动能定理-平抛与圆周
- 格式:doc
- 大小:273.50 KB
- 文档页数:2
动能定理及其应用考点一对动能定理的理解和应用1.动能(1)定义:物体由于□01运动而具有的能叫动能。
(2)公式:E k=□0212mv2。
(3)单位:□03焦耳,1 J=1 N·m=1 kg·m2/s2。
(4)性质:动能是状态量,是□04标量。
2.动能定理(1)内容:在一个过程中合力对物体做的功,等于物体在这个过程中□05动能的变化量。
(2)表达式:W=□06ΔE k=E k2-E k1=□0712mv22-12mv21。
(3)物理意义:□08合外力的功是物体动能变化的量度。
(4)适用条件①动能定理既适用于直线运动,也适用于□09曲线运动。
②既适用于恒力做功,也适用于□10变力做功。
③力可以是各种性质的力,既可以同时作用,也可以□11分阶段作用。
3.对动能定理的理解(1)动能定理表明了“三个关系”①数量关系:合外力做的功与物体动能的变化具有等量代换关系,但并不是说动能变化就是合外力做的功。
②因果关系:合外力做功是引起物体动能变化的原因。
③量纲关系:单位相同,国际单位都是焦耳。
(2)标量性动能是标量,功也是标量,所以动能定理是一个标量式,不存在方向的选取问题。
当然动能定理也就不存在分量的表达式。
(3)相对性动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系。
(多选)如图所示,电梯质量为M,在它的水平地板上放置一质量为m的物体。
电梯在钢索的拉力作用下竖直向上加速运动,当电梯的速度由v1增加到v2时,上升高度为H,则在这个过程中,下列说法或表达式正确的是()A .对物体,动能定理的表达式为W N =12mv 22,其中W N 为支持力的功B .对物体,动能定理的表达式为W 合=0,其中W 合为合力的功C .对物体,动能定理的表达式为W N -mgH =12mv 22-12mv 21,其中W N 为支持力的功D .对电梯,其所受合力做功为12Mv 22-12Mv 211.(人教版必修2 P 74·T 1改编)改变汽车的质量和速度,都能使汽车的动能发生变化,在下面几种情况中,汽车的动能是原来的2倍的是( )A .质量不变,速度变为原来的2倍B .质量和速度都变为原来的2倍C .质量变为原来的2倍,速度减半D .质量减半,速度变为原来的2倍2.(人教版必修2 P 74·T 3改编)子弹的速度为v ,打穿一块固定的木块后速度刚好变为零。
2021届高考复习之核心考点系列之物理考点总动员【名师精品】考点03平抛运动与圆周运动【命题意图】考查平抛运动规律,摩擦力、向心力的来源、圆周运动的规律以及离心运动等知识点,意在考查考生对圆周运动知识的理解能力和综合分析能力。
【专题定位】本专题解决的是物体(或带电体)在力的作用下的曲线运动的问题.高考对本专题的考查以运动的组合为线索,进而从力和能的角度进行命题,题目情景新,过程复杂,具有一定的综合性.考查的主要内容有:①曲线运动的条件和运动的合成与分解;②平抛运动规律;③圆周运动规律;④平抛运动与圆周运动的多过程组合问题;⑤应用万有引力定律解决天体运动问题;⑥带电粒子在电场中的类平抛运动问题;⑦带电粒子在磁场内的匀速圆周运动问题;⑧带电粒子在简单组合场内的运动问题等.用到的主要物理思想和方法有:运动的合成与分解思想、应用临界条件处理临界问题的方法、建立类平抛运动模型方法、等效代替的思想方法等。
【考试方向】高考对平抛运动与圆周运动知识的考查,命题多集中在考查平抛运动与圆周运动规律的应用及与生活、生产相联系的命题,多涉及有关物理量的临界和极限状态求解或考查有关平抛运动与圆周运动自身固有的特征物理量。
竖直平面内的圆周运动结合能量知识命题,匀速圆周运动结合磁场相关知识命题是考试重点,历年均有相关选择题或计算题出现。
单独命题常以选择题的形式出现;与牛顿运动定律、功能关系、电磁学知识相综合常以计算题的形式出现。
平抛运动的规律及其研究方法、近年考试的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题。
圆周运动的角速度、线速度及加速度是近年高考的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题,这样的题目往往难度较大。
【应考策略】熟练掌握平抛、圆周运动的规律,对平抛运动和圆周运动的组合问题,要善于由转折点的速度进行突破;熟悉解决天体运动问题的两条思路;灵活应用运动的合成与分解的思想,解决带电粒子在电场中的类平抛运动问题;对带电粒子在磁场内的匀速圆周运动问题,掌握找圆心、求半径的方法。
动能定理—圆周、平抛1.如图所示,光滑水平面AB与竖直面内的半圆形导轨在B点相切,半圆形导轨的半径为R.一个质量为m的物体将弹簧压缩至A点后由静止释放,在弹力作用下物体获得某一向右的速度后脱离弹簧,当它经过B点进入导轨的瞬间对轨道的压力为其重力的8倍,之后向上运动恰能到达最高点C.(不计空气阻力)试求:(1)物体在A点时弹簧的弹性势能;(2)物体从B点运动至C点的过程中产生的内能.2.如图所示,倾角θ=37°的光滑斜面底端B平滑连接着半径R=0.40m的竖直光滑圆轨道.质量m=0.50kg的小物块,从距地面h=1.8m处沿斜面由静止开始下滑,求:(sin37°=0.6,cos37°=0.8,g=10m/s2)(1)物块滑到斜面底端B时的速度大小?(2)物块运动到圆轨道的最高点A时速度大小?(3)物块运动到圆轨道的最高点A时对圆轨道的压力?3.如图所示,位于竖直平面内的圆弧光滑轨道,半径为R,轨道的最低点B的切线沿水平方向,轨道上端A距水平地面高度为H.质量为m的小球(可视为质点)从轨道最上端A 点由静止释放,经轨道最下端B点水平飞出,最后落在水平地面上的C点处,若空气阻力可忽略不计,重力加速度为g.求:(1)小球运动到B点时,轨道对它的支持力多大;(2)小球落地点C与B点的水平距离x为多少.4.如图所示,竖直平面内的圆弧形光滑管道半径略大于小球半径,管道中心到圆心距离为R,A端与圆心O等高,AD为水平面,B点在O点的正下方,一小球自A点正上方由静止释放,自由下落至A点进入管道,当小球到达B点时,管壁对小球的弹力大小为小球重力的9倍.求:(1)小球到B点时的速度;(2)释放点距A的竖直高度;(3)落点C与A的水平距离.5.如图所示,AB为固定在竖直平面内的光滑圆弧轨道,轨道的B点与水平地面相切,其半径为R.质量为m的小球由A点静止释放,求:(1)小球滑到最低点B时,小球速度v的大小;(2)小球刚到达最低点B时,轨道对小球支持力F N的大小;(3)小球通过光滑的水平面BC滑上固定曲面,恰达最高点D,D到地面的高度为h(已知h<R),则小球在曲面上克服摩擦力所做的功W f.6.如图所示,一质量为m=1kg的小物块轻轻放在水平匀速运动的传送带上的A点,随传送带运动到B点,小物块从C点沿圆弧切线进入竖直光滑的半圆轨道恰能做圆周运动.已知圆弧半径R=0.9m,轨道最低点为D,D点距水平面的高度h=0.8m.小物块离开D点后恰好垂直碰击放在水平面上E点的固定倾斜挡板.已知物块与传送带间的动摩擦因数μ=0.3,传送带以5m/s恒定速率顺时针转动(g取10m/s2),试求:(1)传送带AB两端的距离;(2)小物块经过D点时对轨道的压力的大小;(3)倾斜挡板与水平面间的夹角θ的正切值.7.如图所示,一个质量为0.6kg的小球以某一初速度从P点水平抛出,恰好从光滑圆弧ABC的A点的切线方向进入圆弧(不计空气阻力).已知圆弧的半径R=0.3m,θ=60°,小球到达A点时的速度v=4m/s,取g=10m/s2.试求:(1)P点与A点的水平距离和竖直高度;(2)小球到达圆弧最高点C时,对轨道的压力.8.如图所示,半径R=1.0m的光滑圆弧轨道固定在竖直平面内,其圆心角θ=106°,两端点A、B连线水平,质量为1㎏的小球自左侧平台上平抛后恰能无碰撞地从A点进入圆形轨道并沿轨道下滑.已知平台与AB连线高度差为h=0.8m(已知sin53°=0.8)求:(1)小球平抛的初速度v0;(2)小球运动到圆弧最低点O时对轨道的压力.。
2021年高考物理【热点·重点·难点】专练(新高考专用)重难点04 平抛运动与圆周运动【知识梳理】考点一 平抛运动基本规律的理解 1.飞行时间:由ght 2=知,时间取决于下落高度h ,与初速度v 0无关. 2.水平射程:x =v 0t =v 0 gh 2,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. 3.落地速度:gh v v v v x y x 2222+=+=,以θ表示落地速度与x 轴正方向的夹角,有2tan v ghv v xy ==θ,所以落地速度也只与初速度v 0和下落高度h 有关. 4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt ;相同,方向恒为竖直向下,如图所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ. 【重点归纳】1.在研究平抛运动问题时,根据运动效果的等效性,利用运动分解的方法,将其转化为我们所熟悉的两个方向上的直线运动,即水平方向的匀速直线运动和竖直方向的自由落体运动.再运用运动合成的方法求出平抛运动的规律.这种处理问题的方法可以变曲线运动为直线运动,变复杂运动为简单运动,是处理曲线运动问题的一种重要的思想方法. 2.常见平抛运动模型的运动时间的计算方法 (1)在水平地面上空h 处平抛: 由221gt h =知ght 2=,即t 由高度h 决定. (2)在半圆内的平抛运动(如图),由半径和几何关系制约时间t :221gt h =t v h R R 022=-+联立两方程可求t . (3)斜面上的平抛问题: ①顺着斜面平抛(如图)方法:分解位移 x =v 0t221gt y =x y=θtan可求得gv t θtan 20=②对着斜面平抛(如图)方法:分解速度 v x =v 0 v y =gttan v gt v v xy ==θ 可求得gv t θtan 0=(4)对着竖直墙壁平抛(如图)水平初速度v 0不同时,虽然落点不同,但水平位移相同.vd t =3.求解多体平抛问题的三点注意(1)若两物体同时从同一高度(或同一点)抛出,则两物体始终在同一高度,二者间距只取决于两物体的水平分运动.(2)若两物体同时从不同高度抛出,则两物体高度差始终与抛出点高度差相同,二者间距由两物体的水平分运动和竖直高度差决定.(3)若两物体从同一点先后抛出,两物体竖直高度差随时间均匀增大,二者间距取决于两物体的水平分运动和竖直分运动.考点二 圆周运动中的运动学分析描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:1.传动装置(1)高中阶段所接触的传动主要有:①皮带传动(线速度大小相等);②同轴传动(角速度相等);③齿轮传动(线速度大小相等);④摩擦传动(线速度大小相等).(2)传动装置的特点:(1)同轴传动:固定在一起共轴转动的物体上各点角速度相同;(2)皮带传动、齿轮传动和摩擦传动:皮带(或齿轮)传动和不打滑的摩擦传动的两轮边缘上各点线速度大小相等.2.圆周运动各物理量间的关系(1)对公式v =ωr 的理解 当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比.(2)对a =rv 2=ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比. 考点三 竖直平面内圆周运动的绳模型与杆模型问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管道)约束模型”. 2.绳、杆模型涉及的临界问题均是没有支撑的小球均是有支撑的小球竖直面内圆周运动的求解思路(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同. (2)确定临界点:gr v =临,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N表现为支持力还是拉力的临界点.(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F 合=F 向. (5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程. 【限时检测】(建议用时:30分钟) 一、单项选择题:本题共4小题。
