84甲乙类互补对称功率放大电路
- 格式:pdf
- 大小:569.04 KB
- 文档页数:24
模拟电子技术知识点:甲乙类单电源互补对称功率放大电路静态时,V K=V CC/2输出通过电容C与负载耦合,而不用变压器——OTL电路(OutputTransformerless) V CC/21.基本电路2.原理分析v i负半周-+充电+v i 正半周-+放电•只要R L C 足够大,电容C 就能起到电源的作用。
-2.原理分析v i 为负半周最大值时接近饱和CCK V v +≈2.原理分析•理想情况下,负载R L 两端得到的交流输出电压幅值V om ≈V CC /2v i 为正半周最大值时接近饱和≈=CES K V v 2.原理分析•在单电源互补对称电路中,计算输出功率、效率、管耗和电源供给的功率,可借用双电源互补对称电路的计算公式,但要用V CC /2代替原公式中的V CC 。
2.原理分析+V CC T 4T 7T 6T 1T 2R 2R 5R 3R L R 7u iu o T 5R 6T8D 1D 4T 3R 4R 1D 310k Ω( c )56D 2243R50μF C ( a )50μF C 21k Ω18Ω(+12V)例题图(b )所示为某集成功率放大器的简化电路图。
已知输入电压为正弦波;三极管T 6、T 8的饱和管压降=2V ;C 和C 2对交流信号均可视为短路。
填空:+V CC T 4T 7T 6T 1T 2R 2R 5R 3R L R 7u iu o T 5R 6T8D 1D 4T 3R 4R 1D 310k Ω( c )56D 2243R50μF C ( a )50μF C 21k Ω18Ω(+12V)例题2①为了驱动扬声器,将图(b)与图(a)、图(c)合理连接,可以增加一个元件,使电路正常工作;此时引入的交流负反馈的组态为,在深度负反馈条件下的电压放大倍数≈。
电压串联负反馈1+R 6/R=11-+-+++例题+V CC T 4T 7T 6T 1T 2R 2R 5R 3R L R 7u iu o T 5R 6T8D 1D 4T 3R 4R 1D 310k Ω( c )56D 2243R50μF C ( a )50μF C 21k Ω18Ω(+12V)例题2②D 2、D 3和D 4作为输出级偏置电路的一部分,作用是。
甲乙类互补对称功率放大电路甲乙类互补对称功率放大电路是一种常用于音频放大器中的电路设计。
它具有高效率、低失真等优点,被广泛应用于家庭影院、音响系统等场合。
本文将从以下几个方面详细介绍甲乙类互补对称功率放大电路。
一、甲乙类功率放大器的基本原理甲乙类功率放大器是由两个互补的晶体管组成,一个为NPN型晶体管(甲级),一个为PNP型晶体管(乙级)。
在输入信号为正半周时,只有甲级工作;在输入信号为负半周时,只有乙级工作。
这样就实现了信号的全波放大。
由于两个晶体管都能够进行导通和截止,因此能够充分利用晶体管的性能,达到高效率和低失真的效果。
二、甲乙类功率放大器的分类根据输出管的偏置方式不同,可以将甲乙类功率放大器分为固定偏置和动态偏置两种类型。
1.固定偏置:输出管的偏置电压是固定不变的。
这种方式简单可靠,但是会产生较大的静态功耗,因此效率较低。
2.动态偏置:输出管的偏置电压随着输出信号的变化而变化。
这种方式能够降低静态功耗,提高效率,但是需要更复杂的电路设计,容易产生交趾失真。
三、甲乙类互补对称功率放大电路的特点甲乙类互补对称功率放大电路是一种特殊的甲乙类功率放大器。
它具有以下几个特点:1.高效率:由于采用了互补对称结构,能够最大化地利用晶体管的性能,因此效率较高。
2.低失真:由于两个晶体管都能够进行导通和截止,因此可以实现完美的信号全波放大,减小失真。
3.抗干扰:采用了差分输入电路和共模反馈电路等技术,能够有效地抑制干扰信号。
4.稳定性好:采用了负反馈电路和保护电路等技术,能够保证稳定可靠地工作。
四、甲乙类互补对称功率放大电路的应用甲乙类互补对称功率放大电路广泛应用于音频放大器中,特别是功率放大器。
它能够提供足够的输出功率,满足家庭影院、音响系统等场合的需求。
同时,由于具有高效率、低失真等优点,也被广泛应用于汽车音响、舞台音响等领域。
五、甲乙类互补对称功率放大电路的设计甲乙类互补对称功率放大电路的设计需要考虑以下几个方面:1.输入级:采用差分输入电路能够提高抗干扰能力和共模抑制比。
乙类互补对称功率放大电路
乙类互补对称功率放大电路是一种常用于音频放大器设计的电路拓扑结构。
