,首项为,公比为.∴a n==2×.数列{b n}是公差d不等于0的等差数列,且满足:b1==1.∵b2,b5,b14成等比数列.∴=b2•b14,∴(1+4d)2=(1+d)(1+13d),d≠0.解得d=2.∴b n=1+2(n﹣1)=2n﹣1.(Ⅱ)设c n=a n•b n=.求数列{c n}的前n项和T n=+……+.=+……++,相减可得:T n=+4﹣=+4×﹣,化为:T n=2﹣.【点评】本题考查了数列递推关系、等差数列与等比数列的通项公式与求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.8.已知等差数列{a n}满足a3=6,前7项和为S7=49.(1)求{a n}的通项公式;(2)设数列{b n}满足,求{b n}的前n项和T n.【分析】(1)根据等差数列的求和公式和等差数列的性质即可求出,(2)根据错位相减法即可求出.【解答】解:(1)由,得a4=7∵a3=6,∴d=1,∴a1=4,∴a n=n+3(2)=n•3n,∴T n=1×31+2×32+3×33+…+n×3n,∴3T n=1×32+2×33+3×34+…+n×3n+1,∴﹣2T n=3+32+33+34+…+3n﹣n×3n+1=﹣n×3n+1,∴T n=【点评】本题考查了等差数列的求和公式和等差数列的性质以及错位相减法,属于中档题9.已知正数等比数列{a n}的前n项和S n满足:.(1)求数列{a n}的首项a1和公比q;(2)若b n=na n,求数列{b n}的前n项和T n.【分析】(1)利用数列的递推关系式,求出数列的公比,然后求解数列的首项;(2)利用错位相减法求解数列的和即可.【解答】解:(1)∵,可知,,两式相减得:,∴,而q>0,则.又由,可知:,∴,∴a1=1.(2)由(1)知.∵,∴,.两式相减得=.∴.【点评】本题考查数列的递推关系式的应用,数列求和,考查计算能力.10.已知等比数列{a n}的公比q>0,a2a3=8a1,且a4,36,2a6成等差数列.(1)求数列{a n}的通项公式;(2)记,求数列{b n}的前n项和T n.【分析】(1)利用等差数列以及等比数列的通项公式列出方程组,求出数列的首项与公比,然后求解数列的通项公式.(2)化简通项公式,利用错位相减法求解数列的和即可.【解答】(本题满分12分)解:(1)由a2a3=8a1得:a1q3=8 即a4=8又因为a4,36,2a6成等差数列所以a4+2a6=72将a4=8代入得:a6=42从而:a1=1,q=2所以:a n=2n﹣1…….(6分)(2)b n==2n•()n﹣1T n=2×()0+4×()1+6×()2+…+2(n﹣1)•()n﹣2+2n•()n﹣1……………………①T n=2×()1+4×()2+6×()3+…+2(n﹣1)•()n﹣1+2n•()n……………………②①﹣②得:T n=2×()0+2(()1+()2+…+()n﹣1)﹣2n•()n =2+2×﹣2n•()n=4﹣(n+2)•()n﹣1∴T n=8﹣(n+2)•()n﹣2………………………………………………….(12分)【点评】本题考查等差数列以及等比数列的应用,数列求和的方法,考查转化首项以及计算能力.11.已知正项数列{a n}的前n项和为S n,且(1+a n)2=4S n+4,等比数列{b n}的首项为1,公比为q(q≠1),且3b1,2b2,b3成等差数列.(1)求{a n}的通项公式;(2)求数列{a n b n}的前n项和T n.【分析】(1)利用递推关系式求出数列的通项公式.(2)利用乘公比错位相减法求出数列的和.【解答】解:(1)当n=1时,且(1+a1)2=4S1+4,即:,因为:a n>0,所以:a1=3,当n≥2时,(1+a n)2=4S n+4,①则:(1+a n﹣1)2=4S n﹣1+4,②①﹣②得:(a n+a n﹣1)(a n﹣a n﹣1)=2(a n+a n﹣1),所以:a n﹣a n﹣1=2.所以数列{a n}是首项为3,公差为2的等差数列,所以:a n=2n+1(2)因为等比数列{b n}的首项为1数列,公比为q的等比数列,且3b1,2b2,b3成等差数列.所以:4b2=3b1+b3,所以:4q=3+q2,解得:q=3或1(舍去)所以:q=3.故:则:.所以:T n=3•30+5•31+…+(2n+1)•3n﹣1③,3T n=3•31+5•32+…+(2n+1)•3n④,③﹣④得:﹣2T n=3+2(31+32+…+3n﹣1)﹣(2n+1)•3n,解得:,=n•3n.【点评】本题主要考查:利用a n与S n的递推关系求数列的通项公式以及错位相减法求和,考查运算求解能力,考查函数与方程思想、转化与化归思想等..12.已知数列{a n}的前n项和为S n,a n>0且满足a n=2S n﹣﹣(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和T n.【分析】(Ⅰ)由已知数列递推式求得a1=1,且得到,则,两式联立可得(a n+1+a n)(a n+1﹣a n﹣2)=0,进一步得到a n﹣1﹣a n=2,说明数列{a n}是以1为首项,以2为公差的等差数列,则数列{a n}的通项公式可求;(Ⅱ)直接利用错位相减法求数列{}的前n项和T n.