《圆周运动》专题复习
- 格式:doc
- 大小:200.00 KB
- 文档页数:5
专题复习 圆周运动考点一 圆周运动的运动学问题题型1 皮带、摩擦(或齿轮)传动1.如图所示,轮1O 、3O 固定在同一转轴上,轮1O 、2O 用皮带连接且不打滑。
在1O 、2O 、3O 三个轮的边缘各取一点A 、B 、C ,已知三个轮的半径之比123::2:1:1r r r =,则( )A .A 、B 两点的线速度大小之比:1:1A B v v = B .B 、C 两点的线速度大小之比:1:1B C v v =C .A 、B 两点的角速度之比:1:1A B ωω=D .A 、C 两点的向心加速度大小之比:1:1A C a a = 2.(多选)小张的爸爸妈妈给他新买了变速自行车,小张利用所学知识对这辆变速自行车进行了仔细的研究,如图是变速自行车的部分简化图,A 是脚踏板齿轮上与链条接触的点,D 是自行车后轮上与链条相接触的齿轮上的点(即2齿轮边缘上的一点),B 是脚踏板转轴上的一点,E 是自行车后轮边缘上的一点,已知4A D r r =,20E D r r =,则下列说法正确的是( )A .A 与B 的角速度相等,D 与E 的角速度不相等B .A 转动1圈,则D 转动2圈C .线速度20E A v v =,向心加速度14A D a a = D .在A 转动周期不变的情况下,为了让自行车跑得更快,可以将后轮链条调节到1齿轮考点二 水平面上圆周运动题型1 水平转盘3.如图所示,一圆盘可绕一通过圆心且垂直于盘面的竖直轴转动,在圆盘上放一块橡皮,橡皮块随圆盘一起转动(俯视为逆时针)。
某段时间圆盘转速不断增大,但橡皮块仍相对圆盘静止,在这段时间内,关于橡皮块所受合力F 的方向的四种表示(俯视图)中,正确的是( )A .B .C .D .4.如图,叠放在水平转台上的物体A 、B 、C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ,A 和B 、C 离转台中心的距离分别为r 、1.5r 。
考情透析命题点考频分析命题特点核心素养水平面内圆周运动及临界问题2023:全国甲T4江苏T132022:全国甲T1北京T8河北T10浙江6月T2山东T82021:全国甲T2浙江6月T7广东T4本专题主要涉及水平面内、竖直面内和斜面上的圆周运动基本规律及临界问题等。
高考常以生活中圆周运动的实例为命题背景。
物理观念:能清晰、系统地理解向心力、临界状态的概念和各种圆周运动的规律。
能正确解释关于圆周运动的自然现象,综合应用所学的物理知识解决圆周运动的实际问题。
科学思维:能将较复杂的圆周运动过程转换成标准的物理模型。
能对常见的物理问题进行分析,通过推理,获得结论并作出解释。
竖直面内圆周运动及临界问题斜面上的圆周运动及临界问题热点突破1水平面内圆周运动及临界问题▼考题示例1(2023·湖南·模拟题)(多选)如图所示,半径为R的半球形陶罐固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合,转台以一定角速度ω匀速旋转。
甲、乙两个小物块(可视为质点)质量均为m,分别在转台的A、B两处随陶罐一起转动且始终相对罐壁静止,OA、OB与OO′间的夹角分别为a=30°和β=60°,重力加速度大小为g。
