第9章 配合物的立体化 43
- 格式:ppt
- 大小:753.00 KB
- 文档页数:44
无机化学练习题(含答案)第9章配合物第9章配合物9-1:区别下列概念(a)配体和配合物,(b)外轨型配合物和内轨型配合物,(c)高自旋配合物和低自旋配合物,(d)强场配体和弱场配体,(e)几何异构和光学异构,(f)活性配合物和惰性配合物,(g)生成常数和逐级生成常数,(h) 螯合效应和反位效应。
答:答:(a)配位实体中与中心原子或离子结合的分子或离子叫配位体,简称配体;给予体和接受体相结合的化学物种(配位个体)即为配合物。
更为广义的是路易斯酸与路易斯碱的加合物。
(b)从配合物的价键理论出发,凡配位原子的孤对电子填在中心原子或离子由外层d轨道杂化而成的杂化轨道上,形成配位键的配合物即为外轨配合物。
相反,填在由内层(n-1)d 轨道参与的杂化轨道上,即为内轨配合物。
(c)从配合物的晶体场理论出发,由于P 和Δ0 的相对大小,使得配合物中的电子可能有两种不同的排列组态,其中含有单电子数较多的配合物叫高自旋配合物,不存在单电子或含有单电子数少的配合物叫低自旋配合物。
(d)配体与中心金属配位时,由于配体所产生的分裂能不同,使得配体配位场强弱有如下顺序:I-<br-<cl-<f-<oh-<c2o42-<h2o<scn-<nh3<en<so32-<phen<no2-<cn,co。
序列前部的配位体(大体以h2o为界)称之为弱场配体,序列后部的配位体(大体以nh3为界)称之为强场配体。
< bdsfid="78" p=""></br-<cl-<f-<oh-<c2o42-<h2o<scn-<nh3<en<so32-<phen<no2-<cn,co。
序列前部的配位体(大体以h2o为界)称之为弱场配体,序列后部的配位体(大体以nh3为界)称之为强场配体。
配位化学与配合物的立体构型配位化学是化学领域中的一个重要分支,研究金属离子和配体之间的相互作用。
配合物是由一个中心金属离子和周围配位基团构成的化合物。
在配位化学中,配位基团的排列方式对配合物的物理和化学性质起着关键的影响。
配位化学与配合物的立体构型密切相关,本文将探讨配位化学与配合物的立体构型的研究内容和意义。
一、立体构型的定义及分类在配位化学中,立体构型指的是配合物中利用空间排列方式描述配体和金属离子之间的关系。
立体构型可以通过分子结构的确定、光谱学以及理论计算等方法进行研究和解析。
配合物的立体构型分类主要有以下几种:1. 线性构型:配位基团沿直线排列。
这种构型通常出现在两个配位基团与金属离子之间的配位数为2时,如[Ag(NH3)2]+。
2. 方阵构型:配位基团沿正方形排列。
这种构型通常出现在四个配位基团与金属离子之间的配位数为4时,如[Ni(CN)4]2-。
3. 正八面体构型:配位基团沿正八面体排列。
这种构型通常出现在六个配位基团与金属离子之间的配位数为6时,如[Co(NH3)6]3+。
4. 正四面体构型:配位基团沿正四面体排列。
这种构型通常出现在四个配位基团与金属离子之间的配位数为4时,如[PtCl4]2-。
5. 正十二面体构型:配位基团沿正十二面体排列。
这种构型通常出现在八个配位基团与金属离子之间的配位数为8时,如[UO2(C2O4)4]4-。
二、配位化学与配合物的立体构型研究方法在配位化学中,研究配合物的立体构型的方法主要包括实验方法和理论计算方法。
1. 实验方法:实验方法是通过使用各种各样的实验手段来确定配合物的立体构型。
其中最常见的方法包括X射线晶体衍射、核磁共振、红外光谱等。
通过这些实验手段,可以确定配合物的原子间距离、键角等参数,从而推断立体构型。
2. 理论计算方法:理论计算方法是通过数学建模和计算机模拟来推测和预测配合物的立体构型。
其中最常用的方法包括量子化学计算和分子力场计算。
配位化学配合物立体构型练习题配位键数和配合物的八面体构型配位化学是研究过渡金属离子与配体之间形成化学键的一门学科。
配合物是由中心金属离子和与其形成化学键的配体组成的。
在配位化学中,研究配合物的立体构型常常是一个重要的课题。
配位键数是指一个配合物中中心金属离子与配体之间形成的化学键的数量。
在常见的配合物中,常见的配位键数有2、4、6和8等。
不同配位键数下,配合物的立体构型也不尽相同。
首先,我们来看看配位键数为2的配合物。
在这种情况下,配合物的立体构型通常是线性的。
典型的例子是二氯银配合物(AgCl2)。
在这个配合物中,银离子与两个氯离子形成两个配位键,配合物的形状为直线。
接下来,是配位键数为4的配合物,它们的立体构型通常是平面四方形。
典型的例子是四氯合钯(II)配合物(PdCl4)。
在这个配合物中,钯离子与四个氯离子形成四个配位键,配合物的形状为平面四方形。
进一步,当配位键数增加到6时,配合物的立体构型通常是八面体。
最典型的例子是六氯合铜(II)配合物(CuCl6)。
在这个配合物中,铜离子与六个氯离子形成六个配位键,配合物的形状为八面体。
最后,当配位键数增加到8时,配合物的立体构型也是八面体,但是与六配位的八面体不同,通常存在一些失衡的情况。
这种立体构型被称为扭曲八面体。
常见的例子是八氯化铜配合物(CuCl8)。
在这个配合物中,铜离子与八个氯离子形成八个配位键,但由于排斥力的影响,配合物的形状是扭曲的八面体。
除了上述的常见配位键数和立体构型外,还存在一些特殊的配位键数和配合物的立体构型。
例如,三配位键数下的配合物通常是线性的,五配位键数下的配合物可以有三角双锥、方双锥和正八面体等不同的构型。
总结来说,配位化学中配合物的立体构型与配位键数密切相关。
常见的配位键数有2、4、6和8等,分别对应线性、平面四方形、八面体和扭曲八面体等立体构型。
对于配位化学的学习来说,掌握不同配位键数下配合物的立体构型是十分重要的。