平面向量基本定理系数的问题
- 格式:ppt
- 大小:571.00 KB
- 文档页数:9
巧妙确定平面向量基本定理中基底系数间的关系濮阳市华龙区高中 张杰平面向量作为高中数学的解题工具之一,选择恰当基底,确定基底系数的关系,进而用基底表示相关向量往往是能否顺利解决问题的关键,而如何确定平面向量基本定理中基底系数的关系对学生而言通常很难形成有效解决办法,下面通过实例给出一个巧妙确定平面向量基本定理中基底系数间的关系的办法。
问题:点P 是平行四边形ABCD 对角线BD 上一点,若AD y AB x AP +=,则系数x,y 满足何种关系是什么?若点P 是ABD ∆内部一点呢?确定办法:将基底转化为正交单位基底,在正交单位基底下x,y 的关系即为所求。
如图在正交基底下BD 对应直线1=+y x ,所以1=+y x 即为所求。
若点P 在ABD ∆内部,则有⎪⎩⎪⎨⎧<+<<<<<101010y x y x考题链接:已知点P 是ABC ∆内一点,且满足()R y x AC y AB x AP ∈+=,,则x y 2-的取值范围是( )A.()1,2-B.()2,1-C.()2,1D.[]1,2--解析:因为点P 是ABC ∆内一点,且满足()R y x AC y AB x AP ∈+=,,∴⎪⎩⎪⎨⎧<+<<<<<101010y x y x由线性规划问题的解法可知()1,22-∈-x y ,所以选A.考题链接:如图,已知四边形OABC 是边长为1的正方形, 3=OD ,点P 为BCD ∆内(含边界)的动点,设 (,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于___.解析:如图,将基底转化为正交单位基底,则点D C B ,,的坐标分别为:⎪⎭⎫ ⎝⎛1,31,()1,0,()0,1,所以系数βα,满足⎪⎩⎪⎨⎧≤-+≥-+≤0332011βαβαα由线性规划问题的解法可知βα+的最大值为34。
考题链接:如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且OP xOA =+(,)yOB x y R ∈。
平面向量基本定理系数的等值线法一、适用题型在平面向量基本定理的表达式中,若需研究两系数的和差积商、线性表达式及平方和时,可以用等值线法.二、基本理论(一)平面向共线定理已知OC OB OA μλ+=,若1=+μλ,则C B A ,,三点共线;反之亦然 (二)等和线平面内一组基底OB OA ,及任一向量OP , ),(R OB OA OP ∈+=μλμλ,若点P 在直线AB 上或在平行于AB 的直线上,则k =+μλ(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线成为等和线(1)当等和线恰为直线AB 时,1=k ;(2)当等和线在O 点和直线AB 之间时,)1,0(∈k ; (3)当直线AB 在O 点和等和线之间时,),1(+∞∈k ; (4)当等和线过O 点时,0=k ;(5)若两等和线关于O 点对称,则定值k 互为相反数; (6)定值k 的变化与等和线到O 点的距离成正比. (三)等差线平面内一组基底OB OA ,及任一向量OP , ),(R OB OA OP ∈+=μλμλ, C 为线段AB 的中点,若点P 在直线OC 上或在平行于OC 的直线上,则k =-μλ(定值);反之也成立,我们把直线OC 以及与直线OC 平行的直线称为等差线 (1)当等差线恰为直线OC 时,0=k ; (2)当等差线过A 点时,1=k ; (3)当等差线在直线OC 与点A 之间时,)1,0(∈k ; (4)当等差线与BA 延长线相交时,),1(+∞∈k ;(5)若两等差线关于直线OC 对称,则两定值k 互为相反数. (四)等积线平面内一组基底OB OA ,及任一向量OP ,),(R OB OA OP ∈+=μλμλ,若点P 在以直线OB OA ,为渐近线的双曲线上,则λμ为定值k ,反之也成立,我们把以直线OB OA ,为渐近线的双曲线称为等积线(1)当双曲线有一支在AOB ∠内肘,0>k ;(2)当双曲线的两支都不在AOB ∠内吋,0<k ;(3)特別的,若),(b a OA =,),(b a OB -=,点P 在双曲线)0,0(12222>>=-b a by a x 上时,41=k (五)等商线平面内一组基底OB OA ,及任一向量OP ,),(R OB OA OP ∈+=μλμλ,若点P 在过O 点(不与OA 重合)的直线上,则k =μλ(定值),反之也成立,我们把过点O 的直线(除OA 外)称为等商线(1)当等商线过AB 中点吋,1=k ;(2)当等商线与线段AC (除端点)相交时,),1(+∞∈k ; (3)当等商线与线段BC (除端点)相交时,)1,0(∈k ; (4)当等商线为OB 时,0=k ;(5)当等商线与线段BA 延长线相交时,)1,(--∞∈k ; (6)当等商线与线段AB 延长线相交时,)0,1(-∈k ; (7)当等商线与直线AB 平行时,1-=k . (六)等平方和线平面内一组基底OB OA ,及任一向量OP ,),(R OB OA OP ∈+=μλμλ,且OB OA =,若点P 在以AOB ∠角平分线为半长轴的椭圆上,则22μλ+为定值k ,反之也成立,我们把以AOB ∠角平分线为半长轴的椭圆称为等平方和线特別的,若),(b a OA =,),(b a OB -=,,点P 在椭圆)0,0(12222>>=+b a by a x 上时,21=k 三、解题步骤 1、确定等值线为1的线;2、平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和最小值;3、从长度比或者点的位置两个角度,计算最大值和最小值;四、几点补充1、平面向量共线定理的表达式中的三个向量的起点务必一致,若不一致,本着少数服从多数的原则,优先平移固定的向量;2、若需要研究的是两系数的线性关系,则需要通过变换基底向量,使得需要研究的代数式为基底的系数和或差;五、典型例题例1.给定两个长度为1的平面向量OA 和OB ,它们的夹角为0120,如图所示,点C 在以O 为圆心的圆弧AB 上运动,若OB y OA x OC +=,其中R y x ∈,,则y x +的最大值是解法1:以点O 为原点,OA 为x 轴建立平面直角坐标系,则)01(,A ,)23,21(-B设θ=∠AOC ,则)sin ,(cos θθC ,所以OB y OA x OC +=)23,21()0,1()sin ,(cos -+=⇒y x θθ ⎪⎪⎩⎪⎪⎨⎧=+=⇒⎪⎪⎩⎪⎪⎨⎧=-=⇒θθθθθsin 32sin 31cos 23sin 21cos y x y y x2)6sin(2sin 3cos ≤+=+=+∴πθθθy x 当且仅当26ππθ=+即3πθ=时等号成立所以2)(max =+y x解法2:设OC 交AB 于点D ,则 当点C 在1C 处时,2)(max =+y x当点C 在A 或B 处时,1)(min =+y x]2,1[∈+∴y x例 2.在正六边形ABCDEF 中,P 是三角形CDE 内(包括边界)的动点,设AF y AB x AP +=,则y x +的取值范围解析:设AP 与BF 相交于点Q ,则 当点P 在点D 处时,4)(max =+y x ,当点P 在CE 上(不如让点P 在AD 与CE 的交点处)时,3)(min =+y x ∴]4,3[∈+y x例3.如图,在平行四边形ABCD 中,N M ,为CD 边的三等分点,S 为AM 与BN 的交点,P 为边AB 边上一动点,Q 为SMN ∆内一点(含边界),若BN y AM x PQ +=,则yx +的取值范围是 解析:作BN PT AM PR ==,,则PT y PR x BN y AM x PQ +=+=所以当点P 在S 点处时,43)(min =+y x ,当点P 在MN 上时,1)(max =+y x , 故∈+y x ]1,43[例4.梯形ABCD 中,AB AD ⊥,1==DC AD ,3=AB ,P 为三角形BCD 内一点(包括边界),AD y AB x AP +=, 则y x +的取值范围 解析:当点P 在点C 处时,34)(max =+y x 当点P 在BD 上时,1)(min =+y x∈+∴y x ]34,1[例5.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若 AC AB DE 21λλ+=(21,λλ为实数),则21λλ+的值为解析:作AC DN AB DM ==,,则MN ∥BE (BE 在DMN ∆中位线上)∴DN DM AC AB DE 2121λλλλ+=+==+∴21λλ21注:此题为2013年江苏高考题第8题,但点E 为三等分的条件其实没有必要,可舍例 6.在正方形ABCD 中,E 为BC 中点,P 为以AB 为直径的半圆弧上任意一点,设AP y AD x AE +=,则y x +2的最小值为解析:取AD 的中点M ,则AP y AD x AE +=AP y AM x +=2 因为点P 在半圆上滑动,当点E 离直线MP 最近时,y x +2最小 由图可知点P 在半圆上的最高点处时,点E 离直线MP 最近 此时点E 在MP 上,所以=+min )2(y x 1例7.在正方形ABCD 中,E 为AB 中点,P 为以A 为圆心,AB 为半径的圆弧上的任意一点,设AP y DE x AC +=,则y x +的最小值为 解析:作DE AF =,则AP y DE x AC +=AP y AF x += 当点C 离PF 最近时,y x +最小所以当点P 在圆上滑到点B 处时,y x +最小为218.已知1==ON OM ,ON y OM x OP +=(y x ,为实数),若PMN ∆是以M 为直角顶点的直角三角形,则y x -取值的集合为解析:作ON OA -=,则有OA ON OM ==,所以090=∠AMN ,即P M A ,,三点共线,所以ON y OM x OP +=OA y OM x -=所以1=-y x ,故答案为{}1例9.已知椭圆E :12510022=+y x 的上顶点为A ,直线4-=y 交椭圆于C B ,(B 在C 的左侧),点P 在椭圆E 上,若BC n BA m BP +=,求n m +的最大值 解析:可知点P 为椭圆的与AC 平行的切线的切点处时,n m +最大 计算可得=+max )(n m 1813105+ 例10.