高分子材料增韧机理
- 格式:ppt
- 大小:1.37 MB
- 文档页数:16
聚合物材料韧性增强及断裂机理研究随着科技的不断进步,工程材料的需求也不断增加。
聚合物材料作为一种轻质、可定制和低成本的材料,被广泛应用于机械、化工、建筑、医学等领域。
然而,由于聚合物的脆性和易断裂性,其应用受到一定限制。
为了克服这些问题,人们开始研究聚合物材料的韧性增强及其断裂机理。
聚合物材料的韧性增强是将其强度和塑性均衡提高的过程。
其需要材料的强度和塑性同时提高,以消耗断裂时释放出的应力。
聚合物材料的韧性增强可以通过多种方式实现,包括添加增韧剂、表面/界面改性、热处理等方法。
添加增韧剂是一种最常见的韧性增强方式。
这种方法是通过添加一种或多种高分子材料或无机纳米颗粒到聚合物基体中,来改变聚合物的力学性能。
这些增韧剂可以使聚合物形成球状的颗粒或周围的相,并在断裂时增加能量吸收,从而提高材料的韧性。
表面/界面改性是另一种增强材料韧性的方法,其通过改变材料表面和界面的结构,来增强材料的耐韧性和强度。
这种方法可以使聚合物材料形成更好的界面结构或结合成分,从而抵抗断裂并减少其扩散。
热处理是一种改变聚合物结构的方法。
这种方法通过加热和冷却材料来改变其分子结构和户型,从而增强其强度和塑性。
热处理还可以提高聚合物的孔隙率、减少行内缺陷和增加断裂韧性。
然而,韧性增强并非唯一的问题。
我们还需要了解聚合物材料的断裂机理。
理解聚合物材料的断裂机理可以提高我们对材料的韧性和强度的认识,从而快速修复材料的断裂。
聚合物材料的断裂机理有很多,包括晶界断裂、链断裂、分子扩散、宏观拉伸等。
晶界断裂是指在晶体颗粒之间的界面处出现的断裂。
晶界断裂是聚合物材料中最常见的断裂机理之一,它通常适用于低粘度聚合物材料或软聚合物材料。
链断裂是指聚合物链成为其分子结构中断裂的局部内部点,这是聚合物材料中的另一种常见断裂机理。
分子扩散可以通过增加温度来实现,它被认为是聚合物材料中最重要的机制之一。
宏观拉伸是指聚合物材料中的整个样品或部分样品拉伸的过程。
微裂纹增韧机理引言:在材料科学领域,增强材料的韧性一直是一个重要的研究方向。
微裂纹增韧机理是一种常用的方法,通过引入微小的裂纹来提高材料的韧性。
本文将介绍微裂纹增韧的基本原理和机制,并讨论其在材料设计中的应用。
一、微裂纹增韧的基本原理微裂纹增韧是一种通过引入微小的裂纹来提高材料韧性的方法。
微裂纹通常是通过在材料中引入细小的裂纹来实现的,这些裂纹可以是自然裂纹,也可以是人工引入的。
当材料受到外力作用时,微裂纹将扩展并吸收部分应力能量,从而减缓裂纹的扩展速度。
由于微裂纹的存在,裂纹的扩展路径变得曲折,使材料更难断裂,从而提高了材料的韧性。
二、微裂纹增韧的机制微裂纹增韧的机制主要包括拉伸桥式增韧、拉伸开口式增韧和剪切滑移式增韧三种。
1. 拉伸桥式增韧:拉伸桥式增韧是一种通过拉伸桥的形成来增加材料的韧性的机制。
当材料中存在微裂纹时,应力场会导致裂纹周围的材料发生拉伸变形,形成拉伸桥。
拉伸桥的形成使得应力能够得到分散,并且增加了裂纹扩展的阻力,从而提高了材料的韧性。
2. 拉伸开口式增韧:拉伸开口式增韧是一种通过拉伸开口的形成来增加材料的韧性的机制。
当材料中存在微裂纹时,应力场会导致裂纹周围的材料发生拉伸变形,形成拉伸开口。
拉伸开口的形成使得应力能够得到分散,并且增加了裂纹扩展的阻力,从而提高了材料的韧性。