当转台的角速度为ω0时,小物块乙受到的摩擦力恰好为零,下列说法正确的是()A .ω0=g RB .当转台的角速度为ω0时,甲有上滑的趋势C .当角速度从0.5ω0缓慢增加到1.5ω0的过程中,甲受到的摩擦力一直增大D .当角速度从0.5ω0缓慢增加到1.5ω0的过程中,甲受到的支持力一直增大答案:BD解析:A 、小物块乙受到的摩擦力恰好为零,重力和支持力的合力提供向心力,即mg tan β=mω02R sin β,解得:ω0=2gR,故A 错误;B 、设转台角速度为ω时,物块甲受到的摩擦力为零,重力和支持力的合力提供向心力,mg tan α=mω2R sin α,解得:ω=2g3R<ω0;所以当转速为ω0时,支持力和重力的合力不足以提供向心力,甲有沿内壁切线上滑的趋势,故B 正确;C 、甲的临界角速度ω=2g3R>0.5ω0,所以当角速度从0.5ω0缓慢增大到2g3R时,甲有沿内壁切线下滑的趋势,角速度从2g3R缓慢增大到1.5ω0时,甲有沿内壁切线上滑的趋势,摩擦力方向发生了变化,其大小先减小再反向增大,故C 错误;D 、将甲收到的力分解为水平方向和竖直方向,竖直方向的合力为0,即mg =N cos α+f sin α,由C 可知,角速度从0.5ω0缓慢增加到1.5ω0的过程中,先减小再反向增大,则支持力一直在增大,故D 正确;故选:BD 。
2025届高三物理一轮复习多维度导学与分层专练专题24圆周运动基本物理量、水平面内的圆周运动、离心现象导练目标导练内容目标1圆周运动基本物理量目标2水平面内的圆周运动(圆锥摆、圆筒、转弯模型和圆盘临界模型)目标3离心现象【知识导学与典例导练】一、圆周运动基本物理量1.匀速圆周运动各物理量间的关系2.三种传动方式及特点(1)皮带传动(甲乙):皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等。
(2)齿轮传动(丙):两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等。
(3)同轴传动(丁):两轮固定在同一转轴上转动时,两轮转动的角速度大小相等。
3.向心力:(1)来源:向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,在受力分析中要避免再另外添加一个向心力。
(2)公式:F n=ma n=m v2r=mω2r=mr·4π2T2=mr·4π2f2=mωv。
【例1】如图所示,B和C是一组塔轮,即B和C半径不同,但固定在同一转轴上,其半径之比为RB∶RC=3∶2,A轮的半径大小与C轮相同,它与B轮紧靠在一起,当A轮绕过其中心的竖直轴转动时,由于摩擦力作用,B轮也随之无滑动地转动起来.a、b、c分别为三轮边缘的三个点,则a、b、c三点在运动过程中的()A.线速度大小之比为3∶2∶2B.角速度之比为3∶3∶2C.转速之比为2∶3∶2D.向心加速度大小之比为9∶6∶4【答案】D【详解】A.A、B靠摩擦传动,则边缘上a、b两点的线速度大小相等,即v a∶v b=1∶1 BC同轴转动角速度相等,根据v=ωR又R B∶R C=3∶2可得v b∶v c=3∶2解得线速度大小之比为v a ∶v b ∶v c =3∶3∶2故A 错误;BC .B 、C 同轴转动,则边缘上b 、c 两点的角速度相等,即ωb =ωca 、b 两点的线速度大小相等,根据v =ωR 依题意,有R B ∶R A =3∶2解得ωb :ωa =2:3解得角速度之比为ωa :ωb :ωc =3∶2∶2又ω=2πn 所以转速之比n a :n b :n c =3∶2∶2故BC 错误;D .对a 、b 两点,由2n v a R=解得a a ∶a b =3∶2对b 、c 两点,由a n =ω2R 解得a b ∶a c =3∶2可得a a ∶ab ∶ac =9∶6∶4故D 正确。