专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(练)1.一个质量为m 的小铁块沿半径为R 的固定半圆轨道上边缘由静止滑下,到半圆底部时,小铁块所受向心力为铁块重力的1.5倍,则此过程中铁块损失的机械能为: ( )A .18mgRB .14mgR C .12mgR D .34mgR 【答案】B 【名师点睛】当滑到半球底部时,半圆轨道底部所受压力为铁块重力的1.5倍,根据牛顿第二定律可以求出铁块的速度;铁块下滑过程中,只有重力和摩擦力做功,重力做功不影响机械能的减小,损失的机械能等于克服摩擦力做的功,根据动能定理可以求出铁块克服摩擦力做的功。
2.如图所示,在水平桌面上的A 点有一个质量为m 的物体,以初速度v 0被抛出,不计空气阻力,当它到达B 点时,其动能为: ( )A .mgH mv +2021B .12021mgh mv +C .2mgh mgH -D .22021mgh mv +【答案】B【解析】不计空气阻力,只有重力做功,从A 到B 过程,由动能定理可得:E kB -12021mgh mv =,故E kB =12021mgh mv +,选项B 正确。
【名师点睛】以物体为研究对象,由动能定理或机械能守恒定律可以求出在B 点的动能.3.(多选)如图所示,半径为R 的光滑圆环固定在竖直平面内,AB 、CD 是圆环相互垂直的两条直径,C 、D 两点与圆心O 等高.一个质量为m 的光滑小球套在圆环上,一根轻质弹簧一端连在小球上,另一端固定在P 点,P 点在圆心O 的正下方2R 处.小球从最高点A 由静止开始沿逆时针方向下滑,已知弹簧的原长为R ,弹簧始终处于弹性限度内,重力加速度为g .下列说法正确的有: ( )A .弹簧长度等于R 时,小球的动能最大B .小球运动到B 点时的速度大小为gR 2C .小球在A 、B 两点时对圆环的压力差为4mgD .小球从A 到C 的过程中,弹簧对小球做的功等于小球机械能的增加量【答案】CD【名师点睛】此题是对功能关系的考查;解题时要认真分析小球的受力情况及运动情况;尤其要知道在最高点和最低点弹簧的伸长量等于压缩量,故在两位置的弹力相同,弹性势能也相同;同时要知道机械能的变化量等于除重力以外的其它力做功。
习题课2 动能定理的应用[学习目标] 1.进一步理解动能定理,领会应用动能定理解题的优越性.2.会利用动能定理分析变力做功、曲线运动以及多过程问题.一、利用动能定理求变力的功1.动能定理不仅适用于求恒力做功,也适用于求变力做功,同时因为不涉及变力作用的过程分析,应用非常方便.2.利用动能定理求变力的功是最常用的方法,当物体受到一个变力和几个恒力作用时,可以用动能定理间接求变力做的功,即W 变+W 其他=ΔE k .例1 如图1所示,质量为m 的小球自由下落d 后,沿竖直面内的固定轨道ABC 运动,AB 是半径为d 的14光滑圆弧,BC 是直径为d 的粗糙半圆弧(B 是轨道的最低点).小球恰能通过圆弧轨道的最高点C .重力加速度为g ,求:图1(1)小球运动到B 处时对轨道的压力大小. (2)小球在BC 运动过程中,摩擦力对小球做的功. 答案 (1)5mg (2)-34mgd解析 (1)小球下落到B 点的过程由动能定理得2mgd =12m v 2,在B 点:F N -mg =m v 2d ,得:F N =5mg ,根据牛顿第三定律:F N ′= F N =5mg .(2)在C 点,mg =m v C2d 2.小球从B 运动到C 的过程:12m v C 2-12m v 2=-mgd +W f ,得W f =-34mgd . 针对训练 如图2所示,某人利用跨过定滑轮的轻绳拉质量为10 kg 的物体.定滑轮的位置比A 点高3 m.若此人缓慢地将绳从A 点拉到B 点,且A 、B 两点处绳与水平方向的夹角分别为37°和30°,则此人拉绳的力做了多少功?(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计滑轮的摩擦)图2答案 100 J解析 取物体为研究对象,设绳的拉力对物体做的功为W .根据题意有h =3 m. 物体升高的高度Δh =h sin 30°-h sin 37°.①对全过程应用动能定理W -mg Δh =0.② 由①②两式联立并代入数据解得W =100 J. 则人拉绳的力所做的功W 人=W =100 J. 二、利用动能定理分析多过程问题一个物体的运动如果包含多个运动阶段,可以选择分段或全程应用动能定理.(1)分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式,然后联立求解.(2)全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力做的功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动能,针对整个过程利用动能定理列式求解.当题目不涉及中间量时,选择全程应用动能定理更简单,更方便.注意:当物体运动过程中涉及多个力做功时,各力对应的位移可能不相同,计算各力做功时,应注意各力对应的位移.计算总功时,应计算整个过程中出现过的各力做功的代数和. 例2 如图3所示,右端连有一个光滑弧形槽的水平桌面AB 长L =1.5 m ,一个质量为m =0.5 kg 的木块在F =1.5 N 的水平拉力作用下,从桌面上的A 端由静止开始向右运动,木块到达B 端时撤去拉力F ,木块与水平桌面间的动摩擦因数μ=0.2,取g =10 m/s 2.求:图3(1)木块沿弧形槽上升的最大高度(木块未离开弧形槽); (2)木块沿弧形槽滑回B 端后,在水平桌面上滑动的最大距离.答案 (1)0.15 m (2)0.75 m解析 (1)设木块沿弧形槽上升的最大高度为h ,木块在最高点时的速度为零.从木块开始运动到沿弧形槽上升的最大高度处,由动能定理得: FL -F f L -mgh =0其中F f =μF N =μmg =0.2×0.5×10 N =1.0 N 所以h =FL -F f Lmg=(1.5-1.0)×1.50.5×10m =0.15 m(2)设木块离开B 点后沿桌面滑动的最大距离为x .由动能定理得: mgh -F f x =0所以:x =mgh F f =0.5×10×0.151.0 m =0.75 m三、动能定理在平抛、圆周运动中的应用动能定理常与平抛运动、圆周运动相结合,解决这类问题要特别注意:(1)与平抛运动相结合时,要注意应用运动的合成与分解的方法,如分解位移或分解速度求平抛运动的有关物理量.(2)与竖直平面内的圆周运动相结合时,应特别注意隐藏的临界条件:①有支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min =0. ②没有支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min =gR . 例3 如图4所示,一可以看成质点的质量m =2 kg 的小球以初速度v 0沿光滑的水平桌面飞出后,恰好从A 点沿切线方向进入圆弧轨道,其中B 为轨道的最低点,C 为最高点且与水平桌面等高,圆弧AB 对应的圆心角θ=53°,轨道半径R =0.5 m.已知sin 53°=0.8,cos 53°=0.6,不计空气阻力,g 取10 m/s 2.图4(1)求小球的初速度v 0的大小;(2)若小球恰好能通过最高点C ,求在圆弧轨道上摩擦力对小球做的功. 答案 (1)3 m/s (2)-4 J解析 (1)在A 点由平抛运动规律得: v A =v 0cos 53°=53v 0.①小球由桌面到A 点的过程中,由动能定理得 mg (R +R cos θ)=12m v A 2-12m v 0 2②由①②得:v 0=3 m/s.(2)在最高点C 处有mg =m v C2R ,小球从桌面到C 点,由动能定理得W f =12m v C 2-12m v 02,代入数据解得W f =-4 J.1.(用动能定理求变力的功) 如图5所示,质量为m 的物体与水平转台间的动摩擦因数为μ,物体与转轴相距R ,物体随转台由静止开始转动.当转速增至某一值时,物体即将在转台上滑动,此时转台开始匀速转动.设物体的最大静摩擦力近似等于滑动摩擦力,则在整个过程中摩擦力对物体做的功是( )图5A.0B.2μmgRC.2πμmgRD.μmgR2答案 D解析 物体即将在转台上滑动但还未滑动时,转台对物体的最大静摩擦力恰好提供向心力,设此时物体做圆周运动的线速度为v ,则有μmg =m v 2R.①在物体由静止到获得速度v 的过程中,物体受到的重力和支持力不做功,只有摩擦力对物体做功,由动能定理得:W =12m v 2-0.②联立①②解得W =12μmgR .2.(利用动能定理分析多过程问题)滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图6是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O点,圆心角为60°,半径OC 与水平轨道CD 垂直,水平轨道CD 段粗糙且长8 m.某运动员从轨道上的A 点以3 m /s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧形轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为60 kg ,B 、E 两点到水平轨道CD 的竖直高度分别为h 和H ,且h =2 m ,H =2.8 m ,g 取10 m/s 2.求:图6(1)运动员从A 点运动到达B 点时的速度大小v B ; (2)轨道CD 段的动摩擦因数μ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,则最后停在何处?答案 (1)6 m/s (2)0.125 (3)不能回到B 处,最后停在D 点左侧6.4 m 处(或C 点右侧1.6 m 处) 解析 (1)由题意可知:v B =v 0cos 60°解得:v B =6 m/s.(2)从B 点到E 点,由动能定理可得: mgh -μmgx CD -mgH =0-12m v B 2代入数据可得:μ=0.125.(3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处,根据动能定理得: mgh -mgh ′-μmg ·2x CD =0-12m v B 2解得h ′=1.8 m<h =2 m所以第一次返回时,运动员不能回到B 点设运动员从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得: mgh -μmgs =0-12m v B 2④解得:s =30.4 m因为s =3x CD +6.4 m ,所以运动员最后停在D 点左侧6.4 m 处或C 点右侧1.6 m 处. 3.(动能定理在平抛、圆周运动中的应用) 如图7所示,一个质量为m =0.6 kg 的小球以初速度v 0=2 m /s 从P 点水平抛出,从粗糙圆弧ABC 的A 点沿切线方向进入(不计空气阻力,进入圆弧时无动能损失)且恰好沿圆弧通过最高点C ,已知圆弧的圆心为O ,半径R =0.3 m ,θ=60°,g =10 m/s 2.求:图7(1)小球到达A 点的速度v A 的大小; (2)P 点到A 点的竖直高度H ;(3)小球从圆弧A 点运动到最高点C 的过程中克服摩擦力所做的功W . 答案 (1)4 m/s (2)0.6 m (3)1.2 J解析 (1)在A 点由速度的合成得v A =v 0cos θ,代入数据解得v A =4 m/s(2)从P 点到A 点小球做平抛运动,竖直分速度v y =v 0tan θ① 由运动学规律有v y 2=2gH ② 联立①②解得H =0.6 m (3)恰好过C 点满足mg =m v C 2R由A 点到C 点由动能定理得 -mgR (1+cos θ)-W =12m v C 2-12m v A 2代入数据解得W =1.2 J.课时作业一、选择题(1~7为单项选择题,8~9为多项选择题)1.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于( ) A.mgh -12m v 2-12m v 0 2B.12m v 2-12m v 0 2-mghC.mgh +12m v 0 2-12m v 2D.mgh +12m v 2-12m v 0 2答案 C解析 选取物块从刚抛出到正好落地时的过程,由动能定理可得: mgh -W f 克=12m v 2-12m v 0 2解得:W f 克=mgh +12m v 0 2-12m v 2.2.