3. 剪切滑移式增韧:剪切滑移式增韧是一种通过剪切滑移的形成来增加材料的韧性的机制。
当材料中存在微裂纹时,应力场会导致裂纹周围的材料发生剪切滑移,从而使裂纹的扩展路径变得曲折。
剪切滑移的形成增加了裂纹扩展的阻力,从而提高了材料的韧性。
三、微裂纹增韧的应用微裂纹增韧机理在材料设计中有着广泛的应用。
通过合理设计材料的微裂纹形态和分布,可以显著提高材料的韧性,使其能够承受更大的外力而不断裂。
1. 金属材料的微裂纹增韧:金属材料通常具有良好的延展性,但其韧性在低温下会明显下降。
通过在金属材料中引入微裂纹,可以有效提高其低温韧性,增强其抗断裂能力。
高分子材料中增韧剂定义、机理及种类详解一、增韧剂定义增韧剂其实就是能增加胶黏剂膜层柔韧性的物质。
某些热固性树脂胶黏剂,如环氧树脂、酚醛树脂和不饱和聚酯树脂胶黏剂固化后伸长率低,脆性较大,当粘接部位承受外力时很容易产生裂纹,并迅速扩展,导致胶层开裂,不耐疲劳,不能作为结构粘接之用。
因此,必须设法降低脆性,增大韧性,提高承载强度。
凡能减低脆性,增加韧性,而又不影响胶黏剂其他主要性能的物质即为增韧剂。
增韧剂一般都含有活性基团,能与树脂发生化学反应,固化后不完全相容,有时还要分相,会获得较理想的增韧效果,使热变形温度不变或下降甚微,而抗冲击性能又明显改善。
一些低分子液体或称之为增塑剂之物加入树脂之中,虽然也能降低脆性,但刚性、强度、热变形温度却大幅度下降,不能满足结构粘接要求,因此,增塑剂与增韧剂是完全不同的。
二、增韧剂的种类可分为橡胶类增韧剂和热塑性弹性体类增韧剂。
橡胶类增韧剂:该类增韧剂的品种主要有液体聚硫橡胶、液体丙烯酸酯橡胶、液体聚丁二烯橡胶、丁腈橡胶、乙丙橡胶及丁苯橡胶等。
热塑性弹性体:热塑性弹性体是一类在常温下显示橡胶弹性、在高温下又能塑化成型的合成材料。
因此,这类聚合物兼有橡胶和热塑性塑料的特点,它既可以作为复合材料的增韧剂,又可以作为复合材料的基体材料。
这类材料主要包括聚氨酯类、苯乙烯类、聚烯烃类、聚酯类、间规1,2-聚丁二烯类和聚酰胺类等产品,目前作为复合材料的增韧剂用得较多的是苯乙烯类和聚烯烃类。
其它增韧剂:适用于复合材料的其它增韧剂还有低分子聚酰胺和低分子的非活性增韧剂,如苯二甲酸酯类。
对于非活性的增韧剂也可称为增塑剂,它不参与树脂的固化反应。
三、增韧机理不同类型的增韧剂,有着不同的增韧机理。
液体聚硫橡胶可与环氧树脂反应,引入一部分柔性链段,降低环氧树脂模量,提高了韧性,却牺牲了耐热性。
液体丁腈橡胶作为环氧树脂的增韧剂,室温固化时几乎无增韧效果,粘接强度反而下降;只有中高温固化体系,增韧与粘接效果较明显。
添加纳米刚性粒子增韧改性HDPE使用无机刚性粒子对高分子材料进行增韧,是近年来高分子材料科学领域出现的一项重要的新技术,目前对刚性无机粒子增韧的基本条件初步认识有三条:1、刚性粒子与树脂基体之间要有良好的界面粘接力,使应力更容易通过界面传递,界面粘接的好坏与粒子的冷拉有直接影响;2、被增韧基体本身应具有一定韧性。
基体的韧性使得它在共混合金受力时易于屈服形变,产生对刚性粒子的静压力,并使其发生塑性形变以吸收更多的冲击能量;3、刚性粒子要有恰当的尺寸,刚性粒子粒径要小且浓度要达到一定值才能增韧。
从复合材料的观点分析,若粒子刚硬,且粒子与数值界面结合紧密,如粒子经特定的改性剂处理,则助剂粒子也能承受拉应力,起增强改性的作用。
