2017-2018年北京市西城区高一上学期期末数学试卷带答案
- 格式:pdf
- 大小:713.87 KB
- 文档页数:20
北京市西城区2017 — 2018学年度第一学期期末试卷高三数学(文科) 2018.1第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的 四个选项中,选出符合题目要求的一项.1.若集合{|03}A x x =<<,{|12}B x x =-<<,则A B = (A ){|13}x x -<< (B ){|10}x x -<< (C ){|02}x x << (D ){|23}x x <<2.在复平面内,复数2i1i-对应的点的坐标为 (A )(1,1)(B )(1,1)-(C )(1,1)--(D )(1,1)-3.下列函数中,在区间(0,)+∞上单调递增的是 (A )1y x =-+(B )2(1)y x =-(C )sin y x =(D )1y x =4.执行如图所示的程序框图,输出的S 值为 (A )2 (B )6 (C )30 (D )2705.若122log log 2a b +=,则有(A )2a b = (B )2b a = (C )4a b = (D )4b a =6.一个棱长为2的正方体被一个平面截去一部分后,剩余几何体的 三视图如图所示,则截去..的几何体是(A )三棱锥(B )三棱柱(C )四棱锥(D )四棱柱7.函数()sin()f x x ϕ=+的图象记为曲线C .则“(0)(π)f f =”是“曲线C 关于直线π2x =对称”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件8.已知A ,B 是函数2xy =的图象上的相异两点.若点A ,B 到直线12y =的距离相等,则点A ,B 的横坐标之和的取值范围是 (A )(,1)-∞- (B )(,2)-∞-(C )(,3)-∞-(D )(,4)-∞-第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.若函数()()f x x x b =+是偶函数,则实数b =____.10.已知双曲线22221x y a b-=的一个焦点是(2,0)F,其渐近线方程为y =,该双曲线的方程是____.11.向量,a b 在正方形网格中的位置如图所示.如果小正方形网格的边长为1,那么⋅=a b ____.12.在△ABC 中,3a =,3C 2π∠=,△ABC,则b =____;c =____.13.已知点(,)M x y 的坐标满足条件10,10,10.x x y x y -⎧⎪+-⎨⎪-+⎩≤≥≥设O 为原点,则OM 的最小值是____.14.已知函数2,2,()1,3.x x x c f x c x x ⎧+-⎪=⎨<⎪⎩≤≤≤若0c =,则()f x 的值域是____;若()f x 的值域是1[,2]4-,则实数c 的取值范围是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2π()2sin cos(2)3f x x x =-+.(Ⅰ)求()f x 的最小正周期;(Ⅱ)求证:当π[0,]2x ∈时,1()2f x -≥.16.(本小题满分13分)已知数列{}n a 是公比为13的等比数列,且26a +是1a 和3a 的等差中项.(Ⅰ)求{}n a 的通项公式;(Ⅱ)设数列{}n a 的前n 项之积为n T ,求n T 的最大值.17.(本小题满分13分)某市高中全体学生参加某项测评,按得分评为A ,B 两类(评定标准见表1).根据男女学生比例,使用分层抽样的方法随机抽取了10000名学生的得分数据,其中等级为1A 的学生中有40%是男生,等级为2A 的学生中有一半是女生.等级为1A 和2A 的学生统称为A 类学生,等级为1B 和2B 的学生统称为B 类学生.整理这10000名学生的得分数据,得到如图2所示的频率分布直方图.表1 图2(Ⅰ)已知该市高中学生共20万人,试估计在该项测评中被评为A 类学生的人数; (Ⅱ)某5人得分分别为45,50,55,75,85.从这5人中随机选取2人组成甲组,另外3人组成乙组,求“甲、乙两组各有1名B 类学生”的概率;(Ⅲ)在这10000名学生中,男生占总数的比例为51%,B 类女生占女生总数的比例为1k , B 类男生占男生总数的比例为2k .判断1k 与2k 的大小.(只需写出结论)18.(本小题满分14分)如图,在三棱柱111ABC A B C -中,AB ⊥平面11AA C C ,1AA AC =.过1AA 的平面交11B C 于点E ,交BC 于点F .(Ⅰ)求证:1AC ⊥平面1ABC ; (Ⅱ)求证:1//A A EF ;(Ⅲ)记四棱锥11B AA EF -的体积为1V ,三棱柱111ABC A B C -的体积为V .若116V V =,求BFBC的值.19.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>过(2,0)A ,(0,1)B 两点.(Ⅰ)求椭圆C 的方程及离心率;(Ⅱ)设点Q 在椭圆C 上.试问直线40x y +-=上是否存在点P ,使得四边形PAQB 是平行四边形?若存在,求出点P 的坐标;若不存在,说明理由.20.(本小题满分13分)已知函数2()ln 2f x x x x =-.(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)求证:存在唯一的0(1,2)x ∈,使得曲线()y f x =在点00(,())x f x 处的切线的斜率为(2)(1)f f -;(Ⅲ)比较(1.01)f 与 2.01-的大小,并加以证明.北京市西城区2017 — 2018学年度第一学期期末高三数学(文科)参考答案及评分标准2018.1一、选择题:本大题共8小题,每小题5分,共40分.1.A 2.B 3.D 4.C 5.C 6.B 7.C 8.B二、填空题:本大题共6小题,每小题5分,共30分.9.0 10.2213y x -= 11.412.1 13 14.1[,)4-+∞;1[,1]2注:第12,14题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)因为2π()2sin cos(2)3f x x x =-+ππ1cos2(cos2cos sin 2sin )33x x x =--⋅-⋅ [ 4分]32cos 212x x =-+[ 5分]π)13x -+, [ 7分]所以()f x 的最小正周期 2ππ2T ==. [ 8分] (Ⅱ)因为 π2x ≤≤0,所以 ππ2π2333x --≤≤. [10分]所以 ππsin(2)sin()33x --=≥ [12分]所以 1()2f x -≥. [13分]16.(本小题满分13分)解:(Ⅰ)因为 26a +是1a 和3a 的等差中项,所以 2132(6)a a a +=+. [ 2分]因为数列{}n a 是公比为13的等比数列,所以 1112(6)39a aa +=+, [ 4分]解得 127a =. [ 6分]所以 1411()3n n n a a q --=⋅=. [ 8分](Ⅱ)令1n a ≥,即41()13n -≥,得4n ≤, [10分]故正项数列{}n a 的前3项大于1,第4项等于1,以后各项均小于1. [11分] 所以 当3n =,或4n =时,n T 取得最大值, [12分]n T 的最大值为 34123729T T a a a ==⋅⋅=. [13分]17.(本小题满分13分)解:(Ⅰ)依题意得,样本中B 类学生所占比例为(0.020.04)1060%+⨯=, [ 2分]所以A 类学生所占比例为40%. [ 3分] 因为全市高中学生共20万人,所以在该项测评中被评为A 类学生的人数约为8万人. [ 4分] (Ⅱ)由表1得,在5人(记为,,,,a b c d e )中,B 类学生有2人(不妨设为,b d ). 将他们按要求分成两组,分组的方法数为10种. [ 6分]依次为:(,),(,),(,),(,),(,),(,),(,),(,),ab cde ac bde ad bce ae bcd bc ade bd ace be acd cd abe(,),(,)ce abd de abc . [ 8分]所以“甲、乙两组各有一名B 类学生”的概率为63105=. [10分] (Ⅲ)12k k <. [13分] 18.(本小题满分14分)解:(Ⅰ) 因为 AB ⊥平面11AA C C ,所以 1A C AB ⊥. [ 2分]在三棱柱111ABC A B C -中,因为 1AA AC =,所以 四边形11AA C C 为菱形,所以 11A C AC ⊥. [ 3分]所以 1AC ⊥平面1ABC . [ 5分] (Ⅱ)在 三棱柱111ABC A B C -中,因为 11//A A B B ,1A A ⊄平面11BB C C , [ 6分] 所以 1//A A 平面11BB C C . [ 8分] 因为 平面1AA EF 平面11BB C C EF =,所以 1//A A EF . [10分] (Ⅲ)记三棱锥1B ABF -的体积为2V ,三棱柱11ABF A B E -的体积为3V .因为三棱锥1B ABF -与三棱柱11ABF A B E -同底等高, 所以 2313V V =, [11分] 所以 1233213V V V V =-=. 因为116V V =, 所以 3131624V V =⨯=. [12分] 因为 三棱柱11ABF A B E -与三棱柱111ABC A B C -等高, 所以 △ABF 与△ABC 的面积之比为14, [13分] 所以14BF BC =. [14分]19.(本小题满分14分)解:(Ⅰ)由题意得,2a =,1b =. [ 2分]所以椭圆C 的方程为2214x y +=. [ 3分]设椭圆C 的半焦距为c ,则 c = [ 4分]所以椭圆C 的离心率c e a ==. [ 5分](Ⅱ)由已知,设(,4)P t t -,00(,)Q x y . [ 6分]若PAQB 是平行四边形,则 PA PB PQ +=, [ 8分]所以 00(2,4)(,3)(,4)t t t t x t y t --+--=--+,整理得 002, 3x t y t =-=-. [10分]将上式代入 220044x y +=,得 22(2)4(3)4t t -+-=, [11分] 整理得 2528360t t -+=,解得 185t =,或2t =. [13分] 此时 182(,)55P ,或(2,2)P .经检验,符合四边形PAQB 是平行四边形,所以存在 182(,)55P ,或(2,2)P 满足题意. [14分]20.(本小题满分13分)解:(Ⅰ)函数2()ln 2f x x x x =-的定义域是(0,)+∞,导函数为()2ln 2f x x x x '=+-. [ 1分] 所以(1)1f '=-, 又(1)2f =-,所以曲线()y f x =在点(1,(1))f 处的切线方程为1y x =--. [ 3分] (Ⅱ)由已知(2)(1)4ln 22f f -=-. [ 4分]所以只需证明方程 2ln 24ln 22x x x +-=-在区间(1,2)有唯一解.即方程 2ln 4ln 20x x x +-=在区间(1,2)有唯一解. [ 5分] 设函数 ()2ln 4ln 2g x x x x =+-, [ 6分]则 ()2ln 3g x x '=+.当 (1,2)x ∈时,()0g x '>,故()g x 在区间(1,2)单调递增. [ 7分] 又 (1)14ln 20g =-<,(2)20g =>,所以 存在唯一的0(1,2)x ∈,使得0()0g x =. [ 8分] 综上,存在唯一的0(1,2)x ∈,使得曲线()y f x =在点00(,())x f x 处的切线的斜率为(2)(1)f f -. [ 9分](Ⅲ)(1.01) 2.01f >-.证明如下: [10分]首先证明:当1x >时,()1f x x >--.设 2()()(1)ln 1h x f x x x x x =---=-+, [11分] 则 ()2ln 1h x x x x '=+-.当 1x >时,10x ->,2ln 0x x >,所以 ()0h x '>,故()h x 在(1,)+∞单调递增, [12分]第 11 页 共 11 页 所以 1x >时,有()(1)0h x h >=,即当 1x >时,有()1f x x >--.所以 (1.01) 1.011 2.01f >--=-. [13分]。