如图1所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R ,一质量为m 的物体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A 从静止开始下落,恰好运动到C 处停止,那么物体在AB 段克服摩擦力所做的功为( )图1A.12μmgR B.12mgR C.-mgR D.(1-μ)mgR答案 D解析 设物体在AB 段克服摩擦力所做的功为W AB ,物体从A 运动到C 的全过程,根据动能定理,有mgR -W AB -μmgR =0.所以有W AB =mgR -μmgR =(1-μ)mgR .3.一质量为m 的小球,用长为l 的轻绳悬挂于O 点,小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2所示,则拉力F 所做的功为( )图2A.mgl cos θB.mgl (1-cos θ)D.Fl sin θ 答案 B解析 小球缓慢移动,时时都处于平衡状态,由平衡条件可知,F =mg tan θ,随着θ的增大,F 也在增大,是一个变化的力,不能直接用功的公式求它所做的功,所以这道题要考虑用动能定理求解.由于物体缓慢移动,动能保持不变,由动能定理得:-mgl (1-cos θ)+W =0,所以W =mgl (1-cos θ).4.质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一轻弹簧最右端O 相距s ,如图3所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为(不计空气阻力)( )图3A.12m v 0 2-μmg (s +x )B.12m v 0 2-μmgxC.μmgsD.μmgx答案 A解析 设物体克服弹簧弹力所做的功为W ,则物体向左压缩弹簧过程中,弹簧弹力对物体做功为-W ,摩擦力对物体做功为-μmg (s +x ),根据动能定理有-W -μmg (s +x )=0-12m v 0 2,所以W =12m v 0 2-μmg (s +x ).5.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,如图4所示,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,在此后小球继续做圆周运动,经过半个圆周恰好能通过最高点,则在此过程中小球克服空气阻力所做的功是( )图4A.14mgR B.13mgR C.12mgR D.mgR解析 小球通过最低点时,设绳的张力为F T ,则 F T -mg =m v 1 2R ,6mg =m v 1 2R①小球恰好过最高点,绳子拉力为零,这时mg =m v 2 2R ②小球从最低点运动到最高点的过程中,由动能定理得 -mg ·2R -W f =12m v 2 2-12m v 1 2③由①②③式联立解得W f =12mgR ,选C.6.如图5所示,假设在某次比赛中运动员从10 m 高处的跳台跳下,设水的平均阻力约为其体重的3倍,在粗略估算中,把运动员当作质点处理,为了保证运动员的人身安全,池水深度至少为(不计空气阻力)( )图5A.5 mB.3 mC.7 mD.1 m答案 A解析 设水深为h ,对运动全程运用动能定理可得: mg (H +h )-F f h =0,mg (H +h )=3mgh .所以h =5 m.7.如图6所示,小球以初速度v 0从A 点沿粗糙的轨道运动到高为h 的B 点后自动返回,其返回途中仍经过A 点,则经过A 点的速度大小为( )图6A.v 0 2-4ghB.4gh -v 0 2C.v 0 2-2ghD.2gh -v 0 2答案 B解析 从A 到B 运动过程中,重力和摩擦力都做负功,根据动能定理可得mgh +W f =12m v 0 2,从B 到A 过程中,重力做正功,摩擦力做负功(因为是沿原路返回,所以两种情况摩擦力做功大小相等),根据动能定理可得mgh -W f =12m v 2,两式联立得再次经过A 点的速度为4gh -v 0 2,故B 正确.8.在平直公路上,汽车由静止开始做匀加速直线运动,当速度达到v max 后,立即关闭发动机直至静止,v -t 图象如图7所示,设汽车的牵引力为F ,受到的摩擦力为F f ,全程中牵引力做功为W 1,克服摩擦力做功为W 2,则( )图7A.F ∶F f =1∶3B.W 1∶W 2=1∶1C.F ∶F f =4∶1D.W 1∶W 2=1∶3答案 BC解析 对汽车运动的全过程,由动能定理得:W 1-W 2=ΔE k =0,所以W 1=W 2,选项B 正确,选项D 错误;由动能定理得Fx 1-F f x 2=0,由图象知x 1∶x 2=1∶4.所以 F ∶F f =4∶1,选项A 错误,选项C 正确.9.如图8所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动.小环从最高点A 滑到最低点B 的过程中,线速度大小的平方v 2随下落高度h 的变化图象可能是图中的( )图8答案 AB解析 对小环由动能定理得mgh =12m v 2-12m v 02,则v 2=2gh +v 0 2.当v 0=0时,B 正确.当v 0≠0时,A 正确.二、非选择题10.如图9所示,光滑水平面AB 与一半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B 点进入半圆形轨道瞬间,对轨道的压力为其重力的7倍,之后向上运动恰能完成半圆周运动到达C 点,重力加速度为g .求:图9(1)弹簧弹力对物块做的功;(2)物块从B 到C 克服阻力所做的功;(3)物块离开C 点后,再落回到水平面上时的动能.答案 (1)3mgR (2)12mgR (3)52mgR 解析 (1)由动能定理得W =12m v B 2 在B 点由牛顿第二定律得7mg -mg =m v B 2R解得W =3mgR(2)物块从B 到C 由动能定理得12m v C 2-12m v B2=-2mgR +W ′ 物块在C 点时mg =m v C 2R解得W ′=-12mgR ,即物块从B 到C 克服阻力做功为12mgR . (3)物块从C 点平抛到水平面的过程中,由动能定理得2mgR =E k -12m v C 2,解得E k =52mgR . 11.如图10所示,绷紧的传送带在电动机带动下,始终保持v 0=2 m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =10 kg 的工件轻轻地放在传送带底端,由传送带传送至h =2 m 的高处.已知工件与传送带间的动摩擦因数μ=32,g 取10 m/s 2.图10(1)通过计算分析工件在传送带上做怎样的运动?(2)工件从传送带底端运动至h =2 m 高处的过程中摩擦力对工件做了多少功?答案 (1)工件先以2.5 m /s 2的加速度做匀加速直线运动,运动0.8 m 与传送带达到共同速度2 m/s 后做匀速直线运动 (2)220 J解析 (1)工件刚放上传送带时受滑动摩擦力:F f =μmg cos θ,工件开始做匀加速直线运动,由牛顿运动定律:F f -mg sin θ=ma 可得:a =F f m-g sin θ =g (μcos θ-sin θ)=10×⎝⎛⎭⎫32cos 30°-sin 30° m/s 2 =2.5 m/s 2.设工件经过位移x 与传送带达到共同速度,由匀变速直线运动规律可得:x =v 0 22a =222×2.5 m =0.8 m <h sin θ=4 m 故工件先以2.5 m /s 2的加速度做匀加速直线运动,运动0.8 m 与传送带达到共同速度2 m/s 后做匀速直线运动.(2)在工件从传送带底端运动至h =2 m 高处的过程中,设摩擦力对工件做功为W f ,由动能定理得W f -mgh =12m v 0 2, 可得:W f =mgh +12m v 0 2=10×10×2 J +12×10×22 J =220 J. 12.如图11所示,光滑斜面AB 的倾角θ=53°,BC 为水平面,BC 长度l BC =1.1 m ,CD 为光滑的14圆弧,半径R =0.6 m.一个质量m =2 kg 的物体,从斜面上A 点由静止开始下滑,物体与水平面BC间的动摩擦因数μ=0.2,轨道在B、C两点光滑连接.当物体到达D点时,继续竖直向上运动,最高点距离D点的高度h=0.2 m.sin 53°=0.8,cos 53°=0.6.g取10 m/s2.求:图11(1)物体运动到C点时的速度大小v C;(2)A点距离水平面的高度H;(3)物体最终停止的位置到C点的距离s.答案(1)4 m/s(2)1.02 m(3)0.4 m解析(1)物体由C点运动到最高点,根据动能定理得:-mg(h+R)=0-122m v C代入数据解得:v C=4 m/s(2)物体由A点运动到C点,根据动能定理得:12-0=mgH-μmgl BC2m v C代入数据解得:H=1.02 m(3)从物体开始下滑到停下,根据动能定理得:mgH-μmgs1=0代入数据,解得s1=5.1 m由于s1=4l BC+0.7 m所以,物体最终停止的位置到C点的距离为:s=0.4 m.。
动能定理与圆周运动 平抛运动班级 姓名 得分1.如图所示,物体沿一个光滑曲面从A 点无初速度滑下,滑至曲面最低点B 时,下滑的高度为5m. 求物体在B 点的速度。
2.如图所示,物体沿一曲面从A 点无初速度滑下,滑至曲面最低点B 时,下滑的高度为5m.若物体的质量为1㎏,到B 点的速度为6m/s,则在下滑过程中克服阻力所做的功是多少?3、光滑的水平面AB 与光滑的半圆形轨道相接触,直径BC 竖直,圆轨道半径为R 一个质量为m 的物体放在A 处,AB=2R ,物体在水平恒力F 的作用下由静止开始运动,当物体运动到B 点时撤去水平外力之后,物体恰好从圆轨道的定点C 水平抛出,求水平力F 的大小4.AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。
一小球自A 点起由静止开始沿轨道下滑。
已知圆轨道半径为R ,小球的质量为m ,不计各处摩擦。
求(1)小球运动到B 点时的动能;(2)小球经过圆弧轨道的B 点和水平轨道的C 点时,所受轨道支持力N B 、N C 各是多大?(3)小球下滑到距水平轨道的高度为R 21时速度的大小和方向; 解:RO m B C4.AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。
一小球自A 点起由静止开始沿轨道下滑。
已知圆轨道半径为R ,小球的质量为m ,不计各处摩擦。
求(1)小球运动到B 点时的动能;(2)小球经过圆弧轨道的B 点和水平轨道的C 点时,所受轨道支持力N B 、N C 各是多大?(3)小球下滑到距水平轨道的高度为R 21时速度的大小和方向; 解: (1)m :A →B 过程:∵动能定理2B 102mgR mv =- 2KB B 12E mv mgR ∴== ① (2) m :在圆弧B 点:∵牛二律2B B v N mg m R -= ② 将①代入,解得 N B =3mg在C 点:N C =mg(3) m :A →D :∵动能定理211022D mgR mv =-D v ∴=30.B CB R/C D。
动能定理的综合应用:动能定理与平抛和圆周运动的综合问题【例1】下面关于运动物体所受合外力、合外力做功和动能变化的说法,正确的是( )A.如果物体所受合外力为零,那么物体的动能一定不变B.如果合外力对物体做的功为零,那么合外力一定为零C.物体在合外力作用下做变速运动,物体的动能一定变化D.物体的动能保待不变,该物体所受合外力不一定为零【例2】关于做功和物体动能变化的关系,不正确的是( )A.只有动力对物体做功,物体动能增加B.只有物体克服阻力做功,它的动能减少C.外力对物体做功的代数和等于物体的末动能与初动能之差D.动力和阻力都对物体做功,物体的动能一定变化【例3】质量为m的物体,静止于倾角为α的光滑斜面底端,用平行于斜面方向的恒力F作用于物体上使之沿斜面向上运动。
当物体运动到斜面中点时撤去外力,物体刚好能滑行到斜面顶端,则恒力F的大小为( ) A.2mg(1-sinα) B.2mgsinαC.2mgcosα D.2mg(1+sinα)【例4】如图所示,质量为m的物体被用细绳经过光滑小孔而牵引在光滑的水平面上做匀速圆周运动,拉力为某个值F时转动半径为R,当外力逐渐增大到6F时,物体仍做匀速圆周运动,半径为R/2。