在塑料材料中加入无机填料,不仅可以明显降低材料成本,而且还可以适当改善材料的力学模量、耐热性能和表面硬度等材料性能,然而,在塑料材料中加入无机填充材料后一般都会使材料性能变脆,缺口冲击韧性下降,材料的使用性能收到明显影响。
故其填充材料的加入量不宜过多一般加入量在10%左右,因此这也限制了该种改性方法的进一步深入发展。
如何能在既增加填充量,明显降低塑料材料生产成本的同时,也显著提高其材料的缺口冲击韧性、力学模量和耐热性等,提高塑料材料的使用性能,已经成为近年来人们所关注的热门话题“刚性填料粒子增韧塑料材料”。
添加纳米碳酸钙部分:通过研究纳米C aco3填充HDPE体系的力学性能和流变性能,发现这种体系的脆韧转变消失,具有良好的加工性能和优良的综合性能。
研究表明:a.纳米级碳酸钙即使表面未经过活化处理,对HDPE也有一定的增韧作用;b.纳米级碳酸钙经适当的表面处理,可是HDPE/C aco3复合材料的冲击强度、断裂伸长率明显提高,复合材料的综合力学性能得到改善;c.在纳米级碳酸钙填充HDPE中,脆韧转变点消失,是冲击强度在纳米级碳酸钙含量为20%~25%之间达到最大值。
为了提高填料与基体界面的相容性,需对其进行表面处理,往往通过添加偶联剂和增溶剂的方法获得。
增韧理论塑料共混改性的一个重要内容是提高一种塑料的韧性,使其满足使用场合和环境对材料韧性的要求。
比较成熟的是橡胶(弹性体)增韧塑料技术,但近几年也发展了非弹性体增韧技术,如无机刚性粒子增韧塑料等。
(1) 弹性体增韧机理弹性体直接吸收能量,当试样受到冲击时会产生微裂纹,这时橡胶颗粒跨越裂纹两岸,裂纹要发展就必须拉伸橡胶,橡胶形变过程中要吸收大量能量,从而提高了塑料的冲击强度。
(2) 屈服理论橡胶增韧塑料高冲击强度主要来源于基体树脂发生了很大的屈服形变,基体树脂产生很大屈服形变的原因,是橡胶的热膨胀系数和泊松比均大于塑料的,在成型过程中冷却阶段的热收缩和形变过程中的横向收缩对周围基体产生静水张应力,使基体树脂的自由体积增加,降低其玻璃化转变温度,易于产生塑性形变而提高韧性。
另一方面是橡胶粒子的应力集中效应引起的(3)裂纹核心理论橡胶颗粒充作应力集中点,产生了大量小裂纹而不是少量大裂纹,扩展众多的小裂纹比扩展少数大裂纹需要较多的能量。
同时,大量小裂纹的应力场相互干扰,减弱了裂纹发展的前沿应力,从而,会减缓裂纹发展并导致裂纹的终止。
(4)多重银纹理论由于增韧塑料中橡胶粒子数目极多,大量的应力集中物引发大量银纹,由此可以耗散大量能量。
橡胶粒子还是银纹终止剂,小粒子不能终止银纹。
(5)银纹-剪切带理论这是业内普遍接受的一个重要理论。
大量实验表明,聚合物形变机理包括两个过程:一是剪切形变过程,二是银纹化过程。
剪切过程包括弥散性的剪切屈服形变和形成局部剪切带两种情况。
剪切形变只是物体形状的改变,分子间的内聚能和物体的密度基本不变。
银纹化过程则使物体的密度大大下降。
一方面,银纹体中有空洞,说明银纹化造成了材料一定的损伤,是亚微观断裂破坏的先兆;另一方面,银纹在形成、生长过程中消耗了大量能量,约束了裂纹的扩展,使材料的韧性提高,是聚合物增韧的力学机制之一。
所以,正确认识银纹化现象,是认识高分子材料变形和断裂过程的核心,是进行共混改性塑料,尤其是增韧塑料设计的关键之一。
增韧理论:塑料共混改性的一个重要内容是提高一种塑料的韧性,使其满足使用场合和环境对材料韧性的要求。
