数学·必修1(苏教版)习题:章末知识整合1含解析
- 格式:doc
- 大小:114.00 KB
- 文档页数:5
(新课标)2018-2019学年度苏教版高中数学必修一§1.1 集合的含义及其表示(1)课后训练【感受理解】1.给出下列命题(其中N 为自然数集) :①N 中最小的元素是1 ②若a ∈N 则-a ∉N ③ 若a ∈N,b ∈N ,则a+b 的最小值是2(4)x x 212=+的解可表示为}1,1{, 其中正确的命题个数为 . 2.用列举法表示下列集合.①小于12的质数构成的集合;②平方等于本身的数组成的集合;③由||||(,)a b a b R a b+∈所确定的实数的集合; ④抛物线221y x x =-+ (x 为小于5的自然数)上的点组成的集合.3. 若方程x 2-5x+6=0和方程x 2-x-2=0的解为元素的集合为M ,则M 中元素的个数为4.由2,2,4a a -组成一个集合A ,A 中含有3个元素,则a 的取值可以是【思考应用】5.由实数332,,,x x x x --所组成的集合里最多有 个元素.6. 由“,x xy 0,||,x y ”组成的集合是同一个集合,则实数,x y 的值是否确定的?若确定,请求出来,若不确定,说明理由.7.定义集合运算:},),({B y A x y x xy z z B A ∈∈+==Θ,设集合}3,2{},1,0{==B A ,求集合B A Θ.8.关于x 的方程20(0)ax bx c a ++=≠,当,,a b c 分别满足什么条件时,解集为空集、含一个元素、含两个元素?9. 已知集合{,}A x x m m Z N Z ==+∈∈.(1)证明:任何整数都是A 的元素;(2)设12,,x x A ∈求证:12,x x A ⋅∈【拓展提高】9.设S 是满足下列两个条件的实数所构成的集合: ①1S ∉,②若a S ∈,则11S a∈-, 请解答下列问题:(1)若2S ∈,则S 中必有另外两个数,求出这两个数;(2)求证:若a S ∈,则11S a-∈ (3)在集合S 中元素能否只有一个?请说明理由;(4)求证:集合S 中至少有三个不同的元素.§1.1集合的含义及其表示(2)课后训练1. 设a ,b ,c 均为非零实数,则x=||||||||a b c abc a b c abc+++的所有值为元素组成集合是________ 2. 集合}9,7,5,3,1{用描述法表示为 .3. 下列语句中,正确的是 .(填序号)(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,1,2};(3)方程0)2()1(22=--x x 的所有解的集合可表示为{1,1,2,2} (4)集合}54{<<x x 可以用列举法表示.4.所有被3整除的数用集合表示为 .5.下列集合中表示同一集合的是` (填序号)(1)M={3,2},N={2,3} (2)M={(3,2)},N={(2,3)}(3)M={(,)1},{(,)1}x y x y N y x x y +==+= (4) M={1,2},N={(1,2)}6.下列可以作为方程组⎩⎨⎧-=-=+13y x y x 的解集的是 (填序号) (1){1,2},x y ==(2){1,2}(3){(1,2)} (4){(,)12}(5){(,)12}x y x y x y x y ====且或(6)}0)2()1(),{(22=-+-y x y x7.用另一种方法表示下列集合.(1){绝对值不大于2的整数} (2){能被3整除,且小于10的正数}(3)}5,{Z x x x x x ∈<=且 (4)*},*,6),{(N y N x y x y x ∈∈=+(5){5,3,1,1,3--}8.已知{}{}0|,0|22=+-==++=q px x x B q px x x A .当{}2=A 时,求集合B9.用描述法表示图中阴影部分(含边界)的点的坐标集合.10.对于*,N b a ∈,现规定:⎩⎨⎧⨯+=)()(*的奇偶性不同与的奇偶性相同与b a b a b a b a b a ,集合{(,)*36,,*}M a b a b a b N ==∈ (1) 用列举法表示b a ,奇偶性不同时的集合M.(2) 当b a ,奇偶性相同时的集合M 中共有多少个元素?【拓展提高】11 设元素为正整数的集合A 满足“若x A ∈,则10x A -∈”.(1)试写出只有一个元素的集合A ;(2)试写出只有两个元素的集合A ;(3)这样的集合A 至多有多少个元素?(4)满足条件的集合A 共有多少个?§1.2 子集·全集·补集(1)课后训练【感受理解】1. 设M 满足{1,2,3}⊆M ≠⊂{1,2,3,4,5,6},则集合M 的个数为 2.下列各式中,正确的个数是 ①0={0};②0∈{0};③{1}∈{1,2,3};④{1,2}⊆{1,2,3};⑤{a ,b}⊆{a ,b}.3.设{|12}A x x =<< ,{|}B x x a =<,若A 是B 的真子集,则a 的取值范围是 .4.若集合A ={1,3,x},B ={x 2,1},且B ⊆A ,则满足条件的实数x 的个数为 .5.设集合M ={(x,y)|x+y<0,xy>0}和N ={(x,y)|x<0,y<0},那么M 与N 的关系为______________.6.集合A ={x|x=a 2-4a+5,a ∈R},B ={y|y=4b 2+4b+3,b ∈R} 则集合A 与集合B 的关系是________.【思考应用】7.设x ,y ∈R ,B={(x,y)|y-3=x-2},A={(x,y)|32y x --=1},则集合A 与B 的关系是_______ ____. 8.已知集合{}{}|21,,|41,,A x x n n Z B x x n n Z ==+∈==±∈则,A B 的关系是 .9.设集合{}{}21,3,,1,,1,A a B a a a ==-+,A B =若则________=a . 10.已知非空集合P 满足:(){}11,2,3,4;P ⊆()2,5a P a P ∈-∈若则,符合上述要求的集合P 有 个.11.已知A={2,4,x 2-5x+9},B={3,x 2+ax+a},C={x 2+(a+1)x-3,1}. 求(1)当A={2,3,4}时,求x 的值;(2)使2∈B ,B A ,求x a ,的值;(3)使B= C 的x a ,的值.【拓展提高】12.已知集合{}{},121|,52|-≤≤+=≤≤-=m x m x B x x A 满足,A B ⊆求实数m 的取值范围.⊂ ≠(变式)已知集合{}{}|25,|121,A x x B x m x m =-<<=+<<-满足,A B ⊆求实数m 的取值范围.§1.2 子集·全集·补集(2)课后训练【感受理解】1.设集合{}{},,3|,,4|22R b b y y B R a a x x A ∈+-==∈+-==则A ,B 间的关系为 . 2若U={x|x 是三角形},P={x|x 是直角三角形}则U C P = . 3已知全集+=R U ,集合{}|015,,A x x x R =<-≤∈则_______.U C A = 4.已知全集}{非零整数=U ,集合}},42{U x x x A ∈>+=,则=A C U .5.设},61{},,5{N x x x B N x x x A ∈<<=∈≤=,则=B C A .【思考应用】6.设全集U={1,2,3,4,5},M={1,4},则U C M 的所有子集的个数是 .7.已知全集},21{*N n x x U n ∈==,集合}*,21{2N n x x A n∈==,则=A C U .8.已知A A y ax y x A Z a ∉-∈≤-=∈)4,1(,)1,2(}3),{(,且,则满足条件a 的值为 .9.设U=R ,}1{},31{+≤≤=≥≤=m x m x B x x x P 或,记所有满足P C B U ⊆的m 组成的集合为M ,求M C U .10.(1)设全集{}{},1|,1|,+>=≤==a x x B x x A R U 且U C A B ⊆,求a 的范围.(2)已知全集{}{}{}22,3,23,2,,5,U U a a A b C A =+-==求实数b a 和的值.【拓展提高】10.已知全集}5{的自然数不大于=U ,集合}1,0{=A ,}1{<∈=x A x x B 且,}1{U x A x x C ∈∉-=且.(1)求U B ,U C .(2)若}{A x x D ∈=,说明D B A ,,的关系.§1.3 交集·并集(1)课后训练【感受理解】1.设全集{1,2,3,4,5},{1,3,5},{2,4,5}U A B ===,则()()U U C A C B = . 2.设集合{|5,},{|1,}A x x x N B x x x N =≤∈=>∈,那么AB = . 3.若集合22{|21,},{|21,}P y y x x x N Q y y x x x N ==+-∈==-+-∈,则下列各式中正确的是 .(1);(2){0};(3){1};(4)P Q P Q P Q P Q N =∅==-=4.已知集合A={x|-5<x<5},B={x|-7<x<a},C={x|b<x<2},且A ∩B=C ,则 a ,b 的值分别为 .【思考应用】5.设全集U={1,2,3,4},A 与B 是U 的子集,若A ∩B ={1,3 },则称(A,B)为一个“理想配集”.(若A =B ,规定(A,B)=(B, A);若A ≠B ,规定(A,B)与(B, A)是两个不同的“理想配集”).那么符合此条件的“理想配集”的个数是 .6.记{}{},361T ,的三角形,至少有一内角为至少有一边为等腰三角形。
第1课时集合的含义及其表示(1)教学过程一、问题情境(1) 小于10的所有偶数;(2) 中国的直辖市;(3) 单词book中的字母;(4) 到一个角的两边距离相等的所有的点;(5) 方程x2-5x+6=0的所有实数根;(6) 不等式x-3>0的所有解;(7) 某高中全体高一学生.二、数学建构问题1以上实例有什么共同特征?(引导学生说出:一定范围内,确定的,不同对象.然后通过学生回答,总结出集合的含义)一定范围内某些确定的、不同的对象的全体构成一个集合.集合常用大写的拉丁字母来表示,如集合A、集合B.集合中的每一个对象称为该集合的元素,简称元.集合的元素常用小写的拉丁字母来表示,如元素a、元素b.问题2回答下列问题:(1) 已知A={1, 3},问:3, 5哪个是A的元素?(2) “所有素质好的人”能否构成一个集合A?(3) A={2, 2, 4}表示是否准确?(4) A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一个集合?由上述问题可以归纳出集合中元素的特征:①确定性:设A是一个给定的集合,x是某一个具体对象,则“x是A的元素”或者“x不是A的元素”这两种情况必有一种且只有一种成立.②互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不能重复出现同一元素.③无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照由小到大的数轴顺序书写.问题3元素与集合之间有怎样的关系?解如果a是集合A中的元素,就记作a∈A,读作“a属于A”;如果a不是集合A中的元素,就记作a∉A或a⋷A,读作“a不属于A”.问题4常用的数集有哪些?它们分别用什么数学符号表示?解自然数集(非负整数集):N,正整数集:N*或N+,整数集:Z,有理数集:Q,实数集:R.问题5集合的表示方法有哪些?(1) 列举法:将集合的元素一一列举出来,并置于“{}”中,元素之间用逗号分隔.列举时与元素次序无关,如{北京,上海,天津,重庆}.集合的相等关系:如果两个集合所含的元素完全相同,那么称这两个集合相等,如{北京,上海,天津,重庆}={天津,重庆,北京,上海}.思考“问题情境”中的集合都能用列举法表示吗?如果能,请表示出来.(2) 描述法:将集合中所有元素都具有的性质(满足的条件)表示出来,写成{x|p(x)}的形式.{x|p(x)}中x为集合的代表元素,p(x)指元素x具有的性质,如{x|x为中国的直辖市},{x|x-3>0, x∈R}. (3) Venn图:有时用Venn图示意集合(如图1),更显直观.(图1)问题6按照元素的个数,集合该怎样分类?(1) 有限集:含有有限个元素的集合称为有限集.(2) 无限集:含有无限个元素的集合称为无限集.(3) 空集:不含任何元素的集合称为空集,记作⌀,如{x|x2+x+1=0, x∈R}=⌀.三、数学运用【例1】下列各组对象能否构成集合:(1) 所有的好人;(2) 小于2012的数;(3) 和2012非常接近的数;(4) 小于5的自然数;(5) 不等式2x+1>7的整数解;(6) 方程x2+1=0的实数解. (见学生用书课堂本P1~2)[处理建议]引导学生根据定义判断.[规范板书]解(1)(3)不符合集合中元素的确定性,因此,只有(2)(4)(5)(6)能够构成集合.[题后反思]解决这类题目要抓住集合中元素的两个特征:确定性,互异性.【例2】用符号“∈”或“∉”填空:-错误!未找到引用源。
2022-2022年必修一检测第一单元章末过关检测数学带参考答案和解析(苏教版)解答题已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C ={x|x2+2x-8=0},求a取何值时,A∩B≠∅与A∩C=∅同时成立.【答案】-2.【解析】试题分析:先求集合B,C;再根据A∩B≠∅与A∩C=∅得3在A中,代入可得a=-2或a=5.最后逐一检验.试题解析:解:因为B={2,3},C={2,-4},由A∩B≠∅且A∩C=∅知,3是方程x2-ax+a2-19=0的解,所以a2-3a-10=0.解得a=-2或a=5.当a=-2时,A={3,-5},适合A∩B≠∅与A∩C=∅同时成立;当a=5时,A={2,3},A∩C={2}≠∅,故舍去.所求a的值为-2.选择题已知集合A={x|a-1≤x≤a+2},B={x|3 ⇒3≤a≤4.选B.解答题已知集合A=,B={x|2;(2).【解析】试题分析:(1)利用交集、补集的定义进行集合的混合运算即可;(2)利用题意结合空集的定义可得实数a的取值范围为a>1.试题解析:(1) ;(2)解答题已知A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},若B⊆A,求a的取值范围.【答案】a=1或a≤-1.【解析】试题分析:由子集概念得B有四种取法依次讨论对应a 的取值范围最后求并集试题解析:解:集合A={0,-4},由于B⊆A,则:(1)当B=A时,即0,-4是方程x2+2(a+1)x+a2-1=0的两根,代入解得a=1.(2)当B≠A时:①当B=∅时,则Δ=4(a+1)2-4(a2-1)<0,解得a<-1;②当B={0}或B={-4}时,方程x2+2(a+1)x+a2-1=0应有两个相等的实数根0或-4,则Δ=4(a+1)2-4(a2-1)=0,解得a=-1,此时B={0}满足条件.综上可知a=1或a≤-1.填空题设集合A={x||x|0},则集合{x|x∈A,且x∉A∩B}=________.【答案】{x|1≤x≤3}【解析】A={x|-43或x故a+b=4.选择题已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=()A. {0}B. {0,1}C. {0,2}D. {0,1,2}【答案】C【解析】因为A={x|x2-2x=0}={0,2},B={0,1,2},所以A ∩B={0,2}.选C.选择题设P={x|x1或x0} B. {x|x1}C. {x|x1}D. {x|x0},所以A∪∁UB={x|x0}.选A.选择题若集合A={x|kx2+4x+4=0,x∈R}中只有一个元素,则实数k 的值为()A. 1B. 0C. 0或1D. 以上答案都不对【答案】C【解析】当k=0时,A={-1};当k≠0时,Δ=16-16k=0,k =1.故k=0或k=1.选C.