2017-2018学年度第一学期期末考试高一数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分.考试限定用时100分钟.考试结束后,将本试卷和答题纸一并交回.答卷前,考生务必将自己的姓名、座号、考籍号分别填写在试卷和答题纸规定的位置.第Ⅰ卷(选择题 共48分)参考公式:1.锥体的体积公式1,,.3V Sh S h =其中是锥体的底面积是锥体的高 2.球的表面积公式24S R π=,球的体积公式343R V π=,其中R 为球的半径。
一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{0,1,2,3},{1,3}U A ==,则集合U C A = ( )A .{}0B .{}1,2C .{}0,2D .{}0,1,2 2.空间中,垂直于同一直线的两条直线 ( )A .平行B .相交C .异面D .以上均有可能3.已知幂函数()αx x f =的图象经过点错误!,则()4f 的值等于 ( )A .16B 。
错误!C .2D 。
错误!4。
函数()lg(2)f x x =+的定义域为 ( )A 。
(—2,1)B 。
[-2,1]C 。
()+∞-,2 D. (]1,2- 5.动点P 在直线x+y-4=0上,O 为原点,则|OP |的最小值为 ( )AB .CD .26.设m 、n 是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是 ( )A .若m ∥n ,m ∥α,则n ∥αB .若α⊥β,m ∥α,则m ⊥βC .若α⊥β,m ⊥β,则m ∥αD .若m ⊥n ,m ⊥α, n ⊥β,则α⊥βOOO O1 1117.设()x f 是定义在R 上的奇函数,当0≤x 时,()x x x f -=22,则()1f 等于 ( )A .-3B .-1C .1D .3 8.函数y =2-+212x x⎛⎫⎪⎝⎭的值域是 ( )A .RB .错误!C .(2,+∞)D 。
北京市西城区2017—2018学年上学期高一年级期末考试化学试卷试卷满分:120分考试时间:100分钟A卷满分100分可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Cl 35.5第一部分(选择题共50分)每小题只有一个选项符合题意(1〜10小题,每小题2分:11~20小题,每小题3 分)1. 下列气体呈红棕色的是A. SO2B. Cl 2C. CO2D. NO 22. 下列物质中,属于纯净物的是A. 液氯B.稀盐酸C.氯水D.漂白粉3. 下列物质中,属于电解质的是A. FeB. NaCIC. C2H5OHD. KOH 溶液4. 下列物质中,可用作制冷剂的是A. 液氧B.小苏打C.液氨D.火碱5. 下列气体中,不属于大气污染物的是A. NO 2B. NOC. SO2D. CO26. 当光束通过下列分散系时,能观察到丁达尔效应的是A. 氢氧化铁胶体B.硫酸铜溶液C.蔗糖溶液D.氯化钾溶液7. 常温下,下列溶液可以用铁罐车装运的是A.稀盐酸B.浓盐酸C.浓硫酸D.稀硝酸8. 合金材料在生活中有广泛应用。
下列物质不属于..合金的是A.黄铜B.不锈钢C.青铜D.金9. 装有浓硝酸的容器上,应贴的危险化学品标志是BCD10. 下列反应类型中,一定不属于.氧化还原反应的是A.化合反应B.分解反应C.置换反应D.复分解反应11. 下列物质中,常用作氧化剂的是A.氢气B. 一氧化碳C.高锰酸钾D.钠12. 下列有关物质用途的说法中,不正确..的是A. Cl 2用于自来水消毒B. Fe3O4用作红色油漆和涂料C. SO2用于漂白纸浆D. Na2O2用作供氧剂13. 在实验室进行萃取操作时需选用的仪器是B.14. 下列各组离子中,能在溶液里大量共存的是A. H 十、NH4+> SO42-、C「B. Ca2+> Na + > CO32「、NO3「B. KS Fe3*、OH「、SO42一 D. Na +> H + > HCO3一、Cl 一15. 下列离子方程式不正确的是A. 用硝酸银溶液检验自来水中的氯离子:Ag + Cl = AgCI JB. 实验室用碳酸钙与稀盐酸反应制备二氧化碳:CO32「+ 2H + = H2O+ CO2?+ 2 +C. 用稀硫酸清洗铁锈(氧化铁):Fe2O3+6H = 2Fe + 3出0D. 用铜与稀硝酸反应制备一氧化氮:3Cu+ 8H* + 2NO3 = 3Cu2+ + 2NO T + 4H2O16. N A代表阿伏加德罗常数的值。
北京市西城区2017-2018学年上学期高一年级期末考试数学试卷【三角函数与平面向量】一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1. 已知sinα<0,且tanα>O,则α的终边所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】的终边在第一或第三象的终边所在的象限是第三象限角.故选C.2. 函数f(x)=sin2x的最小正周期为( )B. πC. 2πD. 4π【答案】B故选B3. 如果向量a=(1,2),b=(3,4),那么2a-b=( )A. (-1,0)B. (-1,-2)C. (1,O)D. (1,-2)【答案】A故选A.4. 计算sin(π-α)+ sin(π+α)=( )A. 0B. 1C. 2sinαD. -2sinα【答案】A故选A.5. 如图,在矩形ABCD)【答案】B故选B.6. 已知向量a,b满足|a|=2,|b|=1,a·b则向量a,b的夹角为( )【答案】D故选D7. 已知m是函数f(x)=cosx图象一个对称中心的横坐标,则f(m)=( )A. -1B. 0 D. 1【答案】B时,可得故选B.8. y=sin2x的图象( )A. 个单位长度B.C. D.【答案】Cy = sin2x考点:三角函数图像平移9. 函数f(x) =A sinx(A>0)的图象如图所示,P,Q分别为图象的最高点和最低点,O为坐标原点,若OP⊥OQ,则A=( )A. 3B.C. D. 1【答案】B【解析】由题意作轴的垂线,可得:故选B10. 已知在直角三角形ABC中,A为直角,AB =1,BC=2,若AM是BC边上的高,点P在△ABC内部或边界上运动,( )A. [-1,0]B. 0]C. ,D. [0]【答案】D【解析】所在直线为解得:在线段上时,有最大值为0在线段上时,有最小值,设的范围是[,0]故选D.【点睛】本题考查平面向量的数量积运算,数量积的坐标运算,以及数形结合的思想方法,其中建立平面直角坐标系并利用数形结合的思想是解答该题的关键.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.【答案】.12. 已知向量a=(1,2),b=(x,-2),若a∥b,则实数x=____________.【答案】-1即答案为:-1.13. 角θ的始边与x轴正半轴重合,终边上一点坐标为(-1,2),则tanθ=___________.【答案】-2∴x=-1,y=2即答案为:-2.14. 函数f(x)=sinx+cosx的最大值为____________.15. 已知点A(0,4),B(2,0),那么点C的坐标为_____________;设点P(3,t),且∠APB 是钝角,则t的取值范围是___________________.【答案】(1). (3,-2)(2). (1,3)又由点若解可得的坐标为即答案为(1). (3,-2) (2). (1,3)【点睛】本题考查向量数量积的坐标计算公式,涉及向量平行的坐标表示方法,其中解题的关键是掌握向量坐标计算的公式.16. 已知函数f(x)=sinxtanx.给出下列结论:①函数f(x)是偶函数;②函数f(x)在区间0)上是增函数;③函数f(x)的最小正周期是2π;④函数f(x)的图象关于直线x=π对称.其中正确结论的序号是_______________.(写出所有正确结论的序号)【答案】①③④,而故②错误;的最小正周期是故③正确;即对称,故④正确.∴正确结论的序号是①③④.即答案为①③④.三、解答题:本大题共3小题,共36分,解答应写出文字说明,证明过程或演算步骤.17. 已知αaπ),且(I)求tanα的值;(Ⅱ)【答案】(I)【解析】试题分析:(Ⅰ)利用同角三角函数的基本关系,求得的值.试题解析:(I)所以由(I) ,18. 已知函数(I)请用“五点法”画出函数f(x)在一个周期上的图象;(Ⅱ)求f(x)在区间;(Ⅲ)写出f(x)的单调递增区间.【答案】(I)见解析;(II)见解析(III【解析】试题分析:(Ⅰ)利用列表、描点、连线法画出在一个周期上的图象;的单调递增区间.试题解析:(I)f(x),所以,即时,最大值等于当最小值等于所以在区间上的最大值为,最小值为(的单调递增区间为19. 如图,已知AB⊥BC,BC=a,a∈[1,3],圆A是以A为圆心、半径为2的圆,圆B是以B为圆心、半径为1的圆,设点E、F分别为圆A、圆B,设∠BAE=θ(θ∈[0,π]).(I)当θ;(Ⅱ)用a,θa,θ【答案】(I(II【解析】试题分析:(Ⅰ)建立平面直角坐标系,根据向量的数量积公式计算即可,(Ⅱ)利用坐标计算得到关于的三角函数,利用三角函数的性质求出最值.试题解析:(I)如图,以点A为原点,AB所在直线为x轴,与AB垂直的直线为y轴建立平面直角坐标系.(II)因为,所以以a为变量的二次函数的对称轴,此时.所以,当,时,B卷【学期综合】四、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.20. 设全集U=R,集合A={x|x<0),B={x|x>1},则AU(u B)=_____________.21. ___________________.∴函数【答案】(1). 4(2).可得解得舍去);即答案为(1). 423. 三个数中最大的是____________.24. 某购物网站在2017年11月开展“买三免一”活动,规则是“购买3件商品,最便宜的一件商品免费”,比如如下结算案例:如果在此网站上购买的三件商品价格如下图所示,按照“买三免一”的规则,购买这三件商品的实际折扣为________________折.在这个网站上购买3件商品,按照“买三免一”的规则,这3件商品实际折扣力度最大约为___________________折(保留一位小数).【答案】(1). 7.5(2). 6.7【解析】由折,显然三件商品价格一致时折扣最大,设购买3故商品实际折扣力度最大约为即答案为(1). 7.5 (2). 6.7五、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤.25.