物理总复习:圆周运动【知识网络】角速度 2v t T r θπω===线速度 2s rv r t Tπω===向心加速度 22224v ra r v r T πωω====运行周期 22rT vππω==向心力 22224v F ma m m r mr r Tπω====【考点梳理】考点一、描述圆周运动的物理量 1、描述圆周运动的物理量描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等。
2、匀速圆周运动特点:线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的。
要点诠释:1、匀速圆周运动是速度大小不变而速度方向时刻在变的变速曲线运动,并且是加速度大小不变、方向时刻变化的变加速曲线运动。
2、只存在向心加速度,向心力就是做匀速圆周运动的物体所受的合外力。
3、质点做匀速圆周运动的条件(1)物体具有初速度; (2)物体受到的合外力F 的方向与速度v 的方向始终垂直。
(匀速圆周运动) 考点二、向心力的性质和来源要点诠释:向心力是按力的效果命名的,它可以是做圆周运动的物体受到的某一个力或是几个力的合力或是某一个力的分力,要视具体问题而定。
在匀速圆周运动中,由于物体运动的速率不变,动能不变,故物体所受合外力与速度时刻垂直、不做功,其方向指向圆心,充当向心力,只改变速度的方向,产生向心加速度。
考点三、传动装置中各物理量之间的关系在分析传动装置中各物理量的关系时,一定要明确哪个量是相等的,哪个量是不等的。
1、角速度相等:同轴转动的物体上的各点角速度相等。
2、线速度大小相等:(要求:在不打滑的条件下)(1)皮带传动的两轮在皮带不打滑的条件下,皮带上及两轮边缘各点的线速度大小相等; (2)齿轮传动;(3)链条传动;(4)摩擦轮传动;(5)交通工具的前后轮(自行车、摩托车、拖拉机、汽车、火车等等) 考点四、圆周运动实例分析1、火车转弯 在转弯处,若向心力完全由重力G 和支持力N F 的合力F 合来提供,则铁轨不受轮缘的挤压,此时行车最安全。
圆周运动及其应⽤专题复习整理圆周运动及其应⽤专题复习⼀、圆周运动中的运动学分析(1)定义:线速度⼤⼩不变的圆周运动。
(2)性质:加速度⼤⼩不变,⽅向总是指向圆⼼的变加速曲线运动。
2.描述匀速圆周运动的物理量(1)v =ωr =2πTr =2πrf 。
(2)a n =v 2r =r ω2=ωv =4π2T2r =4π2f 2r 。
4.常见的三种传动⽅式及特点(1)⽪带传动:如图甲、⼄所⽰,⽪带与两轮之间⽆相对滑动时,两轮边缘线速度⼤⼩相等,即v A =v B 。
(2)摩擦传动:如图甲所⽰,两轮边缘接触,接触点⽆打滑现象时,两轮边缘线速度⼤⼩相等,即v A =v B 。
(3)同轴传动:如图⼄所⽰,两轮固定在⼀起绕同⼀转轴转动,两轮转动的⾓速度⼤⼩相等,即ωA =ωB 。
【典例1】科技馆的科普器材中常有如图所⽰的匀速率的传动装置:在⼤齿轮盘内嵌有三个等⼤的⼩齿轮。
若齿轮的齿很⼩,⼤齿轮的半径(内径)是⼩齿轮半径的3倍,则当⼤齿轮顺时针匀速转动时,下列说法正确的是( )A.⼩齿轮逆时针转动B.⼩齿轮每个齿的线速度均相同C.⼩齿轮的⾓速度是⼤齿轮⾓速度的3倍D.⼤齿轮每个齿的向⼼加速度⼤⼩是⼩齿轮的3倍【答案】 C【典例2】如图所⽰是⼀个玩具陀螺,a 、b 和c 是陀螺表⾯上的三个点。
当陀螺绕垂直于地⾯的轴线以⾓速度ω稳定旋转时,下列表述正确的是( ) A .a 、b 和c 三点的线速度⼤⼩相等 B .b 、c 两点的线速度始终相同 C .b 、c 两点的⾓速度⽐a 点的⼤ D .b 、c 两点的加速度⽐a 点的⼤【答案】: D⼆圆周运动中的动⼒学分析 1.匀速圆周运动的向⼼⼒(1)作⽤效果:产⽣向⼼加速度,只改变线速度的⽅向,不改变线速度的⼤⼩。
(2)⼤⼩:F =m v 2r =mr ω2=m 4π2r T2=m ωv =m ·4π2f 2r 。
