第一章 函数 1
- 格式:ppt
- 大小:869.50 KB
- 文档页数:48
新人教版高一数学必修一目录
一、第一章函数
1. 基本概念
2. 函数的表示法
3. 函数的图象
4. 函数的性质
二、第二章曲线
1. 曲线的表示法
2. 曲线的切线
3. 兰联形曲线
4. 椭圆曲线
5. 双曲线
三、第三章相关与回归
1. 相关系数
2. 线性回归与回归直线
四、第四章初等函数
1. 指定法求方程的根
2. 二次函数及加减乘除法
3. 牛顿迭代法求方程的根
五、第五章指数函数
1. 指数函数的基本性质
2. 常用指数函数
3. 对数函数及其应用
六、第六章对数函数及其应用
1. 对数函数的基本性质
2. 对数函数及其应用
七、第七章几何极限
1. 无穷小分析法
2. 无穷量极限
3. 二元函数极限
4. 级数的极限
八、第八章函数的微分
1. 导数的概念
2. 定义型微分
3. 导数的性质及应用
九、第九章函数的积分
1. 定积分及其应用问题
2. 微积分的应用ii
3. 曲线的积分性质。
第一章 函数 极限 连续知识点拔1.1 函数一、函数的概念设D 是一个非空数集,若存在一个对应法则f ,使得对D 内的每一个值x 都有唯一的y 值与之对应,则称这个对应法则f 是定义在数集D 上的一个函数,记作:)(x f y =,其中x 叫自变量,y 叫因变量或函数,数集D 称为函数的定义域,而数集}),(|{D x x f y y z ∈==叫函数的值域.如果D x ∈0,称函数)(x f 在0x 处有定义,函数)(x f 在0x 处的函数值记为0x x y =或)(0x f .注释:①函数定义的两个要素:定义域和对应法则;②两个函数相等条件:定义域和对应法则都相同的两个函数是相同函数,如:22)(2---=x x x x f 与1)(+=x x g 不同,因定义域不同;x x f 2sin )(=与x x g sin )(=不同,因对应法则不同;x x x x f 222cos sin )(++=与1)(2+=t t g 相同,也就是当两上函数的定义域和对应法则都相同时,即使其自变量所用的字母不同,但两个函数相同.③若定义域内的每一个x 只对应一个函数值y ,则称该函数为单值函数,若同一个x 值可对应于多于一个的函数值y ,这种函数称为多值函数.二、函数的基本性质1、函数的单调性:设函数在区间D 上有定义,如果对2121,x x D x x <∈∀且,恒有)()(21x f x f <(或)()(21x f x f >),则称)(x f 在区间D 上严格单调增加(或严格单调减少)的.如果对于D x x ∈∀21,21x x <且,有)()(21x f x f ≤ (或)()(21x f x f ≥)称)(x f 在区间D 上是单调增加(或单调减少)的.注释:(1)函数的有界性与单调性是与某个区间密切相关的,区间不同函数的有界性与单调性也不同.(2)增+增=增,增-减=增,减+减=减,减-增=减,增的倒数为减,减的倒数为增. (3)增函数与增函数或减函数与减函数的复合为单调增加函数. (4)增函数与减函数或减函数与增函数的复合为单调减少函数.2、函数的奇偶性:设D 是对称于原点的区间,若对D x ∈∀,)()(x f x f -=-有,则称)(x f 是奇函数;若有)()(x f x f =-,称)(x f 是偶函数.注释:①奇(偶)函数的定义域必须是关于原点对称的区间. ②奇函数)(x f 的图象关于原点对称,偶函数的图象关于y 轴对称. ③奇偶函数的运算性质1°奇函数的代数和仍为奇函数;偶函数的代数和仍为偶函数;奇函数与偶函数的代数和为非奇非偶函数;2°偶数个奇(或偶)函数的积为偶函数;奇数个奇函数的积为奇函数; 3°一奇一偶函数的积是奇函数;4°奇函数的导数是偶函数,偶函数的导数是奇函数;5°奇函数的原函数是偶函数;偶函数)(x f 的原函数⎰=xa dt t f x F )()(是奇函数的充要条件是0=a ,即在所有原函数中只有一个函数是奇函数.④任何一个定义域是关于原点对称的函数都可以表示成一个奇函数与一个偶函数和的形式,即=)(x f 2)()(2)()(x f x f x f x f -++--.3、函数的有界性:设)(x f 在区间D 上有定义,如果存在0>M ,使得对一切D x ∈都有M x f ≤)(,则称)(x f 在D 上有界,否则称为无界,即对0>∀M ,若存在D x ∈0,使得M x f >)(,称)(x f 在D 上是无界的.