选择题设全集U={(x,y)|x∈R,y∈R},集合A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},若点P(2,3)∈A∩(∁UB),则下列选项正确的是()A. m>-1,n<5B. m<-1,n<5C. m>-1,n>5D. m<-1,n>5【答案】A【解析】由P(2,3)∈A∩(∁UB)得P∈A且P∉B,故,选A.选择题已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁UB=()A. {3}B. {4}C. {3,4}D. ∅【答案】A【解析】由题意A∪B={1,2,3},又B={1,2}.所以∁UB={3,4},故A∩∁UB={3}.选A.选择题已知集合A={1,2},B={(x,y)|x-y=1},则A∩B=()A. {1}B. {2}C. {(1,2)}D. ∅【答案】D【解析】由于A是数集,B是点集,故A∩B=∅.选D.解答题已知集合P={x|a+1≤x≤2a+1},Q={x|1≤2x+5≤15}.(1)已知a=3,求(∁RP)∩Q;(2)若P∪Q=Q,求实数a的取值范围.【答案】(1) (∁RP)∩Q={x|-2≤x<4}.(2) (-∞,2].【解析】试题分析:(1)先求集合Q以及∁RP,再求(∁RP)∩Q;(2)由P∪Q=Q,得P⊆Q.再根据P为空集与非空分类讨论,结合数轴求实数a的取值范围.试题解析:解:(1)因为a=3,所以集合P={x|4≤x≤7}.所以∁RP={x|x<4或x>7},Q={x|1≤2x+5≤15}={x|-2≤x≤5},所以(∁RP)∩Q={x|-2≤x<4}.(2)因为P∪Q=Q,所以P⊆Q.①当a+1>2a+1,即a<0时,P=∅,所以P⊆Q;②当a≥0时,因为P⊆Q,所以所以0≤a≤2.综上所述,实数a的取值范围为(-∞,2].解答题已知A={x|a-4<x<a+4},B={x|x<-1或x>5}.(1)若a=1,求A∩B;(2)若A∪B=R,求实数a的取值范围.【答案】(1) {x|-3<x<-1}.(2){a|1<a<3}.【解析】试题分析:(1)根据数轴求集合交集(2)结合数轴,确定A∪B=R成立时实数a满足的条件,解不等式可得实数a的取值范围.试题解析:解:(1)当a=1时,A={x|-3<x<5},B={x|x<-1或x>5}.所以A∩B={x|-3<x<-1}.(2)因为A={x|a-4<x<a+4},B={x|x<-1或x>5},又A∪B=R,所以⇒1<a<3.所以所求实数a的取值范围是{a|1<a<3}.填空题设集合M={x|2x2-5x-3=0},N={x|mx=1},若N⊆M,则实数m的取值集合为________.【答案】【解析】集合M=.若N⊆M,则N={3}或或∅.于是当N={3}时,m=;当N=时,m=-2;当N=∅时,m=0.所以m的取值集合为.选择题(2015·山东卷)已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0}.则A∩B=()A. (1,3)B. (1,4)C. (2,3)D. (2,4)【答案】C【解析】易知B={x|1<x<3},又A={x|2<x<4},所以A∩B={x|2<x<3}=(2,3).选C.选择题下列四句话中:①∅={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有()A. 0个B. 1个C. 2个D. 3个【答案】B【解析】空集是任何集合的子集,故④正确,②错误;③不正确,如∅只有一个子集,即它本身;结合空集的定义可知①不正确;故只有1个命题正确.选B.选择题已知集合A={x|x(x-1)=0},那么下列结论正确的是()A. 0∈AB. 1∉AC. -1∈AD. 0∉A【答案】A【解析】由x(x-1)=0得x=0或x=1,则集合A中有两个元素0和1,所以0∈A,1∈A.选A.。
一、元素与集合的关系已知A={x|x=m+n·2,m,n∈Z}.(1)设x1=13-22,x2=9-42,x3=(1-32)2,试判断x1,x2,x3与A之间的关系;(2)任取x1,x2∈A,试判断x1+x2,x1·x2与A之间的关系;(3)能否找到x0∈A,使1x0∈A,且|x0|≠1?►变式训练1.设集合A={x|x=3k,k∈Z},B={x|x=3k+1,k∈Z},C={x|x=3k+2,k∈Z},任取x1∈B,x2∈C,则x1+x2∈________,x1x2∈________,x1-x2∈________,x2-x1∈________.(注:从A,B,C中选一个填空)2.已知集合A={x|ax2-3x+2=0}.(1)若A=∅,求实数a的取值范围;(2)若A中只有一个元素,求实数a的值,并把这个元素写出来.二、集合与集合的关系A={x|x<-1或x>2},B={x|4x+p<0},当B⊆A时,求实数p的取值范围.三、集合的综合运算已知集合A={(x,y)|x2-y2-y=4},B={(x,y)|x2-xy-2y2=0},C={(x,y)|x-2y=0},D={(x,y)|x+y=0}.(1)判断B、C、D间的关系;(2)求A ∩B.设集合A ={x ||x |<4},B ={x |x 2-4x +3>0},则集合∁A (A ∩B )=________.►变式训练3.已知M ,N 为集合U 的非空真子集,且M ≠N ,若M ∩∁U N =∅,则M ∪N =( )A .MB .NC .UD .∅4.已知全集U ={实数对(x ,y )},A =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪y -4x -2=3,B ={(x ,y )|y =3x -2},求(∁U A )∩B.四、 空集的地位和作用已知集合A ={x |x 2+(m +2)x +1=0},若A ∩R +=∅,则实数m 的取值范围是________[其中R +=(0,+∞)].►变式训练5.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}(1)若A ∩B =B ,求实数m 的取值范围;(2)若A ∩B =∅,求实数m 的取值范围.五、 集合中的信息迁移题约定“⊕”与“⊗”是两个运算符号,其运算法则如下:对任意的a ,b ∈R ,有a ⊕b =a-b ,a ⊗b =a +b (a -b )2+1.设U ={c |c =(a ⊕b )+(a ⊗b ),-2<a ≤b <1,且a ,b ∈Z},A ={d |d =2(a ⊕b )+a ⊗b b ,-1<a <b <2,且a ,b ∈Z},求∁U A.►变式训练6.设全集为U ,A 、B 是U 的子集,定义集合A 与B 的运算:A *B ={x |x ∈A ∪B 且x ∉A ∩B },则(A *B )*A 等于( )A.A B.B C.(∁U A)∩B D.A∩∁U B。
第一章集合1集合的概念 .................................................................................................................. - 1 -2集合的表示 .................................................................................................................. - 5 -3子集、真子集............................................................................................................... - 8 -4补集、全集 ................................................................................................................ - 14 -5交集、并集 ................................................................................................................ - 18 -1集合的概念基础练习1.若a是R中的元素,但不是Q中的元素,则a可以是( )A.3.14B.-5C.D.【解析】选D.由题意知a应为无理数,故a可以为.2.下列说法中正确的个数是( )(1)大于3小于5的自然数构成一个集合.(2)直角坐标平面内第一象限的一些点组成一个集合.(3)方程(x-1)2(x+2)=0的解组成的集合有3个元素.A.0B.1C.2D.3【解析】选B.(1)正确,(1)中的元素是确定的,只有一个,可以构成一个集合.(2)不正确,“一些点”标准不明确,不能构成一个集合.(3)不正确,方程的解只有1和-2,集合中有2个元素.3.若由a2,2 019a组成的集合M中有两个元素,则a的取值可以是( )A.0B.2 019C.1D.0或2 019【解析】选C.若集合M中有两个元素,则a2≠2 019a.即a≠0且a≠2 019.4.已知集合A是由偶数组成的,集合B是由奇数组成的,若a∈A,b∈B,则a+b____A, ab____A.(填“∈”或“∉”)【解析】因为a∈A,b∈B,所以a是偶数,b是奇数,所以a+b是奇数,ab是偶数,故a+b∉A,ab∈A.答案:∉∈5.已知集合A含有3个元素a-2,2a2+5a,12,且-3∈A,求a的值.【解题指南】由-3∈A,分两种情况进行讨论,注意根据集合中元素的互异性进行检验.【解析】因为-3∈A,所以a-2=-3或2a2+5a=-3,解得a=-1或a=-.当a=-1时,a-2=-3,2a2+5a=-3,集合A不满足元素的互异性,所以舍去a=-1.当a=-时,经检验,符合题意.故a=-.【补偿训练】设A是由满足不等式x<6的自然数组成的集合,若a∈A且3a∈A,求a的值. 【解析】因为a∈A且3a∈A,所以解得a<2.又a∈N,所以a=0或1.提升训练一、选择题(每小题5分,共20分)1.下列三个命题:①集合N中最小的数是1;②-a∉N,则a∈N;③a∈N,b∈N,则a+b 的最小值是2.其中正确命题的个数是( )A.0B.1C.2D.3【解析】选A.根据自然数的特点,显然①③不正确.②中若a=,则-a∉N且a∉N,显然②不正确.2.已知集合A中元素x满足-≤x≤,且x∈N*,则必有( )A.-1∈AB.0∈AC.∈AD.1∈A【解析】选D.因为x∈N*,且-≤x≤,所以x=1,2.所以1∈A.3.设集合A含有-2,1两个元素,B含有-1,2两个元素,定义集合A☉B,满足x1∈A,x2∈B,且x1x2∈A☉B,则A☉B中所有元素之积为( )A.-8B.-16C.8D.16【解析】选C.因为集合A含有-2,1两个元素,B含有-1,2两个元素,由题意得,集合A☉B中所有元素是2,-4,-1,它们的积为:2×(-4)×(-1)=8.4.(多选题)下列各组中集合P与Q,表示同一个集合的是( )A.P是由元素1,,π构成的集合,Q是由元素π,1,|-|构成的集合B.P是由π构成的集合,Q是由3.141 59构成的集合C.P是由2,3构成的集合,Q是由有序数对(2,3)构成的集合D.P是由满足不等式-1≤x≤1的整数构成的集合,Q是由方程x=0的解构成的集合【解析】选AD.由于A,D中P,Q的元素完全相同,所以P与Q表示同一个集合,而B,C中P,Q的元素不相同,所以P与Q不能表示同一个集合.二、填空题(每小题5分,共10分)5.不等式x-a≥0的解集为A,若3∉A,则实数a的取值范围是________.【解析】因为3∉A,所以3是不等式x-a<0的解,所以3-a<0,解得a>3.答案:a>36.由实数x,-x,|x|,,-所组成的集合,最多含________个元素.【解析】当x>0时,x=|x|=,-=-x<0,此时集合共有2个元素,当x=0时,x=|x|==-=-x=0,此时集合共有1个元素,当x<0时,=|x|=-=-x,此时集合共有2个元素,综上,此集合最多有2个元素.答案:2三、解答题7.(10分)设集合S中的元素x=m+n,m,n∈Z.(1)若a∈Z,则a是否是集合S中的元素?(2)对S中的任意两个元素x1,x2,则x1+x2,x1·x2是否属于S?【解析】(1)a是集合S中的元素, 因为a=a+0×∈S.(2)不妨设x1=m+n,x2=p+q,m,n,p,q∈Z.则x1+x2=(m+n)+(p+q)=(m+p)+(n+q),因为m,n,p,q∈Z. 所以n+q∈Z,m+p∈Z.所以x1+x2∈S,x1·x2=(m+n)·(p+q)=(mp+2nq)+(mq+np),m,n,p,q∈Z.故mp+2nq∈Z,mq+np∈Z.所以x1·x2∈S.综上,x1+x2,x1·x2都属于S.【补偿训练】定义满足“如果a∈A,b∈A,那么a±b∈A,且ab∈A,且∈A(b≠0)”,则集合A为“闭集”.试问数集N,Z,Q,R是否分别为“闭集”?若是,请说明理由;若不是,请举反例说明.【解析】①数集N,Z不是“闭集”,例如,3∈N,2∈N,而=1.5∉N;3∈Z,-2∈Z,而=-1.5∉Z,故N,Z不是闭集.②数集Q,R是“闭集”.由于两个有理数a与b的和,差,积,商,即a±b,ab,(b≠0)仍是有理数,所以Q是闭集,同理R也是闭集.2集合的表示基础练习1.下列集合中,不同于另外三个集合的是( )A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}【解析】选D.A是列举法;C是描述法;对于B要注意集合的代表元素是y,但实质上表示的都是0,故与A,C相同;而D表示该集合含有一个元素,即方程“x=0”.2.(2020·镇江高一检测)下列集合表示同一集合的是( )A.M={(3,2)},N={(2,3)}B.M={(x,y)|x+y=1},N={y|x+y=1}C.M={4,5},N={5,4}D.M={1,2},N={(1,2)}【解析】选C.对于A,两个集合中的元素不同;对于B,一个集合中元素是点,一个集合中元素是实数,故不同;对于C,列举法表示集合时,与元素顺序无关,故是相同的集合;对于D,两个集合中,一个元素是数,一个元素是点,故不同.3.(2020·哈尔滨高一检测)设集合B={x|x2-4x+m=0},若1∈B,则B= ( )A. B.C. D.【解析】选A.因为集合B={x|x2-4x+m=0},1∈B,所以1-4+m=0,解得m=3.所以B={x|x2-4x+3=0}={1,3}.4.(2020·承德高一检测)若A={-2,2,3,4},B={x|x=t2,t∈A},用列举法表示集合B 为________.【解析】由题意可知集合B是由A中元素的平方构成的,故B={4,9,16}.答案:{4,9,16}【补偿训练】用列举法表示集合{(x,y)|(x+1)2+|y-1|=0,x,y∈R}为________.【解析】因为(x+1)2≥0,|y-1|≥0,所以(x+1)2=0且|y-1|=0,故有x=-1且y=1,因此答案为{(-1,1)}.答案:{(-1,1)}5.用适当的方法表示下列集合:(1)大于2且小于5的有理数组成的集合.(2)24的正因数组成的集合.(3)自然数的平方组成的集合.(4)由0,1,2这三个数字抽出一部分或全部数字(没有重复)所组成的自然数组成的集合.【解析】(1)用描述法表示为{x|2<x<5且x∈Q}.(2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)用描述法表示为{x|x=n2,n∈N}.(4)用列举法表示为{0,1,2,10,12,20,21,102,120,210,201}.提升训练一、选择题(每小题5分,共20分)1.下面对集合{1,5,9,13,17}用描述法表示,其中正确的一个是( )A.{x|x是小于18的正奇数}B.{x|x=4k+1,k∈Z,k<5}C.{x|x=4t-3,t∈N,t<5}D.{x|x=4s-3,s∈N*,s<6}【解析】选 D.集合中的元素除以4余1,故元素可以用4k+1(0≤k≤4,k∈Z)或4k-3(1≤k≤5,k∈Z)来表示.2.(2020·济宁高一检测)设集合A={x|x2-x-2=0},B={x||x|=y+2,y∈A},则集合B 是( )A.