2.向⼼⼒的确定(1)确定圆周运动的轨道所在的平⾯,确定圆⼼的位置。
第六章:圆周运动章末复习知识点一:匀速圆周运动及其描述一、匀速圆周运动1.圆周运动:物体的运动轨迹是圆的运动.2.匀速圆周运动:质点沿圆周运动,如果在相等的时间内通过的圆弧长度相等,这种运动就叫匀速圆周运动.二、匀速圆周运动的线速度、角速度和周期1.线速度(1)定义式:v=Δs Δt.如果Δt取的足够小,v就为瞬时线速度.此时Δs的方向就与半径垂直,即沿该点的切线方向.(2)线速度的方向:质点在圆周某点的线速度方向沿圆周上该点的切线方向.(3)物理意义:描述质点沿圆周运动的快慢.2.角速度:半径转过的角度Δφ与所用时间Δt的比值,即ω=ΔφΔt(如图所示).国际单位是弧度每秒,符号是rad/s.3.转速与周期(1)转速n:做圆周运动的物体单位时间内转过的圈数,常用符号n表示.(2)周期T:做匀速圆周运动的物体运动一周所用的时间叫做周期,用符号T 表示.(3)转速与周期的关系:若转速的单位是转每秒(r/s),则转速与周期的关系为T=1n .4.匀速圆周运动的特点(1)线速度的大小处处相等.(2)由于匀速圆周运动的线速度方向时刻在改变,所以它是一种变速运动.这里的“匀速”实质上指的是“匀速率”而不是“匀速度三、描述圆周运动的各物理量之间的关系1.线速度与周期的关系:v=2πr T.2.角速度与周期的关系:ω=2πT.3.线速度与角速度的关系:v=ωr.知识点二、同轴转动和皮带传动1.同轴转动(1)角速度(周期)的关系:ωA=ωB,T A=T B.(2)线速度的关系:vAvB=rR.2.皮带(齿轮)传动(1)线速度的关系:v A=v B(2)角速度(周期)的关系:ωAωB=rR、TATB=Rr.知识点三、向心力1.定义:物体做匀速圆周运动时所受合力方向始终指向圆心,这个指向圆心的合力就叫做向心力.2.大小:F=mω2r=m v2 r.3.方向:总是沿半径指向圆心,方向时刻改变.4.效果力向心力是根据力的作用效果来命名的,凡是产生向心加速度的力,不管属于哪种性质,都是向心力.二:向心力的来源物体做圆周运动时,向心力由物体所受力中沿半径方向的力提供.几种常见的实例如下:实例向心力示意图用细线拴住的小球在竖直面内转动至最高点时绳子的拉力和重力的合力提供向心力,F向=F+G用细线拴住小球在光滑水平面内做匀速圆周运动线的拉力提供向心力,F向=F T物体随转盘做匀速圆周运动,且相对转盘静止转盘对物体的静摩擦力提供向心力,F向=F f小球在细线作用下,在水平面内做圆周运动重力和细线的拉力的合力提供向心力,F向=F合知识点四:向心加速度的方向及意义1.物理意义描述线速度改变的快慢,只表示线速度的方向变化的快慢,不表示其大小变化的快慢.2.方向总是沿着圆周运动的半径指向圆心,即方向始终与运动方向垂直,方向时刻改变.3.圆周运动的性质不论向心加速度a n的大小是否变化,a n的方向是时刻改变的,所以圆周运动的向心加速度时刻发生改变,圆周运动一定是非匀变速曲线运动.“匀速圆周运动中”的“匀速”应理解为“匀速率”.4.变速圆周运动的向心加速度做变速圆周运动的物体,加速度一般情况下不指向圆心,该加速度有两个分量:一是向心加速度,二是切向加速度.向心加速度表示速度方向变化的快慢,切向加速度表示速度大小变化的快慢.所以变速圆周运动中,向心加速度的方向也总是指向圆心.二:向心加速度的公式和应用1.公式a n =v2r=ω2r=4π2T2r=4π2n2r=4π2f2r=ωv.2.向心加速度的大小与半径的关系(1)当半径一定时,向心加速度的大小与角速度的平方成正比,也与线速度的平方成正比.随频率的增大或周期的减小而增大.(2)当角速度一定时,向心加速度与运动半径成正比.