注释:函数的有界性与x 的取值区间有关. 若函数xy 1=在区间),1(+∞上有界,但在)1,0(内是无界的,因为在这个区间上函数满足定义的M 不存在,即函数的有界性与x 的取值区间有关.4、函数的周期性:设)(x f 的定义域为D ,若存在常数0>T ,伎得对D x ∈∀,必有D T x ∈±,并且有)()(x f T x f =+成立,则称)(x f 是以T 为周期的周期函数,T 称为函数)(x f 的周期,所有周期中的最小正周期叫函数)(x f 的周期.注释:①周期函数的定义域必须是无限点集,但不能是有限区间. 如:x y tan =的定义域是(+∞∞-,)且....,2,1,0,2=+≠k k x ππ②若)(x f 的周期为T ,则)(φω+x f 的周期为ωT(0≠ω);③周期函数的和、差、积仍为周期函数,且周期为各个函数周期的最小公倍数,如:x x y 3cos 4sin +=周期是32,42ππ的最小公倍数π2,但也有例外,如:x sin ,x cos 的周期为2π,但x x y cos sin +=的周期为π;④周期函数的导数仍为周期函数,且周期不变; ⑤设)(x f 是周期为T 的函数,则它的原函数⎰=xadt t f x F )()(为周期函数的充要条件是0)(0=⎰Tdx x f ,或者说,周期函数的原函数不一定是周期函数,如:x x f cos 1)(+=是以2π为周期的函数,但其任一个原函数C x x x F ++=sin )(不是周期函数.⑥不是每一个周期函数都有最小正周期的,如:狄利克雷函数⎩⎨⎧=无理数有理数x x y ,0,1任何有理数r 都是它的周期,即若x 为有理数, r x +也是有理数,故有)(1)(r x f x f +==;若x 为无理数, r x +也是无理数,故)(0)(r x f x f +==,可见r 为)(x f 的周期,但它没有最小的正周期. 又如:C y =,C 为常数,它是周期为任意实数且没有最小正周期的周期函数.三、反函数设函数)(x f y =,其定义域为D ,值域为M ,如果对于M 中的某一个y 值(M y ∈),都可以从关系式)(x f y =确定唯一的x (D x ∈)与之对应,这样就确定了一个以y 为自变量的新函数,记为:)(1y fx -=,称函数)(1y f x -=为函数)(x f y =的反函数,它的定义域为M ,值域为D .注释:①习惯上自变量用x 表示,函数用y 表示,因此函数)(x f y =的反函数)(1y f x -=通常表示为)(1x fy -=.②反函数的定义域就是其原来函数的值域;反函数的值域就是原来函数的定义域,且有)]([)]([11x f f x x f f --==.③原来函数)(x f y =与其反函数)(1x fy -=的图像关于x y =对称(前提是在同一坐标系中),)(x f y =的图像与其反函数)(y x φ=的图像重合.④只有一一对应的函数才有反函数.⑤若)(x f 在区间I 内单调⇒)(x f 在区间I 内一定存在单值反函数,反之不一定成立,即若)(x f 在区间I 内存在单值反函数但)(x f 在区间I 内不一定单调,如: ⎩⎨⎧≤≤+≤--=10,101,)(x x x <x x f 在区间]1,1[-内存在单值反函数,但它在]1,1[-上不单调.四、复合函数若函数)(x u φ=在0x 处有定义,而)(u f y =在)(00x u φ=处有定义,则)]([x f y φ=称为由)(u f y =和)(x u φ=复合而成的复合函数,u 称为中间变量.注释:①只有当函数)(x u φ=的值域与)(u f y =的定义域的交集不是空集时才构成复合数. ②函数的复合:先利用外层函数关系,再利用内层函数关系而构成,如:设x x f sin )(=,x e x =)(φ,则x e x x f sin )](sin[)]([==φφ.③复合函数的分解:先找到外层函数关系,设其内部整体为中间变量u ,再依次分解,如:21)]sin [arctan(x x y +=,可设)sin arctan(x x u +=,x x v sin +=,则原来函数是由21u y = , v u arctan =,x x v sin +=复合而成.