已知O 为ABC ∆的外心,若)00(,A ,)02(,B ,1=AC ,32π=∠BAC ,且AC AB AO μλ+=,则=+μλ解析:过点O 作OD ∥BC 交AB 于点D ,则ABAD=+μλ O 为ABC ∆的外心⇒点O 在BC 的垂直平分线上⇒点O 的横坐标为1 )23,21(-C ,532523-=-=BCk ,7)221()23(22=--+=BC由正弦定理得3212327sin 2=⨯=⇒∠=OA BACBCOA ,所以点O 的纵坐标为332137=-,直线OD :)1(53332--=-x y ,令0=y 得点D 的坐标为)0,313( 613==+∴AB AD μλ例11.已知O 为ABC ∆的外心,若31cos =∠BAC ,AC AB AO μλ+=,则=+max )(μλ 解析:设AO 交BC 于点D ,则ODAO AOAD AO +==+μλ 当OD 最小即BC AD ⊥时,μλ+最大,此时=+μλ43所以=+max )(μλ43例12.平面内有三个向量OA 、OB 、OC ,其中OA 与OB 的夹角为0120 ,OA 与OC 的夹角为030,且1==OB OA ,32=OC ,若OB n OA m OC +=,则n m +的值为解析:设OC 交AB 于点D ,则n m +ODOC=OAD ∆中,331300=⇒==∠=∠OD OA OAD AOD , 所以OD OC =63332== 例13.如图,C B A ,,是圆O 上的三点,CO 的延长线与线段BA 的延长线交于圆O 外的点D ,若OB n OA m OC +=,则n m +的取值范围为解析:∈-=+ODOCn m )0,1(-例14.在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为)0,5(,)1,2(1=e , )1,2(2-=e 分别是两条渐近线的方向向量,任取双曲线Γ上的点P ,若),(21R b a e b e a OP ∈+=,则b a ,满足的一个等式是解析:等积线:双曲线的方程为1422=-y x ,设)tan ,sec 2(θθP ,则由),(21R b a e b e a OP ∈+=⎩⎨⎧=-=+⇒⎩⎨⎧=-=+⇒-+=⇒θθθθθθtan sec tan sec 222)1,2()1,2()tan ,sec 2(b a b a b a b a b a 1tan sec )()(2222=-=--+⇒θθb a b a 41=⇒ab例15.已知1=OA ,3=OB ,0=⋅OB OA ,点C 在AOB ∠内,且030=∠AOC , 设OB n OA m OC +=,则nm的值为 答案:等商线:分别以OB OA ,为y x ,轴建立平面直角坐标系,则)3,0(),01(B A ,, OB n OA m OC +=)3,()3,0()0,1(n m n m =+=,又030=∠AOC ,所以330tan 30=⇒=nmm n例16.如图,倾斜角为θ的直线OP 与单位圆在第一象限的部分交于点P ,单位圆与坐标轴交于点)01(,-A ,点)10(-,B ,PA 与y 轴交于点N ,PB 与x 轴交于点M ,设),(R y x PN y PM x PO ∈+=,求y x +的最小值解析:设OP 交MN 于点Q ,MN 的中点为D ,则21211111=+-≥-=-==+OQ OQ PO PO PQ PO y x例17.如图,在扇形OAB 中,060=∠AOB ,C 为弧AB 上且不与A 、B 重合的一个动点,OB y OA x OC +=,若)0(>+=λλy x u 存在最大值,则λ的取值范围为解析:因为0>λ,在射线OB 上取点D ,使得OB OD λ1=,则OB y OA x OC +=OD y OA x λ+=,过点C 作CE ∥AD 交OB 于点E ,过点A 作OB AM ⊥于点M ,过点A 作弧AB 的切线交OB 于点N ,则易知当E 离D 最远时u 有最大值,而E 只能在线段MN 上,所以∈u )2,21(例18.在平面直角坐标系中,O 为坐标原点,两定点B A ,满足2=⋅==OB OA OB OA ,则点集{}R OB OA OP P ∈≤++=μλμλμλ,,1,所表示的区域面积为解析:由题意可知60=∠AOB ,设OB OD OA OC -=-=,,R OB OA OP ∈≤++=μλμλμλ,,1,,则可知点P 的轨迹为平行四边形ABCD 及其内部的部分,其面积为3460sin 44210=⨯⨯⨯例19.已知b a ,是两个互相垂直的单位向量,且1=⋅=⋅b c a c ,则对任意的正实数t ,b ta t c 1++的最小值为解析:分别以b a ,为y x ,轴方向上的单位向量,则)1,0(),0,1(==b a ,由1=⋅=⋅b c a c 知)1,1(=c ,)11,1()1,0(1)0,1()1,1(1tt t t b t a t c ++=++=++∴2212)12()2()11()1(12222≥+=+≥+++=++tt t t t t b t a t c。
平面向量基本定理一.教学目标:了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件;教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习1.已知a =(x,2),b =(1,x),若a //b ,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 22.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-= ()B (2,3),(3,2)a b ==()C (1,2),(7,14)a b =-= ()D (3,2),(6,4)a b =-=-3.已知点)4,3(),1,3(),4,2(----C B A ,且CB CN CA CM ⋅=⋅=2,3,则=MN ____ 4.已知点(1,5)A -和向量a =(2,3),若AB =3a ,则点B 的坐标为 三.知识归纳1. 平面向量基本定理:如果12,e e 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+成立。
其中12,e e 叫做这一平面的一组____________,即对基底的要求是向量___________________;2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ,j作基底,则对任一向量a ,有且只有一对实数x ,y ,使j y i x a +=、就把_________叫做向量a的坐标,记作____________。
3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量OA 的坐标为OA=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为21P P =___________________,即平面内任一向量的坐标等于表示它的有向线段的____点坐标减去____点坐标.4.线段中点坐标公式:A (1x ,1y ),B (2x ,2y )线段中点为M ,则有:OM =________________,M 点的坐标为_____________.5.两个向量平行的充要条件是:向量形式:_____________)0(//⇔≠b b a ;坐标形式: _____________)0(//⇔≠b b a .6. a=(x,y ), 则a =___________.与a 共线的单位向量是:aa e = 四.例题分析:例1.(1)、 已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P点的坐标为( )A (-14,16) (B )(22,-11) (C )(6,1) (D ) (2,4) (2)、已知两点A(4,1), B(7,-3), 则与向量AB 同向的单位向量是 ( )(A )⎪⎭⎫ ⎝⎛-54,53 (B)⎪⎭⎫ ⎝⎛-54,53 (C)⎪⎭⎫ ⎝⎛-53,54 (D)⎪⎭⎫ ⎝⎛-53,54(3)、若a =(2,3),b =(-4,7),则a 在b 方向上的投影为____________。
平面向量基本定理教案(精选10篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!平面向量基本定理教案(精选10篇)平面向量基本定理教案(精选10篇)作为一名为他人授业解惑的教育工作者,时常需要编写教案,教案是教学活动的依据,有着重要的地位。
平面向量基本定理推论1.引言1.1 概述概述部分的内容:在平面向量的研究中,平面向量基本定理是一个基础且重要的定理。
它是数学中向量的基本理论之一,描述了向量的基本性质和运算规律。
通过平面向量基本定理,我们可以深入理解和应用向量的概念,解决各种与向量相关的问题。
本文将以平面向量基本定理为基础,介绍其重要的推论。
这些推论是从平面向量基本定理中推导出来的,通过进一步分析和推理,得到了更具体、更实用的结论。
这些推论将帮助我们更好地理解和应用向量的性质,在解决实际问题中发挥重要作用。
通过对平面向量基本定理及其推论的学习,我们可以更深入地了解向量的几何和代数性质,进一步提升我们的数学思维和解题能力。
同时,这些推论也为我们进一步研究和应用向量提供了良好的基础。
本文将首先对平面向量基本定理进行简要介绍,然后详细阐述与该定理密切相关的两个重要推论。
最后,我们将对全文进行总结,并展望通过平面向量基本定理及其推论可以进一步拓展的领域和问题。
通过对这一主题的深入探讨,我们可以更好地理解平面向量的性质和运算,提高数学素养和问题解决能力。
同时,也为我们学习和研究其他相关数学理论打下了坚实的基础。
让我们开始这篇关于平面向量基本定理推论的探索吧!1.2文章结构文章结构部分的内容可以写成这样:1.2 文章结构本文主要分为三个部分,即引言、正文和结论。
- 引言部分(Section 1)对平面向量基本定理的推论进行了概述,说明了本文的背景和目的。
- 正文部分(Section 2)详细阐述了平面向量基本定理及其两个推论。
2.1小节介绍了平面向量基本定理的定义和特性,帮助读者建立起相关概念。
2.2小节阐述了推论1,探讨了其推导过程和应用。
2.3小节则讨论了推论2,深入分析了其意义和实际应用。
- 结论部分(Section 3)对全文进行了总结,并对未来可能的研究方向进行了展望。
通过以上的文章结构,读者可以逐步了解平面向量基本定理及其推论,并对其理论和应用有一个清晰的认识。