{-4,4}B.{-4,-1,1,4}C.{0,1}D.{-1,1}【解析】选B.解集合A中方程x2-x-2=0,得到x=2或x=-1,因为y∈A,即y=2或y=-1,得|x|=y+2=4或|x|=y+2=1,故x=±4或x=±1,所以集合B={-4,-1,1,4}.3.(2020·鹤壁高一检测)定义集合A,B的一种运算:A*B={x|x=x1+x2,x1∈A,x2∈B},若A={1,2,3},B={1,2},则A*B中的所有元素之和为 ( ) A.21 B.18 C.14 D.9【解析】选C.因为A*B={x|x=x1+x2,x1∈A,x2∈B},A={1,2,3},B={1,2},所以A*B={2,3,4,5},所以A*B中的所有元素之和为:2+3+4+5=14.【补偿训练】若A={1,2,3},B={3,5},用列举法表示A⊗B={2a-b|a∈A,b∈B}= ________.【解析】因为A={1,2,3},B={3,5},又A⊗B={2a-b|a∈A,b∈B},所以A⊗B={-3,-1,1,3}.答案:{-3,-1,1,3}4.(多选题)下列各组中的M,P表示同一集合的是( )A.M={3,-1},P={(3,-1)}B.M={(3,1)},P={(1,3)}C.M={y|y=-1},P={t|t=-1}D.集合M={m|m+1≥5},P={y|y=x2+2x+5,x∈R}【解析】选CD.在A中,M={3,-1}是数集,P={(3,-1)}是点集,二者不是同一集合;在B中,M={(3,1)},P={(1,3)}表示的不是同一个点的集合,二者不是同一集合;在C中,M={y|y=-1}={y|y≥-1},P={t|t=-1}={t|t≥-1},二者表示同一集合;在D中,M={m|m≥4,m∈R},即M中元素为大于或等于4的所有实数, P={y|y=(x+1)2+4},y=(x+1)2+4≥4,所以P中元素也为大于或等于4的所有实数,故M,P表示同一集合.二、填空题(每小题5分,共10分)5.(2020·无锡高一检测)已知集合{a,b,c}={0,1,2}且下列三个关系:①a≠2;②b=2;③c≠0有且只有一个正确,则100a+10b+c=________.【解析】若只有①正确,则c=0,a=1,b=2与②不正确矛盾;若只有②正确,则b=2,a=2,c=0与a≠b矛盾;若只有③正确,则a=2,c=1,b=0符合题意.所以100a+10b+c=100×2+10×0+1=201.答案:201【补偿训练】已知集合A={x|x2+px+q=0}={2},则p=________,q=________.【解析】由得答案:-4 46.(2020·济南高一检测)设a,b,c为非零实数,m=+++,则m的所有值组成的集合为________.【解题指南】根据a,b,c三个数中负数的个数分类讨论.【解析】当a,b,c均为负数时,,,,均为-1,故m=-4;当a,b,c只有一个为正数时,,,,中必有两个为1,两个为-1,故m=0;当a,b,c有两个为正数时,,,,中必有两个为1,两个为-1,故m=0; 当a,b,c均为正数时,,,,均为1,故m=4,所以由m=+++的所有值组成的集合的元素有0,-4,4,则所求集合为{-4,0,4}.答案:{-4,0,4}三、解答题7.(10分)设A表示集合{2,3,a2+2a-3},B表示集合{|a+3|,2},若5∈A,且5∉B,求实数a的值.【解析】因为5∈A,且5∉B,所以解得故a=-4.3子集、真子集基础练习1.以下四个关系:∅∈{0},0∈∅,{∅}⊆{0},∅{0},其中正确的个数是( )A.1B.2C.3D.4【解析】选A.集合与集合间的关系是⊆,因此∅∈{0}错误;{ ∅}表示只含有一个元素(此元素是∅)的集合,所以{∅}⊆{0}错误;空集不含有任何元素,因此0∈∅错误; ∅{0}正确.因此正确的只有1个.2.(2020·宿迁高一检测)已知集合A={x|x=x2},B={1,m,2},若A⊆B,则实数m的值为( )A.2B.0C.0或2D.1【解析】选B.由题意,集合A={x|x=x2}={0,1},因为A⊆B,所以m=0.【补偿训练】已知集合A={1+x2,x},B={1,2,3},且A⊆B,则实数x的值是( )A.-1B.1C.3D.4【解析】选B.集合A={1+x2,x},B={1,2,3},且A⊆B,则集合B包含集合A的所有元素,x=1时,代入A检验,A={2,1},符合题意,x=2时,代入A检验,A={5,2},不符合题意,x=3时,代入A检验,A={10,3}不符合题意,综上,实数x的值是1.3.(2020·南通高一检测)满足{1}⊆A⫋{1,2,3}的集合A的个数为( )A.2B.3C.8D.4【解析】选B.满足条件的集合A有3个,即A={1,2}或{1,3}或{1}.4.已知集合U,S,T,F的关系如图所示,则下列关系正确的是( )①S∈U;②F⊆T;③S⊆T;④S⊆F;⑤S∈F;⑥F⊆U.A.①③B.②③C.③④D.③⑥【解析】选D.元素与集合之间的关系才用∈,故①⑤错;子集的区域要被全部包含,故②④错.5.(2020·邢台高一检测)已知集合A=,B={b,b a,-1},若A=B,则a+b=________.【解析】若=-1,即a=-1时,b=2,经验证符合题意;若-=-1,即a=b,则无解.所以a+b=1.答案:16.判断下列每组中集合之间的关系:(1)A={x|-3≤x<5},B={x|-1<x<2}.(2)A={x|x=2n-1,n∈N*},B={x|x=2n+1,n∈N*}.(3)A={x|x是平行四边形},B={x|x是菱形},C={x|x是四边形},D={x|x是正方形}.(4)A={x|-1≤x<3,x∈Z},B={x|x=,y∈A}.【解析】(1)将两个集合在数轴上表示出来,如图所示,显然有B A.(2)当n∈N*时,由x=2n-1知x=1,3,5,7,9,….由x=2n+1知x=3,5,7,9,….故A={1,3,5,7,9,…},B={3,5,7,9,…},因此B A.(3)由图形的特点可画出Venn图,如图所示,从而可得D B A C.(4)依题意可得:A={-1,0,1,2},B={0,1,2},所以B A.提升训练一、单选题(每小题5分,共20分)1.(2020·赣州高一检测)已知集合M={x|-<x<,x∈Z},则下列集合是集合M的子集的为( )A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤,x∈N}【解析】选D.因为集合M={x|-<x<,x∈Z}={-2,-1,0,1},所以在A中:P={-3,0,1}不是集合M的子集,故A错误;在B中:Q={-1,0,1,2}不是集合M的子集,故B错误;在C中:R={y|-π<y<-1,y∈Z}={-3,-2}不是集合M的子集,故C错误;在D中:S={x||x|≤,x∈N}={0,1}是集合M的子集,故D正确. 2.若x,y∈R,A={(x,y)|y=x},B=,则集合A,B间的关系为( )A.A BB.A BC.A=BD.A⊆B【解析】选B.B=={(x,y)|y=x,且x≠0},所以B A.3.(2020·泰州高一检测)已知集合A={x|x<a},B={x|0<x<2}.若B⊆A,则实数a的取值范围为( )A.[2,+∞)B.(2,+∞)C.(-∞,2)D.(-∞,2]【解析】选A.因为集合A={x|x<a},B={x|0<x<2}.因为B⊆A,所以a≥2.4.(2020·南昌高一检测)已知集合A=,B=,且A是B的真子集.若实数y在集合中,则不同的集合共有( )A.4个B.5个C.6个D.7个【解析】选A.因为A是B的真子集,y在集合{0,1,2,3,4}中,由集合元素的互异性知y=0或y=3,当y=3时,B={1,2,3,4},x可能的取值为:2,3,4;当y=0时,B={0,1,2,4},x可能的取值为:0,2,4;由互异性可知集合{x,y}共有2+2=4个.二、多选题(每小题5分,共10分,全部选对得5分,选对但不全的得3分,有选错的得0分)5.设集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠ ,B⊆A,则(a,b)可能是( ) A.(-1,1) B.(-1,0)C.(0,-1)D.(1,1)【解析】选ACD.当a=-1,b=1时,B={x|x2+2x+1=0}={-1},符合;当a=-1,b=0时,B={x|x2+2x=0}={0,-2},不符合;当a=0,b=-1时,B={x|x2-1=0}={-1,1},符合;当a=b=1时,B={x|x2-2x+1=0}={1},符合.6.已知集合M={x|x2-9=0},则下列式子表示正确的有( )A.3∈MB.{-3}∈MC.∅⊆MD.{3,-3}⊆M【解析】选ACD.根据题意,集合M={x|x2-9=0}={-3,3},依次分析4个选项: 对于A,3∈M,3是集合M的元素,正确;对于B,{-3}是集合,有{-3}⊆M,故B选项错误;对于C,∅⊆M,空集是任何集合的子集,正确;对于D,{3,-3}⊆M,任何集合都是其本身的子集,正确.三、填空题(每小题5分,共10分)7.已知集合A={x|ax2-5x+6=0},若2∈A,则集合A的子集的个数为________.【解析】依题意得:4a-10+6=0,解得a=1.则x2-5x+6=0,解得x1=2,x2=3,所以A={2,3},所以集合A的子集个数为4.答案:4【补偿训练】集合A={x|(a-1)x2+3x-2=0}有且仅有两个子集,则a的取值为________. 【解析】由集合有两个子集可知,该集合是单元素集合,当a=1时,满足题意.当a≠1时,由Δ=9+8(a-1)=0可得a=-.答案:1或-8.图中反映的是“文学作品”“散文”“小说”“叙事散文”这四个文学概念之间的关系,请作适当的选择填入下面的空格:A为________;B为________;C为________;D为________.【解析】由Venn图可得A B,C D B,A与D之间无包含关系,A与C之间无包含关系.由“文学作品”“散文”“小说”“叙事散文”四个文学概念之间的关系,可得A为小说,B为文学作品,C为叙事散文,D为散文.答案:小说文学作品叙事散文散文四、解答题(每小题10分,共20分)9.已知集合M⊆{1,2,3,4,5},且当a∈M时,有6-a∈M,试求M所有可能的结果. 【解析】若M只含1个元素,则M={3};若M只含2个元素,则M={1,5},{2,4};若M只含3个元素,则M={1,3,5},{2,3,4};若M只含4个元素,则M={1,2,4,5};若M含5个元素,则M={1,2,3,4,5}.所以M可能的结果为:{3},{1,5},{2,4},{1,3,5},{2,3,4},{1,2,4,5},{1,2,3,4,5},共7个.10.已知集合A={x|x2-9x+14=0},集合B={x|ax+2=0},若B A,求实数a的取值集合.【解析】A={x|x2-9x+14=0}={2,7},因为B A,所以若a=0,即B= 时,满足条件.若a≠0,则B=,若B A,则-=2或7,解得a=-1或-.则实数a的取值的集合为.创新练习1.(2020·南昌高一检测)若x∈A,则∈A,就称A是伙伴关系集合,集合M={-1,0, ,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为 ( )A.15B.16C.32D.256【解析】选A.因为若x∈A,则∈A,所以0∉A,当-1∈A时,=-1∈A,当1∈A时,=1∈A,当2∈A时,∉A,当3∈A时,∈A,当4∈A时,∈A,所以集合M的所有非空子集中,具有伙伴关系的集合中有-1,1,和3成对出现,和4成对出现,所以从上述4个元素(元素对)中选取,组成的非空集合共有15个. 2.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围. 【解析】(1)当a=0时,A= ,满足A⊆B.(2)当a>0时,A=.又因为B={x|-1<x<1},A⊆B,所以所以a≥2.(3)当a<0时,A=.因为A⊆B,所以所以a≤-2.综上所述,a的取值范围为{a|a≥2或a≤-2或a=0}.【误区警示】解答本题,研究集合中元素满足的性质时,容易忽视分a=0,a>0,a<0三种情况讨论.4补集、全集基础练习A= ( )1.已知全集U={x|x≥-3},集合A={x|-2<x≤4},则UA. {x|-2≤x<4}B. {x| x<-2或x>4}C. {x|-3≤x≤-2}D. {x|-3≤x≤-2或x>4}【解析】选D.将全集U,集合A表示在数轴上,如图所示.所以UA={x|-3≤x≤-2或x>4}.2.设全集U和集合A,B,P,满足A=U B,B=UP,则A与P的关系是( )A.A=PB.A⊆PC.P⊆AD.A≠P【解析】选A.由A=U B,得UA=B.又因为B=U P,所以UP=UA,即A=P.3.已知A={0,2,4,6},U A={-1,-3,1,3},UB={-1,0,2},集合B=__________.【解析】因为A={0,2,4,6},UA={-1,-3,1,3}, 所以U={-3,-1,0,1,2,3,4,6}.而UB={-1,0,2},所以B=U (UB)={-3,1,3,4,6}.答案:{-3,1,3,4,6}4.已知全集U={-1,0,1},集合A={0,|x|},则UA=________.【解析】根据题意知,|x|=1,所以A={0,1},U={-1,0,1},所以UA={-1}.答案:{-1}5.(1)已知U={n|n是小于10的正整数},A={n|n是3的倍数,n∈U},求UA.(2)已知U={x|x是三角形},A={x|x是等腰三角形},B={x|x是等边三角形},求UB和AB;(3)已知全集U=R,A={x|3≤x<10},B={x|2<x≤7},求U A,UB.【解析】(1)因为U={1,2,3,4,5,6,7,8,9}, A={3,6,9},所以UA={1,2,4,5,7,8}.(2)UB={x|x是三边不都相等的三角形};AB={x|x是有且仅有两边相等的三角形}. (3)因为A={x|3≤x<10},B={x|2<x≤7},所以借助于数轴知U A={x|x<3,或x≥10},UB={x|x≤2,或x>7}.提升训练一、选择题(每小题5分,共20分)1.(2020·南通高一检测)若全集U=且UA=,则集合A的真子集共有( ) A.7个 B.5个C. 3个D. 8个【解析】选A.由题意知,集合A有三个元素,所以A的真子集个数为7个.【补偿训练】设全集U={x||x|<4,且x∈Z},S={-2,1,3},若UP⊆S,则这样的集合P共有( ) A.5个 B.6个 C.7个 D.8个【解析】选D.U={-3,-2,-1,0,1,2,3},因为U (UP)=P,所以存在一个UP,即有一个相应的P(如当U P={-2,1,3}时,P={-3,-1,0,2},当UP={-2,1}时,P={-3,-1,0,2,3}等),由于S的子集共有8个,所以P也有8个.2.已知集合I,M,N的关系如图所示,则I,M,N的关系为( )A.(I M)⊇(IN) B.M⊆(IN)C.(I M)⊆(IN) D.M⊇(IN)【解析】选C.由题图知M⊇N,所以(I M)⊆(IN).3.(多选题)已知集合A={x|x<-1或x>5},C={x|x>a},若RA⊆C,则a的值可以是( ) A.-2 B.- C. -1 D.0【解析】选AB.R A={x|-1≤x≤5},要使RA⊆C,则a<-1.故a的值可以是-2和-.4.设集合U={-1,1,2,3},M={x|x2+px+q=0},若UM={-1,1},则实数p和q的值分别为( )A.0,-1B.-1,0C.-5,6D.5,-6【解析】选 C.因为UM={-1,1},所以M={2,3},即2,3是x2+px+q=0的根,所以-p=2+3,q=2×3.所以p=-5,q=6.二、填空题(每小题5分,共10分)5.已知集合U={x∈N|x≤10},A={小于10的正奇数},B={小于11的质数},则U A=________,UB=________.【解析】U={0,1,2,3,4,5,6,7,8,9,10}, 因为A={小于10的正奇数}={1,3,5,7,9}, 所以UA={0,2,4,6,8,10}.