其特点是同时采用NPN型和PNP型晶体管作为功率放大器的互补输出级,实现了功率放大器两端的对称输出,并且可以较好地平衡输出电流,减小交叉失真。
这种电路主要应用于大功率音频放大器、电视机音响等领域。
在乙类互补对称功率放大电路中,晶体管的工作状态被分为两种:NPN型晶体管处于导通状态,PNP型晶体管处于截止状态;PNP型晶体管处于导通状态,NPN型晶体管处于截止状态。
这两种情况下,输出电路中只有一个晶体管处于放大状态,而另一个处于关断状态,从而避免了交叉失真的产生。
此外,乙类互补对称功率放大电路还需要采用偏置电路来为晶体管提供合适的偏置电压,使其能够在正常工作状态下完成输出功率的放大。
这个偏置电路的设计需要考虑多个因素,如输出电阻、直流偏置水平、温度漂移等,以确保其能稳定、准确地提供偏置电压。
总的来说,乙类互补对称功率放大电路具有功率输出高、失真小、音质好等优点,在音频放大领域得到了广泛应用。
甲乙类互补对称功率放大电路甲乙类互补对称功率放大电路乙类放大电路的失真:前面讨论了由两个射极输出器组成的乙类互补对称电路(图1),实际上这种电路并不能使输出波形很好地反映输入的变化,由于没有直流偏置,管子的iB必须在|vBE|大于某一个数值(即门坎电压,NPN 硅管约为0.6V,PNP锗管约为0.2V)时才有显著变化。
当输入信号vi 低于这个数值时,T1和T2都截止,ic1和ic2基本为零,负载RL上无电流通过,出现一段死区,如图1所示。
这种现象称为交越失真。
5.3.1 甲乙类双电源互补对称电路一、电路的结构与原理利用图1所示的偏置电路是克服交越失真的一种方法。
由图可见,T3组成前置放大级(注意,图中未画出T3的偏置电路),T1和T2组成互补输出级。
静态时,在D1、D2上产生的压降为T1、T2提供了一个适当的偏压,使之处于微导通状态。
由于电路对称,静态时iC1= iC2 ,iL= 0, vo =0。
有信号时,由于电路工作在甲乙类,即使vi很小(D1和D2的交流电阻也小),基本上可线性地进行放大。
上述偏置方法的缺点是,其偏置电压不易调整,改进方法可采用VBE扩展电路。
二、VBE扩展电路利用二极管进行偏置的甲乙类互补对称电路,其偏置电压不易调整,常采用VBE扩展电路来解决,如图1所示。
在图1中,流入T4的基极电流远小于流过R1、R2的电流,则由图可求出VCE4=VBE4(R1+R2)/R2因此,利用T4管的VBE4基本为一固定值(硅管约为0.6~0.7V),只要适当调节R1、R2的比值,就可改变T1、T2的偏压值。
这种方法,在集成电路中经常用到。
5.3.2 单电源互补对称电路一、电路结构与原理图1是采用一个电源的互补对称原理电路,图中的T3组成前置放大级,T2和T1组成互补对称电路输出级。
在输入信号vi =0时,一般只要R1、R2有适当的数值,就可使IC3 、VB2和VB1达到所需大小,给T2和T1提供一个合适的偏置,从而使K点电位VK=VC=VCC/2 。
同学们!前面我们队OCL电路进行了深入的学习探讨,OCL 放大电路输出的功率大,失真小,保真度高,因此广泛使用在高保真放大电路中,如较高档的音响等。
但它要使用两组电源,制造起来电路较为复杂,且本钱较高,所以在要求不太高的电路中,通常使用单电源互补对称功率放大,以降低本钱和减少电路的复杂性。
今天,我们进入甲乙类单电源互补对称功率放大电路的学习。
甲乙类单电源互补对称放大电路用OTL简称,OTL 是Output Transformerless( 无输出变压器〕的缩写。
先看它的根本电路结构,与OCL相比,采用了单电源供电,另外在输出回路中有一个大电容C与负载串联。
如图示。
下面我们来看它的工作原理:(1)静态工作点Q确实定:能够去除“-VCC〞的关键是电路中参加了此电容C,其作用替代了一组负电源。
ui=0 时,R1、R2分压使T3、D1、D2 导通, D1、D2的导通可以令T1、T2处于微导通状态。
同时电源+VCC通过T1对输出电容C充电,使其左+右-,输出电容C一定要容量很大,储有足够的电荷准备作为电源使用。
调整R1、R2改变T1、T2的工作点使UK=VCC/2(使T1、T2工作状态一样)。
(2)交流工作过程和输出电容C的作用。
ui < 0 (输入信号的负半周)T1 正偏导通,T2反偏截止。
T1 导通一方面对输出电容C充电,补充损失的电量 , 另一方面向负载 RL 输出电流iL (向负载输出功率Po) 。
ui>0(输入信号的正半周) T2 正偏导通,T1反偏截止。