平面向量基本定理高中数学 1.理解平面向量基本定理及其意义,了解向量基底的含义.2.掌握平面向量基本定理,会用基底表示平面向量.3.会应用平面向量基本定理解决有关平面向量的综合问题.导语七个音符谱出千支乐曲,二十六个字母写就百态文章!在多样的平面向量中,我们能否找到它的“基本音符”呢?一、平面向量基本定理问题1 如图,设e 1,e 2是同一平面内两个不共线的向量,a 是这一平面内与e 1,e 2都不共线的向量.请你将向量a 分解成图中所给的两个方向上的向量.提示 =e 1,=λ1e 1,=e 2,=λ2e 2,=a =+=λ1e 1+λ2e 2.OA → OM → OB → ON → OC → OM → ON →问题2 上述问题中的分解方法是否唯一?为什么?提示 分解方法唯一.如果a 还可以表示成μ1e 1+μ2e 2的形式,那么λ1e 1+λ2e 2=μ1e 1+μ2e 2,可得(λ1-μ1)e 1+(λ2-μ2)e 2=0,由此式可推出λ1-μ1,λ2-μ2全为0(假设λ1-μ1,λ2-μ2不全为0,不妨假设λ1-μ1≠0,则e 1=-e 2.由此可得e 1,e 2共λ2-μ2λ1-μ1线,这与e 1,e 2不共线矛盾,即λ1=μ1,λ2=μ2,因此,分解方法是唯一的.知识梳理 1.平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.2.基底:若e 1,e 2不共线,我们把{e 1,e 2}叫做表示这一平面内所有向量的一个基底.注意点:(1)同一平面内基底有无数多个,只要两向量不共线即可.(2)当基底确定后,任意向量的表示法是唯一的,即λ1,λ2是唯一确定的.例1 (多选)设{e 1,e 2}是平面内所有向量的一个基底,则下列四组向量中,能作为基底的是( )A .e 1+e 2和e 1-e 2B .3e 1-4e 2和6e 1-8e 2C .e 1+2e 2和2e 1+e 2D .e 1和e 1+e 2答案 ACD解析 选项B 中,6e 1-8e 2=2(3e 1-4e 2),∴6e 1-8e 2与3e 1-4e 2共线,∴不能作为基底,选项A ,C ,D 中两向量均不共线,可以作为基底.反思感悟 考查两个向量是否能构成基底,主要看两向量是否不共线.此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示.跟踪训练1 已知向量{a ,b }是一个基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y =________.答案 3解析 因为{a ,b }是一个基底,所以a 与b 不共线,由平面向量基本定理得Error!所以Error!所以x -y =3.二、用基底表示向量例2 如图,已知在梯形ABCD 中,AB ∥CD ,AB =2CD ,E ,F 分别是DC ,AB 的中点,设=a ,=b ,试用{a ,b }为基底表示,.AD → AB → DC → EF →解 因为DC ∥AB ,AB =2DC ,E ,F 分别是DC ,AB 的中点,所以===b .DC → AF → 12AB → 12=++EF → ED → DA → AF →=--+12DC → AD → 12AB →=-×b -a +b =b -a .12121214反思感悟 用基底表示向量的一般方法(1)根据平面向量基本定理可知,同一平面内的任何一个基底都可以表示该平面内的任意向量.用基底表示向量,实质上是利用三角形法则或平行四边形法则,进行向量的线性运算.(2)基底的选取要灵活,必要时可以建立方程或方程组,通过方程或方程组求出要表示的向量.跟踪训练2 如图,在正方形ABCD 中,设=a ,=b ,=c ,则以{a ,b }为基底时,AB → AD → BD → 可表示为________,以{a ,c }为基底时,可表示为________.AC → AC →答案 a +b 2a +c解析 以{a ,b }为基底时,=+=a +b ;AC → AB → AD → 以{a ,c }为基底时,将平移,使B 与A 重合,再由三角形法则或平行四边形法则即得BD → =2a +c .AC → 三、平面向量基本定理的应用例3 如图,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 与BP ∶PN 的值.解 设=e 1,=e 2,BM → CN → 则=+=-3e 2-e 1,AM → AC → CM → =+=2e 1+e 2.BN → BC → CN → ∵A ,P ,M 和B ,P ,N 分别共线,∴存在实数λ,μ使得=λ=-λe 1-3λe 2,AP → AM → =μ=2μe 1+μe 2.BP → BN → 故=+=-=(λ+2μ)e 1+(3λ+μ)e 2.BA → BP → PA → BP → AP → 而=+=2e 1+3e 2,BA → BC → CA → 由平面向量基本定理,得Error!解得Error!∴=,=,AP → 45AM → BP → 35BN → ∴AP ∶PM =4∶1,BP ∶PN =3∶2.反思感悟 (1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.跟踪训练3 如图,在▱ABCD 中,E 和F 分别是边CD 和BC 的中点,若=λ+μ,AC → AE → AF → 其中λ,μ∈R ,则λ+μ=________.答案 43解析 设=a ,=b ,AB → AD → 则=a +b ,=a +b ,AE → 12AF → 12又∵=a +b ,∴=(+),AC → AC → 23AE → AF → 即λ=μ=,∴λ+μ=.23431.知识清单:(1)平面向量基本定理.(2)用基底表示向量.(3)平面向量基本定理的应用.2.方法归纳:数形结合.3.常见误区:忽视基底中的向量必须是不共线的两个向量.1.(多选)下列选项中,正确的是( )A .基底中的向量可以有零向量B .一个平面内只有一组不共线的向量可作为表示该平面内所有向量的基底C .一个平面内有无数组不共线向量可作为表示该平面内所有向量的基底D .平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的答案 CD2.如图,在△ABC 中,=a ,=b ,=3,=2,则等于( )AB → AC → DC → BD → AE → EC → DE →A .-a +b 1334B.a -b 51234C.a +b 3413D .-a +b34512答案 D解析 =+=+DE → DC → CE → 34BC → (-13AC → )=(-)-=-+34AC → AB → 13AC → 34AB → 512AC →=-a +b .345123.已知非零向量,不共线,且2=x +y ,若=λ(λ∈R ),则x ,y 满足的OA → OB → OP → OA → OB → PA → AB → 关系式是( )A .x +y -2=0B .2x +y -1=0C .x +2y -2=0D .2x +y -2=0答案 A解析 由=λ,得-=λ(-),即=(1+λ)-λ.又PA → AB → OA → OP → OB → OA → OP → OA → OB → 2=x +y ,OP → OA → OB → 所以Error!消去λ得x +y =2.4.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =AB ,BE =BC ,若1223=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为________.DE → AB → AC → 答案 12解析 如图,=+=+DE → DB → BE → 12AB → 23BC →=+(-)=-+,12AB → 23AC → AB → 16AB → 23AC →又∵与不共线,AB → AC → ∴λ1=-,λ2=,λ1+λ2=-+=.1623162312课时对点练1.(多选)设点O 是平行四边形ABCD 两对角线的交点,下列向量组可作为该平面其他向量基底的是( )A.与B.与AD → AB → DA → BC →C.与D.与CA → DC → OD → OB → 答案 AC解析 易知与不共线,与不共线,故与,与可作为基底.AD → AB → CA → DC → AD → AB → CA → DC → 2.若{e 1,e 2}是平面内的一个基底,则下列四组向量中可以作为平面向量的基底的是( )A .{e 1-e 2,e 2-e 1}B.{2e 1-e 2,e 1-12e 2}C .{2e 2-3e 1,6e 1-4e 2}D .{e 1+e 2,e 1+3e 2}答案 D解析 选项A 中,两个向量为相反向量,即e 1-e 2=-(e 2-e 1),则e 1-e 2,e 2-e 1为共线向量;选项B 中,2e 1-e 2=2,也为共线向量;选项C 中,6e 1-4e 2=-2(2e 2-3e 1),(e 1-12e 2)为共线向量.根据不共线的向量可以作为基底,知只有选项D 中的两向量可作为基底.3.如图所示,在矩形ABCD 中,=5e 1,=3e 2,则等于( )BC → DC → OC →A.(5e 1+3e 2)12B.(5e 1-3e 2)12C.(3e 2-5e 1)12D.(5e 2-3e 1)12答案 A解析 ==(-)=(+)OC → 12AC → 12BC → BA → 12BC → DC → =(5e 1+3e 2).124.(多选)如果{e 1,e 2}是平面α内所有向量的一个基底,那么下列说法正确的是( )A .若存在实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0B .对平面α中任意向量a 都可以表示为a =λ1e 1+λ2e 2,其中λ1,λ2∈RC .λ1e 1+λ2e 2(λ1,λ2∈R )不一定在平面α内D .对于平面α内任意向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对答案 AB解析 B 正确,平面中的任意向量都可以用基底表示;C 错,在平面α内任意向量都可表示为λ1e 1+λ2e 2的形式,故λ1e 1+λ2e 2一定在平面α内;D 错,这样的λ1,λ2是唯一的,而不是无数对.5.在△ABC 中,=,DE ∥BC ,且与边AC 相交于点E ,△ABC 的中线AM 与DE 相AD → 14AB → 交于点N ,设=a ,=b ,则用a ,b 表示等于( )AB → AC → DN → A.(a -b )B.(b -a )1414C.