因为B={小于11的质数}={2,3,5,7},所以UB={0,1,4,6,8,9,10}.答案:{0,2,4,6,8,10} {0,1,4,6,8,9,10} 【补偿训练】设U={x|-5≤x<-2,或2<x ≤5,x ∈Z},A={x|x 2-2x-15=0},B={-3,3,4},则UA=________,U B=________.【解析】方法一:在集合U 中,因为x ∈Z,则x 的值为-5,-4,-3,3,4,5, 所以U={-5,-4,-3,3,4,5}. 又A={x|x 2-2x-15=0}={-3,5}, 所以U A={-5,-4,3,4},U B={-5,-4,5}. 方法二:可用Venn 图表示则U A={-5,-4,3,4},U B={-5,-4,5}. 答案:{-5,-4,3,4} {-5,-4,5}6.已知全集U={x|-1≤x ≤1},A={x|0<x<a},若U A ≠U,则实数a 的取值范围是 ________.【解析】由全集定义知A ⊆U,从而a ≤1. 又U A ≠U,所以A ≠∅,故a>0. 综上可知0<a ≤1. 答案:0<a ≤1 三、解答题7.(10分)已知全集U={2,3,a 2-2a-3},A={b,2},U A={5},(1)求实数a,b 的值; (2)写出集合A 的所有子集.【解析】(1)因为全集U={2,3,a 2-2a-3},A={b,2},U A={5}, 所以a 2-2a-3=5,b=3,所以a=4或-2,b=3;(2)由(1)知A={3,2},故集合A 的所有子集为∅,{2},{3},{2,3}. 【补偿训练】已知集合A={x|x 2-4x+3=0},B={x|ax-6=0}且R A ⊆R B,求实数a 的取值集合. 【解析】因为A={x|x 2-4x+3=0}, 所以A={1,3}.又R A ⊆R B,所以B ⊆A,所以有B=∅,B={1},B={3}三种情形.当B={3}时,有3a-6=0,所以a=2; 当B={1}时,有a-6=0,所以a=6; 当B=∅时,有a=0,所以实数a 的取值集合为{0,2,6}.5交集、并集基础练习1.(2020·宿迁高一检测)设集合A={x|-1≤x≤2,x∈N},集合B={2,3},则A∪B等于( )A.{-1,0,1,2,3}B.{0,1,2,3}C.{1,2,3}D.【解析】选B.由题意,集合A={x|-1≤x≤2,x∈N}={0,1,2},又由集合B={2,3},所以A∪B={0,1,2,3}.【补偿训练】设集合A={a,b},B={a+1,5},若A∩B={2},则A∪B等于( )A.{1,2,5}B.{1,2}C.{1,5}D.{2,5}【解析】选A.因为A∩B={2},所以2∈A,且2∈B,所以a+1=2, 所以a=1,所以b=2. 所以A={1,2},B={2,5},所以A∪B={1,2,5}.2.(2019·全国卷Ⅲ)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B= ( )A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}【解析】选A.因为集合A={-1,0,1,2},B={x|x2≤1}={x|-1≤x≤1},所以A∩B={-1,0,1}.3.设全集U是实数集R,M={x|x<-2或x>2},N={x|1≤x≤3},如图,则阴影部分所表示的集合为( )A.{x|-2≤x<1}B.{x|-2≤x<3}C.{x|x≤2或x>3}D.{x|-2≤x≤2}(M 【解析】选A.由题意,知M∪N={x|x<-2或x≥1},所以阴影部分所表示的集合为U∪N)={x|-2≤x<1}.4.(2020·徐州高一检测)已知集合A={-2,0,1,3},B={x|-<x<},则A∩B的子集个数为________.【解析】因为A={-2,0,1,3},B={x|-<x<},所以A∩B={-2,0,1},所以A∩B的子集个数为23=8个.答案:8【补偿训练】已知集合A={1,2,3},集合B={-1,1,3} ,集合S=A∩B,则集合S的真子集有________个.【解析】由题意可得 S=A∩B={1,3} ,所以集合 S 的真子集的个数为 3 个.答案:35.已知集合A={x|2<x<4},B={x|a<x<3a}.若A∩B={x|3<x<4},则a的值为________.【解析】由A={x|2<x<4},A∩B={x|3<x<4},如图可知a=3,此时B={x|3<x<9},即a=3为所求.答案:36.(2020·镇江高一检测)设U=R,A=,B=或,求(1)A∩B;(2)∩.【解析】由题意得B=或.(1)A∩B=.A=或,(2)因为UB=,U所以∩=.提升训练一、单选题(每小题5分,共20分)1.已知集合M={x|x<0},N={x|x≤0},则( )A.M∩N=∅B.M∪N=RC.M ND.N M【解析】选C.集合M={x|x<0},N={x|x≤0},集合N包含M中所有的元素,且集合N 比集合M多一个元素0,由集合真子集的定义可知:集合M是集合N的子集,且是真子集,所以M={x|x<0}N={x|x≤0}.2.设A,B是非空集合,定义A*B={x|x∈A∪B且x∉A∩B},已知A={x|0≤x≤3}, B={y|y≥1},则A*B等于( )A.{x|1≤x<3}B.{x|1≤x≤3}C.{x|0≤x<1或x>3}D.{x|0≤x≤1或x≥3}【解析】选C.由题意知,A∪B={x|x≥0},A∩B={x|1≤x≤3},则A*B={x|0≤x<1或x>3}.3.(2020·无锡高一检测)已知全集U=N,设集合A={x|x=,k∈,集合B等于 ( )B={x|x>6,x∈N},则A∩NA.{1,4}B.{1,6}C.{1,4,6}D.{4,6}【解析】选C.因为A={x|x=,k∈N}={1,,,,,…},B={x|x>6,x∈N},B={x|x≤6,x∈N}={0,1,2,3,4,5,6},所以NB={1,4,6}.所以A∩N4.(2020·盐城高一检测)设集合M=,N=,若M∩N=∅,则实数a的取值范围是( )A.a≤2B. a≤-1C. a<-1D. a>2【解析】选B.因为M=,N=,若M ∩N=∅,用数轴表示如图,由图可知实数a 的取值范围是a ≤-1. 【补偿训练】 已知集合A=,B=,且A ∩B=∅,求实数a 的取值范围.【解析】当a-1≥2a+1,即a ≤-2时,A=∅, 满足A ∩B=∅;当a-1<2a+1,即a>-2时,A ≠∅, 若A ∩B=∅,则需2a+1≤0或a-1≥1, 解得-2<a ≤-或a ≥2,综上所述,a ∈∪.二、多选题(每小题5分,共10分,全部选对得5分,选对但不全的得3分,有选错的得0分)5.已知集合M,N,P 为全集U 的子集,且满足M ⊆P ⊆N,则下列结论正确的是( ) A.U N ⊆U PB.N P ⊆N MC.(U P)∩M=∅D.(U M)∩N=∅【解析】选ABC.因为集合M,N,P 为全集U 的子集,且满足M ⊆P ⊆N, 所以作出Venn 图,如图所示.由Venn 图,得U N ⊆U P,故A 正确;N P ⊆N M, 故B 正确;(U P)∩M=∅,故C 正确; (U M)∩N ≠∅,故D 错误. 6.U 为全集时,下列说法正确的是 ( )A.若A ∩B=∅,则(U A)∪(U B)=UB.若A ∩B=∅,则A=∅或B=∅C.若A∪B=U,则(U A)∩(UB)= ∅D.若A∪B=∅,则A=B=∅【解析】选ACD.A对,因为(U A)∪(UB)=U(A∩B),而A∩B=∅,所以(U A)∪(UB)=U(A∩B)=U.B错,A∩B=∅,集合A,B不一定要为空集,只需两个集合无公共元素即可.C对,因为(U A)∩(UB)=U(A∪B),而A∪B=U,所以(UA)∩(UB)=U(A∪B)=∅.D对,A∪B=∅,即集合A,B均无元素.综上ACD对.三、填空题(每小题5分,共10分)7.(2020·无锡高一检测)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=______.【解析】因为A∩B={1},所以x=1为方程x2-4x+m=0的解,则1-4+m=0,解得m=3, 所以x2-4x+3=0,解得x=1或x=3,所以集合B=.答案:【补偿训练】(2020·南充高一检测)设集合A={-4,t2},集合B={t-5,9,1-t},若9∈A∩B,则实数t=______.【解析】因为A={-4,t2},B={t-5,9,1-t},且9∈A∩B,所以t2=9,解得:t=3或-3,当t=3时,根据集合元素的互异性可知不合题意,舍去;则实数t=-3.答案:-38.如图所示,图中的阴影部分可用集合U,A,B,C表示为________.【解析】图中的阴影部分的元素既属于A,又属于B,但不属于C,故可用集合U,A,B,C表示为(A∩B)∩(UC).答案:(A∩B)∩(UC)【补偿训练】如图,I是全集,A,B,C是它的子集,则阴影部分所表示的集合是( )A.(I A ∩B)∩CB.(I B ∪A)∩CC.(A ∩B)∩(I C)D.(A ∩I B)∩C【解析】选D.由图可知阴影部分中的元素属于A,不属于B,属于C,则阴影部分表示的集合是(A ∩I B)∩C.四、解答题(每小题10分,共20分) 9.已知集合U={x ∈Z|-2<x<10},A={0,1,3,4,,B={-1,1,4,6,.求A ∩B,U (A ∪B),A ∩(U B),B ∪(U A).【解析】集合U={x ∈Z|-2<x<10}={-1,0,1,2,3,4,5,6,7,8,,A={0,1,3,4,,B={-1,1,4,6,;所以A ∩B={1,4,,A ∪B={-1,0,1,3,4,6,,所以U (A ∪B)={2,5,7,,又U B={0,2,3,5,7,,U A={-1,2,5,6,7,,所以A ∩(U B)={0,,B ∪(U A)={-1,1,2,4,5,6,7,8,.10.(2020·连云港高一检测)集合A={x|-2<x<4},集合B={x|m-1<x<2m+1}. (1)当m=2时,求A ∪B;(2)若A ∩B=B,求实数m 的取值范围. 【解析】(1)当m=2时,集合 B={x|m-1<x<2m+1}={x|1<x<5}, 又A={x|-2<x<4}, 所以A ∪B={x|-2<x<5}.(2)由A ∩B=B,则B ⊆A,当B= 时, 有m-1≥2m+1,解得m ≤-2,满足题意;当B≠∅时,应满足解得-1≤m≤;综上所述,m的取值范围是m∈(-∞,-2]∪.创新练习1.(2020·泰安高一检测)用card(A)来表示有限集合A中元素的个数,已知全集U=A∪B,D=(U A)∪(UB),card(U)=m,card(D)=n,若A∩B非空,则card(A∩B)=( )A.mnB.m+nC.n-mD.m-n【解析】选D.由题意画出Venn图空白部分表示集合D,整体表示全集U,阴影部分表示A∩B, 则card(A∩B)=card(U)-card(D)=m-n.2.设全集U={x|x≤5,且x∈N+},其子集A={x|x2-5x+q=0},B={x|x2+px+12=0},且(UA)∪B={1,3,4,5},求实数p,q的值. 【解析】由已知得U={1,2,3,4,5}.(1)若A=∅,则(U A)∪B=U,不合题意;(2)若A={x0},则x∈U,且2x=5,不合题意;(3)设A={x1,x2},则x1,x2∈U,且x1+x2=5,所以A={1,4}或{2,3}.若A={1,4},则UA={2,3,5},与(U A)∪B={1,3,4,5}矛盾,舍去;若A={2,3},则UA={1,4,5},由(UA)∪B={1,3,4,5}知3∈B,同时可知B中还有一个不等于3的元素x,由3x=12得x=4,即B={3,4}.综上可知A={2,3},B={3,4},所以q=2×3=6,p=-(3+4)=-7.。
(时间:120分钟;满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.下列说法:①{0,1}与{1,0}是两个不同的集合;②{(1,1)}与{1}是相同的集合;③0∈N但0∉N*;④方程x2-2x+1=0的解集是{1},其中正确的是________.(填序号)答案:③④2.给出下列5个集合,①{x|1<x<3,x∈R};②{x|1<x<3,x∈Q};③{(x,y)|(x+1)2+(y-2)2=0};④{(x,y)|y=2x-3};⑤{x|x≥1且x∈Z}∩{x|x≤3且x∈Z},其中,为有限集合的是________.(填序号)解析:③中集合为{(-1,2)};⑤中集合为{x|1≤x ≤3,x ∈Z}={1,2,3}.而①②④中元素都为无限个.答案:③⑤3.已知集合M ={x|-2<x<1},N ={x|x ≤-2},则M ∪N =________.解析:M ∪N ={x|-2<x<1或x ≤-2}={x|x<1}=(-∞,1). 答案:(-∞,1)4.设A ={(x ,y)|y =-4x +6},B ={(x ,y)|y =5x -3},则A ∩B =________.解析:A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎪⎨⎪⎧y =-4x +6y =5x -3 =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎪⎨⎪⎧x =1y =2={(1,2)}. 答案:{(1,2)}5.设集合U ={1,2,3,4,5},A ={1,2},B ={2,4},则∁U (A ∪B)=________.解析:A∪B={1,2,4},∴∁U(A∪B)={3,5}.答案:{3,5}6.若集合A={0,1},A∪B={0,1,2},则满足条件的集合B的个数是________.解析:由A={0,1},A∪B={0,1,2},可知2∈B,但0,1可属于B也可不属于B.∴B的取值集合为{2},{0,2},{1,2},{0,1,2},有4种可能.答案:47.设集合M={x|f(x)=0},N={x|g(x)=0},则方程f(x)·g(x)=0的解集为________.解析:f(x)·g(x)=0⇔f(x)=0或g(x)=0,故所求的解集为{x|f(x)=0或g(x)=0}=M∪N.答案:M∪N8.已知全集I(I≠∅),子集合A、B、C,且A=∁I B,B=∁I C,则A与C的关系是________.解析:A=∁I B=∁I(∁I C)=C.答案:A=C9.设M={3,6,9},若m∈M,且9-m∈M,那么m的值是________.解析:当m=3时,9-m=9-3=6∈M;当m=6时,9-m=9-6=3∈M;当m=9时,9-m=9-9=0∉M.∴m=3或m=6.答案:3或610.已知集合U={1,2,3,…,100},A={被3整除的数},B={被2整除的数},则A∪B中元素的个数有________.解析:集合A中共有33个元素,集合B中共有50个元素,又A∩B表示被6整除的数的集合,故A∩B有16个元素,作出Venn图可知A∪B中元素个数为33+50-16=67.答案:6711.设集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},则集合M与N的关系是________.解析:M={x|x=k2+14,k∈Z}={x|x=2k+14,k∈Z},N={x|x=k4+12,k∈Z}={x|x=k+24,k∈Z},M中元素为奇数乘以14,N中元素为整数乘以14,故M N.答案:M N12.设P,Q为两个非空数集,定义集合P+Q={x|x=a+b,其中a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P +Q中元素的个数是________.解析:由题意,P+Q={1,2,6,3,4,7,8,11},因此共有8个元素.答案:813.若集合M={x|x2+x-6=0},N={x|ax+2=0,a∈R},且N M ,则a 的取值集合为________.解析:M ={2,-3}.若N =∅,则a =0;若N ={2},则a=-1;若N ={-3},则-3a +2=0,∴a =23.∴a 的取值集合为{-1,0,23}. 答案:{-1,0,23} 14.