【解答】解:(Ⅰ)当n=1时,,解得a1=1;由a n=2S n﹣﹣,整理得,①∴,②②﹣①得:,∴(a n+1+a n)(a n+1﹣a n﹣2)=0,∵a n>0,∴a n+1﹣a n﹣2=0,即a n﹣1﹣a n=2.∴数列{a n}是以1为首项,以2为公差的等差数列,则a n=1+2(n﹣1)=2n﹣1;(Ⅱ)=,③,④③﹣④得:==.∴.【点评】本题考查数列递推式,考查了等差关系的确定,训练了错位相减法求数列的前n项和,是中档题.13.已知数列{a n}的前n项和为S n,且a1=2,2S n=(n+1)2a n﹣n2a n+1,数列{b n}满足b1=a1,nb n+1=a n b n.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)若数列{c n}满足c n=a n+b n(n∈N*),求数列{c n}的前n项和T n.【分析】(I)由2S n=(n+1)2a n﹣n2a n+1,可得:2S n+1=(n+2)2a n+1﹣(n+1)2a n+2,两式相减可得:2a n+1=a n+2+a n,可得数列{a n}是等差数列,2S1=22a1﹣a2,a1=2,解得a2.可得公差d,即可得出a n.由b1=a1=2,nb n+1=a n b n.可得b n+1=2b n,利用等比数列的通项公式可得b n.(II)c n=a n+b n=2n+2n,利用等差数列与等比数列的求和公式即可得出.【解答】解:(I)由2S n=(n+1)2a n﹣n2a n+1,可得:2S n+1=(n+2)2a n+1﹣(n+1)2a n+2,两式相减可得:2a n+1=(n+2)2a n+1﹣(n+1)2a n+2﹣(n+1)2a n+n2a n+1,∴2a n+1=a n+2+a n,∴数列{a n}是等差数列,2S1=22a1﹣a2,a1=2,解得a2=4.∴d=4﹣2=2.∴a n=2+2(n﹣1)=2n.由b1=a1=2,nb n+1=a n b n.∴b n+1=2b n,∴数列{b n}是等比数列,首项与公比都为2.∴b n=2n.(II)c n=a n+b n=2n+2n,∴数列{c n}的前n项和T n=+=2n+1+n2+n﹣2.【点评】本题考查了数列递推关系、等比数列与等差数列的通项公式求和公式及其性质,考查了推理能力与计算能力,属于中档题.。
数列综合练习(一)1.等比数列前n 项和公式:(1)公式:S n =⎩⎪⎨⎪⎧a 1(1-q n)1-q =a 1-a n q 1-q (q ≠1)na 1 (q =1).(2)注意:应用该公式时,一定不要忽略q =1的情况.2.若{a n }是等比数列,且公比q ≠1,则前n 项和S n =a 11-q(1-q n )=A (q n -1).其中A =a 1q -1.3.推导等比数列前n 项和的方法叫错位相减法.一般适用于求一个等差数列与一个等比数列对应项积的前n 项和.4.拆项成差求和经常用到下列拆项公式:(1)1n (n +1)=1n -1n +1;一、选择题1.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2等于( )A .11B .5C .-8D .-11 答案 D解析 由8a 2+a 5=0得8a 1q +a 1q 4=0,∴q =-2,则S 5S 2=a 1(1+25)a 1(1-22)=-11.2.记等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于( )A .-3B .5C .-31D .33 答案 D解析 由题意知公比q ≠1,S 6S 3=a 1(1-q 6)1-q a 1(1-q 3)1-q=1+q 3=9,∴q =2,S 10S 5=a 1(1-q 10)1-q a 1(1-q 5)1-q=1+q 5=1+25=33.3.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2等于( )A .2B .4 C.152 D.172 答案 C解析 方法一 由等比数列的定义,S 4=a 1+a 2+a 3+a 4=a 2q+a 2+a 2q +a 2q 2,得S 4a 2=1q +1+q +q 2=152. 方法二 S 4=a 1(1-q 4)1-q,a 2=a 1q ,∴S 4a 2=1-q 4(1-q )q =152. 4.设{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5等于( )A.152B.314C.334D.172 答案 B解析 ∵{a n }是由正数组成的等比数列,且a 2a 4=1, ∴设{a n }的公比为q ,则q >0,且a 23=1,即a 3=1.∵S 3=7,∴a 1+a 2+a 3=1q 2+1q+1=7,即6q 2-q -1=0.故q =12或q =-13(舍去),∴a 1=1q2=4.∴S 5=4(1-125)1-12=8(1-125)=314.5.在数列{a n }中,a n +1=ca n (c 为非零常数),且前n 项和为S n =3n +k ,则实数k 的值为( )A .0B .1C .