(3)当线速度一定时,向心加速度与运动半径成反比.(4)a n与r的关系图象:如图552所示.由a nr图象可以看出:a n与r成正比还是反比,要看ω恒定还是v恒定.图552知识点五:生活在的圆周运动一:火车转弯问题1.轨道分析火车在转弯过程中,运动轨迹是一圆弧,由于火车转弯过程中重心高度不变,故火车轨迹所在的平面是水平面,而不是斜面.火车的向心加速度和向心力均沿水平面指向圆心.图5732.向心力分析如图573所示,火车速度合适时,火车受重力和支持力作用,火车转弯所需的向心力完全由重力和支持力的合力提供,合力沿水平方向,大小F=mg tan θ.3.规定速度分析若火车转弯时只受重力和支持力作用,不受轨道压力,则mg tan θ=m v 2 0R,可得v0=gR tan θ(R为弯道半径,θ为轨道所在平面与水平面的夹角,v0为转弯处的规定速度).4.轨道压力分析(1)当火车行驶速度v等于规定速度v0时,所需向心力仅由重力和弹力的合力提供,此时火车对内外轨道无挤压作用.(2)当火车行驶速度v与规定速度v0不相等时,火车所需向心力不再仅由重力和弹力的合力提供,此时内外轨道对火车轮缘有挤压作用,具体情况如下:①当火车行驶速度v>v0时,外轨道对轮缘有侧压力.②当火车行驶速度v<v0时,内轨道对轮缘有侧压力.二:拱形桥汽车过凸形桥(最高点)汽车过凹形桥(最低点) 受力分析牛顿第二定律求向心力 F n =mg -F N =m v 2rF n =F N -mg =m v 2r牛顿第三定律求压力F 压=F N =mg -m v 2rF 压=F N =mg +m v 2r讨论v 增大,F 压减小;当v 增大到rg 时,F 压=0v 增大,F 压增大 超、失重汽车对桥面压力小于自身重力,汽车处于失重状态汽车对桥面压力大于自身重力,汽车处于超重状态知识点六:离心运动1.离心运动的实质离心现象的本质是物体惯性的表现.做圆周运动的物体,由于惯性,总是有沿着圆周切线飞出去的趋向,之所以没有飞出去,是因为受到向心力的作用.从某种意义上说,向心力的作用是不断地把物体从圆周运动的切向方向拉回到圆周上来.2.离心运动的条件做圆周运动的物体,提供向心力的外力突然消失或者合外力不能提供足够大的向心力.3.离心运动、近心运动的判断如图578所示,物体做圆周运动是离心运动还是近心运动,由实际提供的向心力F n 与所需向心力⎝ ⎛⎭⎪⎫m v 2r 或mr ω2的大小关系决定.图578(1)若F n =mr ω2(或m v 2r)即“提供”满足“需要”,物体做圆周运动.(2)若F n>mrω2(或m v2r)即“提供”大于“需要”,物体做半径变小的近心运动.(3)若F n<mrω2(或m v2r)即“提供”不足,物体做离心运动.由以上关系进一步分析可知:原来做圆周运动的物体,若速率不变,所受向心力减少(或向心力不变,速率变大)物体将做离心运动;若速度大小不变,所受向心力增大(或向心力不变,速率减小)物体将做近心运动.知识点七.竖直平面的圆周运动1.“绳模型”如上图所示,小球在竖直平面内做圆周运动过最高点情况。
圆周运动1.物体做匀速圆周运动的条件:匀速圆周运动的运动条件:做匀速圆周运动的物体所受合外力大小不变,方向总是和速度方向垂直并指向圆心。
2.描述圆周运动的运动学物理量(1)圆周运动的运动学物理量有线速度v 、角速度ω、周期T 、转速n 、向心加速度a 等。
它们之间的关系大多是用半径r 联系在一起的。
如:Trr v πω2=⋅=,22224T r r r v a πω===。
要注意转速n 的单位为r/min ,它与周期的关系为nT 60=。
(2)向心加速度的表达式中,对匀速圆周运动和非匀速圆周运动均适用的公式有:ωωv r rv a ===22,公式中的线速度v 和角速度ω均为瞬时值。