T2的导通令输出电容 C 有了一个放电通路,C的放电电流反向通过负载 RL , 形成电流iL , 同时向负载输出功率Po。
由分析知:输出负半周时,电容C作为电源使用。
负半周放电损失电量,正半周充电补充电量。
为保证C两端的电压不因充电或放电时变化太大,C的容量一定要足够大。
(3)现在我们来看一下电路中的负反应,即静态Q点的稳定过程:电路中R2与T1、T2中点K处连接起来可以起到稳定工作点的作用。
甲乙类互补对称功率放大电路1 甲乙类互补对称功率放大电路乙类放大电路的失真:前面讨论了由两个射极输出器组成的乙类互补对称电路(图1),实际上这种电路并不能使输出波形很好地反映输入的变化,由于没有直流偏置,管子的iB必须在|vBE|大于某一个数值(即门坎电压,NPN硅管约为0.6V,PNP锗管约为0.2V)时才有显著变化。
当输入信号vi低于这个数值时,T1和T2都截止,i c1和i c2基本为零,负载RL上无电流通过,出现一段死区,如图1所示。
这种现象称为交越失真。
图1 交越失真的产生原因2 甲乙类双电源互补对称电路一、电路的结构与原理利用图2所示的偏置电路是克服交越失真的一种方法。
图2由图可见,T3组成前置放大级(注意,图中未画出T3的偏置电路),T1和T2组成互补输出级。
静态时,在D1、D2上产生的压降为T1、T2提供了一个适当的偏压,使之处于微导通状态。
由于电路对称,静态时i C1= i C2,I L= 0, v o=0。
有信号时,由于电路工作在甲乙类,即使v i很小(D1和D2的交流电阻也小),基本上可线性地进行放大。
上述偏置方法的缺点是,其偏置电压不易调整,改进方法可采用V BE扩展电路。
二、VBE扩展电路图3利用二极管进行偏置的甲乙类互补对称电路,其偏置电压不易调整,常采用V BE扩展电路来解决,如图3所示。
在图3中,流入T4的基极电流远小于流过R1、R2的电流,则由图可求出V CE4=V BE4(R1+R2)/R2因此,利用T4管的V BE4基本为一固定值(硅管约为0.6~0.7V),只要适当调节R1、R2的比值,就可改变T1、T2的偏压值。
这种方法,在集成电路中经常用到。
3 单电源互补对称电路图4一、电路结构与原理图4是采用一个电源的互补对称原理电路,图中的T3组成前置放大级,T2和T1组成互补对称电路输出级。
在输入信号vi =0时,一般只要R1、R2有适当的数值,就可使I C3、V B2和V B1达到所需大小,给T2和T1提供一个合适的偏置,从而使K点电位V K=V C=V CC/2 。
Ⅰ组织教学集中学生注意力,做好平时考勤工作。
Ⅱ新课引入1功率放大电路的特点(与电压放大电路比较)及类型。
2 OCL 甲乙类互补对称功率放大电路的结构、特点及工作原理。
3功率、效率和管耗的计算及相互关系。
Ⅲ 新课讲授9.2 甲乙类互补对称功率放大电路1、 功率放大电路的安全运行1)功率管的安全工作区,受集电极允许的最大电流I CM ,最大电压U (BR)CEO 和最大功耗P CM 以及二次击穿临界曲线的限制。
2)功率管的散热问题在一定的温度下,散热能力越强,晶体管允许的功耗P CM 就越大;另一方面,环境温度T a 越低,允许的功耗P CM 也越大。
2、复合管的组成及其电流放大系数1)复合管的组成原则(1)在正确的外加电压下,每只管子的各极电流均有合适的通路,且均工作于放大区;(2)应将第一只管子的集电极或发射极电流做为第二只管子的基极电流。
(3)后级管子的BE U 不能将前级管子的CE U箝位 ;(4)当使用FET 构成复合管时,FET 只能作为第一级; 2)复合管的电流放大系数 采用复合管结构可使等效管的电流放大系数约增大到组成的各管的电流放大系数之积。
3、复合管共射放大电路的动态分析及其特点1)复合管共射放大电路的动态分析其动态分析方法与基本共射电路基本相同,只是复合管放大电路中的晶体管不只一个,应分别画出各晶体管的h 参数等效模型,动态参数的计算也较为复杂。
2)复合管共射放大电路的特点电压放大倍数与单管时相当,但输入电阻明显增大。
与单管放大电路相比,当输入信号相同时,从信号源索取的电流将显著减少。
3)四种类型的复合管4、甲乙类互补功率放大电路为解决交越失真,可给三极管稍稍加一点偏置,使之工作在甲乙类,如图所示。
(a)利用二极管提供偏置电压(b)利用三极管恒压源提供偏置5、准互补对称功率放大电路当输出功率较大时,输出级的推动级,即末前级也应该是一个功率放大级。
此时往往采用复合管。
复合管的极性由前面的一个三极管决定。