(I)求a的值;(Ⅱ)判断函数f(x)在区间(0,+∞)上的单调性,并用函数单调性的定义证明你的结论.【答案】(I(II)见解析.【解析】试题分析:(Ⅰ)根据函数的奇偶性求出a的值即可;(Ⅱ)根据函数的单调性的定义证明即可.试题解析:(I)函数的定义域为x都成立,(II)函数上任取,的,,.26. 设a x∈R.(I)当a=0时,求f(x)在区间[0,2]上的最大值和最小值;(Ⅱ)求函数f(x)的最小值.【答案】(I)见解析;(II)的最小值为【解析】试题分析:上,取绝对值,根据二次函数的单调性即可求解在区试题解析:(I,;时, 3.(II)①当上单调递减,在上的最小值为,则函数②当.在上的最小值为所以,当时,的最小值为与.所以,当时,的最小值为的最小值为的最小值为【点睛】本题主要考查函数最值的求解,利用零点分段思想以及一元二次函数的性质是解决本题的关键.27. 若函数f(x)满足:对于s,t∈[0,+∞),都有f(s)≥0,f(t)≥0,且f(s)+f(t)≤f(s+t),则称函数f (x)为“T函数”.(I)试判断函数f1(x)=x2与f2(x)=lg(x+1)是否是“T函数”,并说明理由;(Ⅱ)设f (x)为“T函数”,且存在x0∈[0,+∞),使f(f(x0))=x0.求证:f (x0) =x0;(Ⅲ)试写出一个“T函数”f(x),满足f(1)=1,且使集合{y|y=f(x),0≤x≤1)中元素的个数最少.(只需写出结论)【答案】(I)见解析;(II) 见解析;(III【解析】试题分析:(Ⅰ)直接利用定义判断函数与T函数”即可;所以,对于一定有即可证明;(Ⅲ)根据中元素的个数最少,以及新定义即可确定.试题解析:(I函数”.对于函数,所以不是“T函数”.(II)设所以,对于是“T函数”,.,不符合题意.,不符合题意.所以(III。
市西城区2017 — 2018学年度第一学期期末高三数学(理科)参考答案及评分标准2018.1一、选择题:本大题共8小题,每小题5分,共40分.1.A 2.D 3.C 4.D 5.D 6.C 7.B 8.C 二、填空题:本大题共6小题,每小题5分,共30分.9.(1,1)- 10.32n -,3141112.8 13.36 14.1[,)4-+∞;1[,1]2注:第10,14题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)因为2π()2sin cos(2)3f x x x =-+ππ1cos2(cos2cos sin 2sin )33x x x =--⋅-⋅ [ 4分]32cos212x x =-+[ 5分]π)13x =-+, [ 7分]所以()f x 的最小正周期 2ππ2T ==. [ 8分] (Ⅱ)因为 π02x ≤≤, 所以 ππ2π2333x --≤≤. [10分] 当 ππ232x -=,即5π12x =时, [11分]()f x 取得最1. [13分]16.(本小题满分13分)解:(Ⅰ)记事件A 为“从表1的日期中随机选出一天,这一天的升旗时刻早于7:00”,[ 1分]在表1的20个日期中,有15个日期的升旗时刻早于7:00,所以 153(A)204P ==. [ 3分] (Ⅱ)X 可能的取值为0,1,2. [ 4分] 记事件B 为“从表2的日期中随机选出一天,这一天的升旗时刻早于7:00”,则 51(B)153P ==,2(B)1(B)3P P =-=. [ 5分] 4(0)(B)(B)9P X P P ==⋅=; 12114(1)C ()(1)339P X ==-=; 1(2)(B)(B)9P X P P ==⋅=. [ 8分]所以 X 的分布列为:X 0 1 2 P4949194412()0129993E X =⨯+⨯+⨯=. [10分]注:学生得到X ~1(2,)3B ,所以12()233E X =⨯=,同样给分.(Ⅲ)22*s s <. [13分]17.(本小题满分14分)解:(Ⅰ)因为 AB ⊥平面11AA C C ,所以 1A C AB ⊥. [ 1分]因为 三棱柱111ABC A B C -中,1AA AC =,所以 四边形11AA C C 为菱形, 所以 11A C AC ⊥. [ 3分]所以 1A C ⊥平面1ABC . [ 4分] (Ⅱ)因为 11//A A B B ,1A A ⊄平面11BB C C ,所以 1//A A 平面11BB C C . [ 5分] 因为 平面1AA EF平面11BB C C EF =,所以 1//A A EF . [ 6分]因为 平面//ABC 平面111A B C ,平面1AA EF平面ABC AF =,平面1AA EF平面1111A B C A E =,所以 1//A E AF . [ 7分] 所以 四边形1AA EF 为平行四边形. [ 8分] (Ⅲ)在平面11AA C C ,过A 作Az AC ⊥.因为 AB ⊥平面11AA C C ,如图建立空间直角坐标系A xyz -. [ 9分]由题意得,(0,0,0)A ,(2,0,0)B ,(0,2,0)C ,1A ,1C .因为23BF BC =,所以 244(,,0)333BF BC −−→−−→==-,所以 24(,,0)33F .由(Ⅰ)得平面1ABC 的法向量为1(0,1,3)A C −−→=-. 设平面1AC F 的法向量为(,,)x y z =n ,则10,0,AC AF −−→−−→⎧⋅=⎪⎨⎪⋅=⎩n n 即330,240.33y z x y ⎧+=⎪⎨+=⎪⎩ 令1y =,则2x =-,3z =-,所以 (2,1,3)=--n . [11分]所以 111||2|cos ,|||||A C A C A C −−→−−→−−→⋅〈〉==n n n . [13分] 由图知 二面角1B AC F --的平面角是锐角,所以 二面角1B AC F --的大小为45︒. [14分]18.(本小题满分13分)解:(Ⅰ)当1a =时,()e sin 1x f x x =⋅-,所以 ()e (sin cos )xf x x x '=+. [ 2分]因为 (0)1f '=,(0)1f =-, [ 4分]所以曲线()y f x =在点(0,(0))f 处的切线方程为1y x =-. [ 5分](Ⅱ)()e (sin cos )axf x a x x '=+. [ 6分]由 ()0f x '=,得 sin cos 0a x x +=. [ 7分] 因为 0a >,所以π()02f '≠. [ 8分]当 ππ(0,)(,π)22x ∈时, 由 sin cos 0a x x +=, 得 1tan x a =-.所以 存在唯一的0π(,π)2x ∈, 使得 01tan x a =-. [ 9分]()f x 与()f x '在区间(0,π)上的情况如下:x0(0,)x 0x0(,π)x()f x '+ 0- ()f x↗极大值↘所以 ()f x 在区间0(0,)x 上单调递增,在区间0(,π)x 上单调递减. [11分]因为π020π()()e 1e 102a f x f >=->-=, [12分]且 (0)(π)10f f ==-<,所以 ()f x 在区间[0,π]上恰有2个零点. [13分]19.(本小题满分14分) 解:(Ⅰ)由题意得 2a =,c e a ==所以c . [ 2分] 因为 222a b c =+, [ 3分] 所以 1b =, [ 4分] 所以 椭圆C 的方程为 2214x y +=. [ 5分](Ⅱ)若四边形PAMN 是平行四边形,则 //PA MN ,且 ||||PA MN =. [ 6分] 所以 直线PA 的方程为(2)y k x =-,所以 (3,)P k,||PA = [ 7分] 设11(,)M x y ,22(,)N x y .由2244,y kx x y ⎧=⎪⎨+=⎪⎩得22(41)80k x +++=, [ 8分]由0∆>,得 212k >.且12x x +=122841x x k =+. [ 9分] 所以||MN= [10分]因为 ||||PA MN =, 所以整理得 421656330k k -+=, [12分] 解得k =,或2k =± [13分]经检验均符合0∆>,但k =时不满足PAMN 是平行四边形,舍去.所以 2k =,或 k = [14分]20.(本小题满分13分)解:(Ⅰ)②③. [ 3分] 注:只得到 ② 或只得到 ③ 给[ 1分],有错解不给分.(Ⅱ)当3m =时,设数列n A 中1,2,3出现频数依次为123,,q q q ,由题意1(1,2,3)i q i =≥. ① 假设14q <,则有12s t a a a a +<+(对任意2s t >>),与已知矛盾,所以 14q ≥.同理可证:34q ≥. [ 5分] ② 假设21q =,则存在唯一的{1,2,,}k n ∈,使得2k a =.那么,对,s t ∀,有 112k s t a a a a +=+≠+(,,k s t 两两不相等),与已知矛盾,所以22q ≥. [ 7分]综上:1324,4,2q q q ≥≥≥,所以 3120i i S iq ==∑≥. [ 8分](Ⅲ)设1,2,,2018出现频数依次为122018,,...,q q q .同(Ⅱ)的证明,可得120184,4q q ≥≥,220172,2q q ≥≥,则2026n ≥.取12018220174,2q q q q ====,1,3,4,5,,2016i q i == ,得到的数列为::1,1,1,1,2,2,3,4,,2015,2016,2017,2017,2018,2018,2018,2018n B . [10分]下面证明n B 满足题目要求.对,{1,2,,2026}i j ∀∈,不妨令i j a a ≤,① 如果1i j a a ==或2018i j a a ==,由于120184,4q q ==,所以符合条件; ② 如果1,2i j a a ==或2017,2018i j a a ==,由于120184,4q q ==,220172,2q q ==, 所以也成立;③ 如果1,2i j a a =>,则可选取2,1s t j a a a ==-;同样的,如果2017,2018i j a a <=, 则可选取1,2017s i t a a a =+=,使得i j s t a a a a +=+,且,,,i j s t 两两不相等;. .WORD 专业. ④ 如果12018i j a a <<≤,则可选取1,1s i t j a a a a =-=+,注意到这种情况每个数最多被选取了一次,因此也成立.综上,对任意,i j ,总存在,s t ,使得i j s t a a a a +=+,其中,,,{1,2,,}i j s t n ∈且两 两不相等.因此n B 满足题目要求,所以n 的最小值为2026. [13分]。