比较成熟的是橡胶增韧技术,但近几年与发展了非弹性体增韧技术,如无机刚性粒子增韧塑料等。
⑴弹性体直接吸收能量理论:当试样受到冲击时会产生微裂纹,这时橡胶颗粒跨越裂纹两岸,裂纹要发展就必须拉伸橡胶,橡胶形变过程要吸收大量能量,从而提高了塑料的冲击强度。
⑵屈服理论:橡胶增韧塑料高冲击强度主要来源于基体树脂发生了很大的屈服形变,基体树脂产生很大屈服形变的原因,是橡胶的热膨胀系数和泊松比均大于塑料的,在成型过程中冷却阶段的热收缩和形变过程中的横向收缩对周围基体产生静水张应力,使基体树脂的自由体积增加,降低其玻璃化转变温度,易于产生塑性形变而提高韧性。
另外是橡胶粒子的应力集中效应引起的。
⑶裂纹核心理论:橡胶颗粒充作应力集中点,产生了大量小裂纹而不是少量大裂纹,扩展众多的小裂纹比扩展少数大裂纹需要较多的能量。
同时,大量小裂纹的应力场相互干扰,减弱了裂纹发展的前沿应力,从而,会减缓裂纹发展并导致裂纹的终止。
⑷多重银纹理论:由于增韧塑料中橡胶粒子数目极多,大量的应力集中物引发大量银纹,由此可以耗散大量能量。
较大的橡胶粒子还是银纹终止剂,小粒子不能终止银纹。
⑸银纹-剪切带理论:是普遍接受的一个重要理论。
大量实验表明,聚合物形变机理包括两个过程:一是剪切形变过程,二是银纹化过程。
剪切过程包括弥散性的剪切屈服形变和形成局部剪切带两种情况。
剪切形变只是物体形状的改变。
分子间的内聚能和物体的密度基本不变。
银纹化过程则使物体的密度大大下降。
一方面,银纹体中有空洞。
说明银纹化造成了材料一定的损伤,是次宏观断裂破坏的先兆;另一方面,银纹在形成、生长过程中消耗了大量能量,约束了裂纹的扩展,使材料的韧性提高,是聚合物增韧的力学机制之一,所以,正确认识银纹化现象,是认识高分子材料变形和断裂过程的核心,是进行共混改性塑料,尤其是增韧塑料设计的关键之一。
高分子合金增韧理论(读书笔记)橡胶增韧塑料的研究首先是从HIPS 和ABS 开始的。
它们的基体聚苯乙烯是典型的脆性聚合物。
因此,早期的塑料增韧理论大都是关于橡胶分散相如何增韧塑料的。
橡胶增韧塑料理论的发展主要经历了微裂纹理论、多重银纹化理论和剪切屈服理论(屈服的膨胀理论)阶段,目前增韧塑料理论主要有多重银纹理论和银纹一剪切屈服理论,刚性粒子对塑料的增韧机理等。
当前,增韧理论正在向定量化发展。
一、研究增韧理论的权威人物目前研究聚合物增韧的人很多,但是比较权威的有三个。
一是荷兰的R. J. Gaymans,另一个是美国Michgan大学的Albert.F.Yee教授,他从力学的角度出发。
首先建立一个增韧模型,然后通过有限元的方法计算出聚合物共混物的受力情况,从而得到其增韧及断裂的机理,他没有提出一套完整的增韧理论;美国杜邦公司的SouhengWu博士,他提出了聚合物共混增韧的逾渗模型。
二、弹性体与刚性体增韧塑料的区别点:1. 增韧的对象不同,前者可增韧脆性或韧性材料,后者则要求基体有一定的韧性2. 增韧剂的种类不同,前者是橡胶或热塑性弹性体材料,模量极低,易于挠曲,流动性差,后者是脆性塑料.模量高,几乎不发生塑性形变,流动性好:3. 增韧剂含量变化的效果不同,前者含量增加韧性一直增加,而后者有一合适的增韧范围,超过这一范围后没有增韧效果。
4. 共混体系的性能不同,前者在提高材料韧性的同时,其模量、强度、热变形温度等大幅度降低,后者则在提高材料韧性的同时也可提高其模量、强度和热变形温度。