已知集合A ={x|-3<x ≤5},B ={x|a +1≤x<4a +1},若B A ,则满足条件的实数a 的取值集合是________.解析:(1)当B =∅时,则4a +1≤a +1,即a ≤0,此时有B A ;(2)当B ≠∅时,由题意可知⎩⎪⎨⎪⎧a +1<4a +1,a +1>-3,4a +1≤5,解得0<a ≤1.综上,a ≤1.答案:{a|a ≤1}二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知集合A={1,2,3},若A∪B=A,求集合B.解:∵A∪B=A,∴B⊆A.∴B的取值集合为∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.16.(本小题满分14分)已知集合U={x|x取不大于30的质数},并且A∩(∁U B)={5,13,23},(∁U A)∩B={11,19,29},(∁U A)∩(∁U B)={3,7},求A,B.解:∵U={2,3,5,7,11,13,17,19,23,29},由Venn图(图略),得A∩B={2,17},∴A={2,5,13,17,23},B={2,11,17,19,29}.17.(本小题满分14分)设集合A={2,-1,x2-x+1},B={2y,-4,x+4},且A∩B={-1,7},求x,y的值.解:∵A∩B={-1,7},∴7∈A,即有x2-x+1=7,解得x=-2或x=3.当x=-2时,x+4=2∈B,与2∉A∩B矛盾,应舍去;当x=3时,x+4=7,这时2y=-1,即y=-1 2,故得x=3,y=-1 2 .18.(本小题满分16分)已知集合A={x|x2+px+q=0},B={x|qx2+px+1=0},同时满足①A∩B≠∅,②A∩(∁RB)={-2},pq≠0.求p,q的值.解:设x0∈A,则有x20+px0+q=0;两端同除以x20,得1+p·1x0+q·1x20=0,则知1x0∈B,故集合A,B中元素互为倒数.由A∩B≠∅,一定有x0∈A,使得1x0∈B,且x0=1x0,解得x 0=±1.又A ∩(∁RB)={-2},则-2∈A ,A ={1,-2}或{-1,-2}.由此得B =⎩⎨⎧⎭⎬⎫1,-12或B =⎩⎨⎧⎭⎬⎫-1,-12. 根据根与系数的关系有⎩⎪⎨⎪⎧1+(-2)=-p 1×(-2)=q 或⎩⎪⎨⎪⎧-1+(-2)=-p ,(-1)×(-2)=q. 得⎩⎪⎨⎪⎧p =1q =-2或⎩⎪⎨⎪⎧p =3,q =2.19.(本小题满分16分)已知集合A ={a 1,a 2,a 3,a 4},B ={a 21,a 22,a 23,a 24},其中a 1,a 2,a 3,a 4为正整数,且a 1<a 2<a 3<a 4,若A ∩B ={a 1,a 4},a 1+a 4=10,A ∪B 中所有元素之和为124,求集合A.解:由题意得a 1,a 4为两正整数的平方,而a 1+a 4=10,故有a 1=1,a 4=9.由9∈B ,从而3∈A ,由9∈A ,从而81∈B. 若a 2=3,则A ={1,3,a 3,9},B ={1,9,a 23,81},从而1+3+a3+9+a23+81=124,得a3=5或a3=-6(舍去),此时集合A={1,3,5,9};若a3=3,则a2=2,此时A={1,2,3,9},B={1,4,9,81}不满足A∪B元素和为124,故不合题意.综上所述,集合A={1,3,5,9}.20.(本小题满分16分)设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+a2-5=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围;(3)若U=R,A∩(∁U B)=A,求实数a的取值范围.解:(1)由题意得A={1,2}.若A∩B={2},则2∈B,∴22+2(a+1)×2+a2-5=0,解得a=-1或a=-3.①当a=-1时,B={x|x2-4=0}={-2,2},符合题意;②当a=-3时,B={x|x2-4x+4=0}={2},符合题意.综上可得a=-1或a=-3.(2)∵A ∪B =A ,∴B ⊆A.Δ=4(a +1)2-4(a 2-5)=8a +24.①当Δ<0即a<-3时,B =∅,符合题意;②当Δ=0即a =-3时,B ={2}⊆A ,符合题意; ③当Δ>0即a>-3时,B ⊆A ,则1,2为x 2+2(a +1)x +a 2-5=0的两根,∴⎩⎪⎨⎪⎧-2(a +1)=1+2,a 2-5=1×2,无解. 综上可得a ≤-3.(3)由题意得A ∩B =∅,即1,2∉B ,∴⎩⎪⎨⎪⎧1+2(a +1)+a 2-5≠0,22+2(a +1)×2+a 2-5≠0,解得a ≠-1或-3或-1± 3.∴a 的取值范围是{a|a ≠-1或-3或-1±3,a ∈R}.。
确定了,值域也就确定了.而求函数的值域并没有统一的方法,如果函数的定义域是由有限的几个数构成的集合,那么可将函数值一个一个求出来构成集合——值域;如果函数的定义域是一个无限数集,那么需根据函数解析式的特点采取相应的方法来求其值域.【例1】求下列函数的值域:(1)y=2x;(2)y=2x-1x+3;(3)f(x)=x+3x-2.思路点拨:(1)用直接法(观察法);(2)所求函数解析式为分式,因此可利用分离系数法或反解法;(3)中含有根式,可利用换元法求解.[解](1)由偶次方根的被开方数为非负数,得2x≥0,即x≥0.所以函数y=2x 的定义域为[0,+∞),因此2x≥0,所以函数y=2x的值域为[0,+∞).(2)法一(分离系数法):y =2x -1x +3=2(x +3)-7x +3=2+-7x +3.而-7x +3≠0,所以2+-7x +3≠2,因此函数y =2x -1x +3的值域为(-∞,2)∪(2,+∞).法二(反解法):因为分式的分母不能为零,所以x +3≠0,即x ≠-3,所以函数y =2x -1x +3的定义域为{x ∈R |x ≠-3}.又由y =2x -1x +3,得x =3y +12-y.而分式的分母不能为零,所以2-y ≠0,即y ≠2.所以函数y =2x -1x +3的值域为(-∞,2)∪(2,+∞).(3)令3x -2=t ,则t ≥0,x =t 2+23=13t 2+23,∴y =13t 2+23+t =13⎝ ⎛⎭⎪⎫t +322-112.∵t ≥0,∴y ≥23, ∴函数f (x )=x +3x -2的值域为⎣⎢⎡⎭⎪⎫23,+∞.常见的求值域的方法(1)直接法(观察法):对于有些函数直接求出函数值,并将所有函数值组成集合,就得到函数的值域.例如求函数f (x )=5x +1 (x ∈{1,2,3,4})的值域,只需将所有自变量的函数值都求出来,即可得到函数f (x )的值域为{6,11,16,21}.(2)分离常数法:对于一些分式函数,可以利用多项式除法化成一个常数与一个分式之和的形式,然后根据分式的特点去求函数的值域.(3)反解法:例如求函数y =x -1x +2(x >-4)的值域.由y =x -1x +2解出x 得x =2y +11-y.由x >-4,得2y +11-y >-4,即2y -5y -1>0,∴y >52或y <1.故函数y =x -1x +2(x >-4)的值域为(-∞,1)∪⎝ ⎛⎭⎪⎫52,+∞.(4)图象法:通过观察函数的图象,运用数形结合的方法得到函数的值域. (5)换元法:根据解析式的特点,可将解析式中某个关于x 的整体式设为t ,转化为关于t 的某种简单的基本初等函数,再确定t 的取值范围,进而运用简单的初等函数求值域的方法求解.1.(1)函数f (x )=⎩⎨⎧x +7,x ∈[-1,1),2x +6,x ∈[1,2],则f (x )的最大值与最小值分别为________、________.(2)已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为________.(1)10 6 (2)1 [(1)f (x )在[1,2]和[-1,1)上分别递增,而且在[1,2]上,f (x )min =f (1)=8.在[-1,1]上,f (x )<f (1)=1+7=8,∴f (x )在[-1,2]上单调递增,∴f (x )max =f (2)=2×2+6=10,f (x )min =f (-1)=-1+7=6.(2)f (x )=-x 2+4x +a =-(x -2)2+a +4,对称轴为x =2, ∴在[0,1]上,f (x )单调递增,∴f (x )min =f (0)=a =-2, ∴f (x )max =f (1)=-1+4+a =4-3=1.]象函数、具体函数都有,其中函数单调性的判断与证明、求单调区间、利用函数单调性求参数的取值范围是高考的重点,利用函数的奇偶性、对称性研究函数的图象是难点.【例2】 函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f⎝ ⎛⎭⎪⎫12=25. (1)确定函数f (x )的解析式;(2)用定义证明:f (x )在(-1,1)上是增函数; (3)解不等式:f (t -1)+f (t )<0.思路点拨:(1)(2)分别依据单调性和奇偶性的定义来求解;(3)利用奇偶性和单调性去掉f ,转化为t 的不等式求解.[解](1)由题意,得⎩⎨⎧f (0)=0,f ⎝ ⎛⎭⎪⎫12=25,即⎩⎪⎨⎪⎧b1+02=0,a 2+b1+14=25⇒⎩⎪⎨⎪⎧a =1,b =0.∴f (x )=x1+x2,经检验,符合题意. (2)证明:任取x 1,x 2∈(-1,1)且x 1<x 2,则 f (x 2)-f (x 1)=x 21+x 22-x 11+x 21=(x 2-x 1)(1-x 1x 2)(1+x 21)(1+x 22). ∵-1<x 1<x 2<1,∴x 2-x 1>0,1+x 21>0,1+x 22>0.又∵-1<x 1x 2<1,∴1-x 1x 2>0, ∴f (x 2)-f (x 1)>0,故f (x 2)>f (x 1), ∴f (x )在(-1,1)上是增函数.(3)原不等式可化为f (t -1)<-f (t )=f (-t ). ∵f (x )在(-1,1)上是增函数, ∴-1<t -1<-t <1, 解得0<t <12.故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫t ⎪⎪⎪0<t <12.函数单调性与奇偶性应用常见题型 (1)用定义判断或证明单调性和奇偶性. (2)利用函数的单调性和奇偶性求单调区间. (3)利用函数的单调性和奇偶性比较大小,解不等式. (4)利用函数的单调性和奇偶性求参数的取值范围.2.设函数f (x )对任意的x ,y ∈R ,都有f (x +y )=f (x )+f (y ),且当x >0时,f (x )<0,f (1)=-2.(1)求证:f (x )是奇函数;(2)在区间[-3,3]上,f (x )是否有最值?如果有,求出最值;如果没有,说明理由.[解] (1)令x =y =0,则有f (0+0)=f (0)+f (0), 即f (0)=2f (0),所以f (0)=0.令y =-x ,则有0=f (0)=f (x )+f (-x ),所以f (x )为奇函数. (2)任取-3≤x 1<x 2≤3,则x 2-x 1=Δx >0. 由题意,得f (x 2-x 1)<0,且f (x 1)-f (x 2)=f (x 1)-f [x 1+(x 2-x 1)] =f (x 1)-[f (x 1)+f (x 2-x 1)] =-f (x 2-x 1)>0,即f (x 1)>f (x 2),所以f (x )在[-3,3]上为减函数.所以函数f (x )在[-3,3]上有最值,最大值为f (-3)=-f (3)=-3f (1)=6,最小值为f(3)=-f(-3)=3f(1)=-6.能够掌握函数重要的性质,如单调性、奇偶性等.反之,掌握好函数的性质,有助于图象正确的画出.这体现了数形结合.所以我们应该熟悉一些函数的图象,做到应用自如.与图象相关的题目有:知式选图(作图),知图选式,比较大小,求单调区间,判断根(交点)的个数等.【例3】(1)若函数y=f(x)与y=g(x)的图象分别如图(1)及图(2)所示,则f(x)·g(x)的图象可能是________.(填序号)(2)若方程x2-4|x|+5=m有4个互不相等的实数根,则m的取值范围是________.思路点拨:(1)利用函数的奇偶性进行选择;(2)作出函数的图象,观察图象即可.(1)③(2)1<m<5[由f(x)为偶函数,g(x)为奇函数,可知f(x)·g(x)为奇函数,又x∈(-3,0)时,f(x)>0,g(x)>0,所以f(x)·g(x)>0,只有③符合.(2)令f(x)=x2-4|x|+5,则f (x )=⎩⎪⎨⎪⎧x 2-4x +5, x ≥0,x 2+4x +5, x <0,作出f (x )的图象,如图所示.由图象可知,当1<m <5时,f (x )的图象与y =m 有4个交点,即方程x 2-4|x |+5=m 有4个互不相等的实数根.]作函数图象的方法方法一:描点法——求定义域;化简;列表、描点、连光滑曲线. 注意:要利用单调性、奇偶性、对称性简化作图.方法二:变换法——熟知函数的图象的平移、伸缩、对称、翻转.3.对于任意x ∈R ,函数f (x )表示-x +3,32x +12,x 2-4x +3中的较大者,则f (x )的最小值是________.2 [首先应理解题意,“函数f (x )表示-x +3,32x +12,x 2-4x +3中的较大者”是对同一个x 值而言,函数f (x )表示-x +3,32x +12,x 2-4x +3中最大的一个.如图,分别画出三个函数的图象,得到三个交点A (0,3),B (1,2),C (5,8). 从图象观察可得函数f (x )的表达式:f (x )=⎩⎪⎨⎪⎧x 2-4x +3,(x ≤0),-x +3,(0<x ≤1),32x +12,(1<x ≤5),x 2-4x +3,(x >5).f (x )的图象是图中的实线部分,图象的最低点是点B (1,2),所以f (x )的最小值是2.]。