五、初等函数1、基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数这五类函数统称为基本初等函数.2、初等函数:由常数和五类基本初等函数经过有限次的四则运算和有限次复合运算且可用一个数学解析式表示的函数叫初等函数.注释:初等函数必须用一个式子表示,不能用一个式表示的函数不能称为初等函数,故分段函数一般不是初等函数.3、分段函数:若函数在其定义域内的不同部分上,分别用不同的表达式表示,这类函数称为分段函数.如:符号函数⎪⎩⎪⎨⎧<-=>=.0,1,0,0,0,1sgn x x x x 是分段函数且是有界函数和奇函数.又如: x x x x x x x y sgn .0,,0,=⎩⎨⎧<-≥==是分段函数.注释:分段函数一般不是初等函数,但若)(x f 是初等函数,则⎩⎨⎧<-≥==.0)(),(,0)(),()()(2x f x f x f x f x f x f 是初等函数. 又如:取整函数[]x y =,即“不超过x 的最大整数”是分段函数. 又如:定义在R 上的狄利克雷(Dirichlet )函数⎩⎨⎧=.,0,1)(无理数有理数x ,x x D 是分段函数,且是有界的,)(x D 是周期函数,但没有最小的正周期,任何有理数都是它的周期,并且)(x D 还是偶函数.4、初等函数的几个特例设函数)(x f 和)(x g 都是初等函数,则(1))(x f 是初等函数,因为=)(x f []2)(x f ;(2)最大值函数max )(=x ϕ{})(),(x g x f 和最小值函数{})(),(min )(x g x f x =ψ都是初等函数,这是因为{}[])()()()(21)(),(max )(x g x f x g x f x g x f x -++==ϕ {}[])()()()(21)(),(min )(x g x f x g x f x g x f x --+==ψ (3)幂指函数)()]([x g x f y = (0)(>x f )是初等函数,因为)(ln )()](ln[)()()]([x f x g x f x g e e x f x g ==.1.2 极限一、数列极限的定义 1、数列极限的概念设}{n x 为数列,a 为定数,若对任给的正数ε,总存在正整数N ,使得当N n >时,有ε<-a x n ,则称数列}{n x 收敛于a ,而a 称为数列}{n x 的极限,记作:a x n n =∞→lim ,或a x n →(∞→n ).若数列}{n x 没有极限,则称数列}{n x 不收敛,或称}{n x 为发散数列. 若0lim =∞→n n x ,则称}{n x 为无穷小数列.定理 数列}{n x 收敛于a 的充要条件是:}{a x n -为无穷小数列. 2、有界数列的概念对于数列}{n x ,如果存在正数M ,使得对于一切的n x 都有不等式M x n ≤||成立,则称数列}{n x 是有界的;如果这样的正数M 不存在,则称数列}{n x 是无界的.注释:(1)若数列}{n x 收敛,则数列有界;(2)有界数列}{n x 不一定收敛,如:n n a )1(-=有界,但不收敛,所以数列有界是数列收敛的必要条件;(3)C C n =∞→lim (常数);01lim=∞→p n n (0>p );0lim =∞→nn q (1<q ); (4)等差数列的求和公式2)(1n n a a n S +=或d n n na S n 2)1(1-+=. (5)等比数列的前n 项和公式qq a S n n --=1)1(1.3、单调数列的概念对于数列}{n x ,如果满足条件 ≤≤≤≤≤+121n n x x x x ,则称数列}{n x 为单调增加数列;如果满足条件 ≥≥≥≥≥+121n n x x x x ,则称数列}{n x 为单调减少数列.单调增加数列和单调减少数列统称为单调数列. 定理(单调有界准则) 单调有界数列必有极限.二、函数极限1、∞→x 时,函数)(x f 的极限 (1)概念定义 如果当∞→x 时,函数)(x f 无限趋近于某个确定的常数A ,则称常数A 为函数)(x f 当∞→x 时的极限,记作:A x f x =∞→)(lim 或A x f →)((∞→x ).