则外力对物体所做的功为( )A.0 B.FR C.3FR D.5/2FR【例5】运动员用200N 的力,把一个静止的质量为1kg 的球以10m/s 的速度踢出,球在水平面上运动60m 后停止,则运动员对球所做的功为( ) A .50J B .200J C .12000J D .2000J【例6】质量为m 的跳水运动员,从离地面高h 的跳台上以速度v 1斜向上跳起,跳起高度离跳台为H ,最后以速度v 2进入水中,不计空气阻力,则运动员起跳时所做的功( )A .2112mv B .mgH C .+mgH mgh D .2112+mv mgh E .2212-mv mgh【例7】一质量m =0.5kg 的物体,以v 0=4m/s 的初速度沿水平桌面上滑过x =0.7m 的路程后落到地面,已知桌面高h =0.8m ,着地点距桌沿的水平距离x 1=1.2m ,求物体与桌面间的摩擦系数是多少?(g 取10m/s 2)【例8】如图所示,质量为2kg 的物体从A 点沿半径为R 的粗糙半球内表面以10m/s 的速度开始下滑,到达B 点时的速度变为2m/s ,求物体从A 运动到B 的过程中,摩擦力所做的功是多少?【例9】物体从高出地面H 处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑深h 处停止。
动能定理和圆周运动相结合临界例题1如图所示,小球用不可伸长的长为L的轻绳悬于O点,小球在最低点的速度必需为多大时,才能在竖直平面内做完整个圆周运动? (2)若所给的速度逐渐增大时,绳子在最高点时拉力变化?(3)最低点和最高点的拉力变化多少?拓展:若绳子改为杆的圆形轨道,小球RB进入半径为变式训练1-1如图所示,小球自斜面顶端A由静止滑下,在斜面底端试求整个过程中摩擦力对小球所做的功。
3R,A、B两点间高度差为已知刚好能通过圆形轨道的最高点C,的竖直,圆轨道半径为R一个质量为m例题2如图,光滑的水平面AB与光滑的半圆形轨道相接触,直径BC点时撤去水平外力之F的作用下由静止开始运动,当物体运动到BA物体放在处,AB=2R,物体在水平恒力后,物体恰好从圆轨道的顶点C水平抛出,求水平力点的水平位移为BD点距点平抛,落地点如果在上题中,物体不是恰好过变式训练2-1C点,而是在C 4R,求水平力。
点时撤去外力,又变式训练2-2如图上题,滑块在恒定外力作用下从水平轨道上的AB点由静止出发到滑块脱离半圆形轨道后又刚好落到原出发C,且恰好通过轨道最高点沿竖直面内的光滑半圆形轨道运动,点A段运动过程中的加速度。
,试求滑块在AB1BRAOAD点端与圆心为水平面,例题3如图所示,竖直平面内的3/4圆弧形光滑轨道半径为等高,,BOAA点进入圆轨道并恰能到达点正上方由静止释放,自由下落至在点。
求:的正上方,一个小球在A点的竖直高度;⑴释放点距AC落点点的水平距离。
与⑵BO DC ADBRO是圆管例题4如图上题图所示,四分之三周长圆管的半径=0.4m,管口在同一水平面上,和圆心EDBEBCCE段光滑;直径稍小于圆管内径、段存在摩擦,段动摩擦因数相同,和的最高点,其中半圆周CHAmB,=2.5m处的的小球从距时的速率为正上方高处自由下落,到达圆管最低点质量6m/s=0.5kg D飞出,恰能再次进入圆管,假定小球再次进入圆管时不计碰撞能量损失,并继续运动直到圆管的最高点2g取重力加速度,求=10m/s A D点时的速度小球飞离(1)DB(2)小球从点过程中克服摩擦所做的功点到C)(3小球再次进入圆管后,能否越过点?请分析说明理由H DB O ERC处,在O点正下方Pm变式训练4-1如图所示,质量为的小球用不可伸长的细线悬于O点,细线长为L那么钉子到悬处的钉子作圆周运动。
平抛运动动能定理一、什么是平抛运动平抛运动是指在水平方向上以一定的速度将物体抛出,物体在抛出时只受到重力作用,忽略空气阻力的情况下,物体的运动轨迹呈抛物线形状。
二、平抛运动的动能定理动能定理是物理学中的一个重要定理,描述了物体动能的变化与力的关系。
在平抛运动中,物体只受到重力作用,不受其他力的作用,因此动能定理可以简化为以下公式:动能的变化等于功的变化。
动能:K=12mv2功:W=Fd其中,m为物体的质量,v为物体的速度,F为物体所受的力,d为力的作用距离。
在平抛运动中,物体只受到重力作用,重力与速度方向相对,因此不做功。
所以,动能的变化为零,即动能不变。
三、动能定理的应用动能定理在平抛运动中的应用非常广泛,下面将从不同角度探讨动能定理的应用。
1. 平抛运动的速度与高度关系根据动能定理可知,平抛运动中物体的动能不变。
由动能公式K=12mv2可得:K1=K21 2mv12=12mv22 v12=v22v1=v2所以,在平抛运动中,物体在不同高度上的速度相等。
2. 平抛运动的飞行距离与速度关系根据动能定理可知,平抛运动中物体的动能不变。
假设物体从地面抛出,初始速度为v,飞行距离为d。
根据动能定理,动能的变化为零,可以得出公式:重力势能的变化等于动能的变化。
mgℎ=12mv22gℎ=v2v=√2gℎ所以,在平抛运动中,物体的飞行距离与初始速度的平方成正比。
3. 平抛运动的最大高度与速度关系在平抛运动中,物体的最大高度可以通过动能定理来推导。
根据动能定理可知,动能的变化等于重力势能的变化,可以得出公式:12mv2=mgℎv2=2gℎ所以,在平抛运动中,物体的最大高度与初始速度的平方成正比。
四、结论平抛运动中的动能定理揭示了物体动能与力的关系,通过动能定理可以推导出物体的速度与高度、飞行距离、最大高度之间的关系。
动能定理的应用使得我们能够更好地理解和分析平抛运动的相关问题。
通过对平抛运动动能定理的深入学习,不仅可以加深对物体运动规律的理解,也可以为解决实际问题提供了一种有效的分析方法。
曲线运动曲线运动包括平抛运动、类平抛运动,圆周运动等知识。
主干知识整合一、曲线运动(曲线运动的速度方向一定改变,所以是变速运动.) 1.物体做曲线运动的条件: F 合与v 不在同一直线上。
2.做曲线运动的物体受的合力总是指向曲线凹的一侧。
(或表述为轨迹必须夹在力和速度的夹角)二、抛体运动1.平抛运动:以一定的水平初速度将物体抛出,在只受重力的情况下,物体所做的运动。
平抛运动的规律:平抛运动的处理方法是将其分解为水平方向和竖直方向的两个分运动。
(1)水平方向:做匀速直线运动,v x = v 0,x = v o t ,(2)竖直方向:做自由落体运动,v y = gt ,y = 12gt 2 (3)任意时刻位移22yx x +=2tan υθgt x y==(4)任意时刻速度:22022)(gt v v v v yx+=+=tan y xv gtv υα==2.平抛运动的两个重要推论(1)做平抛(或类平抛)运动的物体任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点;(2)做平抛或类平抛运动的物体在任意时刻、任意位置处设其瞬时速度与水平方向的夹角为θ、位移与水平方向的夹角为φ,则有tan θ=2tan φ。
3.类平抛运动:以一定的初速度将物体抛出,如果物体受的合力恒定且与初速度方向垂直,则物体所做的运动为类平抛运动。
类平抛运动的公式:三、圆周运动物理量 大小方向 物理意义 线速度 v =x t =2πr T 圆弧上各点的切线方向 描述质点沿圆周运动的快慢角速度 ω=φt =2πT中学不研究其方向周期、频率 T =1f =2πr v无方向向心加速度 a = = 时刻指向圆心描述线速度方向改变的快慢相互关系a = = = =同一转轴物体上各点的角速度相等,皮带传动轮子边缘各点的线速度相等。
2、圆周运动及其临界问题竖直面内圆周运动的两种临界问题的比较(v=gr ------------------称为临界速度)最高点无支撑最高点有支撑实例球与绳连接、水流星、翻滚过山车球与杆连接、车过拱桥、球过竖直管道、套在圆环上的物体等图示在最高 点受力重力、弹力F 弹向下或等于零,mg +F 弹= m v 2R重力、弹力F 弹向下、向上或等于零,mg ± F 弹 = m v 2R恰好过 最高点F 弹=0,mg = m v 2R,v =Rg 即在最高点速度不能为零v =0,mg = F 弹在最高点速度可为零3、向心力来源:向心力可以由重力、弹力、摩擦力等各种性质的力提供,也可以是各力的合力或某力的分力提供。
动能定理在往复运动、平抛、圆周运动中的应用[学习目标] 1.会灵活选取研究过程,应用动能定理解决往复运动问题.2.会用动能定理解决平抛运动问题.3.结合圆周运动的知识,会应用动能定理计算圆周运动问题.一、利用动能定理分析往复运动问题1.在有摩擦力做功的往复运动过程中,注意两种力做功的区别: (1)重力做功只与初、末位置有关,而与路径无关;(2)滑动摩擦力做功与路径有关,克服摩擦力做的功W =fs (s 为路程).2.由于动能定理解题的优越性,求多过程往复运动问题中的路程时,一般应用动能定理. 例1 (2022·平潭翰英中学高一阶段练习)如图所示,一个小球的质量m =2 kg ,能沿倾角θ=37°的斜面由顶端B 从静止开始下滑,小球滑到底端时与A 处的挡板碰触后反弹(小球与挡板碰撞过程中无能量损失),若小球每次反弹后都能回到原来的23处,已知A 、B 间距离为s 0=2 m ,sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2,求:(1)若斜面光滑,小球到达A 点的速度v A 的大小.(2)以A 点所在水平面为零势能面,小球第一次反弹后的最大势能E p ; (3)小球由开始下滑到最终静止的过程中所通过的总路程和克服摩擦力做的功. 答案 (1)2 6 m/s (2)16 J (3)10 m 24 J解析 (1)若斜面光滑,在沿斜面方向上由牛顿第二定律得mg sin θ=ma 解得a =6 m/s 2,根据运动学公式v A 2=2as 0, 解得v A =2 6 m/s.(2)以A 点所在水平面为零势能面,小球第一次反弹后的最大势能E p =2mgs 0sin θ3=16 J.(3)设小球与斜面间的动摩擦因数为μ,小球第一次由静止从B 点下滑到碰撞后上升到速度为零的过程中,由动能定理得mg ⎝⎛⎭⎫s 0-23s 0sin θ-μmg ⎝⎛⎭⎫s 0+23s 0cos θ=0, 小球最终一定会停在A 处,全过程由动能定理得mgs 0sin θ-μmgs cos θ=0, 联立解得小球通过的总路程为s =10 m , 所以小球克服摩擦力做的功为 W 克f =μmgs cos θ=24 J.例2 如图所示,ABCD 为一竖直平面内的轨道,其中BC 水平,A 点比BC 高出10 m ,BC 长1 m ,AB 和CD 轨道光滑,曲、直轨道平滑连接.一质量为1 kg 的物体,从A 点以4 m/s 的速度沿轨道开始运动,经过BC 后滑到高出C 点10.3 m 的D 点时速度为0.g 取10 m/s 2,求:(1)物体与BC 轨道间的动摩擦因数;(2)物体第5次经过B 点时的速度大小(结果可用根式表示); (3)物体最后停止的位置(距B 点多少米). 答案 (1)0.5 (2)411 m/s (3)距B 点0.4 m 解析 (1)由A 到D ,由动能定理得 -mg (h -H )-μmgs BC =0-12m v 12解得μ=0.5(2)物体第5次经过B 点时,物体在BC 上滑动了4次,由动能定理得 mgH -μmg ·4s BC =12m v 22-12m v 12,解得v 2=411 m/s(3)分析整个过程,由动能定理得 mgH -μmgs =0-12m v 12解得s =21.6 m所以物体在轨道上来回运动了10次后,还有1.6 m ,故最后停止的位置与B 点的距离为2 m -1.6 m =0.4 m.二、动能定理在平抛、圆周运动中的应用动能定理常与平抛运动、圆周运动相结合,解决这类问题要特别注意:(1)与平抛运动相结合时,要注意应用运动的合成与分解的方法,如分解位移或分解速度求平抛运动的有关物理量.(2)与竖直面内的圆周运动相结合时,应特别注意隐藏的临界条件:①可提供支撑效果的竖直面内的圆周运动,物体能通过最高点的临界条件为v min =0. ②不可提供支撑效果的竖直面内的圆周运动,物体能通过最高点的临界条件为只有重力提供向心力,mg =m v min 2R,v min =gR .例3 (2022·济宁市兖州区教研室高一期中)如图所示,光滑圆轨道固定在竖直面内,一质量为m 的小球沿轨道做完整的圆周运动.已知小球在最低点时对轨道的压力大小为N 1,在最高点时对轨道的压力大小为N 2.重力加速度大小为g ,则N 1-N 2的值为( )A .6mgB .5mgC .4mgD .3mg答案 A解析 设轨道半径为R ,小球在最低点时受到竖直向上的支持力N 1′和竖直向下的重力mg ,由牛顿第二定律有N 1′-mg =m v 12R ,由牛顿第三定律可知N 1=N 1′,小球在最高点时受到竖直向下的弹力N 2′和竖直向下的重力mg , 由牛顿第二定律有N 2′+mg =m v 22R ,由牛顿第三定律可得N 2=N 2′,小球由最低点到最高点过程,由动能定理有 -mg ·2R =12m v 22-12m v 12,联立解得N 1-N 2=6mg , 所以A 正确,B 、C 、D 错误.