北京市西城区2017 — 2018学年度第一学期期末试卷高三数学(理科) 2018.1第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.若集合{|03}A x x =<<,{|12}B x x =-<<,则A B = (A ){|13}x x -<< (B ){|10}x x -<< (C ){|02}x x <<(D ){|23}x x <<2.下列函数中,在区间(0,)+∞上单调递增的是 (A )1y x =-+(B )|1|y x =-(C )sin y x =(D )12y x =3.执行如图所示的程序框图,输出的S 值为 (A )2 (B )6 (C )30 (D )2704.已知M 为曲线C :3cos ,sin x y θθ=+⎧⎨=⎩(θ为参数)上的动点.设O 为原点,则OM 的最大值是 (A )1 (B )2 (C )3(D )45.实数,x y 满足10,10,10,x x y x y -⎧⎪+-⎨⎪-+⎩≥≥≥ 则2x y -的取值范围是(A )[0,2] (B )(,0]-∞ (C )[1,2]- (D )[0,)+∞6.设,a b 是非零向量,且,a b 不共线.则“||||=a b ”是“|2||2|+=+a b a b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7.已知A ,B 是函数2xy =的图象上的相异两点.若点A ,B 到直线12y =的距离相等, 则点A ,B 的横坐标之和的取值范围是 (A )(,1)-∞-(B )(,2)-∞-(C )(1,)-+∞(D )(2,)-+∞8.在标准温度和大气压下,人体血液中氢离子的物质的量的浓度(单位mol/L ,记作[H ]+)和氢氧根离子的物质的量的浓度(单位mol/L ,记作[OH ]-)的乘积等于常数1410-.已知pH 值的定义为pH lg[H ]+=-,健康人体血液的pH 值保持在7.35~7.45之间,那么健康人体血液中的[H ][OH ]+-可以为(参考数据:lg 20.30≈,lg30.48≈) (A )12(B )13(C )16(D )110第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.在复平面内,复数2i1i-对应的点的坐标为____.10.数列{}n a 是公比为2的等比数列,其前n 项和为n S .若212a =,则n a =____;5S =____.11.在△ABC 中,3a =,3C 2π∠=,△ABC 的面积为334,则 c =____.12.把4件不同的产品摆成一排.若其中的产品A 与产品B 都摆在产品C 的左侧,则不同的摆法有____种.(用数字作答)13.从一个长方体中截取部分几何体,得到一个以原长方体的部分顶点为顶点的凸多面体,其三视图如图所示.该几何 体的表面积是____.14.已知函数2,2,()1, 3.x x x c f x c x x ⎧+-⎪=⎨<⎪⎩≤≤≤若0c =,则()f x 的值域是____;若()f x 的值域是1[,2]4-,则实数c 的取值范围是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2π()2sin cos(2)3f x x x =-+.(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间π[0,]2上的最大值.16.(本小题满分13分)已知表1和表2是某年部分日期的天安门广场升旗时刻表.表1:某年部分日期的天安门广场升旗时刻表日期升旗时刻 日期 升旗时刻 日期 升旗时刻 日期 升旗时刻 1月1日 7:36 4月9日 5:46 7月9日 4:53 10月8日 6:17 1月21日 7:31 4月28日 5:19 7月27日 5:07 10月26日 6:36 2月10日 7:14 5月16日 4:59 8月14日 5:24 11月13日 6:56 3月2日 6:47 6月3日 4:47 9月2日 5:42 12月1日 7:16 3月22日6:156月22日4:469月20日5:5912月20日7:31表2:某年2月部分日期的天安门广场升旗时刻表日期 升旗时刻 日期 升旗时刻 日期 升旗时刻 2月1日 7:23 2月11日 7:13 2月21日 6:59 2月3日 7:22 2月13日 7:11 2月23日 6:57 2月5日 7:20 2月15日 7:08 2月25日 6:55 2月7日 7:17 2月17日 7:05 2月27日 6:52 2月9日7:152月19日7:022月28日6:49(Ⅰ)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率; (Ⅱ)甲,乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立.记X为这两人中观看升旗的时刻早于7:00的人数,求X 的分布列和数学期望()E X . (Ⅲ)将表1和表2中的升旗时刻化为分数后作为样本数据(如7:31化为31760).记表2中所有升旗时刻对应数据的方差为2s ,表1和表2中所有升旗时刻对应数据的方差为2*s ,判断2s 与2*s 的大小.(只需写出结论)17.(本小题满分14分)如图,三棱柱111ABC A B C -中,AB ⊥平面11AA C C ,12AA AB AC ===,160A AC ︒∠=.过1AA 的平面交11B C 于点E ,交BC 于点F . (Ⅰ)求证:1AC ⊥平面1ABC ;(Ⅱ)求证:四边形1AA EF 为平行四边形; (Ⅲ)若23BF BC =,求二面角1B AC F --的大小.18.(本小题满分13分)已知函数()e sin 1axf x x =⋅-,其中0a >.(Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)证明:()f x 在区间[0,π]上恰有2个零点.19.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>过点(2,0)A ,且离心率为32.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线3y kx =+与椭圆C 交于,M N 两点.若直线3x =上存在点P ,使得四边形PAMN 是平行四边形,求k 的值.20.(本小题满分13分)数列n A :12,,,(4)n a a a n ≥满足:11a =,n a m =,10k k a a +-=或1(1,2,,1)k n =- .对任意,i j ,都存在,s t ,使得i j s t a a a a +=+,其中,,,{1,2,,}i j s t n ∈ 且两两不相等. (Ⅰ)若2m =,写出下列三个数列中所有符合题目条件的数列的序号; ① 1,1,1,2,2,2; ② 1,1,1,1,2,2,2,2; ③ 1,1,1,1,1,2,2,2,2 (Ⅱ)记12n S a a a =+++ .若3m =,证明:20S ≥; (Ⅲ)若2018m =,求n 的最小值.北京市西城区2017 — 2018学年度第一学期期末高三数学(理科)参考答案及评分标准2018.1一、选择题:本大题共8小题,每小题5分,共40分.1.A 2.D 3.C 4.D 5.D 6.C 7.B 8.C 二、填空题:本大题共6小题,每小题5分,共30分. 9.(1,1)- 10.32n -,31411.1312.8 13.36 14.1[,)4-+∞;1[,1]2注:第10,14题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)因为2π()2sin cos(2)3f x x x =-+ππ1cos2(cos2cos sin 2sin )33x x x =--⋅-⋅ [ 4分] 33sin 2cos 2122x x =-+[ 5分] π3sin(2)13x =-+, [ 7分]所以()f x 的最小正周期 2ππ2T ==. [8分] (Ⅱ)因为 π02x ≤≤, 所以 ππ2π2333x --≤≤. [10分] 当 ππ232x -=,即5π12x =时, [11分] ()f x 取得最大值为31+. [13分]16.(本小题满分13分)解:(Ⅰ)记事件A 为“从表1的日期中随机选出一天,这一天的升旗时刻早于7:00”,[ 1分]在表1的20个日期中,有15个日期的升旗时刻早于7:00,所以 153(A)204P ==.[ 3分] (Ⅱ)X 可能的取值为0,1,2. [ 4分] 记事件B 为“从表2的日期中随机选出一天,这一天的升旗时刻早于7:00”,则 51(B)153P ==,2(B)1(B)3P P =-=. [5分] 4(0)(B )(B )9P X P P ==⋅=; 12114(1)C ()(1)339P X ==-=; 1(2)(B)(B)9P X P P ==⋅=. [ 8分] 所以 X 的分布列为:X 0 1 2 P4949194412()0129993E X =⨯+⨯+⨯=. [10分]注:学生得到X ~1(2,)3B ,所以12()233E X =⨯=,同样给分.(Ⅲ)22*s s <. [13分]17.(本小题满分14分)解:(Ⅰ)因为 AB ⊥平面11AA C C ,所以 1A C AB ⊥. [ 1分]因为 三棱柱111ABC A B C -中,1AA AC =,所以 四边形11AA C C 为菱形, 所以 11A C AC ⊥. [ 3分]所以 1AC ⊥平面1ABC . [ 4分] (Ⅱ)因为 11//A A B B ,1A A ⊄平面11BB C C ,所以 1//A A 平面11BB C C . [ 5分]因为 平面1AA EF 平面11BB C C EF =,所以 1//A A EF . [ 6分] 因为 平面//ABC 平面111A B C ,平面1AA EF 平面ABC AF =,平面1AA EF 平面1111A B C A E =,所以 1//A E AF . [ 7分] 所以 四边形1AA EF 为平行四边形. [ 8分](Ⅲ)在平面11AA C C 内,过A 作Az AC ⊥.因为 AB ⊥平面11AA C C ,如图建立空间直角坐标系A xyz -. [ 9分] 由题意得,(0,0,0)A ,(2,0,0)B ,(0,2,0)C ,1(0,1,3)A ,1(0,3,3)C .因为23BF BC =,所以 244(,,0)333BF BC −−→−−→==-, 所以 24(,,0)33F .由(Ⅰ)得平面1ABC 的法向量为1(0,1,3)A C −−→=-. 设平面1AC F 的法向量为(,,)x y z =n ,则10,0,AC AF −−→−−→⎧⋅=⎪⎨⎪⋅=⎩n n 即330,240.33y z x y ⎧+=⎪⎨+=⎪⎩ 令1y =,则2x =-,3z =-,所以 (2,1,3)=--n . [11分]所以 111||2|cos ,|2||||AC AC AC −−→−−→−−→⋅〈〉==n n n . [13分] 由图知 二面角1B AC F --的平面角是锐角,所以 二面角1B AC F --的大小为45︒. [14分]18.(本小题满分13分)解:(Ⅰ)当1a =时,()e sin 1xf x x =⋅-,所以 ()e (sin cos )xf x x x '=+. [ 2分]因为 (0)1f '=,(0)1f =-, [ 4分]所以曲线()y f x =在点(0,(0))f 处的切线方程为1y x =-. [ 5分](Ⅱ)()e (sin cos )axf x a x x '=+. [ 6分]由 ()0f x '=,得 sin cos 0a x x +=. [ 7分] 因为 0a >,所以π()02f '≠. [ 8分]当 ππ(0,)(,π)22x ∈ 时, 由 sin cos 0a x x +=, 得 1tan x a=-. 所以 存在唯一的0π(,π)2x ∈, 使得 01tan x a=-. [ 9分] ()f x 与()f x '在区间(0,π)上的情况如下:x0(0,)x 0x0(,π)x()f x ' +-()f x↗极大值 ↘所以 ()f x 在区间0(0,)x 上单调递增,在区间0(,π)x 上单调递减. [11分]因为π020π()()e 1e 102a f x f >=->-=, [12分]且 (0)(π)10f f ==-<,所以 ()f x 在区间[0,π]上恰有2个零点. [13分]19.