-1D .2 答案 C解析 当n =1时,a 1=S 1=3+k ,当n ≥2时,a n =S n -S n -1=(3n +k )-(3n -1+k ) =3n -3n -1=2·3n -1.由题意知{a n }为等比数列,所以a 1=3+k =2,∴k =-1.6.在等比数列{a n }中,公比q 是整数,a 1+a 4=18,a 2+a 3=12,则此数列的前8项和为( )A .514B .513C .512D .510 答案 D解析 由a 1+a 4=18和a 2+a 3=12,得方程组⎩⎪⎨⎪⎧ a 1+a 1q 3=18a 1q +a 1q 2=12,解得⎩⎪⎨⎪⎧a 1=2q =2或⎩⎪⎨⎪⎧a 1=16q =12.∵q 为整数,∴q =2,a 1=2,S 8=2(28-1)2-1=29-2=510.二、填空题7.若{a n }是等比数列,且前n 项和为S n =3n -1+t ,则t =________.答案 -13解析 显然q ≠1,此时应有S n =A (q n -1),又S n =13·3n +t ,∴t =-13.8.设等比数列{a n }的前n 项和为S n ,若a 1=1,S 6=4S 3,则a 4=________. 答案 3解析 S 6=4S 3⇒a 1(1-q 6)1-q =4·a 1(1-q 3)1-q⇒q 3=3(q 3=1不合题意,舍去).∴a 4=a 1·q 3=1×3=3.9.若等比数列{a n }中,a 1=1,a n =-512,前n 项和为S n =-341,则n 的值是________. 答案 10解析 S n =a 1-a n q 1-q ,∴-341=1+512q1-q ,∴q =-2,又∵a n =a 1q n -1,∴-512=(-2)n -1,∴n =10.10.如果数列{a n }的前n 项和S n =2a n -1,则此数列的通项公式a n =________.答案 2n -1解析 当n =1时,S 1=2a 1-1,∴a 1=2a 1-1,∴a 1=1. 当n ≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1) ∴a n =2a n -1,∴{a n }是等比数列,∴a n =2n -1,n ∈N *. 三、解答题11.在等比数列{a n }中,a 1+a n =66,a 3a n -2=128,S n =126,求n 和q .解 ∵a 3a n -2=a 1a n ,∴a 1a n =128,解方程组⎩⎪⎨⎪⎧a 1a n =128,a 1+a n =66,得⎩⎪⎨⎪⎧ a 1=64,a n =2,① 或⎩⎪⎨⎪⎧a 1=2,a n =64.② 将①代入S n =a 1-a n q 1-q ,可得q =12,由a n =a 1q n -1可解得n =6.将②代入S n =a 1-a n q1-q,可得q =2,由a n =a 1q n -1可解得n =6.故n =6,q =12或2.12.已知S n 为等比数列{a n }的前n 项和,S n =54,S 2n =60,求S 3n . 解 方法一 由题意S n ,S 2n -S n ,S 3n -S 2n 成等比数列,∴62=54(S 3n -60),∴S 3n =1823.方法二 由题意得a ≠1,∴S n =a 1(1-q n )1-q =54 ①S 2n =a 1(1-q 2n )1-q=60 ②由②÷①得1+q n =109, ∴q n =19,∴a 11-q =9×548, ∴S 3n =a 1(1-q 3n )1-q =9×548(1-193)=1823.13.已知数列{a n }的前n 项和S n =2n +2-4.(1)求数列{a n }的通项公式; (2)设b n =a n ·log 2a n ,求数列{b n }的前n 项和T n . 解 (1)由题意,S n =2n +2-4,n ≥2时,a n =S n -S n -1=2n +2-2n +1=2n +1, 当n =1时,a 1=S 1=23-4=4,也适合上式, ∴数列{a n }的通项公式为a n =2n +1,n ∈N *. (2)∵b n =a n log 2a n =(n +1)·2n +1,∴T n =2·22+3·23+4·24+…+n ·2n +(n +1)·2n +1, ① 2T n =2·23+3·24+4·25+…+n ·2n +1+(n +1)·2n +2. ② ②-①得,T n =-23-23-24-25-…-2n +1+(n +1)·2n +2=-23-23(1-2n -1)1-2+(n +1)·2n +2 =-23-23(2n -1-1)+(n +1)·2n +2=(n +1)·2n +2-23·2n -1 =(n +1)·2n +2-2n +2=n ·2n +2.14.已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .解 (1)设等差数列{a n }的首项为a 1,公差为d .因为a 3=7,a 5+a 7=26,所以⎩⎪⎨⎪⎧a 1+2d =7,2a 1+10d =26,解得⎩⎪⎨⎪⎧a 1=3,d =2.所以a n =3+2(n -1)=2n +1,S n =3n +n (n -1)2×2=n 2+2n .