例4 如图所示,一可以看成质点的质量m =2 kg 的小球以初速度v 0沿光滑的水平桌面飞出后,恰好从A 点沿切线方向进入固定圆弧轨道,BC 为圆弧的竖直直径,其中B 为轨道的最低点,C 为最高点且与水平桌面等高,圆弧AB 对应的圆心角θ=53°,轨道半径R =0.5 m .已知sin 53°=0.8,cos 53°=0.6,不计空气阻力,g 取10 m/s 2.(1)求小球的初速度v 0的大小;(2)若小球恰好能通过最高点C ,求在圆弧轨道上摩擦力对小球做的功. 答案 (1)3 m/s (2)-4 J解析 (1)在A 点,由平抛运动规律得: v A =v 0cos 53°=53v 0小球由桌面到A 点的过程中,由动能定理得 mg (R +R cos θ)=12m v A 2-12m v 02联立得:v 0=3 m/s ;(2)若小球恰好能通过最高点C ,在最高点C 处有mg =m v C 2R ,小球从桌面运动到C 点的过程中,由动能定理得W f =12m v C 2-12m v 02代入数据解得W f =-4 J.训练11.如图所示,质量为0.1 kg 的小物块在粗糙水平桌面上以初速度v 0滑行4 m 后以3.0 m/s 的速度飞离桌面,最终落在水平地面上,已知小物块与桌面间的动摩擦因数为0.5,桌面高 0.45 m ,若不计空气阻力,取g =10 m/s 2,则( )A .小物块的初速度是5 m/sB .小物块的射程为1.2 mC .小物块在桌面上克服摩擦力做8 J 的功D .小物块落地时的动能为0.9 J 答案 D解析 小物块在粗糙水平桌面上滑行时,由动能定理得:-μmgs =12m v 2-12m v 02解得:v 0=7 m/s ,W 克f =μmgs =2 J ,A 、C 错误;小物块飞离桌面后做平抛运动,由h =12gt 2,x =v t 得x =0.9 m ,B 错误;由mgh =E k -12m v 2得,小物块落地时E k =0.9 J ,D 正确.2.(2022·全国甲卷)北京2022年冬奥会首钢滑雪大跳台局部示意图如图所示.运动员从a 处由静止自由滑下,到b 处起跳,c 点为a 、b 之间的最低点,a 、c 两处的高度差为h .要求运动员经过c 点时对滑雪板的压力不大于自身所受重力的k 倍,运动过程中将运动员视为质点并忽略所有阻力,则c 点处这一段圆弧雪道的半径不应小于( )A.h k +1B.h kC.2h kD.2hk -1答案 D解析 运动员从a 到c 根据动能定理有mgh =12m v c 2,在c 点有N c -mg =m v 2R c ,N c ≤ kmg ,联立有R c ≥2hk -1,故选D.3.如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,BC 水平,B 、C 间距离d =0.50 m ,盆边缘的高度h =0.30 m .在A 处放一个质量为m 的小物块并让其从静止下滑.已知盆内侧壁是光滑的,而盆底BC 与小物块间的动摩擦因数μ=0.10.小物块在盆内来回滑动,最后停下来,则停止位置到B 的距离为( )A .0.50 mB .0.25 mC .0.10 mD .0 答案 D解析 设小物块在BC 面上运动的总路程为s ,物块在BC 面上所受的滑动摩擦力大小始终为f =μmg ,对小物块从开始运动到停止的整个过程,由动能定理得mgh -μmgs =0,得s =hμ=0.300.10m =3 m ,d =0.50 m ,则s =6d ,所以小物块最后停在B 点,故选D. 4.如图所示,一木块沿竖直放置的粗糙曲面从高处滑下,当它滑过A 点的速度大小为5 m/s 时,滑到B 点的速度大小也为5 m/s.若使它滑过A 点的速度大小变为7 m/s ,则它滑到B 点的速度大小( )A .大于7 m/sB .等于7 m/sC .小于7 m/sD .无法确定答案 C解析 第一次从A 点到B 点的过程中: mgh -W f1=ΔE k =0,W f1=mgh第二次速度增大,木块对曲面的压力增大,W f2>W f1,故mgh -W f2<0,木块滑到B 点时的动能小于在A 点的动能,故木块滑到B 点的速度大小小于7 m/s ,C 正确.5.(2022·温州市高一期中)如图所示,有一根管道ABCD 平放并固定在水平桌面上,AB 部分为长L =1 m ,动摩擦因数μ=0.35的水平直管道,BCD 部分为光滑半圆形管道,其半径R = 0.5 m ,两部分在B 处无缝连接,现让一个直径略小于管内径、质量m =2 kg 的小球,从A 处以初速度v 0=4 m/s 进入管道,π≈3,g 取10 m/s 2.求:(1)小球运动到B 处时速度的大小; (2)小球在管道内运动的时间;(3)小球运动到C 处时,管道对小球作用力的大小(结果可以用根式表示) 答案 (1)3 m/s (2)1114 s (3)4106 N解析 (1)小球从A 到B 由动能定理得 -μmgL =12m v B 2-12m v 02解得v B =3 m/s.(2)小球在AB 段匀减速运动的时间 t 1=L v 0+v B 2=27 s ,小球在BD 段匀速运动的时间t 2=πR v B =12 s ,小球在管道内运动的时间t =t 1+t 2=1114 s.(3)小球运动到C 时,水平方向F =m v B 2R ,竖直方向N =mg ,则管道对小球作用力F =N 2+F 2=4106 N.6.如图所示,光滑固定斜面AB 的倾角θ=53°,BC 为水平面,BC 长度l BC =1.1 m ,CD 为光滑的14圆弧,半径R =0.6 m .一个质量m =2 kg 的物体,从斜面上A 点由静止开始下滑,物体与水平面BC 间的动摩擦因数μ=0.2,轨道在B 、C 两点平滑连接.当物体到达D 点时,继续竖直向上运动,最高点距离D 点的高度h =0.2 m .不计空气阻力,sin 53°=0.8,cos 53°=0.6,g 取10 m/s 2.求:(1)物体运动到C 点时的速度大小v C ; (2)A 点距离水平面的高度H ;(3)物体最终停止的位置到C 点的距离s . 答案 (1)4 m/s (2)1.02 m (3)0.4 m解析 (1)物体由C 点运动到最高点,根据动能定理得:-mg (h +R )=0-12m v C 2代入数据解得:v C =4 m/s(2)物体由A 点运动到C 点,根据动能定理得: mgH -μmgl BC =12m v C 2-0代入数据解得:H =1.02 m(3)从物体开始下滑到最终停止,根据动能定理得:mgH -μmgs 1=0,代入数据,解得s 1= 5.1 m由于s 1=4l BC +0.7 m ,所以物体最终停止的位置到C 点的距离为:s =0.4 m.训练21.(2022·大庆铁人中学高一阶段练习)如图所示,竖直面内光滑圆轨道半径R =0.4 m ,从最低点A 有一质量为m =1 kg 的小球开始运动,初速度v 0=5 m/s 方向水平向右,重力加速度g 取10 m/s 2,下列说法正确的是( )A .在A 点时,小球对轨道的压力为62.5 NB .小球可能脱离圆轨道C .在B 点时,小球重力的瞬时功率为30 WD .小球在B 点的速率为3 m/s 答案 D解析 在A 点时,设轨道对小球的支持力大小为F A ,根据牛顿第二定律有F A -mg =m v 02R ,解得F A =72.5 N ,根据牛顿第三定律可知此时小球对轨道的压力大小为F =F A =72.5 N ,故A 错误;在B 点时,小球的速度方向与重力方向垂直,根据功率的定义可知,小球重力的瞬时功率为零,故C 错误;对小球从A 到B 过程,根据动能定理有-2mgR =12m v B 2-12m v 02,解得v B =3 m/s ,设小球在B 点受轨道向下的压力为F B ,则由牛顿第二定律F B +mg =m v B 2R ,解得F B =12.5 N ,说明小球在B 点不会脱轨,故B 错误,D 正确.2.某游乐场的滑梯可以简化为如图所示竖直面内的ABCD 轨道,AB 为长L =6 m 、倾角α=37°的斜轨道,BC 为水平轨道,CD 为半径R =15 m 、圆心角β=37°的圆弧轨道,轨道AB 段粗糙,其余各段均光滑.一小孩(可视为质点)从A 点以初速度v 0=2 3 m/s 下滑,沿轨道运动到D 点时的速度恰好为零(不计经过B 点时的能量损失).已知该小孩的质量m =30 kg ,取sin 37°=0.6,cos 37°=0.8,g =10 m/s 2,不计空气阻力,设最大静摩擦力等于滑动摩擦力,求:(1)该小孩第一次经过圆弧轨道C 点时,对圆弧轨道的压力; (2)该小孩与AB 段间的动摩擦因数; (3)该小孩在轨道AB 上运动的总路程s . 答案 (1)420 N ,方向向下 (2)0.25 (3)21 m解析 (1)小孩由C 运动到D 的过程,由动能定理可得-mg (R -R cos β)=0-12m v C 2,解得v C =215 m/s在C 点,由牛顿第二定律得N -mg =m v C 2R,解得N =420 N ,根据牛顿第三定律,小孩对轨道的压力为420 N ,方向向下. (2)小孩从A 运动到C 的过程中,由动能定理得:mgL sin α-μmgL cos α=12m v C 2-12m v 02解得:μ=0.25(3)在AB 斜轨道上,μmg cos α<mg sin α,小孩不能静止在斜轨道上,则小孩从A 点以初速度v 0滑下,最后静止在BC 轨道B 处.由动能定理得: mgL sin α-μmgs cos α=0-12m v 02,解得s =21 m.3.(2022·宁波市北仓中学高一期中)如图所示,竖直面内有一光滑圆弧轨道,其半径为R =0.5 m ,平台与轨道的最高点等高.一质量m =0.8 kg 的小球从平台边缘的A 处以v 0=3 m/s 的水平速度射出,恰能沿圆弧轨道上P 点的切线方向进入轨道内侧,轨道半径OP 与竖直线的夹角为53°,已知sin 53°=0.8,cos 53°=0.6:(1)求小球到达P 点时的速度v P 的大小;(2)求小球到达圆轨轨道最低点时的速度大小以及对轨道的压力.(3)小球沿轨道通过圆弧的最高点Q 时对轨道的内壁还是外壁有弹力,并求出弹力的大小. 答案 (1)5 m/s (2)29 m/s 54.4 N ,方向竖直向下 (3)对外壁弹力为6.4 N 解析 (1)在P 点,对v P 进行分解,如图所示,由平抛运动规律得 v P =v 0cos 53°=30.6m/s =5 m/s(2)从抛出到圆弧轨道最低点,根据动能定理 mg ·2R =12m v 12-12m v 02解得v 1=29 m/s根据牛顿第二定律和向心力公式N -mg =m v 12R ,解得N =54.4 N ,根据牛顿第三定律F 压=N=54.4 N ,方向竖直向下.(3)平台与轨道的最高点等高,根据动能定理可知v Q =v 0=3 m/s ,设小球受到向下的弹力F 1,根据牛顿第二定律和向心力公式F 1+mg =m v Q 2R ,解得F 1=6.4 N>0,根据牛顿第三定律,小球对外壁有弹力,大小为6.4 N.4.(2022·湖南高一期中)科技助力北京冬奥:我国自主研发的“人体高速弹射装置”几秒钟就能将一名滑冰运动员从静止状态加速到指定速度,辅助滑冰运动员训练各种滑行技术.如图所示,某次训练,弹射装置在加速阶段将质量m =60 kg 的滑冰运动员加速到速度v 0=8 m/s 后水平向右抛出,运动员恰好从A 点沿着圆弧的切线方向进入光滑圆弧轨道AB .AB 圆弧轨道的半径为R =5 m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心O 的连线与竖直方向成37°角.MN 是一段粗糙的水平轨道,滑冰运动员与MN 间的动摩擦因数μ=0.08,水平轨道其他部分光滑.最右侧是一个半径为r =2 m 的半圆弧光滑轨道,C 点是半圆弧光滑轨道的最高点,半圆弧光滑轨道与水平轨道BD 在D 点平滑连接.取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.整个运动过程中将运动员简化为一个质点.(1)求运动员水平抛出点距A 点的高度;(2)求运动员经过B 点时对轨道的压力大小;(3)若运动员恰好能通过C 点,求MN 的长度L .