(本小题满分14分) 解:(Ⅰ)由题意得 2a =,32c e a ==, 所以 3c =. [ 2分] 因为 222a b c =+, [ 3分] 所以 1b =, [ 4分] 所以 椭圆C 的方程为 2214x y +=. [ 5分] (Ⅱ)若四边形PAMN 是平行四边形,则 //PA MN ,且 ||||PA MN =. [ 6分] 所以 直线PA 的方程为(2)y k x =-,所以 (3,)P k ,2||1PA k =+. [ 7分] 设11(,)M x y ,22(,)N x y .由 223,44,y kx x y ⎧=+⎪⎨+=⎪⎩ 得22(41)8380k x kx +++=, [ 8分]由0∆>,得 212k >. 且1228341k x x k +=-+,122841x x k =+. [ 9分] 所以 221212||(1)[()4]MN k x x x x =++-.22226432(1)(41)k k k -=++. [10分]因为 ||||PA MN =, 所以 222226432(1)1(41)k k k k -+=++. 整理得 421656330k k -+=, [12分]解得 32k =±,或 112k =±. [13分]经检验均符合0∆>,但32k =-时不满足PAMN 是平行四边形,舍去. 所以 32k =,或 112k =±. [14分]20.(本小题满分13分)解:(Ⅰ)②③. [ 3分] 注:只得到 ② 或只得到 ③ 给[ 1分],有错解不给分.(Ⅱ)当3m =时,设数列n A 中1,2,3出现频数依次为123,,q q q ,由题意1(1,2,3)i q i =≥. ① 假设14q <,则有12s t a a a a +<+(对任意2s t >>),与已知矛盾,所以 14q ≥.同理可证:34q ≥. [ 5分] ② 假设21q =,则存在唯一的{1,2,,}k n ∈ ,使得2k a =.那么,对,s t ∀,有 112k s t a a a a +=+≠+(,,k s t 两两不相等),与已知矛盾,所以22q ≥. [ 7分]综上:1324,4,2q q q ≥≥≥,所以 3120i i S iq ==∑≥. [ 8分](Ⅲ)设1,2,,2018 出现频数依次为122018,,...,q q q .同(Ⅱ)的证明,可得120184,4q q ≥≥,220172,2q q ≥≥,则2026n ≥.取12018220174,2q q q q ====,1,3,4,5,,2016i q i == ,得到的数列为::1,1,1,1,2,2,3,4,,2015,2016,2017,2017,2018,2018,2018,2018n B . [10分]下面证明n B 满足题目要求.对,{1,2,,2026}i j ∀∈ ,不妨令i j a a ≤,① 如果1i j a a ==或2018i j a a ==,由于120184,4q q ==,所以符合条件; ② 如果1,2i j a a ==或2017,2018i j a a ==,由于120184,4q q ==,220172,2q q ==, 所以也成立;③ 如果1,2i j a a =>,则可选取2,1s t j a a a ==-;同样的,如果2017,2018i j a a <=, 则可选取1,2017s i t a a a =+=,使得i j s t a a a a +=+,且,,,i j s t 两两不相等; ④ 如果12018i j a a <<≤,则可选取1,1s i t j a a a a =-=+,注意到这种情况每个数最多被选取了一次,因此也成立.综上,对任意,i j ,总存在,s t ,使得i j s t a a a a +=+,其中,,,{1,2,,}i j s t n ∈ 且两 两不相等.因此n B 满足题目要求,所以n 的最小值为2026. [13分]。
北京市西城区2016 — 2017学年度第一学期期末试卷高一数学参考答案及评分标准 2017.1A 卷 [必修 模块4] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1.C2.A3.D4.D5.B6.A7.C8.C9.B 10.A .二、填空题:本大题共6小题,每小题4分,共24分.11. 2-12. 3, 9- 13. πcos(2)2y x =+(或sin 2y x =-) 14. 150 15. 208225-16. ○2○3 注:第16题少选得2分,多选、错选不得分.三、解答题:本大题共3小题,共36分.17.(本小题满分12分)解:(Ⅰ)由π1tan()43ϕ+=-,得tan 111tan 3ϕϕ+=--, ………………3分 解得tan 2ϕ=-. ………………5分 所以22tan 4tan 21tan 3ϕϕϕ==-. ………………8分 (Ⅱ)由tan 2ϕ=-,得cos 0ϕ≠. 将分式sin cos 2cos sin ϕϕϕϕ+-的分子分母同时除以cos ϕ, 得sin cos tan 112cos sin 2tan 4ϕϕϕϕϕϕ++==---. ………………12分 18.(本小题满分12分)解:(Ⅰ)π()cos cos()3f x x x =⋅-ππcos (cos cos sin sin )33x x x =⋅+ ………………2分21cos 22x x =+ ………………3分112cos 244x x =++ ………………4分1π1sin(2)264x =++, ………………6分 由πππ2π22π+262k x k -+≤≤,得ππππ+36k x k -≤≤, 所以()f x 的单调递增区间为ππ[ππ+],()36k k k -∈Z ,. ………………8分 (Ⅱ)因为πsin(2)[1,1]6x +∈-, 所以函数1π1()sin(2)264f x x =++的值域为13[,]44-. ………………10分 因为直线y a =与函数()f x 的图象无公共点,所以13(,)(,)44a ∈-∞-+∞ . ………………12分19.(本小题满分12分)解:(Ⅰ)如图,以点B 为原点,以AB ,BC 所在的直线分别为x ,y 轴建立直角坐标系, 则(0,0)B ,(2,0)A -,(0,)C a ,(1,)D a -,(1,)AD a = ,(2,0)AB = ,(0,)BC a = .………………2分由AP xAD = , 得(,)AP x ax = . 所以(2,)PB PA AB x ax =+=-- , (2,)PC PB BC x a ax =+=-- . ………4分 所以2222(2)y PB PC x a x a x =⋅=--+ ,即222()(1)(4)4f x a x a x =+-++. ………………6分所以(1)1f =. ………………7分 (注:若根据数量积定义,直接得到(1)1f =,则得3分)(Ⅱ)由(Ⅰ),知函数222()(1)(4)4f x a x a x =+-++为二次函数,其图象开口向上, 且对称轴为2242(1)a x a +=+, ………………8分 因为对称轴222224(1)31312(1)2(1)22(1)2a a x a a a +++===+>+++,[0,1]x ∈, ……10分 所以当0x =时, ()f x 取得最大值(0)4f =. ………………12分B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1. [1,0)-2. 2-或2e 3. (3,0)(3,)-+∞ 4. {0,1} 5. [10,20] 注:第2 题少解不得分.二、解答题:本大题共3小题,共30分.6.(本小题满分10分)解:(Ⅰ)由411()log 12a f a a -==+,得121a a -=+, ………………2分 解得3a =-. ………………4分 (Ⅱ)由函数41()log 1x f x x -=+有意义,得101x x ->+. ………………5分 所以函数()f x 的定义域为{|1x x >,或1}x <-. ………………6分 因为1444111()log log ()log ()111x x x f x f x x x x ------===-=--+++, 所以()()f x f x -=-,即函数()f x 为奇函数. ………………10分7.(本小题满分10分)解: (Ⅰ)由函数()3x f x =,()||3g x x a =+-,得函数||3()[()]3x a h x f g x +-==. ………………1分 因为函数()h x 的图象关于直线2x =对称,所以(0)(4)h h =,即||3|4|333a a -+-=,解得2a =-. ………………3分 (Ⅱ)方法一:由题意,得[()]|3|3xg f x a =+-.由[()]|3|30x g f x a =+-=,得|3|3x a +=, ………………5分 当3a ≥时,由30x >,得33x a +>, 所以方程|3|3x a +=无解,即函数[()]y g f x =没有零点; ………………6分 当33a -<≤时,因为3x y a =+在R 上为增函数,值域为(,)a +∞,且33a -<≤,所以有且仅有一个0x 使得033x a +=,且对于任意的x ,都有33x a +≠-, 所以函数[()]y g f x =有且仅有一个零点; ………………8分 当3a -<时,因为3x y a =+在R 上为增函数,值域为(,)a +∞,且3a -<,所以有且仅有一个0x 使得033x a +=,有且仅有一个1x 使得133x a +=-, 所以函数[()]y g f x =有两个零点.综上,当3a ≥时,函数[()]y g f x =没有零点; 当33a -<≤时,函数[()]y g f x =有且仅有一个零点;当3a -<时,函数[()]y g f x =有两个零点. ………………10分 方法二:由题意,得[()]|3|3xg f x a =+-.由[()]|3|30x g f x a =+-=,得|3|3x a +=, ………………5分 即33x a +=,或33x a +=-,整理,得33x a =-,或33x a =--.○1考察方程33x a =-的解,由函数3x y =在R 上为增函数,且值域为(0,)+∞,得当30a ->,即3a <时,方程33x a =-有且仅有一解;当03a -≤,即3a ≥时,方程33x a =-有无解; ………………7分 ○2考察方程33x a =--的解,由函数3x y =在R 上为增函数,且值域为(0,)+∞,得当30a -->,即3a <-时,方程33x a =--有且仅有一解;当03a --≤,即3a ≥-时,方程33x a =--有无解. ………………9分综上,当3a ≥时,函数[()]y g f x =没有零点; 当33a -<≤时,函数[()]y g f x =有且仅有一个零点;当3a -<时,函数[()]y g f x =有两个零点. ………………10分 注:若根据函数图象便得出答案,请酌情给分,没有必要的文字说明减2分.8.(本小题满分10分)解:(Ⅰ)答案不唯一,如函数0y =,y x =等. ………………3分 (Ⅱ)因为函数2()f x ax bx c =++的图象经过点(1,0)-,所以0a b c -+=. ○1因为y x =为函数)(x f 一个承托函数,且)(x f 为函数21122y x =+的一个承托函数, 所以2()1122x f x x +≤≤对x ∈R 恒成立. 所以1(1)1f ≤≤,即 (1)1f a b c =++=. ○2 ………………5分由○1○2,得12b = ,12a c +=. ………………6分 所以211()22f x ax x a =++-. 由()f x x ≥对x ∈R 恒成立,得201122ax x a -+-≥对x ∈R 恒成立. 当0a =时,得01122x -+≥对x ∈R 恒成立,显然不正确; ………………7分 当0a ≠时,由题意,得0,0,114()42a a a >⎧⎪⎨∆=--⎪⎩≤ 即20(41)a -≤, 所以14a =. ………………9分 代入2()1122f x x +≤,得21110424x x -+≥, 化简,得2(1)0x -≥对x ∈R 恒成立,符合题意.所以14a =,12b =,14c =. ………………10分。