第一章集合1.1集合的概念与表示................................................................................................. - 1 -第1课时集合的概念.......................................................................................... - 1 -第2课时集合的表示.......................................................................................... - 5 -1.2子集、全集、补集................................................................................................. - 9 -1.3交集、并集 .......................................................................................................... - 14 -第1章测评 ................................................................................................................... - 19 - 1.1集合的概念与表示第1课时集合的概念1.(2020江苏南京高一检测)下列判断正确的个数为()①所有的等腰三角形构成一个集合;②倒数等于它自身的实数构成一个集合;③质数的全体构成一个集合;④由2,3,4,3,6,2构成含有6个元素的集合.A.1B.2C.3D.4,故①正确;若=a,则a2=1,解得a=±1,构成的集合中的元素为1,-1,故②正确;质数的全体构成一个集合,任何一个质数都在此集合中,不是质数的都不在,故③正确;集合中的元素具有互异性,由2,3,4,3,6,2构成的集合含有4个元素,分别为2,3,4,6,故④错误.故选C.2.下列说法:①集合N与集合N+是同一个集合;②集合N中的元素都是集合Z中的元素;③集合Q中的元素都是集合Z中的元素;④集合Q中的元素都是集合R中的元素.其中正确的是()A.②④B.②③C.①②D.①④N+表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.3.用符号∈或∉填空:(1)-2N+;(2)(-4)2N+;(3)Z;(4)π+3Q.∉(2)∈(3)∉(4)∉4.已知集合P中元素x满足:x∈N,且2<x<a,又集合P中恰有三个元素,则整数a=.x∈N,2<x<a,且集合P中恰有三个元素,∴集合P中的三个元素为3,4,5,∴a=6.5.设A是由满足不等式x<6的自然数组成的集合,若a∈A且3a∈A,求a的值.a∈A且3a∈A,∴解得a<2.又a∈N,∴a=0或1.6.(2020河北师范大学附属中学高一期中)设由“我和我的祖国”中的所有汉字组成集合A,则A中的元素个数为()A.4B.5C.6D.7,集合A中的元素分别为我、和、的、祖、国,共5个元素.故选B.7.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为()A.2B.3C.0或3D.0,2,3均可2∈A可知,m=2或m2-3m+2=2.若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A 的元素为0,3,2,符合题意.8.(2020上海高一月考)如果集合中的三个元素对应着三角形的三条边长,那么这个三角形一定不可能是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形,该三角形一定不可能是等腰三角形.故选D.9.(多选)(2020北京高一检测)下列各组对象能构成集合的是()A.拥有手机的人B.2020年高考数学难题C.所有有理数D.小于π的正整数A,C,D中的元素都是确定的,能构成集合,选项B中“难题”的标准不明确,不符合确定性,不能构成集合.故选ACD.10.(多选)(2020广东深圳第二高级中学高一月考)由a2,2-a,4组成一个集合A,且集合A中含有3个元素,则实数a的取值可以是()A.-1B.-2C.6D.2a2,2-a,4组成一个集合A,且集合A中含有3个元素,所以a2≠2-a,a2≠4,2-a≠4,解得a≠±2,且a≠1.故选AC.11.(多选)(2020山东济南高一检测)已知x,y,z为非零实数,代数式的值所组成的集合是M,则下列判断正确的是()A.0∉MB.2∈MC.-4∈MD.4∈M,分4种情况讨论:①当x,y,z全部为负数时,则xyz也为负数,则=-4;②当x,y,z中只有一个负数时,则xyz为负数,则=0;③当x,y,z中有两个负数时,则xyz为正数,则=0;④当x,y,z全部为正数时,则xyz也为正数,则=4.则M中含有三个元素-4,0,4.分析选项可得C,D正确.故选CD.12.(2020山东潍坊高一检测)如果有一集合含有三个元素1,x,x2-x,则实数x满足的条件是.≠0,且x≠1,且x≠2,且x≠x≠1,x2-x≠1,x2-x≠x,解得x≠0,且x≠1,且x≠2,且x≠.13.若方程ax2+x+1=0的解构成的集合只有一个元素,则a的值为.或a=0时,原方程为一元一次方程x+1=0,满足题意,所求元素即为方程的根x=-1;当a≠0时,由题意知方程ax2+x+1=0只有一个实数根,所以Δ=1-4a=0,解得a=.所以a的值为0或.14.集合A是由形如m+n(m∈Z,n∈Z)的数构成的,试分别判断a=-,b=,c=(1-2)2与集合A的关系.a=-=0+(-1)×,而0∈Z,-1∈Z,∴a∈A.∵b=,而∉Z,∉Z,∴b∉A.∵c=(1-2)2=13+(-4)×,而13∈Z,-4∈Z,∴c∈A.15.设A为实数集,且满足条件:若a∈A,则∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.若a∈A,则∈A.又2∈A,∴=-1∈A.∵-1∈A,∴∈A.∵∈A,∴=2∈A.∴A中必还有另外两个元素,且为-1,.(2)若A为单元素集,则a=,即a2-a+1=0,方程无实数解.∴a≠,∴集合A不可能是单元素集.第2课时集合的表示1.用列举法表示大于2且小于5的自然数组成的集合应为()A.{x|2<x<5,x∈N}B.{2,3,4,5}C.{2<x<5}D.{3,4}2且小于5的自然数为3和4,所以用列举法表示其组成的集合为{3,4}.2.设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中的元素个数为()A.4B.5C.6D.7,B={2,3,4,5,6,8},共有6个元素,故选C.3.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合{(x,y)|y=2x-1}的代表元素是(x,y),x,y满足的关系式为y=2x-1,因此集合表示的是满足关系式y=2x-1的点组成的集合,故选D.4.集合3,,…用描述法可表示为()A.x x=,n∈N*B.x x=,n∈N*C.x x=,n∈N*D.x x=,n∈N*解析由3,,即从中发现规律,x=,n∈N*,故可用描述法表示为x x=,n∈N*.5.(2020山东济宁高一检测)已知集合A={-1,-2,0,1,2},B={x|x=y2,y∈A},则用列举法表示B应为B=.-1)2=12=1,(-2)2=22=4,02=0,所以B={0,1,4}.6.已知集合A={x|x2+2x+a=0},若1∈A,则A=.-3,1}x=1代入方程x2+2x+a=0,可得a=-3,解方程x2+2x-3=0可得A={-3,1}.7.用适当的方法表示下列集合:(1)方程x2+y2-4x+6y+13=0的解集;(2)1 000以内被3除余2的正整数组成的集合;(3)二次函数y=x2-10图象上的所有点组成的集合.方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3,所以方程的解集为{(x,y)|x=2,y=-3}.(2)集合的代表元素是数,用描述法可表示为{x|x=3k+2,k∈N,且x<1 000}.(3)二次函数y=x2-10图象上的所有点组成的集合用描述法表示为{(x,y)|y=x2-10}.8.(2020福建厦门翔安一中高一期中)已知集合M={x|x(x+2)(x-2)=0},则M=()A.{0,-2}B.{0,2}C.{0,-2,2}D.{-2,2}M={x|x(x+2)(x-2)=0}={-2,0,2}.9.(2020河北沧州高一期中)已知集合M={a,2a-1,2a2-1},若1∈M,则M中所有元素之和为()A.3B.1C.-3D.-1a=1,则2a-1=1,矛盾;若2a-1=1,则a=1,矛盾,故2a2-1=1,解得a=1(舍)或a=-1,故M={-1,-3,1},元素之和为-3.故选C.10.(2020上海嘉定第一中学高一月考)已知集合A={a2,0,-1},B={a,b,0},若A=B,则(ab)2 021的值为()A.0B.-1C.1D.±1a≠0,b≠0.因为A=B,所以a=-1或b=-1.当a=-1时,b=a2=1,此时(ab)2 021=(-1)2 021=-1;当b=-1时,a2=a,因为a≠0,所以a=1,此时(ab)2 021=(-1)2 021=-1.故选B.11.(多选)(2020山东潍坊高一检测)下列选项表示的集合P与Q相等的是()A.P={x|x2+1=0,x∈R},Q=⌀B.P={2,5},Q={5,2}C.P={(2,5)},Q={(5,2)}D.P={x|x=2m+1,m∈Z},Q={x|x=2m-1,m∈Z}A,集合P中方程x2+1=0无实数根,故P=Q=⌀;对于B,集合P中有两个元素2,5,集合Q中有两个元素2,5,故P=Q;对于C,集合P中有一个元素是点(2,5),集合Q中有一个元素是点(5,2),元素不同,P≠Q;对于D,集合P={x|x=2m+1,m∈Z}表示所有奇数构成的集合,集合Q={x|x=2m-1,m∈Z}也表示所有奇数构成的集合,P=Q.故选ABD.12.(多选)(2020山东济宁曲阜一中高一月考)下列选项能正确表示方程组的解集的是()A.(-1,2)B.{(x,y)|x=-1,y=2}C.{-1,2}D.{(-1,2)}{(x,y)|x=-1,y=2}或{(-1,2)}.故选BD.13.(多选)(2020江苏连云港高一期中)已知集合A={y|y=x2+1},集合B={(x,y)|y=x2+1},下列关系正确的是()A.(1,2)∈BB.A=BC.0∉AD.(0,0)∉BA={y|y≥1},集合B是由抛物线y=x2+1上的点组成的集合,故A正确,B错误,C正确,D正确.故选ACD.14.(2020上海南洋模范中学高一期中)已知集合A={x,y},B={2x,2x2},且A=B,则集合A=.答案,1解析由题意,集合A={x,y},B={2x,2x2},且A=B,则x=2x或x=2x2.若x=2x,可得x=0,此时集合B不满足集合中元素的互异性,舍去;若x=2x2,可得x=或x=0(舍去),当x=时,可得2x=1,2x2=,即A=B=,1.15.用列举法表示集合A={(x,y)|x+y=5,x∈N*,y∈N*}是A=;用描述法表示“所有被4除余1的整数组成的集合”是.{x|x=4k+1,k∈Z}A={(1,4),(2,3),(3,2),(4,1)},所有被4除余1的整数组成的集合为{x|x=4k+1,k∈Z}.16.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求实数c的值..①若a+b=ac,a+2b=ac2,消去b,得a+ac2-2ac=0.当a=0时,集合B中的三个元素均为0,与集合中元素的互异性矛盾,故a≠0, 所以c2-2c+1=0,即c=1,但当c=1时,B中的三个元素相同,不符合题意.②若a+b=ac2,a+2b=ac,消去b,得2ac2-ac-a=0.由①知a≠0,所以2c2-c-1=0,即(c-1)(2c+1)=0,解得c=-或c=1(舍去),当c=-时,经验证,符合题意.综上所述,c=-.17.(2020天津南开翔宇学校高一月考)已知集合A={x|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的所有取值组成的集合;(2)若A中只有一个元素,求a的值,并把这个元素写出来;(3)若A中至多有一个元素,求a的所有取值组成的集合.当a=0时,-3x+2=0,此时x=,所以A不是空集,不符合题意;当a≠0时,若A是空集,则Δ=9-8a<0,所以a>.综上可知,a的所有取值组成的集合为a a>.(2)当a=0时,-3x+2=0,此时x=,满足条件,此时A中仅有一个元素;当a≠0时,Δ=9-8a=0,所以a=,此时方程为x2-3x+2=0,即(3x-4)2=0,解得x=,此时A 中仅有一个元素.综上可知,当a=0时,A中只有一个元素为;当a=时,A中只有一个元素为.(3)A中至多有一个元素,即方程ax2-3x+2=0只有一个实数根或无实数根.则a=0或Δ=9-8a<0,解得a=0或a>.故a的所有取值组成的集合为a a=0,或a>.1.2子集、全集、补集1.(2020山东青岛高一检测)已知集合M={x|x2-2x=0},U={2,1,0},则∁U M=()A.{0}B.{1,2}C.{1}D.{0,1,2}M={x|x2-2x=0}={0,2},U={2,1,0},则∁U M={1}.故选C.2.集合A={x|-1<x<2},B={x|0<x<1},则()A.B∈AB.A⊆BC.B⊆AD.A=BA={x|-1<x<2},B={x|0<x<1},∴B⊆A.故选C.3.下列关系:①0∈{0};②⌀⫋{0};③{0,1}⊆{(0,1)};④{(a,b)}={(b,a)}.其中正确的个数为()A.1B.2C.3D.4正确,0是集合{0}的元素;②正确,⌀是任何非空集合的真子集;③错误,集合{0,1}含两个元素0,1,而{(0,1)}含一个元素点(0,1),所以这两个集合没关系;④错误,集合{(a,b)}含一个元素点(a,b),集合{(b,a)}含一个元素点(b,a),这两个元素不同,所以集合不相等.故选B.4.已知集合B={-1,1,4},满足条件⌀⫋M⊆B的集合M的个数为()A.3B.6C.7D.8M是集合B的非空子集,集合B中有3个元素,因此非空子集有7个,故选C.5.若集合M=x x=,k∈Z,集合N=x x=,k∈Z,则()A.M=NB.N⊆MC.M⫋ND.以上均不对解析M=x x=,k∈Z=x x=,k∈Z,N=x x=,k∈Z=x x=,k∈Z.又2k+1,k∈Z 为奇数,k+2,k∈Z为整数,所以M⫋N.6.设A={x|1<x<2},B={x|x<a},若A⫋B,则实数a的取值范围是.a|a≥2},因为A⫋B,所以a≥2,即a的取值范围是{a|a≥2}.7.设全集U=R,A={x|x<1},B={x|x>m},若∁U A⊆B,则实数m的取值范围是.m|m<1}∁U A={x|x≥1},B={x|x>m},∴由∁U A⊆B可知m<1,即m的取值范围是{m|m<1}.8.已知集合A={x|x<-1,或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.B=⌀时,2a>a+3,即a>3,显然满足题意.当B≠⌀时,根据题意作出如图所示的数轴,可得解得a<-4或2<a≤3.综上可得,实数a的取值范围为{a|a<-4,或a>2}.9.(2020山东济宁高一月考)如果集合P={x|x>-1},那么()A.0⊆PB.{0}∈PC.⌀∈PD.{0}⊆PP={x|x>-1},∴0∈P,{0}⊆P,⌀⊆P,故A,B,C错误,D正确.故选D.10.已知M={x|x>1},N={x|x>a},且M⫋N,则()A.a≤1B.a<1C.a≥1D.a>1M={x|x>1},N={x|x>a},且M⫋N,∴a<1.故选B.11.集合M={x|x=4k+2,k∈Z},N={x|x=2k,k∈Z},P={x|x=4k-2,k∈Z},则M,N,P的关系为()A.M=P⊆NB.N=P⊆MC.M=N⊆PD.M=P=NM=P={±2,±6…},N={0,±2,±4,±6…},所以M=P⊆N.12.(2020山东济南高一检测)已知A={x|x2-3x+2=0},B={x|ax=1},若B⊆A,则实数a 取值的集合为()A.0,1,B.1,C.0,2,D.-2,解析因为A={x|x2-3x+2=0}={x|(x-1)(x-2)=0}={1,2},又B={x|ax=1},当B=⌀时,方程ax=1无解,则a=0,此时满足B⊆A;当B≠⌀时,a≠0,此时B={x|ax=1}=,为使B⊆A,只需=1或=2,解得a=1或a=.综上,实数a取值的集合为0,1,.故选A.13.已知全集U={1,2,a2-2a+3},A={1,a},∁U A={3},则实数a等于()A.0或2B.0C.1或2D.2,知则a=2.14.(多选)(2020山东五莲教学研究室高一期中)已知集合M={x|-3<x<3,x∈Z},则下列符号语言表述正确的是()A.2∈MB.0⊆MC.{0}∈MD.{0}⊆MM={x|-3<x<3,x∈Z}={-2,-1,0,1,2},∴2∈M,0∈M,{0}⊆M.∴A,D正确,B,C错误.故选AD.15.(多选)(2020福建宁德高一期中)已知集合A={y|y=x2+1},集合B={x|x>2},下列关系正确的是()A.B⊆AB.A⊆BC.0∉AD.1∈AA={y|y=x2+1}={y|y≥1},B={x|x>2},所以B⊆A,0∉A,1∈A.故选ACD.16.(多选)(2020北京高一检测)集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的可能取值为()A.-1B.0C.1D.2解析由题意,B⊆A,当a=0时,B=⌀符合题意;当a≠0时,B=-⊆A,则-=1或-=-1,解得a=-1或a=1,所以实数a的取值为-1,0或1.故选ABC.17.