(a -b )D.(b -a )1818答案 D解析 由题意得==(-)=(-)=(b -a ),故选D.DN → 12DE → 12AE → AD → 18AC → AB → 186.如图,在△ABC 中,=,=,若=λ+μ,则等于( )AD → 13AC → BP → 23BD → AP → AB → AC → λμA. B. C .3 D.322313答案 A解析 由题意可得,=-=-,BD → AD → AB → 13AC → AB → =+=+=+AP → AB → BP → AB → 23BD → AB → 23(13AC → -AB → )=+,13AB → 29AC → 据此可知λ=,μ=,1329∴=.λμ327.如图,在△MAB 中,C 是边AB 上的一点,且AC =5CB ,设=a ,=b ,则MA → MB → =______.(用a ,b 表示)MC →答案 a +b1656解析 =+=+MC → MA → AC → MA → 56AB →=+(-)=+=a +b .MA → 56MB → MA → 16MA → 56MB → 16568.已知向量a 在基底{e 1,e 2}下可以表示为a =2e 1+3e 2,若a 在基底{e 1+e 2,e 1-e 2}下可表示为a =λ(e 1+e 2)+μ(e 1-e 2),则λ=________,μ=________.答案 -5212解析 由条件可知Error!解得Error!9.如图,在平行四边形ABCD 中,设=a ,=b ,试用基底{a ,b }表示,.AC → BD → AB → BC →解 方法一 设AC ,BD 交于点O ,则有===a ,===b .AO → OC → 12AC → 12BO → OD → 12BD → 12所以=+=-=a -b ,AB → AO → OB → AO → BO → 1212=+=a +b .BC → BO → OC → 1212方法二 设=x ,=y ,AB → BC → 则==y ,AD → BC → 又Error!所以Error!解得x =a -b ,y =a +b ,12121212即=a -b ,=a +b .AB → 1212BC → 121210.设e 1,e 2是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2.(1)证明:{a ,b }可以作为一个基底;(2)以{a ,b }为基底表示向量c =3e 1-e 2.(1)证明 假设a =λb (λ∈R ),则e 1-2e 2=λ(e 1+3e 2).由e 1,e 2不共线,得Error!所以λ不存在.故a 与b 不共线,可以作为一个基底.(2)解 设c =m a +n b (m ,n ∈R ),则3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2)=(m +n )e 1+(-2m +3n )e 2.所以Error!解得Error!所以c =2a +b .11.若=a ,=b ,=λ(λ≠-1),则等于( )OP 1→ OP 2→ P 1P —→ PP 2→ OP → A .a +λb B .λa +(1-λ)bC .λa +bD.a +b11+λλ1+λ答案 D解析 ∵=λ,P 1P —→ PP 2→ ∴-=λ(-),∴(1+λ)=+λ,OP → OP 1→ OP 2→ OP → OP → OP 1→ OP 2→ ∴= + = a + b .OP → 11+λOP 1→ λ1+λOP 2→ 11+λλ1+λ12.如图,AB 是⊙O 的直径,点C ,D 是半圆弧的两个三等分点,=a ,=b ,则AB ︵ AB → AC → 等于( )AD →A .a -bB.a -b 1212C .a +bD.a +b1212答案 D解析 连接CD ,OD ,图略,∵点C ,D 是半圆弧的两个三等分点,AB︵ ∴=,∴CD ∥AB ,∠CAD =∠DAB =30°,AC︵ BD ︵ ∵OA =OD ,∴∠ADO =∠DAO =30°,∴∠CAD =∠ADO =30°,∴AC ∥DO ,∴四边形ACDO 为平行四边形,=+.AD → AO → AC → ∵==a ,=b ,AO → 12AB → 12AC → ∴=a +b .故选D.AD → 1213.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足=OP → ,则点P 一定为( )13(12OA → +12OB → +2OC → )A .AB 边中线的中点B .AB 边中线的三等分点(非重心)C .△ABC 的重心D .AB 边的中点答案 B解析 ∵O 是△ABC 的重心,∴++=0,OA → OB → OC → ∴==,∴点P 是线段OC 的中点,即AB 边中线的三等分点(非重OP → 13(-12OC → +2OC → )12OC → 心).14.已知在平行四边形ABCD 中,E 为CD 的中点,=y ,=x ,其中x ,y ∈R ,AP → AD → AQ → AB → 且均不为0.若∥,则=________.PQ → BE → x y 答案 12解析 =-=x -y ,PQ → AQ → AP → AB → AD → 由∥,可设=λ,PQ → BE → PQ → BE → 即x -y =λ(-)=λ=-+λ,所以Error!则=.AB → AD → CE → CB → (-12AB → +AD → )λ2AB → AD → x y 1215.如图,平面内有三个向量,,,其中与的夹角为120°,与的夹角为OA → OB → OC → OA → OB → OA → OC → 30°,且||=||=1,||=2.若=λ+μ(λ,μ∈R ),则λ+μ=________.OA → OB → OC → 3OC → OA → OB →答案 6解析 如图,以OA ,OB 所在射线为邻边,OC 为对角线作▱OMCN ,使得M 在直线OA 上,N 在直线OB 上,则存在λ,μ,使=λ,=μ,OM → OA → ON → OB →即=+=λ+μ.OC → OM → ON → OA → OB → 在Rt △OCM 中,∵||=2,OC → 3∠COM =30°,∠OCM =90°,∴||=4,∴=4,OM → OM → OA → 又||=||=2,∴=2,ON → MC → ON → OB → ∴=4+2,OC → OA → OB → 即λ=4,μ=2,∴λ+μ=6.16.如图所示,在▱ABCD 中,=a ,=b ,BM =BC ,AN =AB .AB → AD → 2314(1)试用向量a ,b 来表示,;DN → AM → (2)AM 交DN 于O 点,求AO ∶OM 的值.解 (1)因为AN =AB ,14所以==a ,AN → 14AB → 14所以=-=a -b .DN → AN → AD → 14因为BM =BC ,所以===b ,23BM → 23BC → 23AD → 23所以=+=a +b .AM → AB → BM → 23(2)因为A ,O ,M 三点共线,所以∥,AO → AM → 设=λ,AO → AM → 则=-=λ-=λ-b DO → AO → AD → AM → AD → (a +23b )=λa +b .(23λ-1)因为D ,O ,N 三点共线,所以∥,存在实数μ使=μ,DO → DN → DO → DN → 则λa +b =μ.(23λ-1)(14a -b )由于向量a ,b 不共线,则Error!解得Error!所以=,=,AO → 314AM → OM → 1114AM → 所以AO ∶OM =3∶11.。
平面向量基本定理全文共四篇示例,供读者参考第一篇示例:平面向量基本定理是解析几何中的一个重要定理,它是平面向量运算的基础,也是矢量分析的核心概念之一。
在平面几何中,研究平面向量的性质和应用是非常重要的,通过掌握平面向量基本定理,可以更好地理解和解决平面几何中的各种问题。
平面向量基本定理是指,在平面直角坐标系中,两个不共线的向量可以唯一确定一个平面,并且这个平面也能确定这两个向量。
换句话说,如果在平面直角坐标系中给定两个不共线的向量a和b,那么这两个向量确定的平面就是以这两个向量为基底的平面,任意一个平面向量都可以唯一地表示为这两个向量的线性组合。
下面我们来详细解释一下平面向量基本定理的内容和应用。
我们知道,在平面直角坐标系中,每个向量都可以表示为一个有序对(a,b),其中a和b分别是向量在坐标系的x轴和y轴上的分量。
向量a可以表示为(a1,a2),向量b可以表示为(b1,b2)。
两个向量的和是它们对应分量的和,两个向量的数量积是它们对应分量的乘积之和。
根据向量的加法和数量积的定义,我们可以得出平面向量加法的交换律和结合律,即a+b=b+a,(a+b)+c=a+(b+c),以及数量积的分配律,即a*(b+c)=a*b+a*c。
这些性质是平面向量基本定理的重要基础。
根据平面向量基本定理,我们可以推导出平行向量的性质。
如果两个向量a和b平行,那么它们的数量积等于它们的模长乘积。
即a·b=|a|*|b|*cosθ,其中θ是a和b之间的夹角。
这个公式是计算两个向量夹角的重要方法之一,也是解决平面向量问题的关键步骤之一。
根据平面向量基本定理,我们还可以推导出向量的线性相关性和线性无关性的概念。
如果两个向量a和b线性相关,那么存在不全为零的实数k,使得a=k*b或者b=k*a。
反之,如果不存在这样的实数k,那么向量a和b就是线性无关的。
通过判断向量的线性相关性和线性无关性,我们可以确定向量组的秩,从而求解平面向量的线性组合问题。
平面向量基本定理之系数的奇妙性质
发布时间:2022-01-10T01:17:07.276Z 来源:《中小学教育》2021年第27期作者:田飞州
[导读] 我们知道,平面内任意一向量可以分解成基底的线性组合即,其系数构成的有序实数对是唯一的。
除此之外,系数还有哪些美丽而动人的性质呢?
田飞州
四川省渠县中学 635200
我们知道,平面内任意一向量可以分解成基底的线性组合即,其系数构成的有序实数对是唯一的。
除此之外,系数还有哪些美丽而动人的性质呢?
法三:建立直角坐标系,由向量的坐标表示也可以,此处略去。
由方法一,可以把两个基底所在的直线分别叫作轴,平面被直线分得四个“象限”,于是乎就得到:
性质一:(正负分布)的终点在不同的象限内,则的正负不同。
若把所在区域叫做第一象限,则;若把所在的反向区域叫做第三象限,则;若把所在的反时针的第二个区域叫做第二象限,则;第二象限的相对
区域叫做第四象限,则。
这些与直角坐标系下点的坐标何其神似!
