第3章轨道力学分析
- 格式:ppt
- 大小:520.01 KB
- 文档页数:56
轨道力学理论与卫星轨道设计关联性分析摘要:本文旨在探讨轨道力学理论与卫星轨道设计之间的关联性。
首先,简要介绍了轨道力学理论的基本概念和原理。
然后,讨论了轨道力学理论在卫星轨道设计中的应用和意义。
接着,分析了轨道力学理论对卫星轨道稳定性、卫星机动性能以及卫星轨道遥测和控制等方面的影响。
最后,展望了轨道力学理论和卫星轨道设计在未来的发展方向。
关键词:轨道力学理论、卫星轨道设计、卫星稳定性、卫星机动性能、轨道遥测与控制1. 引言轨道力学理论是研究天体运动规律的理论体系,它不仅适用于天体物理学领域,也在卫星轨道设计中扮演重要角色。
卫星轨道设计是一个复杂而关键的过程,涉及到卫星的轨道稳定性、机动性能以及轨道遥测和控制等方面。
轨道力学理论通过对天体运动规律的研究,为卫星轨道设计提供了理论基础和指导。
2. 轨道力学理论的基本概念和原理轨道力学理论研究的对象是天体的运动规律,其中最基本的概念是轨道和行星运动。
轨道是天体在引力作用下沿着一定轨迹运动的路径,而行星运动则是描述行星绕恒星旋转的运动规律。
轨道力学理论的基本原理包括开普勒三定律和牛顿引力定律。
开普勒三定律描述了天体运动的基本规律,其中包括行星轨道的椭圆形状和行星与恒星之间的相对位置关系。
牛顿引力定律则描述了天体之间的引力作用,可以用来计算天体之间的相对运动。
3. 轨道力学理论在卫星轨道设计中的应用和意义轨道力学理论在卫星轨道设计中起到了重要的作用。
首先,通过对轨道力学理论的研究,可以选择合适的轨道类型和参数来满足卫星任务的需求。
不同的轨道类型包括地球同步轨道、太阳同步轨道和静止轨道等,每种轨道类型都有其特定的应用场景和要求。
其次,轨道力学理论还用于计算卫星的轨道稳定性和机动性能。
轨道的稳定性包括长期稳定性和短期稳定性,需要考虑引力摄动和气动摄动等因素。
卫星的机动性能则涉及到轨道调整、轨道变化和轨道捕获等问题。
此外,轨道力学理论还可以用于卫星碰撞避免和轨道遥测与控制等方面的设计。
第一节概述轨道结构力学分析,就是应用力学的基本理论,结合轮轨相互作用的原理,分析轨道在机车车辆不同的运营条件下所发生的动态行为,即它的内力和变形分布;对主要部件进行强度检算,以便加强轨道薄弱环节,优化轨道工作状态、提高轨道承载能力,最大眼度地发挥既有轨道的潜能,以尽可能少的投入取得尽可能高的效益。
此项工作还可以对轨道结构参数进行最佳匹配设计,为轨道结构的合理配套和设计开发新型轨道结构类型及材料提供理论依据。
因此,轨道结构力学分析是设计、检算和改进轨道结构的理论基础。
随着铁路运输向高速、重载方向的发展,运量大、密度高的状况都将对轮轨运输系统提出更多、更新的要求。
行车速度愈高,安全问题愈突出,要保证高速列车运行平稳、舒适、不颠覆、不说轨。
运载重量愈大,轮轨之间的动力作用越强,对轨道结构的破坏作用也越严重。
因此,进一步深入研究轮轨相互动力作用规律,寻求降低轮轨相互作用的途径,对于保证轨道的强度和稳定,减少维修工作量,延长设备使用寿命都具有十分重要的现实意义。
分析轮轨相互作用的动力响应,首先应建立一个能较真实地反映轨道结构和机车车辆相互作用基本力学特征的模型,模型的选用取决于研究问题的侧重点及分析的目的,抓住主要环节,略去次要因素,既要求计算简单又要求有必要的精度,历来是简化分析模型的一条根本原则。