答案 (1)1.8 m (2)2 040 N (3)12.5 m解析 (1)根据运动的合成与分解可得运动员经过A 点时的速度大小为v A =v 0cos 37°=10 m/s ① 设运动员水平抛出点距A 点的高度为h ,对运动员从抛出点到A 点的过程,由动能定理有mgh =12m v A 2-12m v 02② 联立①②解得h =1.8 m ③(2)设运动员经过B 点时的速度大小为v B ,对运动员从A 点到B 点的过程,根据动能定理有mg (R -R cos 37°)=12m v B 2-12m v A 2④ 设运动员经过B 点时所受轨道支持力大小为N ,根据牛顿第二定律及向心力公式有N -mg =m v B 2R⑤ 联立①④⑤解得N =2 040 N ⑥根据牛顿第三定律可知,运动员经过B 点时对轨道的压力大小为2 040 N ;(3)设运动员刚好通过C 点时的速度大小为v C ,根据牛顿第二定律及向心力公式有mg =m v C 2r ⑦ 对运动员从B 点到C 点的过程,根据动能定理有-μmgL -2mgr =12m v C 2-12m v B 2⑧ 联立④⑦⑧解得L =12.5 m .⑨5.(2022·重庆市第七中学校高一期中)如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细线相连的质量均为m的两个物体A和B,它们分居圆心两侧,与圆心距离分别为R A=r,R B=2r,与盘间的动摩擦因数μ相同,最大静摩擦力等于滑动摩擦力,重力加速度为g,求:(1)细线刚要产生拉力时的角速度ω1;(2)当圆盘转速加快到两物体刚好要发生滑动时的角速度ω2和此时细线的拉力大小F;(3)当圆盘从静止加速到两物体刚好要发生滑动时对两物体做的总功W.答案(1)μg2r(2)2μgr3μmg(3)5μmgr解析(1)由于B物体的向心力较大,细线刚要产生拉力时,B物体的静摩擦力达到最大,依题意对B,最大静摩擦力提供向心力有μmg=mω12·2r,解得ω1=μg2r(2)当圆盘转速加快到两物体刚好要发生滑动时,设此时的角速度为ω2和此时细线的拉力为F 对A有:F-μmg=mω22·r对B有:F+μmg=mω22·2r解得ω2=2μgr,F=3μmg.(3)根据动能定理有,两物体的动能增加量即为外力对其所做的总功,即W=12m(ω2r)2+12m(ω2·2r)2=5μmgr.。
动能定理在平抛、圆周运动中的综合应用动能定理常与平抛运动、圆周运动相结合,解决这类问题要特别注意:(1)与平抛运动相结合时,要注意应用运动的合成与分解的方法,如分解位移或分解速度求平抛运动的有关物理量.(2)与竖直平面内的圆周运动相结合时,应特别注意隐藏的临界条件:①有支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min=0.①没有支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min=gR.【题型1】如图所示,质量m=0.1 kg的金属小球从距水平面高h=2.0 m的光滑斜面上由静止开始释放,运动到A点时无能量损耗,水平面AB是长2.0 m的粗糙平面,与半径为R=0.4 m的光滑的半圆形轨道BCD相切于B点,其中圆轨道在竖直平面内,D为轨道的最高点,小球恰能通过最高点D,求:(g=10 m/s2)(1)小球运动到A点时的速度大小;(2)小球从A运动到B时摩擦阻力所做的功;(3)小球从D点飞出后落点E与A的距离.【题型2】如图所示,一可以看成质点的质量为m=2 kg的小球以初速度v0沿光滑的水平桌面飞出后,恰好从A点沿切线方向进入圆弧轨道,其中B为轨道的最低点,C为最高点且与水平桌面等高,圆弧AB对应的圆心角θ=53°,轨道半径R=0.5 m.已知sin 53°=0.8,cos 53°=0.6,不计空气阻力,g取10 m/s2.(1)求小球的初速度v0的大小;(2)若小球恰好能通过最高点C,求在圆弧轨道上摩擦力对小球做的功.【题型3】如图所示是一种常见的圆桌,桌面中间嵌一半径为r=1.5 m、可绕中心轴转动的圆盘,桌面与圆盘面在同一水平面内且两者间缝隙可不考虑.已知桌面离地高度为h=0.8 m,将一可视为质点的小碟子放置在圆盘边缘,若缓慢增大圆盘的角速度,碟子将从圆盘上甩出并滑上桌面,再从桌面飞出,落地点与桌面飞出点的水平距离是0.4 m.已知碟子质量m=0.1 kg,碟子与圆盘间的最大静摩擦力F fmax=0.6 N,g取10 m/s2,求:(不计空气阻力)(1)碟子从桌面飞出时的速度大小;(2)碟子在桌面上运动时,桌面摩擦力对它做的功;(3)若碟子与桌面间的动摩擦因数为μ=0.225,要使碟子不滑出桌面,则桌面半径至少是多少?【题型4】如图所示,一质量为M=5.0 kg的平板车静止在光滑水平地面上,平板车的上表面距离地面高h=0.8 m,其右侧足够远处有一固定障碍物A.一质量为m=2.0 kg的滑块(可视为质点)以v0=8 m/s的水平初速度从左端滑上平板车,同时对平板车施加一水平向右、大小为5 N的恒力F.当滑块运动到平板车的最右端时,两者恰好相对静止.此时撤去恒力F.此后当平板车碰到障碍物A时立即停止运动,滑块水平飞离平板车后,恰能无碰撞地沿圆弧切线从B点进入光滑竖直圆弧轨道,并沿轨道下滑.已知滑块与平板车间的动摩擦因数μ=0.5,圆弧半径为R=1.0 m,圆弧所对的圆心角θ=106°,g取10 m/s2,sin53°=0.8,cos53°=0.6,不计空气阻力,求:(1)平板车的长度;(2)障碍物A与圆弧左端B的水平距离;(3)滑块运动到圆弧轨道最低点C时对轨道压力的大小.针对训练1.如图所示,水平长直轨道AB 与半径为R =0.8 m 的光滑14竖直圆轨道BC 相切于B ,轨道BC 与半径为r =0.4 m 的光滑14竖直圆轨道CD 相切于C ,质量m =1 kg 的小球静止在A 点,现用F =18 N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面间的动摩擦因数μ=0.2,取g =10 m/s 2.求: (1)小球在D 点的速度v D 大小;(2)小球在B 点对圆轨道的压力F N B 大小; (3)A 、B 两点间的距离x .2.如图所示,一长L =0.45 m 、不可伸长的轻绳上端悬挂于M 点,下端系一质量m =1.0 kg 的小球,CDE 是一竖直固定的圆弧形轨道,半径R =0.50 m ,OC 与竖直方向的夹角θ=60°,现将小球拉到A 点(保持绳绷直且水平)由静止释放,当它经过B 点时绳恰好被拉断,小球平抛后,从圆弧轨道的C 点沿切线方向进入轨道,刚好能到达圆弧轨道的最高点E ,重力加速度g 取10 m/s 2,求:(1)小球到B 点时的速度大小; (2)轻绳所受的最大拉力大小;(3)小球在圆弧轨道上运动时克服阻力做的功.3.在游乐节目中,选手需借助悬挂在高处的绳飞越到水面的浮台上,如图所示。
平抛运动与圆周运动的组合问题1、如图所示,有一个可视为质点的质量为m =1 kg 的小物块,从光滑平台上的A 点以v 0=3 m/s 的初速度水平抛出,到达C 点时,恰好沿C 点的切线方向进入固定在水平地 面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D 点的质量为M =3 kg 的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑接触,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R =0.5 m ,C 点和圆弧的圆心连线与竖直方向的夹角θ=53°,不计空气阻力,取重力加速度g =10 m/s 2.求:(1)A 、C 两点的高度差;(2)小物块刚要到达圆弧轨道末端D 点时对轨道的压力;(3)要使小物块不滑出长木板,木板的最小长度.(sin 53°=0.8,cos 53°=0.6) 解析 (1)小物块在C 点时的速度大小为v C =v 0cos 53°=5 m/s ,竖直分量为v Cy =4 m/s下落高度h = =0.8 m(2)小物块由C 到D 的过程中,由动能定理得mgR (1-cos 53°)=12m v 2D -12m v 2C解得v D =29 m/s小球在D 点时由牛顿第二定律得F N -mg =m v D 2R代入数据解得F N =68 N由牛顿第三定律得F N ′=F N =68 N ,方向竖直向下(3)设小物块刚好滑到木板右端时与木板达到共同速度,大小为v ,小物块在木板上滑行 的过程中,小物块与长木板的加速度大小分别为 a 1=μg =3 m/s 2,a 2=μmg M=1 m/s 2速度分别为v =v D -a 1t ,v =a 2t 对物块和木板系统,由能量守恒定律得μmgL =12m v 2D -12(m +M )v 2解得L =3.625 m ,即木板的长度至少是3.625 m 答案 (1)0.8 m (2)68 N (3)3.625 m方法点拨程序法在解题中的应用22cy g v所谓“程序法”是指根据题意按先后顺序分析发生的运动过程,并明确每一过程的受力情况、运动性质、满足的规律等等,还要注意前后过程的衔接点是具有相同的速度.2、在我国南方农村地区有一种简易水轮机,如图所示,从悬崖上流出的水可看做连续做平抛运动的物体,水流轨道与下边放置的轮子边缘相切,水冲击轮子边缘上安装的挡水板,可使轮子连续转动,输出动力.当该系统工作稳定时,可近似认为水的末速度与轮子边缘的线速度相同.设水的流出点比轮轴高h=5.6 m,轮子半径R=1 m.调整轮轴O的位置,使水流与轮边缘切点对应的半径与水平线成θ=37°角.(已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2)问:(1)水流的初速度v0大小为多少?(2)若不计挡水板的大小,则轮子转动的角速度为多少?答案(1)7.5 m/s(2)12.5 rad/s解析(1)水流做平抛运动,有h-R sin 37°=1 2gt2解得t=2(h-R sin 37°)g=1 s所以v y=gt=10 m/s,由图可知:v0=v y tan 37°=7.5 m/s.(2)由图可知:v=v0sin 37°=12.5 m/s,根据ω=vR可得ω=12.5 rad/s. 3、解析 (1)在C 点:mg =m RvC 2(2分)所以v C =5 m/s (1分)(2)由C 点到D 点过程:mg (2R -2r )=12m v 2D -12m v 2C (2分)在D 点:mg +F N =m v D 2r (2分)所以F N =333.3 N (1分) 由牛顿第三定律知小滑车对轨道的压力为333.3 N. (1分) (3)小滑车要能安全通过圆形轨道,在平台上速度至少为v 1,则 12m v 2C +mg (2R )=12m v 21 (2分) 小滑车要能落到气垫上,在平台上速度至少为v 2,则 h =12gt 2 (1分) x =v 2t (1分)解得v 2>v 1,所以只要mgH =12m v 22,即可满足题意.解得H =7.2 m (3分) 答案 (1)5 m/s (2)333.3 N (3)7.2 m技巧点拨1.对于多过程问题首先要搞清各运动过程的特点,然后选用相应规律.2.要特别注意运用有关规律建立两运动之间的联系,把转折点的速度作为分析重点. 4、水上滑梯可简化成如图所示的模型,斜槽AB 和光滑圆弧槽BC 平滑连接.斜槽AB 的竖直高度差H =6.0 m ,倾角 θ=37°;圆弧槽BC 的半径R =3.0 m ,末端C 点的切线水平;C 点与水面的距离h =0.80 m .人与AB 间的动摩擦因数μ=0.2,取 重力加速度g =10 m/s 2,cos 37°=0.8,sin 37°=0.6.一个质量m=30 kg 的小朋友从滑梯顶端A 点无初速度地自由滑下,不计空 气阻力.求:(1)小朋友沿斜槽AB 下滑时加速度a 的大小;(2)小朋友滑到C 点时速度v 的大小及滑到C 点时受到槽面的支持力F C 的大小; (3)在从C 点滑出至落到水面的过程中,小朋友在水平方向的位移x 的大小. 答案 (1)4.4 m/s 2 (2)10 m/s 1 300 N (3)4 m解析 (1)小朋友沿AB 下滑时,受力情况如图所示,根据牛 顿第二定律得:mg sin θ-F f =ma ① 又F f =μF N ② F N =mg cos θ ③ 联立①②③式解得:a =4.4 m/s 2 ④ (2)小朋友从A 滑到C 的过程中,根据动能定理得:mgH -F f ·H sin θ+mgR (1-cos θ)=12m v 2-0 ⑤联立②③⑤式解得:v =10 m/s ⑥根据牛顿第二定律有:F C -mg =m v 2R ⑦联立⑥⑦式解得:F C =1 300 N . ⑧(3)在从C 点滑出至落到水面的过程中,小朋友做平抛运动,设此过程经历的时间为t ,则:h =12gt 2 ⑨x =v t ⑩ 联立⑥⑨⑩式解得:x =4 m.5、(2012·福建理综·20)如图所示,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小s =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g =10 m/s 2.