为方便应用,不妨引入如下概念。
把基底终点的连线称之为基线,过终点c且与基线平行的直线称为火线,过起点c且与基线平行的直线称为零线。
若起点c到火线的距离,称为火距,起点c到基线的距离称为基距,则火距:基距。
应用举例
总之,平面向量基本定理内涵丰富,其系数的性质更是丰富多彩,需要我们为人师者曲径探幽,不断挖掘、不断总结,并以此为依托,培养学生数学思维创新品质。
第六章 6.3.1 平行向量基本定理【基础篇】题型1 平面向量基本定理的理解1.已知{e 1,e 2}是平面内所有向量的一个基底,则下列四组向量中,不能..作为基底的一组是( )A .2e 1-e 2和2e 2-4e 1B .e 1+e 2和e 1-2e 2C .e 1-2e 2和e 1D .e 1+e 2和2e 2+e 12.(多选)如果e 1,e 2是平面α内两个不共线的向量,那么在下列叙述中正确的有( ) A .λe 1+μe 2(λ,μ∈R )可以表示平面α内的所有向量B .对于平面α内的任一向量a ,使a =λe 1+μe 2的实数λ,μ有无数多对C .若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2)D .若存在实数λ,μ使λe 1+μe 2=0,则λ=μ=03.如图所示,平面内的两条相交直线OP 1和OP 2将该平面分割成四个部分Ⅰ,Ⅰ,Ⅰ,Ⅰ(不包括边界).若OP →=aOP 1→+bOP 2→,且点P 落在第Ⅰ部分,则实数a ,b 满足( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0题型2 向量相等4. 如图所示,平行四边形ABCD 的对角线相交于点O ,E 为AO 的中点.若DE →=λ2AB →+2μAD→(λ,μ∈R ),则λ+μ等于( )A .1B .-1C .14D .185.设E 为△ABC 的边AC 的中点,BE →=mAB →+nAC →,则m +n =________.题型3 平面向量的分解6.如图所示,在正六边形ABCDEF 中,设AB →=a ,AF →=b ,则AC →=( )A .a +2bB .2a +3bC .2a +bD .32a +b7.如图,在△ABC 中,点D 是线段AB 上靠近A 的三等分点,点E 是线段CD 的中点,则( )A .AE →=16AB →+12AC →B.AE →=13AB →+12AC →C.AE →=16AB →-12AC →D.AE →=13AB →-12AC →8.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,用向量a 和b 表示c ,则c =________.9.在平行四边形ABCD 中,E ,F 分别是AD ,DC 边的中点,BE ,BF 分别与AC 交于R ,T 两点,ET →=xAB →+yAD →(x ,y ∈R ),则x +y =( ) A .16B .13C .23D .56【提升篇】1.如果{a ,b }是一个基底,那么下列不能作为基底的是( ) A .a +b 与a -bB .a +2b 与2a +bC .a +b 与-a -bD .a 与-b2.在△ABC 中,点D 在边AB 上,CD 平分∠ACB .若CB →=a ,CA →=b ,|a |=1,|b |=2,则CD →=( ) A .13a +23b B .23a +13b C .35a +45bD .45a +35b3.(多选)[浙江宁波九校2022高一期末]在梯形ABCD 中,AB ∥CD ,AB =2CD ,E ,F 分别是AB ,CD 的中点,AC 与BD 交于M .设AB →=a ,AD →=b ,则下列结论正确的有( ) A .AC →=12a +bB .BC →=-12a +bC .BM →=-13a +23bD .EF →=-14a +b4.如图,在△ABC 中,D ,E 分别在边BC ,AC 上,且BC →=3BD →,EC →=λAE →,F 是AD ,BE 的交点.若AF →=35AD →,则λ=( )A .2B .3C .6D .75.某中学八角形校徽由两个正方形叠加组合而成,体现“方方正正做人”之意,又体现南开人“面向四面八方,胸怀博大,广纳新知,锐意进取”之精神.如图的多边形,由一个正方形与以该正方形中心为中心逆时针旋转45°后的正方形组合而成.已知向量n ,k ,则向量a =( )A .3k +2nB .3k +(2+2)nC .(2+2)k +(2+2)nD .(2+2)k +(1+2)n6.(多选)[湖北孝感2022高一期末]已知△ABC 中,O 是BC 边上靠近B 的三等分点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N .设AB →=mAM →,AC →=nAN →,其中m >0,n >0,则下列结论正确的是( ) A .AO →=23AB →+13AC →B.AO →=13AB →+23AC →C .2m +n =3D .m +2n =37.在等腰梯形ABCD 中,DC →=2AB →,E 为BC 的中点,F 为DE 的中点,记DA →=a ,DC →=b .若用a ,b 表示DF →,则DF →=________.8.在△ABC 中,AD →=12AB →,BE →=23BC →.若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2=________.9.如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 的两个三等分点,BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值是________.10.如图,在正△ABC 中,点G 为边BC 的中点,边AB ,AC 上的动点D ,E 分别满足AD →=λAB →,AE →=(1-2λ)AC →,λ∈R .设DE 的中点为F ,记|FG →||BC →|=R(λ),则R(λ)的取值范围为________.11.如图,在平行四边形ABCD 中,E 是AB 的中点,F ,G 分别是AD ,BC 的四等分点⎝⎛⎭⎫AF =14AD ,BG =14BC .设AB →=a ,AD →=b . (1)用a ,b 表示EF →,EG →.(2)如果|b |=2|a |,EF ,EG 有什么位置关系?用向量的方法证明你的结论.12.如图所示,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M .过点M 的直线l与OA ,OB 分别交于点E ,F . (1)试用OA →,OB →表示向量OM →;(2)设OE →=λOA →,OF →=μOB →,求证:1λ+3μ是定值.13.如图,在直角梯形OABC 中,OA ∥CB ,OA ⊥OC ,OA =2BC =2OC ,M 为AB 上靠近B的三等分点,OM 交AC 于点D ,P 为线段BC 上的动点. (1)用OA →和OC →表示OM →; (2)求OD DM;(3)设OB →=λCA →+μOP →,求λμ的取值范围.答案及解析【详解】对于A 选项,因为2e 2-4e 1=-2(2e 1-e 2),所以2e 1-e 2和2e 2-4e 1共线,A 选项不满足条件;对于B 选项,设e 1+e 2=λ(e 1-2e 2)=λe 1-2λe 2,则⎩⎪⎨⎪⎧λ=1,-2λ=1,无解,故e 1+e 2和e 1-2e 2不共线,B 选项能作为基底;同理可知e 1-2e 2和e 1不共线,e 1+e 2和2e 2+e 1也不共线,C ,D 选项均能作为基底.故选A.2.【答案】AD【详解】由平面向量基本定理可知,A ,D 正确.对于B ,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的.对于C ,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,λ有无数个.故选AD.3.【答案】B【详解】取第Ⅰ部分内一点画图易得a >0,b <0.4.【答案】D【详解】因为E 为AO 的中点,所以AE →=14AC →=14(AB →+AD →),所以DE →=AE →-AD →=14(AB →+AD →)-AD →=14AB →-34AD →.又因为DE →=λ2AB →+2μAD →,所以⎩⎨⎧λ2=14,2μ=-34,解得⎩⎨⎧λ=12,μ=-38,所以λ+μ=18,故选D.5.【答案】-12【详解】因为BE →=BA →+AE →=-AB →+12AC →=mAB →+nAC →,所以m =-1,n =12,所以m +n =-12.6.【答案】C【详解】在正六边形ABCDEF 中,连接FC ,则FC ∥AB ,FC =2AB ,所以AC →=AF →+FC →=AF →+2AB →=2a +b .故选C.【详解】由题图知AE →=12AD →+12AC →=16AB →+12AC →.故选A.8.【答案】a -2b【详解】因为a ,b 不共线,设c =xa +yb (x ,y ∈R),则xa +yb =x (3e 1-2e 2)+y (-2e 1+e 2)=(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2.又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .9.【答案】D 【详解】如图所示,设CT →=μCA →=2μCF →+μCB →(μ∈R).因为F ,T ,B 共线,所以3μ=1,解得μ=13.所以AT →=23AC →,所以ET →=AT →-AE →=23AC →-AE →=23AB →+16AD →.又ET →=xAB →+yAD →,所以x =23,y =16,所以x +y =56.故选D.【详解】由题意知,a 与b 不共线,根据平行四边形法则,可知A ,B ,D 选项中的两个向量都可以作为基底,而a +b 与-a -b 共线,不能作为基底.2.【答案】B【详解】∵CD 平分∠ACB ,∴|CA →||CB →|=|AD →||DB →|=2.∴AD →=2DB →=23AB →=23(CB →-CA →)=23(a -b ).∴CD→=CA →+AD →=b +23(a -b )=23a +13b .3.【答案】ABD【详解】由题意得,AC →=AD →+DC →=b +12a ,故A 正确;BC →=BA →+AC →=-a +b +12a =b -12a ,故B 正确;由△CMD ∽△AMB ,且CD =12AB 得AM →=23AC →,则BM →=BA →+AM →=-a +23AC →=-a +23b +13a =23b -23a ,故C 错误;EF →=EA →+AD →+DF →=-12a +b +14a =b -14a ,故D 正确.故选ABD.4.【答案】A【详解】由题意得AD →=AB →+BD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →.因为B ,E ,F 三点共线,所以AF →=kAB →+(1-k )AE →=kAB →+1-k λ+1AC →.