5. 韧性提高的原因不同,前者增韧是橡胶颗粒起应力集中体的作用,诱发基体剪切屈服和银纹化,吸收冲击能,从而提高材料的韧性,后者是增韧剂在基体静压力的作用下,发生强迫形变.吸收冲击能,提高材料的韧性。
三、橡胶弹性体增韧理论的发展1、微裂纹理论1956年,在研究HIPS拉伸过程中出现的体积膨胀和应力发白现象时,MERZ等人发表了第一个聚合物共混物的增韧理论一微裂纹理论。
聚酯树脂用增韧剂
聚酯树脂是一种常见的工程塑料,具有优异的物理性能和化学稳定性。
然而,聚酯树脂的脆性和缺乏韧性限制了其在某些应用领域的使用。
为了克服这一问题,科学家们提出了使用增韧剂来改善聚酯树脂的性能的方法。
增韧剂是一种能够提高材料韧性和抗冲击性能的添加剂。
在聚酯树脂中添加增韧剂可以改善其耐冲击性和断裂韧性,从而提高其工程应用的可靠性。
增韧剂的作用机理主要分为两种:一种是增加聚酯树脂的分子链移动性,从而增加其塑性变形能力;另一种是在聚酯树脂中形成细小的弹性相,能够有效吸收能量,减轻冲击力对聚酯树脂的破坏。
常见的增韧剂包括改性橡胶、改性树脂和纤维素等。
改性橡胶是一种具有弹性的高分子材料,可以在聚酯树脂中形成细小的弹性相,从而提高聚酯树脂的韧性。
改性树脂则是通过在聚酯树脂中添加具有韧性的树脂颗粒,来增加聚酯树脂的韧性。
纤维素是一种具有高强度和高韧性的天然纤维,可以通过在聚酯树脂中添加纤维素颗粒来增加聚酯树脂的韧性。
使用增韧剂来改善聚酯树脂的性能不仅可以提高其在工程领域的应用价值,还可以减少废品率和生产成本。
然而,需要注意的是,增韧剂的添加量和分散均匀性对聚酯树脂性能的改善效果有着重要影
响。
因此,在实际应用中需要进行详细的工艺调试和性能测试,以确定最佳的增韧剂添加量和工艺参数。
聚酯树脂的增韧剂是一种能够提高其韧性和抗冲击性能的添加剂。
通过添加改性橡胶、改性树脂和纤维素等增韧剂,可以改善聚酯树脂的性能,提高其在工程领域的应用广泛性和可靠性。
然而,在实际应用中需要注意增韧剂的添加量和分散均匀性对性能的影响,以确保其性能的稳定性和一致性。
第16卷1999年 第3期8月复 合 材 料 学 报A CTA M A T ER I A E COM PO S ITA E S I N I CA V o l .16 N o.3A ugust 1999 收修改稿、初稿日期:1998204214,1998202225。
黑龙江省自然科学基金资助项目,项目编号1997B 13热固性树脂的增韧方法及其增韧机理 陈 平 张 岩(哈尔滨理工大学电工材料系,哈尔滨150040) (哈尔滨玻璃钢研究所,哈尔滨150036)摘 要 系统地论述了通过加入无机填料、橡胶弹性体、热塑性树脂、热致性液晶,与热塑性塑料形成半互穿网络结构,改变交联网的化学结构,控制分子交联状态的不均匀性等增韧热固性树脂的方法。
并对以上几种增韧方法的机理及其橡胶弹性体改性增韧的热固性树脂体系相分离的热力学和动力学判据也进行了分析讨论。
关键词 热固性树脂,韧性,增韧方法,增韧机理中图分类号 TQ 322 热固性树脂是一类具有交联网络状结构的高分子化合物。
它们一般都具有良好的机械性能、电学性能和粘接性能。
以胶粘剂、涂料、密封剂、灌封材料和复合材料用树脂基体等形式广泛应用于机械、化工、电子电气和航空航天等技术领域中。
其中有代表性的是环氧树脂、酚醛树脂和不饱和聚酯树脂等。
但是热固性树脂交联网络结构的最大弱点是固化后质脆、耐冲击和应力开裂的能力等较差,从而限制了它们在某些领域的推广应用。