(2020山东东营高一月考)设U=R,A={x|a≤x≤b},∁U A={x|x<3或x>4},则a=,b=.4U=R,A={x|a≤x≤b},∴∁U A={x|x<a,或x>b}.∵∁U A={x|x<3,或x>4},∴a=3,b=4.18.集合A={x|(a-1)x2+3x-2=0}有且仅有两个子集,则a的取值为.或-A有两个子集可知,该集合中只有一个元素,当a=1时,满足题意;当a≠1时,由Δ=9+8(a-1)=0,可得a=-.19.设A={x|x2-8x+15=0},B={x|ax-1=0}.(1)若a=,试判定集合A与B的关系;(2)若B⊆A,求实数a组成的集合C.a=,则B={5},元素5是集合A={5,3}中的元素,集合A={5,3}中除元素5外,还有元素3,3在集合B中没有,所以B⫋A.(2)当a=0时,由题意B=⌀,又A={3,5},故B⊆A;当a≠0时,B=,又A={3,5},B⊆A,此时=3或=5,则有a=或a=.所以C=0,.20.设集合A={x|-1≤x+1≤6},m为实数,B={x|m-1<x<2m+1}.(1)当x∈Z时,求A的非空真子集的个数;(2)若B⊆A,求m的取值范围.A得A={x|-2≤x≤5}.(1)∵x∈Z,∴A={-2,-1,0,1,2,3,4,5},即A中含有8个元素,∴A的非空真子集个数为28-2=254.(2)当m-1≥2m+1,即m≤-2时,B=⌀⊆A;当m>-2时,B≠⌀,因此,要使B⊆A,则只要解得-1≤m≤2.综上所述,m的取值范围是{m|m≤-2,或-1≤m≤2}.21.(2020山西平遥综合职业技术学校高一月考)已知全集U=R,集合A={x|-2≤x≤3},B={x|2a<x<a+3},且B⊆∁U A,求实数a的取值集合.A={x|-2≤x≤3},所以∁U A={x|x<-2,或x>3}.因为B⊆∁U A,当B=⌀时,2a≥a+3,解得a≥3;当B≠⌀时,由B⊆∁U A,得解得≤a<3或a≤-5.所以实数a的取值集合为a a≤-5,或a≥.1.3交集、并集1.(2020北京八中期末)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4}B.{3,4}C.{3}D.{4},全集U={1,2,3,4},A={1,2},B={2,3},可得A∪B={1,2,3},所以∁U(A∪B)={4}.故选D.2.已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3D.4A={1,2,3,4},B={2,4,6,8},∴A∩B={2,4}.∴A∩B中元素的个数为2.故选B.3.(2021全国甲,理1)设集合M={x|0<x<4},N=,则M∩N=()A. B.C.{x|4≤x<5}D.{x|0<x≤5}解析由交集的定义及图知M∩N=x≤x<4.4.设集合A={(x,y)|y=ax+1},B={(x,y)|y=x+b},且A∩B={(2,5)},则()A.a=3,b=2B.a=2,b=3C.a=-3,b=-2D.a=-2,b=-3A∩B={(2,5)},∴解得故选B.5.若集合A={0,1,2,x},B={1,x2},A∪B=A,则满足条件的实数x有()A.1个B.2个C.3个D.4个A∪B=A,∴B⊆A.∵A={0,1,2,x},B={1,x2},∴x2=0或x2=2或x2=x,解得x=0或x=±或x=1.经检验,当x=或-时满足题意.故选B.6.已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=.∩B={1,2,3}∩{y|y=2x-1,x∈A}={1,2,3}∩{1,3,5}={1,3}.7.(2020山东泰兴第三高级中学高一月考)设M={a2,a+1,-3},N={a-3,2a-1,a2+1},若M∩N={-3},则a的值为,此时M∪N=.1{-4,-3,0,1,2}M∩N={-3},∴a-3=-3或2a-1=-3,解得a=0或a=-1.当a=0时,M={0,1,-3},N={-3,-1,1},得M∩N={1,-3},不符合题意,舍去.当a=-1时,M={0,1,-3},N={-4,-3,2},得M∩N={-3},符合题意.此时M∪N={-4,-3,0,1,2}.8.(2020上海浦东华师大二附中高一月考)调查班级40名学生对A,B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成,另外,对A,B都不赞成的学生数比对A,B都赞成的学生数的三分之一多1,则对A,B都赞成的学生有人.A的人数为40×=24,赞成B的人数为24+3=27.设对A,B都赞成的学生数为x,则对A,B都不赞成的学生数为x+1,如图可得x+1+27-x+x+24-x=40,解得x=18.9.已知集合A={x|-2<x<4},B={x|x-m<0,m∈R}.(1)若A∩B=⌀,求实数m的取值范围;(2)若A∩B=A,求实数m的取值范围.∵A={x|-2<x<4},B={x|x<m,m∈R},又A∩B=⌀,∴m≤-2.故实数m的取值范围为{m|m≤-2}.(2)由A∩B=A,得A⊆B.∵A={x|-2<x<4},B={x|x<m,m∈R},∴m≥4.故实数m的取值范围为{m|m≥4}.10.已知集合M={0,1},则满足M∪N={0,1,2}的集合N的个数是()A.2B.3C.4D.8,可知满足M∪N={0,1,2}的集合N有{2},{0,2},{1,2},{0,1,2},共4个.故选C.11.(2020江苏无锡期末)下图中的阴影部分,可用集合符号表示为()A.(∁U A)∩(∁U B)B.(∁U A)∪(∁U B)C.(∁U B)∩AD.(∁U A)∩BA与集合B的补集的交集,所以图中阴影部分可以用(∁U B)∩A表示.12.(2020江苏镇江月考)集合论是德国数学家康托尔于19世纪末创立的.在他的集合理论中,用card(A)表示有限集合中元素的个数,例如:A={a,b,c},则card(A)=3.若对于任意两个有限集合A,B,有card(A∪B)=card(A)+card(B)-card(A∩B).某校举办运动会,高一某班参加田赛的学生有14人,参加径赛的学生有9人,两项都参加的有5人,那么该班参加本次运动会的人数为()A.28B.23C.18D.16A,则card(A)=14,参加径赛的学生组成集合B,则card(B)=9,由题意得card(A∩B)=5,所以card(A∪B)=card(A)+card(B)-card(A∩B)=14+9-5=18,所以该班参加本次运动会的人数为18.故选C.13.(2020天津南开中学高一开学考试)已知集合A={x|x≥-1},B=x a≤x≤2a-1,若A∩B≠⌀,则实数a的取值范围是()A.{a|a≥1}B.a a≥C.{a|a≥0}D.a0≤a≤解析因为A={x|x≥-1},B=x a≤x≤2a-1,若A∩B≠⌀,则B≠⌀且B与A有公共元素,则需解得a≥.故选B.14.(多选)(2020江苏江浦高级中学期中)已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B 中的元素有()A.-2B.-1C.0D.1A={x|x>-1},所以∁R A={x|x≤-1},则(∁R A)∩B={x|x≤-1}∩{-2,-1,0,1}={-2,-1}.故选AB.15.(多选)(2020河北曲阳第一高级中学月考)已知集合A={x|x<2},B={x|3-2x>0},则()A.A∩B=x x<B.A∩B≠⌀C.A∪B=x x<D.A∪(∁R B)=R解析∵A={x|x<2},B={x|3-2x>0}=x x<,∁R B=x x≥,∴A∩B=x x<,A∩B≠⌀,A∪B={x|x<2},A∪(∁R B)=R.故选ABD.16.(多选)(2020山东菏泽高一月考)已知集合M={2,-5},N={x|mx=1},且M∪N=M,则实数m的值可以为()A. B.-5C.-D.0解析因为M∪N=M,所以N⊆M,当m=0时,N=⌀,满足N⊆M.当m≠0时,N=,若N⊆M,则=2或=-5,解得m=或m=-.综上所述,m=0或m=或m=-,故选ACD.17.已知M={x|y=x2-1},N={y|y=x2-1},则M∩N=.y|y≥-1}{x|y=x2-1}=R,N={y|y=x2-1}={y|y≥-1},故M∩N={y|y≥-1}.18.(2020山西太原第五十三中学月考)已知A={x|x2+px+1=0},M={x|x>0},若A∩M=⌀,则实数p的取值范围为.p|p>-2}A=⌀时,Δ=p2-4<0,解得-2<p<2;当A≠⌀,即p≤-2或p≥2时,此时方程x2+px+1=0的两个根需满足小于等于0,则x1x2=1>0,x1+x2=-p<0,得p>0,则p≥2.综上,实数p的取值范围为{p|p>-2}.19.设集合A={x|x2-3x+2=0},B={x|x2-4x+a=0},若A∪B=A,求实数a的取值范围.{1,2},因为A∪B=A,所以B⊆A.若B=⌀,则方程x2-4x+a=0无实数根,所以Δ=16-4a<0,所以a>4.若B≠⌀,则a≤4,当a=4时,B={2}⊆A满足条件;当a<4时,1,2是方程x2-4x+a=0的根,此时a无解.所以a=4.综上可得,a的取值范围是{a|a≥4}.20.(2020天津宝坻大钟庄高中月考)已知集合A={x|-3≤x≤6},B={x|x<4},C={x|m-5<x<2m+3,m∈R}.(1)求(∁R A)∩B;(2)若A⊆C,求实数m的取值范围.因为A={x|-3≤x≤6},所以∁R A={x|x<-3,或x>6},故(∁R A)∩B={x|x<-3,或x>6}∩{x|x<4}={x|x<-3}.(2)因为C={x|m-5<x<2m+3},且A⊆C,所以<m<2,所以m的取值范围为m<m<2.21.(2020山东滕州第一中学新校高一月考)已知全集U=R,集合A={x|x>2},B={x|-4<x<4}.(1)求∁U(A∪B);(2)定义A-B={x|x∈A,且x∉B},求A-B,A-(A-B).因为A={x|x>2},B={x|-4<x<4},所以A∪B={x|x>-4},则∁U(A∪B)={x|x≤-4}.(2)因为A-B={x|x∈A,且x∉B},所以A-B={x|x≥4},因此A-(A-B)={x|2<x<4}.第1章测评(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给对象能构成集合的是()A.2020年全国Ⅰ卷数学试题中的所有难题B.比较接近2的全体正数C.未来世界的高科技产品D.所有整数A,B,C的标准不明确,所以不能构成集合;而选项D的元素具有确定性,能构成集合.故选D.2.(2021新高考Ⅰ,1)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}A={x|-2<x<4},B={2,3,4,5},∴A∩B={2,3}.故选B.3.(2020山东,1)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}数形结合)由数轴可知所以A∪B={x|1≤x<4},故选C.4.(2020江苏梅村高级中学月考)已知A={x,x+1,1},B={x,x2+x,x2},且A=B,则()A.x=1或x=-1B.x=1C.x=0或x=1或x=-1D.x=-1x=1时,集合A={1,2,1},B={1,2,1}不满足集合中元素的互异性,排除A,B,C;当x=-1时,A={-1,0,1},B={-1,0,1},A=B,满足题意.故选D.5.(2020江苏吴江中学月考)满足{2}⫋A⊆{1,2,3,4,5},且A中元素之和为偶数的集合A 的个数是()A.5B.6C.7D.8{2}⫋A⊆{1,2,3,4,5},所以2∈A.又A中元素之和为偶数,所以满足条件的集合A有{2,4},{1,2,3},{1,2,5},{2,3,5},{1,2,3,4},{1,2,4,5},{2,3,4,5},共7个,故选C.6.(2020安徽安庆白泽湖中学月考)已知集合A={x|x<1,或x>3},B={x|x-a<0},若B⊆A,则实数a的取值范围为()A.{a|a>3}B.{a|a≥3}C.{a|a<1}D.{a|a≤1}B={x|x<a},因为B⊆A,所以a≤1.故选D.7.(2020山东潍坊月考)设全集U=R,M={x|x<-2,或x>2},N={x|1≤x≤3}.如图所示,则阴影部分所表示的集合为()A.{x|-2≤x<1}B.{x|-2≤x≤3}C.{x|x≤2,或x>3}D.{x|-2≤x≤2}∁R(M∪N).又M={x|x<-2,或x>2},N={x|1≤x≤3},所以M∪N={x|x<-2,或x≥1},则图中阴影部分表示的集合为∁R(M∪N)={x|-2≤x<1}.故选A.8.(2020山西高一月考)某学校组织强基计划选拔赛,某班共有30名同学参加了学校组织的数学、物理两科选拔,其中两科都取得优秀的有6人,数学取得优秀但物理未取得优秀的有12人,物理取得优秀而数学未取得优秀的有4人,则两科均未取得优秀的人数是()A.8B.6C.5D.4,两科都取得优秀的有6人,数学取得优秀物理未取得优秀的有12人,物理取得优秀而数学未取得优秀的有4人,这样共有22人至少取得一科优秀.某班共有30名同学,则两科均未取得优秀的人数是30-22=8.故选A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知集合M={1,m+2,m2+4},且5∈M,则m的可能取值有()A.1B.-1C.3D.25∈M,所以m+2=5或m2+4=5,解得m=3,或m=±1.当m=3时,M={1,5,13},符合题意,当m=1时,M={1,3,5},符合题意,当m=-1时,M={1,1,5},不满足元素的互异性,不成立.所以m=3或m=1.故选AC.10.(2020山东邹城第一中学高一月考)已知全集U=R,A={x|x<2,或x>4},B={x|x≥a},且∁U A⊆B,则实数a的取值可以是()A.1B.3C.2D.4A={x|x<2,或x>4},得∁U A={x|2≤x≤4}.因为∁U A⊆B,B={x|x≥a},所以a≤2,所以实数a的取值可以是1,2.故选AC.11.设全集U={0,1,2,3,4},集合A={0,1,4},B={0,1,3},则()A.A∩B={0,1}B.∁U B={4}C.A∪B={0,1,3,4}D.集合A的真子集个数为8A={0,1,4},B={0,1,3},所以A∩B={0,1},A∪B={0,1,3,4},选项A,C都正确;又全集U={0,1,2,3,4},所以∁U B={2,4},选项B错误;集合A={0,1,4}的真子集有7个,所以选项D错误.12.(2020重庆万州第二高级中学月考)给定数集M,若对于任意a,b∈M,有a+b∈M,且a-b∈M,则称集合M为闭集合,则下列说法错误的是()A.集合M={-4,-2,0,2,4}为闭集合B.正整数集是闭集合C.集合M={n|n=5k,k∈Z}为闭集合D.若集合A1,A2为闭集合,则A1∪A2为闭集合A,4∈M,2∈M,但4+2=6∉M,故A错误;对于B,1∈N*,2∈N*,但1-2=-1∉N*,故B错误;对于C,对于任意a,b∈M,设a=5k1,b=5k2,k1∈Z,k2∈Z,a+b=5(k1+k2),a-b=5(k1-k2),k1+k2∈Z,k1-k2∈Z,所以a+b∈M,a-b∈M,故C正确;对于D,A1={n|n=5k,k∈Z},A2={n|n=3k,k∈Z}都是闭集合,但A1∪A2不是闭集合,如5∈(A1∪A2),3∈(A1∪A2),但5+3=8∉(A1∪A2),故D错误.故选ABD.三、填空题:本题共4小题,每小题5分,共20分.13.设集合A={0,1},B={1,2},C={x|x=a+b,a∈A,b∈B},则集合C的真子集个数为.A={0,1},B={1,2},∴C={x|x=a+b,a∈A,b∈B}={1,2,3}有3个元素,∴集合C的真子集个数为23-1=7.14.(2020湖南雨花雅礼中学高一月考)设A={x|-1<x≤3},B={x|x>a},若A⊆B,则实数a的取值范围是.a|a≤-1},如图所示,∵A⊆B,∴a≤-1.15.(2020江苏玄武南京田家炳高级中学月考)集合A={x|x<1,或x≥2},B={x|a<x<2a+1},若A∪B=R,则实数a的取值范围是.