注释:(1)∞→x 是指x 的绝对值无限增大,它包含以下两种情况:x 取正值并无限增大,记作:+∞→x ;x 取负值且其绝对值无限增大,记作:-∞→x .(2)如果+∞→x 和-∞→x 两种情况都存在且函数的极限值相等时,则可合并写成∞→x . 定义 如果当+∞→x 时,函数)(x f 无限趋近于某个确定的常数A ,则称常数A 为函数)(x f 当+∞→x 时的极限,记作:A x f x =+∞→)(lim 或A x f →)((+∞→x ).如果当-∞→x 时,函数)(x f 无限趋近于某个确定的常数A ,则称常数A 为函数)(x f 当-∞→x 时的极限,记作:A x f x =-∞→)(lim 或A x f →)((-∞→x ).(2)函数)(x f 在∞→x 时极限存在的充要条件定理 极限A x f x =∞→)(lim 存在的充要条件是A x f x =+∞→)(lim 且A x f x =-∞→)(lim .如:由于2arctan lim π=+∞→x x ,2arctan lim π-=-∞→x x ,所以x x x x arctan lim arctan lim -∞→+∞→≠,故极限x x arctan lim ∞→不存在;又如:由于0lim =-∞→x x e ,+∞=+∞→x x e lim 即不存在,故极限xx e ∞→lim 不存在.2、0x x →时,函数)(x f 的极限 (1)函数)(x f 在0x x →时的极限概念定义 设函数)(x f 在0x 的某个去心邻域内有定义,如果当0x x →时,函数)(x f 无限地趋近于某一确定的常数A ,则称A 为函数)(x f 当0x x →时的极限,记作:A x f x x =→)(lim 0或Ax f →)((0x x →).注释:0x x →表示x 趋近于0x ,含以下两种情况:(1)x 从大于0x 的一侧(即右侧)趋近于0x ,记作:+→0x x ; (2)x 从大于0x 的一侧(即右侧)趋近于0x ,记作:-→0x x .(2)函数左极限与右极限的概念定义 设函数)(x f 在0x 的某个左侧邻域),(00x x δ-(0>δ)内有定义,如果当x 从0x 的左侧趋近于0x (记作:-→0x x )时,函数)(x f 无限地趋近于某一确定的常数A ,则称A 为函数)(x f 当-→0x x 时的极限,记作:A x f x x =-→)(lim 0或A x f =-)(0或A x f =-)0(0.设函数)(x f 在0x 的某个右侧邻域),(00δ+x x (0>δ)内有定义,如果当x 从0x 的右侧趋近于0x (记作:+→0x x )时,函数)(x f 无限地趋近于某一确定的常数A ,则称A 为函数)(x f 当+→0x x 时的极限,记作:A x f x x =+→)(lim 0或A x f =+)(0或A x f =+)0(0.(3)函数)(x f 在0x x →时极限存在的充要条件定理 极限A x f x x =→)(lim 0存在的充要条件是A x f x x =-→)(lim 0且A x f x x =+→)(lim 0.注释:该定理主要用来判定分段函数在分段点处极限是否存在的重要定理. (4)几个常用极限01lim=∞→x x ,C C x x =→0lim (常数),0sin lim 0=→x x ,1cos lim 0=→x x ,00lim x x x x =→. (5)初等函数的极限基本初等函数在定义域内任一点0x 的极限等于该点的函数值;初等函数在定义区间内任一点0x 的极限等于该点的函数值.3、函数极限的性质(1)唯一性:若极限)(lim 0x f x x →存在,则它的极限必唯一;(2)局部有界性:若)(li m 0x f x x →存在,则0>∃δ和0>M ,当δ<-<00x x 时,有M x f ≤)(;(3)保序性:设A x f x x =→)(lim 0,B x g x x =→)(lim 0,(Ⅰ)若B A >,则0>∃δ,当δ<-<00x x 时,有)()(x g x f >; (Ⅱ)若当δ<-<00x x 时,有)()(x g x f >,则B A ≥.