因此,热固性树脂的增韧改性一直是高分子材料专家十分关注的研究课题[1],本文系统地论述了目前热固性树脂的增韧方法和增韧机理。
1 热固性树脂的增韧改性方法 目前热固性树脂的增韧改性途径大致有以下几种方法。
1.1 用刚性无机填料,橡胶弹性体、热塑性树脂单体和热致性液晶(TL CP )聚合物等第二相来增韧改性。
1.2 用热塑性树脂连续贯穿于热固性树脂网络中,形成半互穿网络聚合物(S 2IPN )来增韧改性,有分步法(S IPN )、同步法(S I N )等。
聚合物增韧方法及增韧机理*陈立新 蓝立文 王汝敏(西北工业大学化工系,西安市710072)收稿日期:2000-07-03作者简介:陈立新女,1966年生,博士、讲师,已发表论文20余篇。
* 先进复合材料国防科技重点实验室基金资助。
摘要 探讨了聚合物增韧方法及增韧机理,为材料的研制与开发提供新的思路和准则。
关键词 增韧 机理 聚合物T oughening mechanism and methods of polymerChen Lixin Lan Liw en Wang Rumin(Dept.of Chemical Engineer ing ,N orthwest U niversity,Xi .an 710072)Abstract T he toughening mechanism and methods of polymer are discussed in differ ent aspects.Some new ideas and principles are also prov ided for the development of mater ials.Keyw ords T oug hening M echanism Polymer1 前言聚合物增韧一直是高分子材料科学研究的重要内容。
最早采用弹性体来增韧聚合物,如通过橡胶增韧苯乙烯-丙烯腈共聚物(SAN)树脂,制备了性能优良的ABS 工程塑料;通过液体端羧基丁腈橡胶(CTBN)增韧环氧[1];端氨基丁腈(ATBN )增韧BM [2],提高了树脂的断裂韧性。
但在提高韧性的同时,却使刚度、强度和使用温度大幅度降低。
自20世纪80年代中期,人们开始讨论研究采用非弹性体代替橡胶增韧聚合物的新思路[3~6],先后获得了PC/ABS 、PC/AS 、PP/ABS 刚性有机粒子增韧体系,以及热塑性树脂(PEI,PH ,PES 等)贯穿于热固性树脂(EP,BMI)网络中的增韧体系。
橡胶增韧塑料的增韧机理及实例说明
橡胶增韧塑料是指在塑料基体中添加橡胶颗粒或橡胶粒子以增强其机械性能和耐久性。
橡胶颗粒能够通过以下机理增韧塑料:
1. 高分子交联机理:橡胶颗粒中的橡胶链段能够与塑料基体中的聚合物链段发生交联作用,形成三维网状结构,从而增强塑料的强度和韧性。
2. 动态机械改性机理:橡胶颗粒在塑料基体中起到类似弹簧的作用,能够吸收和分散外部冲击或振动的能量,从而减弱了塑料的脆性破坏方式。
以下是橡胶增韧塑料的一些实例说明:
1. ABS(丙烯腈-丁二烯-苯乙烯)共混物:在ABS塑料基体
中添加丁苯橡胶颗粒,能够显著提高其耐冲击强度和韧性,使其在低温下仍然具有良好的机械性能。
2. PVC(聚氯乙烯)共混物:将PVC与丁苯橡胶颗粒共混,
能够增加PVC材料的韧性、耐冲击性和耐候性。