因为AF →=35AD →,所以kAB →+1-k λ+1AC →=35⎝⎛⎭⎫23AB →+13AC →,则⎩⎨⎧k =25,1-k λ+1=15.解得λ=2,故选A.5.【答案】D【详解】根据题意可得|n |=|k |,已知该图形是由以正方形中心为中心逆时针旋转45°后的正方形与原正方形组合而成,如图,由对称性可得|AB |=|BC |=|CD |=|DE |=|EQ |=|QF |,|CE |=|EF |=|FG |=2|AB |=2|n |. 由图可知点B ,C ,E ,Q 共线,点Q ,F ,G 共线,所以BQ →=BC →+CE →+EQ →=(2+2)k , QG →=QF →+FG →=(1+2)n ,所以a =BG →=BQ →+QG →=(2+2)k +(1+2)n .故选D.6.【答案】AC【详解】AO →=AB →+BO →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →,A 正确,B 错误.因为AB →=mAM →,AC →=nAN →,所以AO →=23AB →+13AC →=2m 3AM →+n 3AN →.又因为M ,O ,N 三点共线,所以2m 3+n3=1,故2m +n =3,C 正确,D 错误.故选AC.7.【答案】14a +38b【详解】DE →=12DB →+12DC →=12(DA →+AB →)+12DC →=34DC →+12DA →,∴DF →=12DE →=38DC →+14DA →,即DF →=14a +38b .8.【答案】12【详解】DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,又DE →=λ1AB →+λ2AC →,所以λ1+λ2=12.9.【答案】78【详解】∵E ,F 是AD 的两个三等分点,D 是BC 的中点,∴BF →=BD →+DF →,CF →=CD →+DF →=DF →-BD →,BA →=BD →+DA →=BD →+3DF →,CA →=CD →+DA →=3DF →-BD →.∴BA →·CA →=9|DF →|2-|BD →|2=4, BF →·CF →=|DF →|2-|BD →|2=-1, 解得|DF →|2=58,|BD →|2=138.又∵BE →=BD →+DE →=BD →+2DF →,CE →=CD +DE →=2DF →-BD →,∴BE →·CE →=4|DF →|2-|BD →|2=208-138=78.10.【答案】⎣⎡⎦⎤12,74 【解析】设正△ABC 的边长为2,则AB →·AC →=2×2×cos π3=2,|BC →|=2. FG →=AG →-AF →=12(AB →+AC →)-12(AD →+AE →)=12(1-λ)AB →+λAC →,所以|FG →|= (1-λ)2+4λ2+2λ(1-λ)=3λ2+1.又0≤1-2λ≤1,0≤λ≤1,所以0≤λ≤12,因此|FG →|=3λ2+1∈⎣⎡⎦⎤1,72,R(λ)=3λ2+12∈⎣⎡⎦⎤12,74.11.【答案】(1)由已知,得AE →=EB →=12a ,AF →=BG →=14b , 所以EF →=EA →+AF →=14b -12a , EG →=EB →+BG →=14b +12a . (2)EF 与EG 互相垂直.证明如下:EF →·EG →=⎝⎛⎭⎫14b +12a ·(14b -12a )=116b 2-14a 2, 因为|b |=2|a |,所以EF →·EG →=0,即EF ⊥EG ,所以EF 与EG 互相垂直.12.【答案】(1)【解】由A ,M ,D 三点共线可得存在实数m ,使得OM →=mOA →+(1-m )OD →,又OD →=12OB →,故OM →=mOA →+1-m 2OB →. 由C ,M ,B 三点共线可得存在实数n ,使得OM →=nOC →+(1-n )OB →,又OC →=14OA →,故OM →=n 4OA →+(1-n )OB →. 由题意知OA →,OB →不共线,则⎩⎨⎧m =14n ,1-m 2=1-n ,解得⎩⎨⎧m =17,n =47,故OM →=17OA →+37OB →. (2)【证明】由E ,M ,F 三点共线,可设OM →=kOE →+(1-k )OF →(k ∈R),由OE →=λOA →,OF →=μOB →,得OM →=kλOA →+(1-k )μOB →.由(1)知OM →=17OA →+37OB →, 则⎩⎨⎧kλ=17,(1-k )μ=37,即⎩⎨⎧λ=17k ,3μ=7-7k ,所以1λ+3μ=7,故1λ+3μ是定值. 13.【答案】(1)依题意CB →=12OA →,AM →=23AB →, ∴AM →=23(OB →-OA →)=23(OC →+CB →)-23OA →=23OC →-13OA →, ∴OM →=OA →+AM →=OA →+⎝⎛⎭⎫23OC →-13OA →=23OA →+23OC →.(2)设OD →=tOM →(t ∈R).由(1)可知OD →=23tOA →+23tOC →. 又A ,C ,D 三点共线,∴23t +23t =1,解得t =34,故OD DM =3. (3)由题意得OB →=OC →+CB →=OC →+12OA →, 已知P 是线段BC 上的动点,设CP →=xOA →⎝⎛⎭⎫0≤x ≤12. ∵OB →=λCA →+μOP →=λ(OA →-OC →)+μ(OC →+CP →)=(λ+μx )OA →+(μ-λ)OC →,又OC →,OA →不共线,∴⎩⎪⎨⎪⎧μ-λ=1,λ+μx =12,解得⎩⎪⎨⎪⎧λ=μ-1,μ=32+2x. 又0≤x ≤12,∴1≤x +1≤32,∴1≤μ≤32. 可知λμ=μ(μ-1)=⎝⎛⎭⎫μ-122-14在区间⎣⎡⎦⎤1,32上单调递增, 当μ=1时,(λμ)min =0,当μ=32时,(λμ)max =34, 故λμ的取值范围是⎣⎡⎦⎤0,34.。
平面向量的基本定理及坐标表示全文共四篇示例,供读者参考第一篇示例:平面向量是我们在高中数学学习中接触到的一个重要知识点,它在几何学和代数学中都有着重要的作用。
平面向量本质上是有大小和方向的量,它可以用箭头表示出来,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
而平面向量的基本定理和坐标表示是我们学习平面向量的重要内容,下面我就来详细介绍一下。
一、平面向量的基本定理1. 平行向量的概念两个向量如果它们的方向相同或者相反,那么我们称这两个向量为平行向量。
平行向量的特点是它们的模相等,方向相同或者相反。
2. 向量的加法如果有两个向量a和b,它们的起点相同,那么我们可以通过平行四边形法则将这两个向量相加,即将向量b平移至向量a的终点,然后连接向量a的起点和向量b的终点,这条连接线就是向量a+b的结果。
3. 向量的数量积向量的数量积,也称为点积或内积,是两个向量的特殊乘积。
设有两个向量a和b,它们之间夹角为θ,那么a·b=|a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长。
二、平面向量的坐标表示在平面直角坐标系中,我们可以用坐标表示一个向量。
设有一个向量a,它在平面直角坐标系中的起点为O(0,0),终点为A(x,y),那么我们可以用坐标(x,y)表示向量a。
在平面直角坐标系中,向量a与坐标轴之间的夹角为θ,那么向量a的方向角为θ。
根据三角函数的定义,我们有cosθ=x/|a|,sinθ=y/|a|,tanθ=y/x,这三个公式可以帮助我们求解向量的方向角。
对于向量的数量积和叉积,我们也可以通过向量的坐标表示来进行计算。
设向量a在坐标系中的起点为O(0,0),终点为A(x1,y1),向量b在坐标系中的起点为O(0,0),终点为B(x2,y2),那么向量a和向量b 的数量积为x1x2+y1y2,向量a和向量b的叉积为x1y2-x2y1。
平面向量的基本定理和坐标表示是我们学习平面向量的重要内容,通过深入理解这些知识点,我们可以更好地解决平面向量的相关问题,为我们的数学学习打下坚实的基础。
衡阳市数学学会高三数学复习微专题之《平面向量基本定理系数“等和线”的应用》衡东一中朱亚旸一、问题的提出平面向量与代数、几何融合考查的题目综合性强,难度大,考试要求高.近年,高考、模考中有关“等和线定理”(以下简称等和线)背景的试题层出不穷.学生在解决此类问题时,往往要通过建系或利用角度与数量积处理,结果因思路不清、解题繁琐,导致得分率不高.在平时教学中,我们能不能给出一个简单、有效的方法解决此类问题呢?带着这个问题,笔者设计本微型专题.二、等和线定理平面内一组基地 OA, OB 及任一向量 OC ,OC = λOA + μOB(λ,μ ∈ R),若点C 在直线 AB 上或在平行于 AB 的直线上,则λ + μ = k (定值),反之也成立,我们把直线 AB 以及直线 AB 平行的直线称为“等和线”.(1)当等和线恰为直线 AB 时, k =1;(2)当等和线在 O 点和直线 AB 之间时, k ∈(0,1);(3)当直线 AB 在 O 点和等和线之间时, k ∈(1,+∞);(4)当等和线过 O 点时, k =0;(5)若两等和线关于 O 点对称,则定值 k 互为相反数;(6)定值 k 的变化与等和线到 O 点的距离成正比;⎛ x y ⎫简证,如图1若 OC = λOD ,那么 OC = xOA + yOB = λ OA + OB⎪ = λOD ,λ λ⎝ ⎭从而有x+y= 1 ,即x+y= λ.另一方面,过C点作直线l // AB,在l上任作一λ λ点 C',连接 OC'⋂ AB = D',同理可得,以 OA, OB 为基底时,OC'对应的系数和依然为λ .三、定理运用(一)基底起点相同例1:(2017年全国Ⅲ卷理科第12题)在矩形 ABCD中, AB =1, AD =2,动点 P 在以 C 为圆心且与 BD 相切的圆上,若 AP = λ AB + μ AD ,则λ + μ的最大值()A .3B .22C . 5D .2【分析】如图2,由平面向量基底等和线定理可知,当等和线 l与圆相切时,λ + μ最大,此时λ + μ =AF=AB+BE+EF=3AB=3,故选 A .AB AB AB练习 1:(2006年湖南卷15题)如图3所示,OM // AB ,点 P 在由射线 OM 、射线段 OB 及 AB的延长线围成的阴影区域内(不含边界)运动,且 OP = xOA + yOB(1)则 x 的取值范围是;(2)当 x = - 1 时, y 的取值范围是.2【分析】(1),根据题意,很显然 x <0;(2)由平面向量基底等和线定理可知,0< x + y <1,结合 x = -12,可得12< y <32.练习2:(衡水中学 2018届高三二次模拟)如图4,边长为 2 的正六边形ABCDEF 中,动圆 Q 的半径为1,圆心在线段 CD (含短点)上运动, P 是圆 Q 上及其内部的动点,设向量 AP = m AB + n AF(m, n ∈ R),则 m + n 的取值范围是()A .(1,2] B .[5,6] C .[2,5] D .[3,5]【分析】如图5,设 AP = m AB + n AF ,由等和线结论,m + n = AG = 2 AB = 2 .此为m+n1 AB AB的最小值;同理,设 AP = m AB + n AF ,由等和线结论,m + n = AH = 5 .