只适用于匀速圆周运动的公式有:224Tra π= ,因为周期T 和转速n 没有瞬时值。
例题1.在图3-1中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r 。
b 点在小轮上,到小轮中心的距离为r 。
c 点和d 点分别于小轮和大轮的边缘上。
若在传动过程中,皮带不打滑。
则( ) A .a 点与b 点的线速度大小相等 B .a 点与b 点的角速度大小相等 C .a 点与c 点的线速度大小相等 D .a 点与d 点的向心加速度大小相等 练习1.如图3-4所示的皮带转动装置,左边是主动轮,右边是一个轮轴,2:1:=c A R R ,3:2:=B A R R 。
假设在传动过程中皮带不打滑,则皮带轮边缘上的A 、B 、C 三点的角速度之比是 ;线速度之比是 ;向心加速度之比是 。
2.图示为某一皮带传动装置。
主动轮的半径为r 1,从动轮的半径为r 2。
已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打图3-14r2r rra b c d 图3-4滑。
下列说法正确的是( )。
A .从动轮做顺时针转动 B .从动轮做逆时针转动 C .从动轮的转速为21r r nD .从动轮的转速为12r r n 3.(92)图3-7中圆弧轨道AB 是在竖直平面内的1/4圆周,在B 点,轨道的切线是水平的。
《圆周运动》专题复习曹传涛河南郏县一高 467100一.知识综述圆周运动是机械运动中一种典型的曲线运动。
高考对该知识点的考查主要有三个方面,一是基本概念,如线速度、角速度、向心加速度、向心力、转速;二是水平面内的匀速圆周运动,以考查圆周运动的基本规律及其应用为主;三是竖直平面内非匀速圆周运动,以考查受力分析、临界条件、极值、向心力公式和机械能守恒及功能关系为主。
圆周运动中涉及的基本概念是历所高考选择题的重要素材;而竖直平面内圆周运动问题,作为匀速圆周运动的方法解决变速圆周运动问题的应用,更是今后考查的热点。
因此,在复习本知识点时,既要注重对基础知识的熟练掌握,又要对典型问题进行归纳总结。
另外,由于这部分知识扩展空间很大,因此还要兼顾机械能守恒、功能关系、电场力、洛仑兹力等相关知识的复习。
二.基础知识归纳1.线速度(1)定义:做圆周运动的物体,通过的弧长l ∆跟通过这段弧长所用时间t ∆的比值,叫圆周运动的线速度。
(2)定义式:tl v ∆∆=。
(3)方向:与圆弧的切线方向相同。
2.角速度(1)做圆周运动的物体,连接物体和圆心的半径转过的角度θ∆跟所用时间t ∆的比值,叫做圆周运动的角速度。
(2)定义式:t∆∆=θω。
(3)国际单位:弧度/秒(rad/s)。
3.周期、频率和转速(1)周期T :做匀速圆周运动的物体,运动一周所用的时间,叫做周期。
国示单位是秒(s) ;(2)频率f :做匀速圆周运动的物体,一秒内运动的周数,叫做频率。
国际单位是赫兹(Hz 或1-s) ,Tf 1=;(3)转速n :做匀速圆周运动的物体在单位时间内转过的转数。
国际单位是转/秒(r/s )。
4.向心加速度(1)表达式:rvr a n 22==ω。
(2)方向:时刻改变且总是指向圆心。
温馨提示:①当v 一定时,n a 与r 成反比; ②当ω一定时,n a 与r 成正比。
5.向心力(1)表达式:rvmr m ma F n n 22===ω(2)方向:时刻改变且总是指向圆心。
温馨提示:①向心力的方向时刻在改变,是变力;②向心力是根据力的作有效果命名的,并不是物体所受的新力; ③向心力只改变线速度的方向,不改变线速度的大小;④当物体做匀速圆周运动时,合力等于向心力;当物体做变速圆周运动时,合力不等于向心力。