(4)保号性:若0)(lim 0>=→A x f x x (或<0),则必0>∃δ,当δ<-<00x x 时,有0)(>x f (或0)(<x f )若0)(>x f (或0)(<x f ),且A x f x x =→)(lim 0,则0≥A (或0≤A ).注释:①上述的变化趋势0x x →,可以换成-→0x x ,+→0x x ,∞→x ,-∞→x ,+∞→x②若)0(0)(<>或x f ,且A x f x x =→)(lim 0,则0>A )0(<或是错误的,如)0(0)(2≠>=x x x f ,但0)(lim 0=→x f x1.3 极限的运算法则若)(lim x f ,)(lim x g 都存在,则(1)[])(lim )(lim )()(lim x g x f x g x f ±=±;(2)[])(lim )(lim )()(lim x g x f x g x f ±=,特别地)(lim )(lim x f C x Cf =; (3))(lim )(lim )()(limx g x f x g x f =,其中0)(lim ≠x g ; (4))]([lim )]([lim x g f x g f =; (5)[],)(lim )(lim )(lim )(x g x g x f x f =其中0)(lim >x f 且不等于1,特别地[]αα)(lim )](lim[x f x f =(α为实数). 注释:①法则(1)(2)可以推广到有限个函数.②0x x →时有理分式极限的求法设)(x R 是有理分式,01110111)()()(b x b x b x b a x a x a x a x Q x P x R n n n n n n n n m n ++++++++==---- ,其中0≠n a ,0≠n b .(1)若0)(0≠x Q m ,则)()()()(lim 0000x R x Q x P x R m n x x ==→;(2)若0)(0=x Q m ,而0)(0≠x P n ,则∞=→)(lim 0x R x x ;(3)若0)(0=x Q m 且0)(0=x P n ,则)(x P n 与)(x Q m 一定有公因子)(0x x -,将)(x P n 与)(x Q m 因式分解,约去公因式后再计算极限.③∞→x 时有理分式极限的求法⎪⎪⎩⎪⎪⎨⎧<∞=>=∞→.,.,.,0)(lim 时当时当时当n m n m b an m x R n n x 其中0≠n a ,0≠n b . ④无理分式极限的求法:先分子或分母有理化,在计算极限 ⑤“∞-∞”型有理分式的求法:先通分,再求极限.1.4 极限存在准则及两个重要极限一、极限存在准则夹逼定理:如果对于0x 的去心邻域内的一切x 都有)()()(x h x f x g ≤≤,且A x h x g x x x x ==→→)(lim )(lim 0,则有A x f x x =→)(lim 0.二、两个重要极限 1、1sin lim0=→xx x ,1sin lim 0=→x x x ,一般的1sin lim0=∆∆→∆,∆表示任一函数)(x u ,即1)()(sin lim 0)(=→x u x u x u ;2、e xxx =+∞→)11(lim ,e x x x =+→10)1(lim ,一般的e =∆+∆∞→∆)11(lim ,e =∆+∆→∆10)1(lim ,∆表示任一函数)(x u ,即e x u x u x u =+∞→)()())(11(li m ,e x u x u x u =+→)(1)())(1(lim .1.5 无穷小量与无穷大量、无穷小的比较一、无穷小量1、无穷小量的概念若0)(lim 0=→x f x x (或0)(lim =∞→x f x ),则称)(x f 是0x x →(或∞→x )时的无穷小量,简称无穷小;2、极限与无穷小量的关系α+=⇔=∞→→A x f A x f x x x )()(lim )(0,其中α是0x x →时的无穷小量.|)(|)(lim )(0A x f A x f x x x -⇔=∞→→是0x x →(或∞→x )时的无穷小量.3、无穷小量的性质(1)有限个无穷小量的和、差、积仍然是无穷小量,(2)有界函数与无穷小量的乘积是无穷小量。