所以,a n =2n +1,S n =n 2+2n .(2)由(1)知a n =2n +1,所以b n =1a 2n -1=1(2n +1)2-1=14·1n (n +1)=14·⎝ ⎛⎭⎪⎫1n -1n +1, 所以T n =14·(1-12+12-13+…+1n -1n +1)=14·(1-1n +1)=n4(n +1), 即数列{b n }的前n 项和T n =n4(n +1).15.设数列{a n }满足a 1=2,a n +1-a n =3·22n -1. (1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .解 (1)由已知,当n ≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n -1+22n -3+…+2)+2=22(n +1)-1.而a 1=2,符合上式,所以数列{a n }的通项公式为a n =22n -1. (2)由b n =na n =n ·22n -1知S n =1·2+2·23+3·25+…+n ·22n -1, ① 从而22·S n =1·23+2·25+3·27+…+n ·22n +1. ② ①-②得(1-22)S n =2+23+25+…+22n -1-n ·22n +1,即S n =19[(3n -1)22n +1+2].16.在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n 等于( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n 答案 A解析 ∵a n +1=a n +ln ⎝⎛⎭⎫1+1n , ∴a n +1-a n =ln ⎝⎛⎭⎫1+1n =ln n +1n =ln(n +1)-ln n .又a 1=2,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=2+[ln 2-ln 1+ln 3-ln 2+ln 4-ln 3+…+ln n -ln(n -1)]=2+ln n -ln 1=2+ln n .17.已知正项数列{a n }的前n 项和S n =14(a n +1)2,求{a n }的通项公式.解 当n =1时,a 1=S 1,所以a 1=14(a 1+1)2,解得a 1=1.当n ≥2时,a n =S n -S n -1=14(a n +1)2-14(a n -1+1)2=14(a 2n -a 2n -1+2a n -2a n -1),∴a 2n -a 2n -1-2(a n +a n -1)=0,∴(a n +a n -1)(a n -a n -1-2)=0. ∵a n +a n -1>0,∴a n -a n -1-2=0. ∴a n -a n -1=2.∴{a n }是首项为1,公差为2的等差数列. ∴a n =1+2(n -1)=2n -1.18.(12分)在数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n2n -1.证明:数列{b n }是等差数列;(2)求数列{a n }的前n 项和. (1)证明 由已知a n +1=2a n +2n , 得b n +1=a n +12n =2a n +2n 2n =a n2n -1+1=b n +1.∴b n +1-b n =1,又b 1=a 1=1.∴{b n }是首项为1,公差为1的等差数列.(2)解 由(1)知,b n =n ,a n2n -1=b n =n .∴a n =n ·2n -1.∴S n =1+2·21+3·22+…+n ·2n -1两边乘以2得:2S n =1·21+2·22+…+(n -1)·2n -1+n ·2n , 两式相减得:-S n =1+21+22+…+2n -1-n ·2n =2n -1-n ·2n =(1-n )2n -1, ∴S n =(n -1)·2n +1.19.(12分)已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=12S n (n =1,2,3,…).(1)求数列{a n }的通项公式;(2)当b n =log 32(3a n +1)时,求证:数列{1b n b n +1}的前n 项和T n =n1+n.(1)解 由已知⎩⎨⎧a n +1=12S n ,a n=12Sn -1(n ≥2),得a n +1=32a n (n ≥2).∴数列{a n }是以a 2为首项,以32为公比的等比数列.又a 2=12S 1=12a 1=12,∴a n =a 2×(32)n -2(n ≥2).∴a n =⎩⎪⎨⎪⎧1, n =1,12×(32)n -2, n ≥2.(2)证明 b n =log 32(3a n +1)=log 32[32×(32)n -1]=n .∴1b n b n +1=1n (1+n )=1n -11+n.∴T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=(11-12)+(12-13)+(13-14)+…+(1n -11+n) =1-11+n =n1+n.。