此为m+n2 AB的最大值.综上可知 m + n ∈[2,5].(二)基底起点不同例 2:(2013 年江苏高考第 10 题)设 D , E 分别是 ∆ABC 的边 AB , BC 上的点,且有 AD =12 AB , BE = 23 BC , 若 DE = λ1 AB + λ2 AC (λ1 , λ2 ∈ R ),则 λ1+ λ2 的值为【分析】过点 A 作 AF = DE ,设 AF , BC 的延长线交于点 H ,易知 AF = FH ,即 AF = FH ,即 DF 为 BC 的中位线,因此 λ1 + λ2 =12 .练习 3:如图 7,在平行四边形 ABCD 中,M , N 为 CD 的三等分点,S 为 AM 与 BN 的交点,P 为边 AB 上一动点,Q 为 ∆SMN 内一点(含边界),若 PQ = x AM + y BN ,则 x + y 的取值范围是 .【分析】如图 8 所示,作 PS = AM ,PT = BN ,过 I 作直线 MN 的平行线,由等和线定理⎡3 ⎤可知, x + y ∈ ⎢ ,1⎥ .4 ⎣ ⎦(三)基底一方可变例 3:在正方形 ABCD 中,如图 9, E 为 AB 中点, P 以 A 为圆心, AB 为半径的圆弧上的任意一点,设 AC = x DE + y AP ,则 x + y 的最小值为 .【分析】由题意,作 AK = DE ,设 AD = λ AC ,直线 AC 与直线 PK 相交与点 D ,则有AD = λx AK + λy AP ,由等和线定理,λx + λy =1,从而 x + y =λ1,当点 P与点 B 重合时,如图10,λmax= 2 ,此时,(x+y)min=1 2.练习4:在平面直角坐标系 xoy 中,已知点 P 在曲线Γ:y = 1 -x42(x≥ 0)上,曲线Γ与 x 轴相交于点 B ,与 y 轴相交于点 C ,点 D(2,1)和 E(1,0)满足OD = λCE + μOP(λ,μ ∈ R)则λ + μ的最小值为___.【分析】作CE = OA ,令 OD1= xOD ,有 OD1= xλOA + xμOP ,由等和线定理, xλ + xμ =1,所以λ + μ =1x,如图11,再由等和线定理,得(λ + μ)min=12 .(四)基底合理调节例题4:(2013 年高考安徽理科卷)在平面直角坐标系中,O 是坐标原点,两定点A, B 满足 OA = OB = OA⋅OB =2,则点集{P OP = λOA + μOB,λ + μ ≤1,λ,μ ∈ R}所表示的区域面积是()A .22B .23C .42D .4 3【分析】由 OA = OB = OA⋅OB =2可知,OA, OB = π3 .如图 12 所示,当 λ ≥ 0,μ ≥ 0 时,若λ + μ = 1 ,则点P位于线段AB上;当λ ≥ 0,μ ≤ 0 时,若λ - μ = 1,则点P位于线段 AB'上;当λ ≤0,μ ≥0时,若- λ + μ =1,则点 P 位于线段 A' B 上;当λ≤ 0,μ ≤ 0 时,若- λ - μ = 1 ,则点P位于线段A'B'上;又因为λ + μ ≤ 1 ,由等和线定理可知,点 P 位于矩形 ABA' B'内(含边界).其面积 S =4S∆AOB=4 3 .衡阳市数学学会练习5:如图13所示, A, B, C 是圆 O 上的三点, CO 的延长线与线段 BA 的延长线交于圆 O 外的点 D ,若 OC = mOA + nOB ,则 m + n 的取值范围是.【分析】作 OA, OB 的相反向量 OA1, OB1,如图14所示,则 AB // A1 B1,过 O 作直线 l // AB ,则直线 l , A1 B1为以 OA, OB 为基底的平面向量基本定理系数等和线,且定值分别为0,-1 ,由题意CO的延长线与线段BA的延长线交于圆O外的点D,所以点C在直线 l 与直线 A1 B1之间,所以 m + n ∈(-1,0).练习6:如图15,在扇形 OAB 中,∠AOB =π3, C 为弧 AB 上的一个动点,若OC = xOA + yOB ,则 x +3 y 的取值范围是.【分析】,令 OB'=OB,依题意, OC = xOA +3 y OB⎪⎛ ⎫⎪3⎝ 3 ⎭重新调整基底 OA, OB'.显然,当 C 在 A 点时,经过 k =1的等和线, C 在 B 点时经过 k =3的等和线,这两个分别是最近跟最远的等和线,所以系数和x+ 3 y∈[1,3].(五)“基底+”高度融合例 5 :已知三角形∆ABC 中, BC =6 , AC =2 AB ,点 D 满足AD = 2x AB + y AC ,设f(x,y)= AD , f (x, y)≥ f (x , y )恒成立,2(x+y)x + y 0 0则 f (x0, y0)的最大值为.【分析】衡阳市数学学会本题为“基底+阿氏圆”交汇命题.思路1:如图16所示,以 BC 为 x 轴,中垂线为 y 轴建立直角坐标系,易知点 B 的轨迹方程是(x -5)2+ y 2 = 16 .取AC中点F,延长AB 到 E ,且 AB = BE .于是,AD =2xAB +yAC ,∴ AD =x (2 AB)+ y ⎛ 1 AC ⎫⎪ ,即有x + y 2(x+y) x + y (x + y)⎝2 ⎭AD =xAE +yAF ,从而 D ∈ EF ,进一步得到x + y x + yf (x, y)≥ f (x0, y0)= AK ,且有 AK =2 BG ,因为EF恒过∆ACE重心H,所以AK =2 BG ≤2 BH =4,即 f (x0, y0)max=4.思路2:如图17所示,同上分析, D ∈ EF .当 AD ⊥ EF 时,f(x,y)=AD取得最小值,此时 f (x0, y0)= AD .易知∆ABC ≅ ∆AEF ,则AD=AH≤r=4.四、解题总结1、确定等值线为 1 的直线;2、平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和最小值;3、从长度比或者点的位置两个角度,计算最大值或最小值.五、后记等和线定理巧妙的将代数问题转化为图形关系,将具体的代数式运算转化为距离的长短比例关系问题,这是数形结合思想的非常直接的体现。
平面向量基本定理的应用问题一、利用平面向量基本定理表示未知向量平面向量基本定理的内容:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e ,平面内选定两个不共线向量为基底,可以表示平面内的任何一个向量.【例1】如图,平面内有三个向量,,OA OB OC ,其中OA 与OB 的夹角为120︒,OA 与OC 的夹角为30︒,且3||2,||,||232OA OB OC ===,若(,)OC OA OB λμλμ=+∈R ,则( ) A. 4,2λμ== B. 83,32λμ==C. 42,3λμ==D. 34,23λμ== ABCO【分析】平面向量基本定理实质上是“力的分解原理”,过点C 分别作直线,OA OB 的平行线,分别与直线,OB OA 相交,利用向量加法的平行四边形法则和平面向量共线定理将OC 用,OA OB 表示.【解析】设与,OA OB 同方向的单位向量分别为,a b ,依题意有42OC a b =+,又2OA a =,32OB b =,则423OC OA OB =+,所以42,3λμ==.故选C.【点评】利用平面向量基本定理表示未知向量时,向量加法的三角形法则、平行四边形法则以及必要的平面几何知识是必要的.【小试牛刀】【2016届重庆市巴蜀中学高三上学期期中】在ABC ∆中,若点D 满足DC BD 2=,则=AD ( )A .AB AC 3231+ B .AC AB 3235- C .3132- D .3132+二、利用平面向量基本定理确定参数的值、取值范围问题平面向量基本定理是向量坐标的理论基础,通过建立平面直角坐标系,将点用坐标表示,利用坐标相等列方程,寻找变量的等量关系,进而表示目标函数,转化为函数的最值问题.【例2】【2016届浙江省绍兴市一中高三9月回头考】已知向量,OA OB 满足1OA OB ==,,(,,)OA OB OC OA OB R λμλμ⊥=+∈若M 为AB 的中点,并且1MC =,则λμ+的最大值是( )A .13-B .12+C .5D .13+【分析】首先利用已知条件建立适当的直角坐标系,并写出点,A B 的坐标,然后运用向量的坐标运算计算出点C 的坐标,再由1MC =可得,λμ所满足的等式关系即圆的方程,设t λμ=+,将其代入上述圆的方程并消去μ得到关于λ的一元二次方程,最后运用判别式大于等于0即可得出所求的答案.【解析】因为向量,OA OB 满足1OA OB ==,OA OB ⊥,所以将,A B 放入平面直角坐标系中,令(1,0),(0,1)A B ,又因为M 为AB 的中点,所以11(,)22M .因为(,,)OC OA OB R λμλμ=+∈,所以(1,0)(0,1)(,)OC OA OB λμλμλμ=+=+=,即点(,)C λμ.所以11(,)22MC λμ→=--,因为1MC =,所以2211()()122λμ-+-=,即点(,)C λμ在以11(,)22为圆心,1为半径的圆上.令t λμ=+,则t μλ=-,将其代入圆2211()()122λμ-+-=的方程消去μ得到关于λ的一元二次方程:22122()02t t t λλ-+--=,所以221(2)42()02t t t ∆=-⨯--≥,解之得2121t -+≤≤+,即λμ+的最大值是12+.故应选B .【点评】若题中有互相垂直的单位向量,大多可建立坐标系,转化为代数问题.【小试牛刀】如图,在正方形ABCD 中,E 为AB 的中点,P 为以A 为圆心,AB 为半径的圆弧上的任意一点,设向量的最小值为则μλμλ++=,AP DE AC .三、三点共线向量式设,,A B C 是共线三点,O 是平面内任意一点,则(1)OB OA OC λλ=+-,其特征是“起点一致,终点共线,系数和为1”,利用向量式,可以求交点位置向量或者两条线段长度的比值.【例3】如图所示,已知点G 是△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且,AM x AB AN y AC ==,则xyx y+的值为 . NMGCBA【分析】g (x )在区间(-2,-1)内存在单调递减区间可转化为'()0g x ≤在区间(-2,-1)有解,且不是唯一解,参变分离为2a x+x≤,只需求右侧函数的最大值,再检验等号. 【解析】这题应该用到这个结论:O 是直线AB 外一点,OC mOA nOB =+,则,,A B C 三点共线的充要条件是1m n +=.本题中就是设AG mAM nAN =+,则1m n +=,由于G 是ABC ∆的重心,有AG =1()3AB AC +,又AG mxAB ny AC =+,根据平面向量基本定理得13mx ny ==,即13x m =,13y n=,代入得13xy x y =+. 【点评】本题实质是不等式的有解问题,可先参变分离,转化为求函数的最值问题,但是需注意因为函数单调是对于某一区间而言的,故还需检验解不是唯一.【小试牛刀】若点M 是∆ABC 所在平面内一点,且满足:3144AM AB AC =+. (1)求∆ABM 与∆ABC 的面积之比.(2)若N 为AB 中点,AM 与CN 交于点O,设BD xBM yBN =+,求,x y 的值. 