在研究轨道结构的动力响应时,人们往往以轨道部分为主体,在模型中反映得要详细些,而对机车车辆部分则简化作为一个激扰源向主系统输入,按照激扰输入--传递函数(系统特性)--响应输出的模式来分析轨道系统的振动。
结构物的动力行为根本不同于其静力行为,前考比后者要复杂的多。
由于机车车辆簧上及簧下部分质量的振动而产生的,作用于轨道上的动荷载,其频率较整个轨道,尤其是较钢轨的自振频率低很多,且碎石道床具有很高的阻尼消振作用,故而不能充分激发起轨道的振动,这种动荷载对轨道所产生的作用基本上相当于静荷载,基于这种认识,发展起来的传统的轨道强度计算理论与方法已形成比较成热的体系。
轨道概念全集2011年3月23日绪论:1、轨道不平顺:轨道几何形位误差。
2、静不平顺:是指钢轨的轮轨接触面不平顺,如钢轨轨面不平顺、不连续(接头、道岔)和几何形位误差。
3、动不平顺:是指轨下基础弹性不均匀,如扣件失效、轨下支承失效、路基不均匀以及桥台与路基、路基与隧道等过渡段的弹性不均匀。
4、轴重:指一个轮对承受的机车或车辆的重量。
5、运量:常用机车车辆的通过总重量表示,它是机车车辆轴重及其通过次数的乘积,是反映轴重,速度,行车密度的一项综合指标。
6、疲劳破坏:在交变应力作用下部件的破坏叫疲劳破坏。
7、无砟轨道:用混凝土整体结构或混凝土基础层和乳化沥青砂浆层取代碎石道床的轨道。
第一章轨道结构1、钢轨伤损:是指钢轨在使用过程中发生钢轨折断、裂纹及其他影响和限制钢轨使用性能的伤损。
2、钢轨裂纹:指除钢轨折断外,钢轨部分材料发生分离,形成裂纹。
3、钢轨磨耗:主要是指侧面磨耗和波浪形磨耗。
波形磨耗指轨道顶面出现的波状不均匀磨耗。
4、钢轨二次使用:是指钢轨在繁忙线路上运营以后经过旧轨整修,再把它铺到运量小的铁路上再次使用。
5、钢轨断面打磨:是通过钢轨打磨改变钢轨的轨头形状,以改善轮轨接触状态。
6、钢轨接头:轨道上钢轨与钢轨之间用夹板和螺栓联结,称为轨道接头。
7、构造轨缝:是指受钢轨、接头夹板及螺栓尺寸限制,在构造上能实现的轨端最大缝隙值。
8、伸缩接头:即温度调节器,用以连接轨端伸缩量相当大的轨道及用于跨度大于100m 的桥上无缝线路的钢轨接头。
9、道床厚度:是指直线上钢轨或曲线上内轨中轴线下轨枕底面至路基顶面的距离。
10、道床肩宽:道床宽出轨枕两端的部分成为道床肩宽。
11、道床顶面宽度:与轨枕长度和道床肩宽有关。
12、沥青道床:是用沥青或其他聚合材料将散粒道砟固化成整体或用沥青混凝土代替碎石道床的一种新型轨下基础。
第二章轨道几何形位1、轨道几何形位:指的是轨道各部分的几何形状、相对位置和基本尺寸。
2、轮缘:为防止车轮脱轨,在踏面内侧制成凸缘,称为轮缘3、轮对的轮背内侧距离:轮对上左右两车轮内侧面之间的距离。
1、概述轨道结构力学分析,就是应用力学的基本原理,结合轮轨互相作用理论,用各种计算模型来分析轨道及其各部件在机车车辆荷载作用下产生的应力、变形及其他动力响应,对轨道结构的主要部件进行强度检算。
在提速、重载和高速列车运行的条件下,通过对轨道结构的力学分析、轨道结构的稳定性分析,行车的平稳性和安全性等进行评估等,确定路线允许的最高运行速度和轨道结构强度储备。
轨道结构力学分析主要目的为:1)确定机车车辆作用于轨道上的力,并了解这些力的形成及其相应的计算方法。
2)确定在一定的运行条件下,轨道结构的承载力。