3. PA(聚酰胺)共混物:将PA基体中添加碳酸酯橡胶颗粒,能够提高其韧性和冲击强度,使其适用于需要高强度和耐冲击性的应用领域。
综上所述,橡胶增韧塑料通过橡胶颗粒在塑料基体中的交联和
动态机械改性机理,能够显著增强塑料的强度、韧性和耐久性,使其适用于更广泛的工程应用。
聚丙烯增韧改性的方法及机理PP本身脆性(尤其是低温脆性)较大,用于对韧性要求较高的产品(特别是结构材料)时必须对PP进行增韧改性。
1 无规共聚改性采用生产等规PP的工艺路线和方法,使丙烯和乙烯的混合气体进行共聚,即可制得主链中无规则分布丙烯和乙烯链节的共聚物。
共聚物中乙烯的质量分数一般为1%~7%。
乙烯链节的无规引入降低了PP的结晶度,乙烯含量为20%时结晶变得困难,含量为30%时几乎完全不能结晶。
与等规PP相比,无规共聚PP结晶度和熔点低,较柔软,透明,温度低于0℃时仍具有良好的冲击强度,一20%时才达到应用极限,但其刚性、硬度、耐蠕变性等要比均聚PP低10%~15%。
无规共聚PP主要用于生产透明度和冲击强度好的薄膜、中空吹塑和注塑制品。
其初始热合温度较低,乙烯含量高的共聚物在共挤出薄膜或复合薄膜中作为特殊热合层得到了广泛应用2 嵌段共聚改性乙丙嵌段共聚技术在20世纪60年代即已出现,其后很快得到推广。
美国从1962年开始工业化规模生产(丙烯/乙烯)嵌段共聚物,该共聚物含有65%一85%的等规PP、10%一30%的乙丙共聚物和5%的无规PP 。
(丙烯/乙烯)嵌段共聚物与无规共聚PP一样,也可以在制造等规PP的设备中生产,有连续法和间歇法两种工艺路线。
(丙烯/乙烯)嵌段共聚物具有与等规PP及高密度聚乙烯(HDPE)相似的高结晶度及相应特征,其具体性能取决于乙烯含量、嵌段结构、分子量大小及分布等。
共聚物的嵌段结构有多种形式,如有嵌段的无规共聚物、分段嵌段共聚物、末端嵌段共聚物等。
目前工业生产的主要是末端嵌段共聚物以及PP、聚乙烯、末端嵌段共聚物三者的混合物。
通常(丙烯/乙烯)嵌段共聚物中乙烯质量分数为5%一20%。
(丙烯/乙烯)嵌段共聚物既有较好的刚性,又有好的低温韧性,其增韧效果比无规共聚物要好。
其主要用途为制造大型容器、周转箱、中空吹塑容器、机械零件、电线电缆包覆制品,也可用于生产薄膜等产品3 接枝共聚改性PP接枝共聚物是在PP主链的某些原子上接枝化学结构与主链不同的大分子链段,以赋予聚合物优良的特性。
acr增韧机理
ACR是一种增韧剂,全称是丙烯酸共聚物改性树脂(Acrylic Copolymer Resin)。
它主要由丙烯酸酯单体和其他杂聚物单
体经共聚反应而成。
ACR的增韧机理可以归结为以下几点:
1. 机械增韧:ACR具有较高的拉伸强度和韧性,能够改善树
脂的机械性能。
其高分子链具有较大的拉伸和弯曲能力,使得树脂体系能够吸收和分散外部应力,从而减少材料的脆性破裂。
2. 化学增韧:ACR分子中的官能团可以与树脂体系中的官能
团发生化学反应,形成交联结构或相互交错,从而增强树脂的耐热性、耐寒性和耐化学性。
这种化学增韧机理主要通过共价键的形成来实现。
3. 分散增韧:ACR分子具有良好的分散性能,可以均匀地分
散在树脂体系中,形成具有多相结构的体系。
这种多相结构能够增加材料的界面密实度和界面黏合强度,从而提高树脂体系的韧性。
ACR作为增韧剂在树脂体系中发挥重要的作用,能够有效增
强材料的物理性能和化学性能,提高材料的综合性能。