2016-2017学年北京市西城区高一(上)期末数学试卷A卷[必修模块4]本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)如果θ是第三象限的角,那么()A.sinθ>0 B.cosθ>0 C.tanθ>0 D.以上都不对2.(4分)若向量=(1,﹣2),=(x,4)满足⊥,则实数x等于()A.8 B.﹣8 C.2 D.﹣23.(4分)若角α的终边经过点(﹣4,3),则tanα=()A.B.C.D.4.(4分)函数是()A.奇函数,且在区间上单调递增B.奇函数,且在区间上单调递减C.偶函数,且在区间上单调递增D.偶函数,且在区间上单调递减5.(4分)函数f(x)=sinx﹣cosx的图象()A.关于直线对称B.关于直线对称C.关于直线对称D.关于直线对称6.(4分)如图,在△ABC中,点D在线段BC上,且BD=2DC,若,则=()A.B.C.2 D.7.(4分)定义在R上,且最小正周期为π的函数是()A.y=sin|x| B.y=cos|x|C.y=|sinx| D.y=|cos2x|8.(4分)设向量,的模分别为2和3,且夹角为60°,则|+|等于()A. B.13 C. D.199.(4分)函数(其中ω>0,0<φ<π)的图象的一部分如图所示,则()A.B.C.D.10.(4分)如图,半径为1的圆M,切直线AB于点O,射线OC从OA出发,绕O点顺时针方向旋转到OB,旋转过程中OC交⊙M于P,记∠PMO为x,弓形PNO的面积S=f(x),那么f (x)的图象是()A.B.C.D.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上. 11.(4分)若向量=(﹣1,2)与向量=(x,4)平行,则实数x=.12.(4分)若θ为第四象限的角,且,则cosθ=;sin2θ=.13.(4分)将函数y=cos2x的图象向左平移个单位,所得图象对应的函数表达式为.14.(4分)若,均为单位向量,且与的夹角为120°,则﹣与的夹角等于.15.(4分)已知,则cos(x﹣y)=.16.(4分)已知函数f(x)=sin(ωx+φ)(ω>0,φ∈(0,π))满足,给出以下四个结论:①ω=3;②ω≠6k,k∈N*;③φ可能等于;④符合条件的ω有无数个,且均为整数.其中所有正确的结论序号是.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.(12分)已知φ∈(0,π),且.(Ⅰ)求tan2φ的值;(Ⅱ)求的值.18.(12分)已知函数.(1)求函数f(x)的单调增区间;(2)若直线y=a与函数f(x)的图象无公共点,求实数a的取值范围.19.(12分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a (a>0),P为线段AD(含端点)上一个动点,设,,则得到函数y=f(x).(Ⅰ)求f(1)的值;(Ⅱ)对于任意a∈(0,+∞),求函数f(x)的最大值.B卷[学期综合]本卷满分:50分.一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.20.(4分)设全集U=R,集合A={x|x<0},B={x||x|>1},则A∩(∁U B)=.21.(4分)已知函数若f(a)=2,则实数a=.22.(4分)定义在R上的函数f (x)是奇函数,且f(x)在(0,+∞)是增函数,f(3)=0,则不等式f(x)>0的解集为.23.(4分)函数的值域为.(其中[x]表示不大于x的最大整数,例如[3.15]=3,[0.7]=0.)24.(4分)在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤.25.(10分)已知函数.(Ⅰ)若,求a的值;(Ⅱ)判断函数f(x)的奇偶性,并证明你的结论.26.(10分)已知函数f(x)=3x,g(x)=|x+a|﹣3,其中a∈R.(Ⅰ)若函数h(x)=f[g(x)]的图象关于直线x=2对称,求a的值;(Ⅱ)给出函数y=g[f(x)]的零点个数,并说明理由.27.(10分)设函数f(x)的定义域为R,如果存在函数g(x),使得f(x)≥g (x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知函数f(x)=ax2+bx+c的图象经过点(﹣1,0).(1)若a=1,b=2.写出函数f(x)的一个承托函数(结论不要求证明);(2)判断是否存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f (x)为函数的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.2016-2017学年北京市西城区高一(上)期末数学试卷参考答案与试题解析A卷[必修模块4]本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)如果θ是第三象限的角,那么()A.sinθ>0 B.cosθ>0 C.tanθ>0 D.以上都不对【解答】解:如果θ是第三象限的角,则sinθ<0,cosθ<0,tanθ>0,故选:C.2.(4分)若向量=(1,﹣2),=(x,4)满足⊥,则实数x等于()A.8 B.﹣8 C.2 D.﹣2【解答】解:根据题意,若向量、满足⊥,必有•=0,又由=(1,﹣2),=(x,4),则有•=1×x+(﹣2)×4=0,解可得x=8;故选:A.3.(4分)若角α的终边经过点(﹣4,3),则tanα=()A.B.C.D.【解答】解:由定义若角α的终边经过点(﹣4,3),∴tanα=﹣,故选:D.4.(4分)函数是()A.奇函数,且在区间上单调递增B.奇函数,且在区间上单调递减C.偶函数,且在区间上单调递增D.偶函数,且在区间上单调递减【解答】解:函数=cosx,是偶函数,且在区间上单调递减,故选D.5.(4分)函数f(x)=sinx﹣cosx的图象()A.关于直线对称B.关于直线对称C.关于直线对称D.关于直线对称【解答】解:函数y=sinx﹣cosx=sin(x﹣),∴x﹣=kπ+,k∈Z,得到x=kπ+,k∈Z,则函数的图象关于直线x=﹣对称.故选:B.6.(4分)如图,在△ABC中,点D在线段BC上,且BD=2DC,若,则=()A.B.C.2 D.【解答】解:∵BD=2DC,∴=+=+=+(﹣)=+,∵,∴λ=,μ=,∴=,故选:A7.(4分)定义在R上,且最小正周期为π的函数是()A.y=sin|x| B.y=cos|x|C.y=|sinx| D.y=|cos2x|【解答】解:对于A:y=sin|x|不是周期函数,对于B,y=cos|x|的最小正周期为2π,对于C,y=|sinx|最小正周期为π,对于D,y=|cos2x|最小正周期为,故选:C8.(4分)设向量,的模分别为2和3,且夹角为60°,则|+|等于()A. B.13 C. D.19【解答】解:∵向量,的模分别为2和3,且夹角为60°,∴=||•||cos60°=2×3×=3,∴|+|2=||2+||2+2=4+9+2×3=19,∴|+|=,故选:C.9.(4分)函数(其中ω>0,0<φ<π)的图象的一部分如图所示,则()A.B.C.D.【解答】解:如图根据函数的图象可得:函数的周期为(6﹣2)×4=16,又∵ω>0,∴ω==,当x=2时取最大值,即2sin(2×+φ)=2,可得:2×+φ=2kπ+,k ∈Z,∴φ=2kπ+,k∈Z,∵0<φ<π,∴φ=,故选:B.10.(4分)如图,半径为1的圆M,切直线AB于点O,射线OC从OA出发,绕O点顺时针方向旋转到OB,旋转过程中OC交⊙M于P,记∠PMO为x,弓形PNO的面积S=f(x),那么f (x)的图象是()A.B.C.D.【解答】解:由题意得S=f (x )=x﹣f′(x)=≥0当x=0和x=2π时,f′(x)=0,取得极值.则函数S=f (x )在[0,2π]上为增函数,当x=0和x=2π时,取得极值.结合选项,A正确.故选A.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上. 11.(4分)若向量=(﹣1,2)与向量=(x,4)平行,则实数x=﹣2.【解答】解:因为向量=(﹣1,2)与向量=(x,4)平行,所以,所以﹣1=λx,2=λ4,解得:λ=,x=﹣2.故答案为﹣2.12.(4分)若θ为第四象限的角,且,则cosθ=;sin2θ=﹣.【解答】解:∵θ为第四象限的角,且,∴cosθ==,sin2θ=2sinθcosθ=2×(﹣)×=﹣.故答案为:,﹣.13.(4分)将函数y=cos2x的图象向左平移个单位,所得图象对应的函数表达式为y=﹣sin2x.【解答】解:将函数y=cos2x的图象向左平移个单位,所得图象对应的解析式为y=cos2(x+)=cos(2x+)=﹣sin2x.故答案为:y=﹣sin2x.14.(4分)若,均为单位向量,且与的夹角为120°,则﹣与的夹角等于150°.【解答】解:∵,均为单位向量,且与的夹角为120°,∴(﹣)•=﹣||2=1×1×(﹣)﹣1=﹣,|﹣|2=||2﹣2+||2=1﹣2×1×1×(﹣)+1=3,∴|﹣|=,设﹣与的夹角为θ,则cosθ===﹣,∵0°≤θ≤180°,∴θ=150°,故答案为:150°15.(4分)已知,则cos(x﹣y)=﹣.【解答】解:∵sinx+siny=,①cosx+cosy=,②①2+②2得:2+2sinxsiny+2cosxcosy=,∴cos(x﹣y)=sinxsiny+cosxcosy=﹣,故答案为:﹣.16.(4分)已知函数f(x)=sin(ωx+φ)(ω>0,φ∈(0,π))满足,给出以下四个结论:①ω=3;②ω≠6k,k∈N*;③φ可能等于;④符合条件的ω有无数个,且均为整数.其中所有正确的结论序号是①③.【解答】解:函数f(x)=sin(ωx+φ)(ω>0,φ∈(0,π))满足,∴ω()=nπ,∴ω=n(n∈Z),∴①ω=3正确;②ω≠6k,k∈N*,不正确;③φ可能等于,正确;④符合条件的ω有无数个,且均为整数,不正确.故答案为①③.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.(12分)已知φ∈(0,π),且.(Ⅰ)求tan2φ的值;(Ⅱ)求的值.【解答】解:(Ⅰ)∵φ∈(0,π),且=,可得:tanφ=﹣2,∴tan2φ==.(Ⅱ)===﹣.18.(12分)已知函数.(1)求函数f(x)的单调增区间;(2)若直线y=a与函数f(x)的图象无公共点,求实数a的取值范围.