轨道结构的承载能力包括以下三方面:1)强度计算。
在最大可能荷载条件下,轨道各部分应具有抗破坏的强度。
2)寿命计算。
在重复荷载作用下,轨道各部分的疲劳寿命。
3)残余变形计算。
在重复荷载作用下,轨道整体结构的几何形位破坏的速率,进而估算轨道的日常维修工作量。
2、轨道的结构形式和组成轨道结构由钢轨、轨枕、连接零件、道床、防爬器、轨距拉杆、道岔、道碴等所组成,不同的轨道部件,其功用和受力条件也不一样。
目前世界铁路基本上都采用工字形截面钢轨,只是单位长度重量有所不同。
轨枕主要有木枕,混凝土枕和钢枕,基本上都是横向轨枕。
道碴基本都用碎石。
1)钢轨。
我国铁路所使用的钢轨类型有43kg/m,45kg/m,50kg/m,60kg/m和75kg/m。
钢轨刚度大小直接影响到轨道总刚度的大小轨道总刚度越小,在列车动荷载作用下钢轨挠度就越大,对于低速列车来说,不影响行车的要求,但对于高速列车,则就会影响到列车的舒适度和列车速度的提高。
在本毕业设计中,我使用的是60kg/m型钢轨。
2)接头联结零件。
钢轨接头的联结零件由夹板、螺栓、螺母、弹簧垫圈组成。
接头夹板的作用是夹紧钢轨。
螺栓需要有一定的直径,螺栓直径愈大,紧固力愈强。
在普通的有缝路上,为防止螺栓松动,要加弹簧垫圈,在无缝线路伸缩区的钢轨接头加设高强度平垫圈。
3)扣件。
扣件是联结钢轨和轨枕的中间联结零件。
北京交通大学函授学历班铁道工程(轨道部分)自学指导书彭华编使用教材:铁道工程使用年级:2003级使用专业:土木工程(铁道工程方向)层次:专升本、本科北京交通大学土木建筑工程学院2004年3月绪论明确本门课程的性质、地位和作用。
铁道工程是土木工程(铁道工程方向)专业的专业课之一,是一门综合性、总体性和实践性较强的课程,涵盖轨道和选线等内容,需要掌握铁路轨道的基本理论和计算方法,掌握铁路勘测与设计的基本原理、概念和方法,能够进行基本的铁路平、纵断面设计。
一般了解世界铁路的由来和发展;一般了解我国铁路的建设概况;熟悉铁路运输的性质和特点。
重点掌握铁路的基本建设程序。
第一章轨道结构第一节概述轨道是铁路的主要技术装备之一,是行车的基础。
轨道是由钢轨、轨枕、道床、道岔、联结零件及防爬设备组成。
轨道是由不同力学性能部件组成的工程结构物。
熟练理解轨道的各个组成部分,并理解其功能与作用。
第二节钢轨钢轨是铁路轨道的主要组成部件,它的功用在于引导机车车辆的车轮前进,承受车轮传来的巨大压力,并传递到轨枕上。
其工作条件十分复杂。
理解掌握钢轨的功能要求。
钢轨的类型是以每米大致质量kg数来表示。
掌握我国铁路钢轨的主要类型。
理解钢轨断面设计原则,掌握钢轨断面的四个主要参数。
熟记60轨的钢轨高度为176mm,底部宽度为150mm。
一般了解钢轨的材质和机械性能。
其取决于钢轨的化学成份、物理力学性能、金属组织及热处理工艺。
重点掌握钢轨的接头和轨缝。
我国钢轨的标准长度为12.5m和25m,对75kg/m钢轨只有25m长一种。
钢轨和钢轨之间用夹板和螺栓连结,称为钢轨接头,我国接头形式采用相对悬空式。
由于热胀冷缩的需要,在钢轨接头处需要预留轨缝,掌握轨缝设置的要求和计算方法。
了解钢轨伤损产生的原因,产生的部位和伤损的分类。
理解钢轨的合理使用的目的和意义。
第三节轨枕轨枕承受来自钢轨的各向压力,并弹性地传布于道床,同时,有效地保持轨道的几何形位,特别是轨距和方向。