答案a≤a<1集合A={x|x<1,或x≥2},B={x|a<x<2a+1},A∪B=R,∴解得≤a<1,∴实数a的取值范围是a≤a<1.16.(2020山西高一月考)设全集U={1,2,3,4,5,6},用U的子集可表示由0,1组成的6位字符串.如:(2,5)表示的是从左往右第2个字符为1,第5个字符为1,其余均为0的6位字符串010010,并规定空集表示的字符串为000000.若M={1,3,4},则∁U M表示6位字符串为;若A={2,3},集合A∪B表示的字符串为011011,则满足条件的集合B的个数为.4U={1,2,3,4,5,6},M={1,3,4},所以∁U M={2,5,6},则∁U M表示6位字符串为010011.因为集合A∪B表示的字符串为011011,所以A∪B={2,3,5,6}.又A={2,3},所以集合B可能为{5,6},{2,5,6},{3,5,6},{2,3,5,6},即满足条件的集合B的个数为4.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2020江苏镇江月考)已知全集U={0,1,2,3,4,5,6,7},集合A={1,2,3},B={1,3,4}.(2)集合C满足(A∩B)⊆C⊆(A∪B),请写出所有满足条件的集合C.由A={1,2,3},B={1,3,4},得A∩B={1,3},A∪B={1,2,3,4}.由U={0,1,2,3,4,5,6,7},得(∁U A)∩(∁U B)={0,5,6,7}.(2)由(A∩B)⊆C⊆(A∪B),A∩B={1,3},A∪B={1,2,3,4},得C可以为{1,3},{1,2,3},{1,3,4},{1,2,3,4}.18.(12分)已知集合A有三个元素:a-3,2a-1,a2+1,集合B也有三个元素:0,1,x(a∈R,x ∈R).(1)若x2∈B,求实数x的值.(2)是否存在实数a,x,使A=B?若存在,求出a,x;若不存在,请说明理由.集合B中有三个元素:0,1,x.x2∈B,当x取0,1,-1时,都有x2∈B,∵集合中的元素都有互异性,∴x≠0,x≠1,∴x=-1.∴实数x的值为-1.(2)不存在.理由如下:a2+1≠0,若a-3=0,则a=3,A={0,5,10}≠B;若2a-1=0,则a=,A=0,-≠B,∴不存在实数a,x,使A=B.19.(12分)已知集合A={x||x-a|=4},集合B={1,2,b}.(1)是否存在实数a,使得对于任意实数b都有A⊆B?若存在,求出相应的a值;若不存在,试说明理由.(2)若A⊆B成立,求出相应的实数对(a,b).不存在.理由如下:若对任意的实数b都有A⊆B,则当且仅当1和2是A中的元素时才有可能.因为A={a-4,a+4},所以这都不可能,所以这样的实数a不存在.(2)由(1)易知,当且仅当时,A⊆B.解得所以所求的实数对为(5,9),(6,10),(-3,-7),(-2,-6).20.(12分)(2020山东枣庄第三中学高一月考)已知集合A={x|a-1<x<2a+1,a∈R},B={x|0<x<1},U=R.(2)若A∩B=⌀,求实数a的取值范围.解(1)当a=时,A=x-<x<2.因为B={x|0<x<1},所以∁U B={x|x≤0,或x≥1}.因此A∩B={x|0<x<1},A∩(∁U B)=x-<x≤0,或1≤x<2.(2)当A=⌀时,显然符合题意,因此有a-1≥2a+1,解得a≤-2;当A≠⌀时,因此有a-1<2a+1,解得a>-2,要想A∩B=⌀,则有2a+1≤0或a-1≥1,解得a≤-或a≥2,而a>-2,所以-2<a≤-或a≥2.综上所述,实数a的取值范围为a a≤-,或a≥2.21.(12分)(2020安徽芜湖一中月考)已知集合A={x|-1≤x≤3},B={x|x<0,或x>2},C={x|m-2≤x≤m+2},m为实数.(1)求A∩B,∁R(A∩B);(2)若A⊆∁R C,求实数m的取值范围.因为A={x|-1≤x≤3},B={x|x<0,或x>2},所以A∩B={x|-1≤x<0,或2<x≤3},∁R(A∩B)={x|x<-1,或0≤x≤2,或x>3}.(2)因为C={x|m-2≤x≤m+2},所以∁R C={x|x<m-2,或x>m+2}.因为A⊆∁R C,所以m-2>3或m+2<-1,解得m>5或m<-3,所以m的取值范围为{m|m<-3,或m>5}.22.(12分)(2020北京八中月考)设a为实数,集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A∩B=A∪B,求a的值;(2)若A∩B≠⌀,A∩C=⌀,求a的值.,B={2,3},C={-4,2}.(1)因为A∩B=A∪B,所以A=B.又B={2,3},则解得a=5.(2)由于A∩B≠⌀,而A∩C=⌀,则3∈A,即9-3a+a2-19=0,解得a=5或a=-2.由(1)知,当a=5时,A=B={2,3}.此时A∩C≠⌀,矛盾,舍去.当a=-2时,经检验,满足题意.因此a=-2.。
章末知识整合一、函数的概念[例1] (1)函数y =21-1-x 的定义域为( ) A .(-∞,1) B .(-∞,0)∪(0,1]C .(-∞,0)∪(0,1)D .[1,+∞)(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.解析:(1)要使函数有意义,则⎩⎪⎨⎪⎧1-x ≥0,1-1-x ≠0.所以x ≤1且x ≠0.因此函数y =21-1-x的定义域为{x |x ≤1且x ≠0}. (2)设-1≤x ≤0,则0≤x +1≤1,所以f (x +1)=(x +1)[1-(x +1)]=-x (x +1).又因为f (x +1)=2f (x ),所以f (x )=f (x +1)2=-x (x +1)2. 答案:(1)B (2)-x (x +1)2规律方法1.若已知给出函数解析式,则函数的定义域是使解析式有意义的自变量的取值集合.2.求函数的解析式的关键是理解对应关系f 的本质与特点(对应关系就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.[即时演练] 1.(1)求函数y =(x +1)0+12-x+2x +3的定义域;(2)求函数y =f (x )的定义域为[-1,1],求函数y =f ⎝ ⎛⎭⎪⎫x +14·f ⎝ ⎛⎭⎪⎫x -14的定义域.解:(1)要使函数有意义,需有⎩⎪⎨⎪⎧x +1≠0,2-x >0,2x +3≥0,解之得-32≤x <2且x ≠-1. 所以函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-32≤x <2且x ≠-1. (2)要使函数有意义,必须有⎩⎪⎨⎪⎧-1≤x +14≤1,-1≤x -14≤1,解得⎩⎪⎨⎪⎧-54≤x ≤34,-34≤x ≤54,因此-34≤x ≤34, 所以函数y =f ⎝⎛⎭⎪⎫x +14·f ⎝ ⎛⎭⎪⎫x -14的定义域为⎣⎢⎡⎦⎥⎤-34,34. 二、函数的性质及其应用[例2] 函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)确定函数f (x )的解析式;(2)用定义法证明f (x )在(-1,1)上是增函数;(3)解不等式f (t -1)+f (t )<0.(1)解:依题意可得⎩⎨⎧f (0)=0,f ⎝ ⎛⎭⎪⎫12=25, 所以⎩⎪⎨⎪⎧b 1+02=0,a 2+b 1+14=25,解得⎩⎪⎨⎪⎧a =1,b =0. 所以f (x )=x 1+x 2. (2)证明:设x 1,x 2是(-1,1)上的任意两个实数,且-1<x 1<x 2<1,则有:f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22). 因为-1<x 1<x 2<1,所以x 1-x 2<0,1+x 21>0,1+x 22>0,1-x 1x 2>0. 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以f (x )在(-1,1)上是增函数.(3)解:因为f (t -1)+f (t )<0,所以f (t -1)<-f (t )=f (-t ).因为f (x )在(-1,1)上是增函数,所以-1<t -1<-t <1,解得0<t <12. 所以不等式的解集为⎩⎨⎧⎭⎬⎫t ⎪⎪⎪0<t <12. 规律方法1.一些求参数的问题往往需要根据奇、偶函数的定义建立关于参数的恒等式,通过比较等式两边来确定关于参数的方程.2.解题时要挖掘隐含条件,同时要求有较高的数学式子变形能力.[即时演练] 2.已知函数f(x)=x2+bx+c,且f(1)=0.(1)若函数f(x)是偶函数,求f(x)的解析式;(2)在(1)的条件下,求函数f(x)在区间[-1,3]上的最大值和最小值;(3)要使函数f(x)在区间[-1,3]上单调递增,求b的取值范围.解:(1)因为函数f(x)是偶函数,所以b=0.又因为f(1)=0,所以1+c=0,即c=-1.所以f(x)=x2-1.(2)结合图象(图略)得:当x=0时,f(x)min=-1;当x=3时,f(x)max=8.(3)因为函数f(x)=x2+bx+c的图象关于x=-b2对称,要使函数f(x)在区间[-1,3]上单调递增,则有-b2≤-1,所以b≥2.因此实数b的取值范围是[2,+∞).三、函数的图象及应用[例3]设函数f(x)=x2-4|x|+3.(1)判断函数f(x)图象的对称性;(2)画出函数f(x)的图象,并指出函数的单调区间和最小值.解:(1)f(x)=x2-4|x|+3的定义域为R,且关于原点对称.又f (-x )=(-x )2-4|-x |+3=x 2-4|x |+3,所以f (-x )=f (x ),函数y =f (x )是偶函数.因此函数f (x )的图象关于y 轴对称.(2)f (x )=⎩⎪⎨⎪⎧x 2-4x +3=(x -2)2-1(x ≥0),x 2+4x +3=(x +2)2-1(x <0), 画出函数y =f (x )的图象如图所示.根据图象知,函数f (x )的最小值是-1.单调增区间是[-2,0],[2,+∞),减区间是(-∞,-2],[0,2].规律方法1.描点法——求定义域;化简;列表、描点、连光滑曲线. 注意:要利用单调性、奇偶性、对称性简化作图.2.函数的图象可直观反映函数的性质.[即时演练] 3.(1)如图①所示,给出奇函数y =f (x )的局部图象,试作出y 轴右侧的图象并求出f (3)的值;图① 图②(2)如图②所示,给出偶函数y =f (x )的局部图象,比较f (1)与f (3)的大小,并试作出y 轴右侧的图象.解:(1)奇函数y =f (x )在y 轴左侧图象上任一点P (-x ,-f (x ))关于原点的对称点为P′(x,f(x)),下图为补充后的图象.易知f(3)=-2.(2)偶函数y=f(x)在y轴左侧图象上任一点P(-x,f(x))关于y轴的对称点为P′(x,f(x)),下图为补充后的图象.易知f(1)>f(3).四、数列结合与分类讨论思想[例4]设函数f(x)=x2-2x+2,x∈[t,t+1],t∈R,求函数f(x)的最小值.解:f(x)=x2-2x+2=(x-1)2+1.x∈[t,t+1],t∈R,对称轴为x=1.①当t+1<1,即t<0时,函数图象如图①所示,函数f(x)在区间[t,t+1]上为减函数,所以最小值为f(t+1)=t2+1.②当t≤1≤t+1,即0≤t≤1时,函数图象如图②所示,最小值为f(1)=1.③当t>1时,函数图象如图③所示,函数f(x)在区间[t,t+1]上为增函数,所以最小值为f(t)=t2-2t+2.图① 图② 图③综上所述f (x )min =⎩⎪⎨⎪⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.规律方法1.求二次函数的最值关键在于确定函数在给定区间上的单调性,这受制于二次项系数的符号和对称轴与区间的相对位置关系.2.对于“轴定区间变”,注意讨论二者的相对位置,借助几何直观求出最值,从而体现分类讨论与数形结合思想的应用. [即时演练] 4.设函数f (x )=⎩⎨⎧(x +1)2 (x ≤-1),2x +2 (-1<x <1),1x -1 (x ≥1),已知f (a )>1,求a 的取值范围.[提示:由(a +1)2>1可得a +1>1或a +1<-1]解:法一(分类讨论思想方法):①当a ≤-1时,由(a +1)2>1得a >0或a <-2,又a ≤-1,所以a <-2;②当-1<a <1时,由2a +2>1得a >-12, 又-1<a <1,所以-12<a <1; ③当a ≥1时,由1a -1>1得0<a <12, 又a ≥1,所以a 不存在.综上可知a 的取值范围为(-∞,-2)∪⎝ ⎛⎭⎪⎫-12,1. 法二(数形结合思想方法):f (x )的图象如图所示,画直线y =1,符合f (a )>1的a 的取值范围为(-∞,-2)∪⎝ ⎛⎭⎪⎫-12,1.。
章末知识整合
一、元素与集合的关系
[例1] 设集合B =⎩
⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪⎪62+x ∈N . (1)试判断1和2与集合B 的关系;
(2)用列举法表示集合B.
解:(1)当x =1时,
62+1=2∈N ,所以1∈B. 当x =2时,62+2=32
∉N ,2∉ B. (2)令x =0,1,2,3,4,代入
62+x ,检验62+x ∈N 是否成立,可得B ={0,1,4}.
规律方法
1.判断所给元素a 是否属于给定集合时,若a 在集合内,用符号“∈”;若a 不在集合内,用符号“∉”.
2.当所给的集合是常见数集时,要注意符号的书写规范.
[即时演练] 1.已知集合A ={x|ax 2-3x +2=0}.
(1)若A =∅,求实数a 的取值范围;
(2)若A 中只有一个元素,求实数a 的值,并把这个元素写出来.
解:(1)A =∅,则方程ax 2-3x +2=0无实根,
即Δ=9-8a<0,所以a>98
. 所以a 的取值范围是⎩
⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a >98. (2)因为A 中只有一个元素,
所以①a =0时,A =⎩
⎪⎨⎪⎧⎭⎪⎬⎪⎫23满足要求. ②a ≠0时,则方程ax 2-3x +2=0有两个相等的实根.
故Δ=9-8a =0,
所以a =98,此时A =⎩⎪⎨⎪⎧⎭
⎪⎬⎪⎫43满足要求.
综上可知:a =0或a =98
. 二、集合与集合的关系
[例2] A ={x|x<-1或x>2},B ={x|4x +p<0},当B ⊆A 时,求实数p 的取值范围.
分析:首先求出含字母的不等式,其次利用数轴解决.
解:由已知解得,B =⎩⎪⎨⎪⎧⎭
⎪⎬⎪⎫x ⎪⎪⎪x<-p 4. 又因为因为A ={x|x <-1或x >2},且B ⊆A ,
利用数轴所以-p 4
≤-1. 所以p ≥4,
故实数p 的取值范围为{p|p ≥4}.
规律方法
1.在解决两个数集的包含关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解.
2.注意端点值的取舍,这是同学易忽视失误的地方.
[即时演练] 2.设集合P ={(x ,y)|x +y <4,x ,y ∈N *},则集合P 的非空子集的个数是( )
A .2
B .3
C .7
D .8
解析:当x =1时,y <3,又y ∈N *,因此y =1或y =2;当x =2时,y <2,又y ∈N *,因此y =1;当x =3时,y <1,又y ∈N *,因此这样的y 不存在;当x ≥4时,y <0,也不满足y ∈N *.
综上所述,集合P 中的元素有(1,1),(1,2),(2,1),所以P 的非空子集的个数是23-1=7.故选C.
答案:C
三、集合的运算
[例3] 已知集合A ={x|x -2>3},B ={x|2x -3>3x -a},求A ∪B , 分析:先确定集合A ,B ,然后讨论a 的范围对结果的影响.
解:A ={x|x -2>3}={x|x >5},
B ={x|2x -3>3x -a}={x|x <a -3}.。