6.匀速圆周运动(1)定义:线速度大小不变的圆周运动即为匀速圆周运动。
(2)匀速圆周运动的线速度、角速度、周期、转速间的关系 ①线速度与周期的关系:T r v π2=。
②角速度与周期的关系:Tπω2=。
③线速度与角速度的关系:ωr v =。
④角速度与转速的关系:n πω2=。
(3)向心加速度:2222⎪⎭⎫⎝⎛===T r r vr a n πω。
(4)向心力:2222⎪⎭⎫ ⎝⎛====T mr r vm r m ma F n n πω温馨提示:①匀速圆周运动的线速度大小不变,方向时刻改变,所以匀速圆周运动并不是真正意义上的匀速运动,本质上仍属变速运动。
②物体做匀速圆周运动时,合力等于向心力。
【例题1】如图所示的皮带传动装置,主动轴O 1上有两上半径分别为R 和r 的轮,O 2上的轮半径为r ',已知R =2r ,R =23r ′,设皮带不打滑,则ωA ∶ω∶ωC = ,v A ∶v B ∶v C = ,=C n B n A n a a a :: ,=C n B n A n F F F :: 。
解析:A 、B 两点都绕相同的转动轴转动,属于共轴的关系,因此具有相同的角速度,B 、C 两点用皮带相连,因此具有相同的线速度。
根据ωr v =可以求出3:2:2::=C B A ωωω,2:2:1::=C B A v v v ;又由r a n 2ω= ,r m F n 2ω=得8:12:3::=C n B n A n a a a ,8:12:3::=C n B n A n F F F 。
点评:解答此类问题时应熟记:绕同一轴转动的物体上各点的角速度相同,不打滑的皮带传动或齿轮传动的两轮边缘上各点的线速度相等。
三.重难点突破1.向心力的来源问题向心力是根据力的作用效果来命名的力,可以是重力、弹力、摩擦力等各种性质的力,也可以是各力的合力,或某个力的分力,明确向心力的来源是解决圆周运动的关键。
【例题2】如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动。
当圆筒的角速度增大以后,下列说法正确的是( ) A .物体所受弹力增大,摩擦力也增大了 B .物体所受弹力增大,摩擦力减小了 C .物体所受弹力和摩擦力都减小了D .物体所受弹力增大,摩擦力不变 解析:物体随圆筒一起转动时,受到三个力的作用:重力G 、筒壁对它的弹力F N 、和筒壁对它的摩擦力F 1(如图所示)。
其中G 和F 1是一对平衡力,筒壁对它的弹力F N 提供它做匀速圆周运动的向心力。
当圆筒匀速转动时,不管其角速度多大,只要物体随圆筒一起转动而未滑动,则物体所受的摩擦力F 1大小等于其重力。
而根据向心力公式2ωmr F N =可知,当角速度ω较大时,N F 也较大。
故本题应选D 。
点评:对物体进行正确的受力分析,确定向心力的来源是解决圆周运动问题的关键。
2.水平面内的匀速圆周运动问题当物体做匀速圆周运动时,合力等于向心力。
因此,分析求解匀速圆周运动问题时,首先应对物体受力分析,明确合力与其它力的关系;其次要明确轨迹半径;最后由2222⎪⎭⎫⎝⎛====T mr r vm r m ma F nn πω将已知量和未知量联系起来求解问题。
【例题3】如图所示,质量相等的小球A 、B 分别固定在轻杆的中点及端点,当杆在光滑的水平面上绕O 点匀速转动时,如图所示,求杆的OA 段及AB 段对小球的拉力之比。
解析:A 、B 所需的向心力是由其合力提供的。
小球所受的重力和水平面的支持力在竖直平面内,是一对平衡力,不能提供向心力。
故小球所需的向心力由杆的OA 段和AB 段的拉力提供。