求:(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ. 答案 (1)1 m/s (2)0.2解析 (1)物块做平抛运动,在竖直方向上有H =12gt 2 ①在水平方向上有s =v 0t ②由①②式解得v 0=s g2H代入数据得v 0=1 m/s(2)物块离开转台时,由最大静摩擦力提供向心力,有f m =m v 0 2R ③f m =μN =μmg ④由③④式得μ=v 0 2gR代入数据得μ=0.26、 (2010·重庆理综·24)小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面 内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水 平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力.(1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?答案 (1)2gd 52gd (2)113mg (3)d 2 2 33d 解析 (1)设绳断后球飞行的时间为t ,由平抛运动规律有竖直方向:14d =12gt 2水平方向:d =v 1t 解得v 1=2gd由机械能守恒定律有12m v 32=12m v 21+mg (d -34d )解得v 2= 52gd(2)设绳能承受的最大拉力大小为F max ,这也是球受到绳的最大拉力的大小.球做圆周运动的半径为R =34d由圆周运动向心力公式,有F max -mg =m v 1 2R得F max =113mg(3)设绳长为l ,绳断时球的速度大小为v 3.绳承受的最大拉力不变,有F max -mg =m v 3 2l,解得v 3= 83gl绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1.由平抛运动规律有d -l =12gt 21,x =v 3t 1得x =4 l (d -l )3,当l =d 2时,x 有最大值x max =233d .7、如图所示,一质量为2m 的小球套在一“”滑杆上,小球与滑杆的动摩擦因数为μ=0.5,BC 段为半径为R 的半圆,静止于A 处的小球在大小为F =2mg ,方向与水平面成37°角的拉力F 作用下沿杆运动,到达B 点时立刻撤去F ,小球沿圆弧向上冲并越过C 点后落在D 点(图中未画出),已知D 点到B 点的距离为R ,且AB 的距离为s =10R .试求:(1)小球在C 点对滑杆的压力; (2)小球在B 点的速度大小;(3)BC 过程小球克服摩擦力所做的功. 答案 (1)32mg ,方向竖直向下 (2)23gR (3)31mgR4解析 (1)小球越过C 点后做平抛运动,有竖直方向:2R =12gt 2 ①水平方向:R =v C t ② 解①②得v C =gR 2在C 点对小球由牛顿第二定律有:2mg -F N C =2m v C 2R解得F N C =3mg2由牛顿第三定律有,小球在C 点对滑杆的压力F N C ′=F N C =3mg2,方向竖直向下(2)在A 点对小球受力分析有:F N +F sin 37°=2mg ③ 小球从A 到B 由动能定理有:F cos 37°·s -μF N ·s =12·2m v 2B ④解③④得v B =23gR(3)BC 过程对小球由动能定理有:-2mg ·2R -W f =12×2m v 2C -12×2m v 2B解得W f =31mgR48、如图所示,质量为m =1 kg 的小物块由静止轻轻放在水平匀速运动的传送带上,从A 点随传送带运动到水平部分的最右端B 点,经半圆轨道C 点沿圆弧切线进入竖直光滑的半圆轨道,恰能做圆周运动.C 点在B 点的正上方,D 点为轨道的最低点.小物块离开D 点后,做平抛运动,恰好垂直于倾斜挡板打在挡板跟水平面相交的E 点.已知半圆轨道的半径R =0.9 m ,D 点距水平面的高度h =0.75 m ,取g =10 m/s 2,试求:(1)摩擦力对小物块做的功;(2)小物块经过D 点时对轨道压力的大小; (3)倾斜挡板与水平面间的夹角θ.答案 (1)4.5 J (2)60 N ,方向竖直向下 (3)60°解析 (1)设小物块经过C 点时的速度大小为v 1,因为经过C 点恰能做圆周运动,所以,由牛顿第二定律得:mg =m v 1 2R解得:v 1=3 m/s小物块由A 到B 的过程中,设摩擦力对小物块做的功为W ,由动能定理得:W =12m v 21解得:W =4.5 J(2)设小物块经过D 点时的速度大小为v 2,对从C 点运动到D 点的过程,由机械能守恒 定律得: 12m v 21+mg ·2R =12m v 22 小物块经过D 点时,设轨道对它的支持力大小为F N ,由牛顿第二定律得:F N -mg =m v 2 2R联立解得:F N =60 N由牛顿第三定律可知,小物块经过D 点时对轨道的压力大小为: F N ′=F N =60 N ,方向竖直向下(3)小物块离开D 点后做平抛运动,设经时间t 打在E 点,由h =12gt 2得:t =1510s 设小物块打在E 点时速度的水平、竖直分量分别为v x 、v y ,速度跟竖直方向的夹角为α, 则: v x =v 2 v y =gt tan α=v x v y解得:tan α=3 所以:α=60°由几何关系得:θ=α=60°.9、 水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,一小球以初速度v 0沿直轨道向右运动.如图3所示,小球进入圆 形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的 d 点,则 ( ) A .小球到达c 点的速度为gR B .小球到达b 点时对轨道的压力为5mg C .小球在直轨道上的落点d 与b 点距离为2RD .小球从c 点落到d 点所需时间为2 Rg答案 ACD解析 小球在c 点时由牛顿第二定律得:mg =m v c 2R ,v c =gR ,A 项正确;小球由b 到c 过程中,由机械能守恒定律得: 12m v 2B =2mgR +12m v 2c 小球在b 点,由牛顿第二定律得:F N -mg =m v b 2R ,联立解得F N =6mg ,B 项错误;小球由c 点平抛,在平抛运动过程中由运动学公式得:x =v c t,2R =12gt 2.解得t =2 Rg ,x =2R ,C 、D 项正确.10、 如图所示,P 是水平面上的圆弧凹槽.从高台边B 点以某速度v 0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左 端A 点沿圆弧切线方向进入轨道.O 是圆弧的圆心,θ1是OA 与 竖直方向的夹角,θ2是BA 与竖直方向的夹角.则 ( )A .tan θ2tan θ1=2 B .tan θ1·tan θ2=2C .1tan θ1·tan θ2=2D .tan θ1tan θ2=2答案 B解析 由题意可知:tan θ1=v y v x =gt v 0,tan θ2=x y =v 0t 12gt 2=2v 0gt,所以tan θ1·tan θ2=2,故B正确.11、如图所示,在水平匀速运动的传送带的左端(P 点),轻放一质量为m =1 kg 的物块,物块随传送带运动到A 点后水平抛出,物块恰好无碰撞的沿圆弧切线从B 点进入竖直光滑圆弧轨道下滑.B 、D 为圆弧的两端点,其连线水平.已知圆弧半径R =1.0 m ,圆弧对应的圆心角θ=106°,轨道最低点为C ,A 点距水平面的高度h =0.8 m(g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6)求:(1)物块离开A 点时水平初速度的大小; (2)物块经过C 点时对轨道压力的大小;(3)设物块与传送带间的动摩擦因数为0.3,传送带的速度为5 m/s ,求P A 间的距离. 答案 (1)3 m/s (2)43 N (3)1.5 m解析 (1)物块由A 到B 在竖直方向有v 2y =2gh v y =4 m/s在B 点:tan θ2=v yv A ,v A =3 m/s(2)物块从B 到C 由功能关系得mgR (1-cos θ2)=12m v 2C -12m v 2Bv B =v A 2+v y 2=5 m/s 解得v 2C =33 m 2/s 2 在C 点:F N -mg =m v C 2R由牛顿第三定律知,物块经过C 点时对轨道压力的大小为F N ′=F N =43 N(3)因物块到达A 点时的速度为3 m/s ,小于传送带速度,故物块在传送带上一直做匀加速直线运动 μmg =ma , a =3 m/s 2P A 间的距离x P A =v A 22a=1.5 m.12、如图所示,半径R =1.0 m 的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向间的夹角θ= 37°,另一端点C 为轨道的最低点.C 点右侧的水平路面 上紧挨C 点放置一木板,木板质量M =1 kg ,上表面与C 点 等高.质量m =1 kg 的物块(可视为质点)从空中A 点以v 0=1.2 m/s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道. 已知物块与木板间的动摩擦因数μ1=0.2,木板与路面间的动摩擦因数μ2=0.05,sin 37° =0.6,cos 37°=0.8,取g =10 m/s 2.试求: (1)物块经过轨道上的C 点时对轨道的压力;(2)设木板受到的最大静摩擦力跟滑动摩擦力相等,则木板至少多长才能使物块不从木板上滑下?答案 (1)46 N (2)6 m解析 (1)设物块经过B 点时的速度为v B ,则 v B sin 37°=v 0设物块经过C 点的速度为v C ,由机械能守恒得: 12m v 2B +mg (R +R sin 37°)=12m v 2C 物块经过C 点时,设轨道对物块的支持力为F C ,根据牛顿第二定律得:F C -mg =m v C 2R联立解得:F C =46 N由牛顿第三定律可知,物块经过圆轨道上的C 点时对轨道的压力为46 N(2)物块在木板上滑动时,设物块和木板的加速度大小分别为a 1、a 2,得:μ1mg =ma 1 μ1mg -μ2(M +m )g =Ma 2设物块和木板经过时间t 达到共同速度v ,其位移分别为x 1、x 2,则:对物块有: v C -a 1t =v v 2-v 2C =-2a 1x 1 对木板有:a 2t =v v 2=2a 2x 2设木板长度至少为L ,由题意得:L ≥x 1-x 2 联立解得:L ≥6 m即木板长度至少6 m 才能使物块不从木板上滑下.13、 某校物理兴趣小组决定举行遥控赛车比赛.比赛路径如图7所示,赛车从起点A 出发,沿水平直线轨道运动L 后,由B 点进入 半径为R 的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直 轨道上运动到C 点,并能越过壕沟.已知赛车质量m =0.1 kg , 通电后以额定功率P =1.5 W 工作,进入竖直轨道前受到的阻力 恒为0.3 N ,随后在运动中受到的阻力均可不计.图中L =10.00 m , R =0.32 m ,h =1.25 m ,x =1.50 m .问:要使赛车完成比赛,电动 机至少工作多长时间?(取g =10 m/s 2)答案 2.53 s解析 设赛车越过壕沟需要的最小速度为v 1,由平抛运动的规律x =v 1t ,h =12gt 2解得v 1=x g2h=3 m/s设赛车恰好越过圆轨道,对应圆轨道最高点的速度为v 2,最低点速度为v 3,由牛顿运动定律及机械能守恒定律得mg =m v 22/R 12m v 23=12m v 22+mg (2R ) 解得v 3=5gR =4 m/s通过分析比较,赛车要完成比赛,在进入圆轨道前的速度最小应该是v min =4 m/s 设电动机工作时间至少为t ,根据功能关系,有Pt -F f L =12m v 2m in ,由此解得t =2.53 s。