四、平面向量基本定理在解析几何中的应用【例4】【2016届安徽省六安一中高三上第五次月考】设双曲线22221x y a b-=(0,0)a b >>的右焦点为F ,过点F 与x 轴垂直的直线l 交两渐近线于A ,B 两点,与双曲线的其中一个交点为P ,设坐标原点为O,若OP mOA nOB =+(,)m n R ∈,且29mn =,则该双曲线的渐近线为( ) A .34y x =±B .24y x =±C .12y x =±D .13y x =±【分析】过双曲线的右焦点(),0F c 并与x 轴垂直的直线:l x c =,与渐近线by x a=±的交点坐标为,,bc A c c ⎛⎫ ⎪⎝⎭ ,,bc B c c ⎛⎫- ⎪⎝⎭代入向量运算得到点P 的坐标,再代入双曲线方程求出离心率,从而渐近线方程可求.【解析】由题意可知,,bc A c c ⎛⎫ ⎪⎝⎭,,bc B c c ⎛⎫- ⎪⎝⎭代入OP mOA nOB =+,得()(),bc P m n c m n a ⎛⎫+- ⎪⎝⎭,代入双曲线方程22221x y a b -=中,整理得241e mn =;又因为29mn =,可得2322,144b e e a =∴=-=,所以该双曲线的渐近线为24y x =±,故B 为正确答案. 【点评】解析几何中基本量的计算要注意方程思想的应用和运算的准确性.【小试牛刀】【2016届河北省邯郸市一中高三一轮收官考试】已知A 是双曲线22221x y a b-=(0a >,0b >)的左顶点,1F 、2F 分别为左、右焦点,P 为双曲线上一点,G 是12FF ∆P 的重心,若1G F λA =P ,则双曲线的离心率为( )A .2B .3C .4D .与λ的取值有关【迁移运用】1.如图,在平行四边形ABCD 中,a AB =,b AD =,NC AN 3=,则BN =( )(用a ,b 表示)A .→→-b a 4341 B .→→-b a 4143C .→→-a b 4341 D .→→-a b 4143 2.设向量)20cos ,20(sin ),25sin ,25(cos oo oo b a ==→→,若→→→+=b t a c (t ∈R),则2()c 的最小值为( ) A .22D.213.【2016届广西武鸣县高中高三8月月考】直线过抛物线的焦点,且交抛物线于两点,交其准线于点,已知,则( )A.2B.C.D.44.已知,OA OB 是两个单位向量,且OA OB ⋅=0.若点C 在∠AOB 内,且∠AOC=30°,则(,),OC mOA nOB m n R =+∈则nm( ) A .13 B .3 C 3 D .3 5.在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,AN =λAB +μAC ,则λ+μ的值为( ) A.12 B.13 C.14D.16. 已知b a OB b a OA a +=-=-=,),3,1(,若AOB ∆是以O 为直角顶点的等腰直角三角形,则AOB ∆的面积是( )A .3B .2C .22D .4[来源:学#科#网]7.过坐标原点O 作单位圆221x y +=的两条互相垂直的半径OA OB 、,若在该圆上存在一点C ,使得OC aOA bOB =+(a b R ∈、),则以下说法正确的是( )A .点(),P a b 一定在单位圆内B .点(),P a b 一定在单位圆上C .点(),P a b 一定在单位圆外D .当且仅当0ab =时,点(),P a b 在单位圆上8. 在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是( ) A .(0,] B .(,] C .(,] D .(,]9.在平面直角坐标系中,O 为坐标原点,直线:10l x ky -+=与圆22:4C x y +=相交于, A B 两点,OM OA OB =+.若点M 在圆C 上,则实数k =( ) A .2- B .1- C .0 D .110.如图,在扇形OAB 中,60AOB ︒∠=,C 为弧AB 上的一个动点.若OC -→xOA y OB -→-→=+,则y x 4+的取值范围是 .11. 如图,四边形OABC 是边长为1的正方形,3=OD ,点P 为BCD ∆内(含边界)的动点,设(,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于12.(2015北京理13)在ABC △中,点M ,N 满足2AM MC =,BN NC =.若MN x AB y AC =+,则x = ;y = .。
平面向量基本定理系数的等值线法一、适用题型在平而向量搖本崖理的表达式中.若需研究两系数的和差积商、线性表达式及平方和时.可以用等值线法・二基本理论(一)平面向*共线定理已知鬲=久西+“況.若久十“ = I, UIUB.C三点共线:反之亦然(二)等和线平面内一俎慕底oNoS及任一向量亦.亦二人花+ 〃亦(人若 0 P在直线朋上或在平行于肋的直线上,则2+“ =尿定值)仮Z也成孙我们把直线*〃以及与宜线.4B 平行的直线成为等和线。
(1)当等和线恰为直线时.A=l:⑵ 当等和线在O点和直线朋之间时.仁(0,1);(3)当住线M在O点和等和线之间时"<仏+00);(4>当等和线过O点时.^ = 0;(5)若两等和线关于O点对称.则左值《互为相反数:(6)泄值人-的变化与等和线到O点的師离成正比:(三)等差仪平面内一组慕底OA,OB及任一向量帀・帀“鬲+ “亦亿C为线段的中点.若点P在直线0C上或在平行于CC的買线上.则八戸=灿上值八反Z也成匕我们把fL线"以及线OC半行的直线称为等差线.(1)当等荃线恰为直线OC时,A=0:(2)斗等差线过X点时.A=l:(4)当等差线与阳延长线相交时.2(1卄8);⑶ 当等差线在直线0C与点/之何时.JtG(0,l):(5>若两等差线关于直线OC对称.则两足为相反数:(四)等积线平面内一组基底OA.OBJ^任一向&OP ・ 丽=几刃+ “亦(入“wR )・若 点P 在以苴线OA.OB 为渐近线的女曲线上.则“为足值I 反Z 也成必 我们 把以直线OA.OB 为渐近线的双曲线称为%积线(1) 当双曲线有一支金厶103内时,k>0t(2) 当双曲线的两支都不在乙4OB 内时.X <0:(3) 特别的.若tU=(a 上讥加= (“,"),点P 住双曲线(五)等商线点P 在过O 点(不与0/1重合〉的直线上,则虫=川定值),反之也成立。
高三数学平面向量基本定理及坐标表示试题答案及解析1.[2013·辽宁朝阳一模]在△ABC中,M为边BC上任意一点,N为AM中点,=λ+μ,则λ+μ的值为()A.B.C.D.1【答案】A【解析】∵M为边BC上任意一点,∴可设=x+y (x+y=1).∵N为AM中点,∴==x+y=λ+μ.∴λ+μ= (x+y)=.2.若向量=(1,2),=(3,4),则=A.(4,6)B.(-4,-6)C.(-2,-2)D.(2,2)【答案】A【解析】因为=+=,所以选A.【考点】本题考查平面向量的坐标运算(加法),属基础题.3.如图,在正方形ABCD中,E为AB的中点,P为以A为圆心,AB为半径的圆弧上的任意一点,设向量.【答案】【解析】以为原点,以所在直线为轴,建立平面直角坐标系.设正方形的边长为,则设 .又向量所以,∴,∴,∴.由题意得∴当时,同时,时,取最小值为.【考点】平面向量的坐标运算,三角函数的性质.4. 平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1),回答下列问题: (1)求3a+b-2c.(2)求满足a=mb+nc 的实数m,n. (3)若(a+kc)∥(2b-a),求实数k. 【答案】(1) (0,6 (2)(3)k=-.【解析】(1)3a+b-2c=3(3,2)+(-1,2)-2(4,1)=(9,6)+(-1,2)-(8,2)=(0,6). (2)∵a=mb+nc,∴(3,2)=m(-1,2)+n(4,1)=(-m+4n,2m+n). ∴解得(3)∵(a+kc)∥(2b-a),又a+kc=(3+4k,2+k),2b-a=(-5,2). ∴2×(3+4k)-(-5)×(2+k)=0, ∴k=-.5. 如图,Ox 、Oy 是平面内相交成120°的两条数轴,e 1,e 2分别是与x 轴、y 轴正方向同向的单位向量,若向量=xe 1+ye 2,则将有序实数对(x ,y )叫做向量在坐标系xOy 中的坐标.(1)若=3e 1+2e 2,则||=________;(2)在坐标系xOy 中,以原点为圆心的单位圆的方程为________. 【答案】(1) (2)x 2-xy +y 2-1=0 【解析】由题意可得e 1·e 2=cos 120°=-. (1)||=;(2)设圆O 上任意一点Q (x ,y ),则=xe 1+ye 2,||=1,即x 2+2xy ×+y 2=1,故所求圆的方程为x 2-xy +y 2-1=0.6. 设向量,,若满足,则( ) A .B .C .D .【答案】D 【解析】因为,所以,,解得:,故选D.【考点】向量共线的条件.7. 已知点,,O 为坐标原点,,,若点在第三象限内,则实数的取值范围是__________. 【答案】 【解析】令,,则,解得.【考点】平面向量的坐标运算.8.“”是“向量与向量共线”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】由“向量与向量共线”得.故选A.【考点】1、向量共线的充要条件;2、常用逻辑用语.9.已知正方形ABCD的边长为1,则=_______.【答案】【解析】.因为正方形ABCD的边长为1,所以,. 与夹角为.所以.代入得.【考点】向量的运算10.已知,,,若,则( )A.B.C.D.【答案】B【解析】,从而解得.【考点】向量垂直的充要条件,向量坐标形式的数量积运算.11.已知正方形ABCD的边长为1,记以A为起点,其余顶点为终点的向量分别为;以C为起点,其余顶点为终点的向量分别为,若i,j,k,l∈{1,2,3},且i≠j,k≠l,则的最小值是.【答案】﹣5【解析】不妨记以A为起点,其余顶点为终点的向量分别为,,,以C为起点,其余顶点为终点的向量分别为,,.如图建立坐标系.(1)当i=1,j=2,k=1,l=2时,则=[(1,0)+(1,1)]•[((﹣1,0)+(﹣1,﹣1)]=﹣5;(2)当i=1,j=2,k=1,l=3时,则=[(1,0)+(1,1)]•[((﹣1,0)+(0,﹣1)]=﹣3;(3)当i=1,j=2,k=2,l=3时,则=[(1,0)+(1,1)]•[((﹣1,﹣1)+(0,﹣1)]=﹣4;(4)当i=1,j=3,k=1,l=2时,则=[(1,0)+(0,1)]•[((﹣1,0)+(﹣1,﹣1)]=﹣3;同样地,当i,j,k,l取其它值时,=﹣5,﹣4,或﹣3.则的最小值是﹣5.故答案为:﹣5.【考点】平面向量数量积的运算点评:本小题主要考查平面向量坐标表示、平面向量数量积的运算等基本知识,考查考查分类讨论、化归以及数形结合等数学思想方法,考查分析问题、解决问题的能力12.已知向量满足,则的夹角为.【答案】【解析】根据题意,由于向量满足,根据向量的平方等于其模长的平方可知有9+48+4=33,=-6,那么可知其的夹角的余弦值为-,因此可知其向量的夹角为。