【解答】解:(1)函数=cosx(cosx+sinx)=+sin2x=cos(2x﹣)+,由2kπ﹣π≤2x﹣≤2kπ,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z,即f(x)的增区间为[kπ﹣,kπ+],k∈Z;(2)由(1)可得当2x﹣=2kπ,即x=kπ+,k∈Z时,f(x)取得最大值;当2x﹣=2kπ+π,即x=kπ+,k∈Z时,f(x)取得最小值﹣.由直线y=a与函数f(x)的图象无公共点,可得a的范围是a>或a<﹣.19.(12分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a (a>0),P为线段AD(含端点)上一个动点,设,,则得到函数y=f(x).(Ⅰ)求f(1)的值;(Ⅱ)对于任意a∈(0,+∞),求函数f(x)的最大值.【解答】解:(1)如图所示,建立直角坐标系.∵在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),∴B(0,0),A(﹣2,0),D(﹣1,a),C(0,a).∵=x,(0≤x≤1).∴=+x=(﹣2,0)+x(1,a)=(x﹣2,xa),∴=﹣=(0,a)﹣(x﹣2,xa)=(2﹣x,a﹣xa)∴y=f(x)=•=(2﹣x,﹣xa)•(2﹣x,a﹣xa)=(2﹣x)2﹣ax(a﹣xa)=(a2+1)x2﹣(4+a2)x+4.∴f(1)=a2+1﹣(4+a2)+4=1(Ⅱ)由y=f(x)=(a2+1)x2﹣(4+a2)x+4.可知:对称轴x0=.当0<a≤时,1<x0,∴函数f(x)在[0,1]单调递减,因此当x=0时,函数f(x)取得最大值4.当a>时,0<x0<1,函数f(x)在[0,x0)单调递减,在(x0,1]上单调递增.又f(0)=4,f(1)=1,∴f(x)max=f(0)=4.综上所述函数f(x)的最大值为4B卷[学期综合]本卷满分:50分.一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.20.(4分)设全集U=R,集合A={x|x<0},B={x||x|>1},则A∩(∁U B)={x|﹣1≤x<0} .【解答】解:全集U=R,集合A={x|x<0},B={x||x|>1}={x|x<﹣1或x>1},则∁U B={x|﹣1≤x≤1},A∩(∁U B)={x|﹣1≤x<0}.故答案为:{x|﹣1≤x<0}.21.(4分)已知函数若f(a)=2,则实数a=e2.【解答】解:∵函数,f(a)=2,∴当a<0时,f(a)=a﹣2=2,解得a=,不成立;当a>0时,f(a)=lna=2,解得a=e2.∴实数a=e2.故答案为:e2.22.(4分)定义在R上的函数f (x)是奇函数,且f(x)在(0,+∞)是增函数,f(3)=0,则不等式f(x)>0的解集为(﹣3,0)∪(3,+∞).【解答】解:∵f(x)在R上是奇函数,且f(x)在(0,+∞)上是增函数,∴f(x)在(﹣∞,0)上也是增函数,由f(﹣3)=0,得﹣f(3)=0,即f(3)=0,由f(﹣0)=﹣f(0),得f(0)=0,作出f(x)的草图,如图所示:∴f(x)>0的解集为:(﹣3,0)∪(3,+∞),故答案为:(﹣3,0)∪(3,+∞).23.(4分)函数的值域为{0,1} .(其中[x]表示不大于x的最大整数,例如[3.15]=3,[0.7]=0.)【解答】解:设m表示整数.①当x=2m时,[]=[m+0.5]=m,[]=[m]=m.∴此时恒有y=0.②当x=2m+1时,[]=[m+1]=m+1,[]=[m+0.5]=m.∴此时恒有y=1.③当2m<x<2m+1时,2m+1<x+1<2m+2∴m<<m+0.5m+0.5<<m+1∴[]=m,[]=m∴此时恒有y=0④当2m+1<x<2m+2时,2m+2<x+1<2m+3∴m+0.5<<m+1m+1<<m+1.5∴此时[]=m,[]=m+1∴此时恒有y=1.综上可知,y∈{0,1}.故答案为{0,1}.24.(4分)在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是[10,20] .【解答】解:设矩形的另一边长为ym,由相似三角形的性质可得:=,解得y=30﹣x,(0<x<30)∴矩形的面积S=x(30﹣x),∵矩形花园的面积不小于200m2,∴x(30﹣x)≥200,化为(x﹣10)(x﹣20)≤0,解得10≤x≤20.满足0<x<30.故其边长x(单位m)的取值范围是[10,20].故答案为:[10,20].二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤.25.(10分)已知函数.(Ⅰ)若,求a的值;(Ⅱ)判断函数f(x)的奇偶性,并证明你的结论.【解答】解:(Ⅰ)∵函数.,∴=,∴=2,解得:a=3;(Ⅱ)函数f(x)为奇函数,理由如下:函数f(x)的定义域(﹣∞,﹣1)∪(1,+∞)关于原点对称,且f(﹣x)+f(x)=+=0,即f(﹣x)=﹣f(x),故函数f(x)为奇函数.26.(10分)已知函数f(x)=3x,g(x)=|x+a|﹣3,其中a∈R.(Ⅰ)若函数h(x)=f[g(x)]的图象关于直线x=2对称,求a的值;(Ⅱ)给出函数y=g[f(x)]的零点个数,并说明理由.【解答】解:(Ⅰ)函数h(x)=f[g(x)]=3|x+a|﹣3的图象关于直线x=2对称,则h(4﹣x)=h(x)⇒|x+a|=|4﹣x+a|恒成立⇒a=﹣2;(Ⅱ)函数y=g[f(x)]=|3x+a|﹣3的零点个数,就是函数G(x)=|3x+a|与y=3的交点,①当0≤a<3时,G(x)=|3x+a|=3x+a与y=3的交点只有一个,即函数y=g[f(x)]的零点个数为1个(如图1);②当a≥3时,G(x)=|3x+a|=3x+a与y=3没有交点,即函数y=g[f(x)]的零点个数为0个(如图1);③﹣3≤a<0时,G(x)=|3x+a|与y=3的交点只有1个(如图2);④当a<﹣3时,G(x)=|3x+a|与y=3的交点有2个(如图2);27.(10分)设函数f(x)的定义域为R,如果存在函数g(x),使得f(x)≥g (x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知函数f(x)=ax2+bx+c的图象经过点(﹣1,0).(1)若a=1,b=2.写出函数f(x)的一个承托函数(结论不要求证明);(2)判断是否存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f (x)为函数的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.【解答】解:(1)函数f(x)=ax2+bx+c的图象经过点(﹣1,0),可得a﹣b+c=0,又a=1,b=2,则f(x)=x2+2x+1,由新定义可得g(x)=x为函数f(x)的一个承托函数;(2)假设存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f(x)为函数的一个承托函数.即有x≤ax2+bx+c≤x2+恒成立,令x=1可得1≤a+b+c≤1,即为a+b+c=1,即1﹣b=a+c,又ax2+(b﹣1)x+c≥0恒成立,可得a>0,且(b﹣1)2﹣4ac≤0,即为(a+c)2﹣4ac≤0,即有a=c;又(a﹣)x2+bx+c﹣≤0恒成立,可得a <,且b 2﹣4(a ﹣)(c ﹣)≤0,即有(1﹣2a )2﹣4(a ﹣)2≤0恒成立.故存在常数a ,b ,c ,且0<a=c <,b=1﹣2a ,可取a=c=,b=.满足题意.赠送:初中数学几何模型举例 【模型四】几何最值模型:图形特征: PA Bl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为 M FEB2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。
2017-2018学年北京市西城区高一(上)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)已知sinα<0,且tanα>0,则α的终边所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(4分)函数f(x)=sin2x的最小正周期为()A.B.πC.2πD.4π3.(4分)如果向量=(1,2),=(3,4),那么2﹣=()A.(﹣1,0)B.(﹣1,﹣2)C.(1,0) D.(1,﹣2)4.(4分)计算sin(π﹣α)+sin(π+α)=()A.0 B.1 C.2sinαD.﹣2sinα5.(4分)如图,在矩形ABCD中,=()A.B.C.D.6.(4分)已知向量,满足||=2,||=1,•=﹣,则向量,的夹角为()A.B.C. D.7.(4分)已知m是函数f(x)=cosx图象一个对称中心的横坐标,则f(m)=()A.﹣1 B.0 C.D.18.(4分)要得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度9.(4分)函数f(x)=Asinx(A>0)的图象如图所示,P,Q分别为图象的最高点和最低点,O为坐标原点,若OP⊥OQ,则A=()A.3 B.C.D.110.(4分)已知在直角三角形ABC中,A为直角,AB=1,BC=2,若AM是BC边上的高,点P在△ABC内部或边界上运动,则的取值范围是()A.[﹣1,0]B.C.D.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上. 11.(4分)=.12.(4分)已知向量=(1,2),=(x,﹣2),若∥,则实数x=.13.(4分)角θ的始边与x轴正半轴重合,终边上一点坐标为(﹣1,2),则tanθ=.14.(4分)函数f(x)=sinx+cosx的最大值为.15.(4分)已知点A(0,4),B(2,0),如果,那么点C的坐标为;设点P(3,t),且∠APB是钝角,则t的取值范围是.16.(4分)已知函数f(x)=sinxtanx.给出下列结论:①函数f(x)是偶函数;②函数f(x)在区间上是增函数;③函数f(x)的最小正周期是2π;④函数f(x)的图象关于直线x=π对称.其中正确结论的序号是.(写出所有正确结论的序号)三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.(12分)已知,且.(Ⅰ)求tanα的值;(Ⅱ)求的值.18.(12分)已知函数.(Ⅰ)请用“五点法”画出函数f(x)在一个周期上的图象;(Ⅱ)求f(x)在区间上的最大值和最小值;(Ⅲ)写出f(x)的单调递增区间.19.(12分)如图,已知AB⊥BC,,a∈[1,3],圆A是以A为圆心、半径为2的圆,圆B是以B为圆心、半径为1的圆,设点E、F分别为圆A、圆B上的动点,(且与同向),设∠BAE=θ(θ∈[0,π]).(Ⅰ)当,且时,求的值;(Ⅱ)用a,θ表示出,并给出一组a,θ的值,使得最小.一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上. 20.(4分)设全集U=R,集合A={x|x<0},B={x|x>1},则A∪(∁U B)=.21.(4分)函数的定义域为.22.(4分)已知函数则=;若f(x)=1,则x=.23.(4分)sin2,,三个数中最大的是.24.(4分)某购物网站在2017年11月开展“买三免一”活动,规则是“购买3件商品,最便宜的一件商品免费”,比如如下结算案例:如果在此网站上购买的三件商品价格如图所示,按照“买三免一”的规则,购买这三件商品的实际折扣为折.