曲线运动:运动轨迹为曲线的运动。
物体做曲线运动的条件:①物体做一般曲线运动的条件:物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。
②物体做平抛运动的条件:物体只受重力,初速度方向为水平方向。
可推广为物体做类平抛运动的条件:物体受到的恒力方向与物体的初速度方向垂直。
③物体做圆周运动的条件:物体受到的合外力大小不变,方向始终垂直于物体的速度方向,且合外力方向始终在同一个平面内(即在物体圆周运动的轨道平面内)总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。
曲线运动的分类曲线运动与动能相结合考查方式分析:与动能定理相结合考查的曲线运动主要有两种:①抛体运动;②圆周运动。
抛体运动:含斜抛运动和平抛运动平抛运动在处理时遵从运动的分解,将平抛运动分解为水平方向的匀速直线运动和竖直方向的自由落体运动竖直平面内圆周运动中的绳模型与杆模型问题绳模型(无支撑)过最高点的临界条件:2mv mg v r=⇒=临由。
杆模型(有支撑)过最高点的临界条件:由小球恰能做圆周运动得v 临=0。
常考问题分类:①求位移(或路程);②求速度。
1.如图所示,某同学利用斜面研究抛体运动的示意图,已知斜面AB 的倾角为α=45°,高为h=1m 。
斜面的底端A 处有一弹性发射器(大小不计),发射器可将小木块以一定的初速度沿斜面弹出,小木块冲出斜面后即做斜抛运动.若发射器将小木块弹出时的初速度为v 0=8m/s ,小木块与斜面之间的动摩擦因数μ=0.4,不计空气阻力,g 取10m/s 2,求:(1)小木块飞离底面的最大高度;(2)小木块落地时的速度大小。
分析:由于动能定理的计算式为标量式,因此对于求解物体做曲线运动时的相关问题时,具有明显的优越性,关键是分清楚哪些过程力做功,并确定处、末状态的动能。
解析:(1)设小木块到达斜面顶端时的速度为v B ,有动能定理得:22011cos sin 22B h mg mgh mv mv μαα--=-g ,代入数据解得v B = v=6m/s ,竖直分速度的大小sin By B v v α== m/s 。
曲线运动专题二 平抛运动与圆周运动相结合的问题说明:1. 平抛运动与圆周运动的组合题,用平抛运动的规律求解平抛运动问题,用牛顿定律求解圆周运动问题,关键是找到两者的速度关系.若先做圆周运动后做平抛运动,则圆周运动的末速度等于平抛运动的水平初速度;若物体平抛后进人圆轨道,圆周运动的初速度等于平抛末速度在圆切线方向的分速度。
2. 分析多解原因:匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这就要求我们在确定做匀速圆周运动物体的运动时间时,必须把各种可能都考虑进去. 3. 确定处理方法:(1)抓住联系点:明确两个物体参与运动的性质和求解的问题,两个物体参与的两个运动虽然独立进行,但一定有联系点,其联系点一般是时间或位移等,抓住两运动的联系点是解题关键。
(2)先特殊后一般:分析问题时可暂时不考虑周期性,表示出一个周期的情况,再根据运动的周期性,在转过的角度θ上再加上 2πr,具体π的取值应视情况而定。
练习题1.(多选)水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,一小球以初速度v 0沿直轨道向右运动.如图所示,小球进入圆形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的d 点,则( )A .小球到达c 点的速度为gRB .小球到达b 点进入圆形轨道时对轨道的压力为mgC .小球在直轨道上的落点d 与b 点距离为RD .小球从c 点落到d 点所需时间为2Rg2.如图为俯视图,利用该装置可以测子弹速度大小。
直径为d 的小纸筒,以恒定角速度ω绕O 轴逆时针转动,一颗子弹沿直径水平快速穿过圆纸筒,先后留下a 、b 两个弹孔,且Oa 、Ob 间的夹角为α.不计空气阻力,则子弹的速度为多少?3.(单选)如图所示,一位同学做飞镖游戏,已知圆盘的直径为d ,飞镖距圆盘为L ,且对准圆盘上边缘的A 点水平抛出,初速度为v 0,飞镖抛出的同时,圆盘以垂直圆盘过盘心O 的水平轴匀速运动,角速度为ω.若飞镖恰好击中A 点,则下列关系正确的是( )A .02dv ω=B .ωL =π(1+2n )v 0,(n =0,1,2,3,…)C.2dv02=L2gD.dω2=gπ2(1+2n)2,(n=0,1,2, 3,…)4.一半径为R、边缘距地高h的雨伞绕伞柄以角速度ω匀速旋转时(如图所示),雨滴沿伞边缘的切线方向飞出.则:⑴雨滴离开伞时的速度v多大?⑵甩出的雨滴在落地过程中发生的水平位移多大?⑶甩出的雨滴在地面上形成一个圆,求此圆的半径r为多少?5.如图,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R=0.5m,离水平地面的高度H=0.8m,物块平抛落地过程水平位移的大小s=0.4m.设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2求:(1)物块做平抛运动的初速度大小v0;(2)物块与转台间的动摩擦因数μ.6.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d后落地,如图所示.已d,重力加速度为g.忽略手的运动半径和空气阻力.知握绳的手离地面高度为d,手与球之间的绳长为34(1)求绳断开时球的速度大小v1(2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?7.如图为一个简易的冲击式水轮机的模型,水流自水平的水管流出,水流轨迹与下边放置的轮子边缘相切,水冲击轮子边缘上安装的挡水板,可使轮子连续转动.当该装置工作稳定时,可近似认为水到达轮子边缘时的速度与轮子边缘的线速度相同.调整轮轴O的位置,使水流与轮边缘切点对应的半径与水平方向成θ=37°角.测得水从管口流出速度v0=3 m/s,轮子半径R=0.1 m.不计挡水板的大小,不计空气阻力.取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)轮子转动角速度ω;(2)水管出水口距轮轴O的水平距离l和竖直距离h.题目点评:1、抓住刚好能通过c 点(无支撑)得条件,到达b 点进入圆形轨道时,有竖直向上的向心加速度,超重状态,对轨道的压力大于mg 。
高二学考专题11平抛运动与圆周运动组合问题考点一平抛运动与直线运动的组合问题1.平抛运动可以分为水平方向的匀速直线运动和竖直方向的自由落体运动,两分运动具有等时性.2.当物体做直线运动时,分析物体受力是解题的关键.正确分析物体受力,求出物体的加速度,然后运用运动学公式确定物体的运动规律.3.平抛运动与直线运动的衔接点的速度是联系两个运动的桥梁,因此解题时要正确分析衔接点速度的大小和方向.★典型例题★如图甲所示,在高h =0.8m的平台上放置一质量为M=1kg的小木块(视为质点),小木块距平台右边缘d =2m。
现给小木块一水平向右的初速度v0,其在平台上运动的v2-x关系如图乙所示。
小木块最终从平台边缘滑出落在距平台右侧水平距离s =0.8m的地面上,g取10m/s2,求:(1)小木块滑出时的速度v;(2)小木块在水平面滑动的时间t;(3)小木块在滑动过程中产生的热量Q。
★针对练习1★如图所示,滑板运动员以速度v0从离地高度为h的平台末端水平飞出,落在水平地面上。
忽略空气阻力,运动员和滑板可视为质点,下列表述正确的是:()A.v0越大,运动员在空中运动时间越长B.B.v0越大,运动员落地时重力的瞬时功率越大C.v0越大,运动员落地时机械能越大D.v0越大,运动员落地时偏离水平水平方向的夹角越大考点二平抛运动与圆周运动的组合问题1.物体的圆周运动主要是竖直面内的圆周运动,通常应用动能定理和牛顿第二定律进行分析,有的题目需要注意物体能否通过圆周的最高点.2.平抛运动与圆周运动的衔接点的速度是解题的关键.★典型例题★如图所示为圆弧形固定光滑轨道,a点切线方向与水平方向夹角53o,b点切线方向水平。
一小球以水平初速度6m/s做平抛运动刚好能沿轨道切线方向进入轨道,已知轨道半径1m ,小球质量1kg 。
(sin53o =0.8,cos53o =0.6,g =10m/s 2)求 (1)小球做平抛运动的飞行时间。
平抛运动动能定理平抛运动动能定理一、引言在物理学中,平抛运动是指物体在水平方向上以一定初速度投掷或抛出后,在重力作用下沿着抛物线运动的过程。
平抛运动是经典力学中的基础知识之一,对于许多实际问题的解决都有重要意义。
本文将介绍平抛运动中的一个重要定理——平抛运动动能定理。
二、定义在物理学中,动能是指一个物体由于其速度而具有的能量。
对于质量为m、速度为v的物体,其动能可以表示为:K = 1/2 * m * v^2其中K表示该物体的动能。
三、推导过程对于平抛运动,我们可以将其分解为两个分量:水平方向和竖直方向。
因此,在计算该系统的总机械能时,需要考虑这两个方向上的机械能之和。
首先考虑水平方向。
由于在水平方向上没有外力作用,因此该方向上的机械能守恒。
即:E_h = K_h + U_h = 常数其中E_h表示水平方向上的总机械能,K_h表示水平方向上的动能,U_h表示水平方向上的势能。
接着考虑竖直方向。
由于在竖直方向上有重力作用,因此该方向上的机械能不守恒。
但是,在平抛运动中,我们可以将其分解为两个运动:自由落体和匀速直线运动。
对于自由落体运动,我们可以利用重力势能和动能的转换关系来计算其机械能:E_f = K_f + U_f = 1/2 * m * v^2 + mgh其中E_f表示自由落体运动的总机械能,K_f表示自由落体运动的动能,U_f表示自由落体运动的势能,h表示物体离开地面的高度。
对于匀速直线运动,我们可以利用匀速直线运动的特点来计算其机械能:E_l = K_l + U_l = 1/2 * m * v^2其中E_l表示匀速直线运动的总机械能,K_l表示匀速直线运动的动能,U_l表示匀速直线运动的势能。
将自由落体和匀速直线运动的机械能相加可得平抛运动系统总机械能:E = E_h + E_f + E_l = K_h + K_f + K_l + mgh根据机械能守恒定律可得:E = 常数即平抛运动系统的总机械能守恒。
1、一根内壁光滑的细圆管,形状如下图所示,半径为R ,放在竖直平面内,一个小球自A 的正上方高h 1处自由落下,第一次小球恰能抵达B 点,;第二次从高h 2落入A 口后,自B 射出,恰能再进入A ,则:
(1)h 1等于多少?
(2)第二次到达B 点的速度多大?
(3)h 2等于多少?
(4)两次小球下落的高度之比h 1:h 2是多少?
2、如图所示,竖直平面内的3/4圆弧形光滑轨道半径为R ,A 端与圆心O 等高,AD 为水平面,B 端在O 的正上方,一个小球在A 点正上方由静止释放,自由下落至A 点进入圆轨道并恰能到达B 点.
求:(1)释放点距A 点的竖直高度;
(2)落点C 与O 点的水平距离.
3、如图所示,位于竖直平面内的1/4圆弧光滑轨道,半径为R ,轨道的最低点B 的切线沿水平方向,轨道上端A 距水平地面高度为H 。
质量为m 的小球(可视为质点)从轨道最上端A 点由静止释放,经轨道最下端B 点水平飞出,最后落在水平地面上的C 点处,若空气阻力可忽略不计,重力加速度为g 。
求:
(1)小球运动到B 点时,轨道对它的支持力多大; (2)小球落地点C 与B 点的水平距离x 为多少; (3)比值R /H 为多少时,小球落地点C 与B 点水平距离x 最远;该水平距离最大值是多少。
4、如图所示,用长为L 的细绳把质量为m 的小球系于O 点,把细绳拉直至水平后无初速度地释放,小球运动至O 点正下方的B 点时速度为 gl v 2 ,绳子恰好被拉断,B 点距地面的高度也为L .设绳子被拉断时小球没有机械能损失,小球抛出后落到水平地面上的
C
点求:
(1)绳子被拉断前瞬间受到的拉力大小;
(2)B、C两点间的水平距离x.
5、某校物理兴趣小组决定举行遥控赛车比赛。
比赛路径如图所示,赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C点,并能越过壕沟。
已知赛车质量m=0.1kg,通电后以额定功率P=1.5w工作,进入竖直轨道前受到阻力恒为0.3N,随后在运动中受到的阻力均可不记。
图中L=10.00m,R=0.32m,h=1.25m,S=1.50m。
问:要使赛车完成比赛,电动机至少工作多长时间?(取g=10m/s2)。