分别对A 、B 受力分析,如图所示。
由于A 、B 放在水平面上,故N F G =, A 、B 固定在同一根轻杆上,所以A 、B 的角速度相同,设角速度为ω ,则由向心力公式可得对A :F OA -F AB =mr ω2F F AB GF ′G NAB对B :F ′AB =m 2r ω2AB F 和ABF '互为作用力和反作用力,故有AB AB F F '=联立三式,解得F OA ∶F AB =3∶2。
点评:在解答圆周运动问题时,一定要注意物体沿半径指向圆心的合力提供向心力。
3.竖直平面内的圆周运动问题物体在竖直平面内做圆周运动时,主要分析最高点和低点两个位置,其中过最高点时的速度grv =,常称为临界速度。
它往往是解决问题的突破口,其物理意义在不同过程中是不同的。
竖直平面内的圆周运动,按运动轨道的类型,可分为无支撑(如球与绳连结、沿内轨道的“过山车”)和有支撑(如球与杆连接、车过拱形桥、小球沿圆形管运动)两种.前者因无支撑,在最高点物体受到的重力和弹力的方向都向下,后者因有支撑,在最高点时弹力的方向可能向上,亦可能向下。
当过最高点的速度为gr v =时,此时,两种情况对应的弹力均为零。
【例题4】如图所示,光滑圆管轨道AB 部分水平,BC 部分是处于竖直平面内半径为R 的半圆,圆管截面半径R r <<。
有一质量为m 的小球,半径比r 略小的光滑小球以水平初速度0v 射入圆管。
(1)若要小球能从C 端出来,其初速度0v 应为多大? (2)在小球从C 端出来瞬间,对管壁压力有哪几种典型情况?初速度0v 各应满足什么条件?解析:(1)该问题属于有支撑类问题,小球恰好能达到最高点的条件是0=C v ,由机械能守恒可知,此时小球的初速度0v 需满足mgR mv 2212=,则gR v 40=,因此要使小球能从C 端出来需,小球的射速度需满足gR v 40>。
(2)小球从C 端出来瞬间,对管壁压力有三种典型情况:①刚好对管壁无压力,此时重力恰好提供向心力,即Rv mmg C 2=,由机械能守恒得2221221C mv R mg mv +=,联立解得gR v 50=;②对下管壁有压力,此时应有02>>Rv mmg C ,相应的入射速度0v 应满足gR v gR 540<<;③对上管壁有压力,此时应有Rv m mg C 2<,相应的入射速度0v 应满足gR v 50>。
点评:掌握有支撑类和无支撑类圆周运动问题分析方法的不同,要特别关注gr v =的临界状态。
4.临界问题水平面内的圆周运动和竖直平面内的圆周运动中均会存在临界问题,对于这一类问题的求解一般都是先假设某量达到最大或最小的临界情况,从而凸现临界状态,建立方程求出。
【例题5】如图所示,两细线系一质量m=0.1kg 的小球,两绳的另一端分别固定于轴的A 、B 两处,上面绳长l=2m ,两绳拉直时与轴的夹角分别为30°和45°,问小球的角速度在什么范围内两绳始终有拉力?解析:设两细线都拉直时,A 、B 绳的拉力分别为A F 、B F ,小球的质量为m ,A 线与竖直方向的夹角为︒=30θ,B 线与竖直方向的夹角为︒=45α,对小球受力分析,由牛顿第二定律得:当B 线中恰无拉力时,θωθsin sin 21l m F A = ①mgF A =θcos ② 由①②解得33101=ωrad/s当A 线中恰无拉力时,θωαsin sin 22l m F B = ③ mg F B =αcos ④ (3分) 由③④解得3102=ωrad/s所以,要使两细线始终有张力,角速度的范围是3310rad/s 310<<ω rad/s 。
点评:临界问题处理的关键,是临界状态的准确找出。
因此,应在认真审题的基础上,对物体做好受力分析,找出临界状态对应的情况。