在这个网站上购买3件商品,按照“买三免一”的规则,这3件商品实际折扣力度最大约为折(保留一位小数).二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤.25.(10分)已知函数是偶函数.(Ⅰ)求a的值;(Ⅱ)判断函数f(x)在区间(0,+∞)上的单调性,并用函数单调性的定义证明你的结论.26.(10分)设a为实数,函数f(x)=x2﹣|x﹣a|+1,x∈R.(Ⅰ)当a=0时,求f(x)在区间[0,2]上的最大值和最小值;(Ⅱ)求函数f(x)的最小值.27.(10分)若函数f(x)满足:对于s,t∈[0,+∞),都有f(s)≥0,f(t)≥0,且f(s)+f(t)≤f(s+t),则称函数f(x)为“T函数”.(Ⅰ)试判断函数与f2(x)=lg(x+1)是否是“T函数”,并说明理由;(Ⅱ)设f(x)为“T函数”,且存在x0∈[0,+∞),使f(f(x0))=x0,求证:f (x0)=x0;(Ⅲ)试写出一个“T函数”f(x),满足f(1)=1,且使集合{y|y=f(x),0≤x≤1}中元素的个数最少.(只需写出结论)2017-2018学年北京市西城区高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)已知sinα<0,且tanα>0,则α的终边所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵sinα<0,∴α的终边在第三、第四象限或在y轴负半轴上,∵tanα>0,∴α的终边在第一或第三象限,取交集可得,α的终边所在的象限是第三象限角.故选:C.2.(4分)函数f(x)=sin2x的最小正周期为()A.B.πC.2πD.4π【解答】解:∵sin2x=sin(2x+2π)=sin2(x+π),∴f(x)=sin2x满足f(x)=f(x+π),由正切函数的定义可得,函数f(x)=sin2x的最小正周期为π.故选:B.3.(4分)如果向量=(1,2),=(3,4),那么2﹣=()A.(﹣1,0)B.(﹣1,﹣2)C.(1,0) D.(1,﹣2)【解答】解:2﹣=2(1,2)﹣(3,4)=(﹣1,0).故选:A.4.(4分)计算sin(π﹣α)+sin(π+α)=()A.0 B.1 C.2sinαD.﹣2sinα【解答】解:sin(π﹣α)+sin(π+α)=sinα﹣sinα=0.故选:A.5.(4分)如图,在矩形ABCD中,=()A.B.C.D.【解答】解:在矩形ABCD中,=,则=++=+=,故选:B.6.(4分)已知向量,满足||=2,||=1,•=﹣,则向量,的夹角为()A.B.C. D.【解答】解:根据题意,设向量,的夹角为θ,又由向量,满足||=2,||=1,•=﹣,则cosθ==﹣,又由0≤θ≤π,则θ=;故选:D.7.(4分)已知m是函数f(x)=cosx图象一个对称中心的横坐标,则f(m)=()A.﹣1 B.0 C.D.1【解答】解:函数f(x)=cosx,其对称中心的横坐标:x=,k∈Z.当k=0时,可得x=m=,那么:f()=cos=0,故选:B.8.(4分)要得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【解答】解:将函数y=sin2x,向左平移个单位长度,可得y=sin2(x+),即sin2(x+)=.故选:C.9.(4分)函数f(x)=Asinx(A>0)的图象如图所示,P,Q分别为图象的最高点和最低点,O为坐标原点,若OP⊥OQ,则A=()A.3 B.C.D.1【解答】解:函数f(x)=Asinx(A>0),周期T=2π,可得:P(,A),Q().连接PQ,过P,Q作x轴的垂线,可得:QP2=4[A2+],OP2=A2+],OQ2=A2+],由题意,△OPQ是直角三角形,∴QP2=OP2+OQ2,即2A2+π2=,解得:A=故选:B.10.(4分)已知在直角三角形ABC中,A为直角,AB=1,BC=2,若AM是BC边上的高,点P在△ABC内部或边界上运动,则的取值范围是()A.[﹣1,0]B.C.D.【解答】解:如图,由AB=1,BC=2,可得AC=,以AB所在直线为x轴,以AC所在直线为y轴,建立平面直角坐标系,则B(1,0),C(0,),直线BC方程为x+=1则直线AM方程为y=x,联立,解得:M(,),由图可知,当P在线段BC上时,•有最大值为0,当P在线段AC上时,•有最小值,设P(0,y)(0≤y≤),∴•=(,)(﹣1,y)=﹣+y≥﹣.∴•的范围是[﹣,0].故选:D.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.(4分)=.【解答】解:sin=sin(π+)=﹣sin=﹣.故答案为:﹣12.(4分)已知向量=(1,2),=(x,﹣2),若∥,则实数x=﹣1.【解答】解:由=(1,2),=(x,﹣2),且∥,得1×(﹣2)﹣2x=0,解得x=﹣1.故答案为:﹣1.13.(4分)角θ的始边与x轴正半轴重合,终边上一点坐标为(﹣1,2),则tanθ=﹣2.【解答】解:∵角θ的始边与x轴正半轴重合,终边上一点坐标为(﹣1,2),∴x=﹣1,y=2,则tanθ==﹣2,故答案为:﹣2.14.(4分)函数f(x)=sinx+cosx的最大值为.【解答】解:函数f(x)=sinx+cosx=sin(x+).当x+=+2kπ(k∈Z)时,函数f(x)取得最大值.故答案为:.15.(4分)已知点A(0,4),B(2,0),如果,那么点C的坐标为(3,﹣2);设点P(3,t),且∠APB是钝角,则t的取值范围是(1,3).【解答】解:根据题意,设C的坐标为(x,y),又由点A(0,4),B(2,0),则=(2,﹣4),=(x﹣2,y),若,则有(2,﹣4)=2(x﹣2,y),则有2=2(x﹣2),﹣4=2y,解可得x=3,y=﹣2,则C的坐标为(3,﹣2),又由P(3,t),则=(﹣3,4﹣t),=(﹣1,﹣t),若∠APB是钝角,则•=(﹣3)×(﹣1)+(4﹣t)×(﹣t)<0,且(﹣3)×(﹣t)≠(﹣1)×(4﹣t),解可得1<t<3,即t的取值范围为(1,3);故答案为:(3,﹣2);(1,3)16.(4分)已知函数f(x)=sinxtanx.给出下列结论:①函数f(x)是偶函数;②函数f(x)在区间上是增函数;③函数f(x)的最小正周期是2π;④函数f(x)的图象关于直线x=π对称.其中正确结论的序号是①③④.(写出所有正确结论的序号)【解答】解:对于f(x)=sinxtanx,其定义域为{x|x,k∈Z},关于原点对称,且f(﹣x)=sin(﹣x)tan(﹣x)=sinxtanx,∴函数f(x)是偶函数,故①正确;当x=时,f()=sin(﹣)tan(﹣)=,当x=﹣时,f(﹣)=sin(﹣)tan(﹣)=,<﹣,而f()>f(﹣),故②错误;∵f(2π+x)=sin(x+2π)tan(x+2π)=sinxtanx,∴函数f(x)的最小正周期是2π,故③正确;∵f(π﹣x)=sin(π﹣x)tan(π﹣x)=﹣sinxtanx,f(π+x)=sin(π+x)tan(π+x)=﹣sinxtanx,∴f(π﹣x)=f(π+x),即函数f(x)的图象关于直线x=π对称,故④正确.∴正确结论的序号是①③④.故答案为:①③④.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.(12分)已知,且.(Ⅰ)求tanα的值;(Ⅱ)求的值.【解答】解:(Ⅰ)∵,,∴=.∴.(Ⅱ)由(Ⅰ),,可得,,∴.18.(12分)已知函数.(Ⅰ)请用“五点法”画出函数f(x)在一个周期上的图象;(Ⅱ)求f(x)在区间上的最大值和最小值;(Ⅲ)写出f(x)的单调递增区间.【解答】解:(Ⅰ)画出函数f(x)在[,]上的图象如图所示;…(5分)说明:其它周期上的图象同等给分;个别关键点错误酌情给分.(Ⅱ)由知,因为,所以,…(7分)当,即时,最大值等于1,即f(x)的最大值等于1;…(8分)当,即时,最小值等于,即f(x)的最小值等于;…(9分)所以f(x)在区间上的最大值为1,最小值为;注:根据图象求出最大、最小值相应给分.(Ⅲ)根据函数的图象知,f(x)的单调递增区间为(k∈Z).…(12分)19.(12分)如图,已知AB⊥BC,,a∈[1,3],圆A是以A为圆心、半径为2的圆,圆B是以B为圆心、半径为1的圆,设点E、F分别为圆A、圆B上的动点,(且与同向),设∠BAE=θ(θ∈[0,π]).(Ⅰ)当,且时,求的值;(Ⅱ)用a,θ表示出,并给出一组a,θ的值,使得最小.【解答】解:(Ⅰ)如图,以点A为原点,AB所在直线为x轴,与AB垂直的直线为y轴建立平面直角坐标系.则A(0,0),,,所以.(Ⅱ)A(0,0),,E(2cosθ,2sinθ),,,=,=因为θ∈[0,π],所以,以a为变量的二次函数的对称轴.因为a∈[1,3],所以当a=1时,的最小值为,又,所以的最小值为,此时θ=0.所以,当a=1,θ=0时,的最小值为.一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上. 20.(4分)设全集U=R,集合A={x|x<0},B={x|x>1},则A∪(∁U B)={x|x ≤1} .【解答】解:∵B={x|x>1},∴∁U B={x|x≤1},则A∪(∁U B)={x|x≤1},故答案为:{x|x≤1}.21.(4分)函数的定义域为[3,+∞).【解答】解:由2x﹣8≥0,得2x≥8,即x≥3.∴函数的定义域为:[3,+∞).故答案为:[3,+∞).22.(4分)已知函数则=4;若f(x)=1,则x=.【解答】解:函数,则=f(log)=f(2)=22=4,若f(x)=1,若x>1,可得2x=1,解得x=0(舍去);若0<x≤1,可得log x=1,解得x=,综上可得x=.故答案为:4,.23.(4分)sin2,,三个数中最大的是.【解答】解:sin2∈(0,1),<log1=0,=log23>log22=1,可得其中最大值为.故答案为:.24.(4分)某购物网站在2017年11月开展“买三免一”活动,规则是“购买3件商品,最便宜的一件商品免费”,比如如下结算案例:如果在此网站上购买的三件商品价格如图所示,按照“买三免一”的规则,购买这三件商品的实际折扣为7.5折.在这个网站上购买3件商品,按照“买三免一”的规则,这3件商品实际折扣力度最大约为 6.7折(保留一位小数).【解答】解:由500+700+400=1600,故1600﹣400=1200,由1200÷1600=0.75,故打7.5折,显然三件商品价格一致时折扣最大,设购买3件商品均为a元,则2a÷3a≈0.67,故商品实际折扣力度最大约为6.7折,故答案为:7.5;6.7.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤.25.(10分)已知函数是偶函数.(Ⅰ)求a的值;(Ⅱ)判断函数f(x)在区间(0,+∞)上的单调性,并用函数单调性的定义证明你的结论.【解答】解:(Ⅰ)函数f(x)的定义域为(﹣∞,0)∪(0,+∞).由f(﹣x)=f(x)得.…(3分)所以ax=0.因为ax=0对于定义域中任意的x都成立,所以a=0.…(5分)(Ⅱ)函数在区间(0,+∞)上是减函数.…(7分)证明:在(0,+∞)上任取x1,x2,且x1<x2,则,…(9分)由0<x1<x2,得x1+x2>0,x2﹣x1>0,,于是f(x1)﹣f(x2)>0,即f(x1)>f(x2).所以函数在区间(0,+∞)上是减函数.…(10分)26.(10分)设a为实数,函数f(x)=x2﹣|x﹣a|+1,x∈R.(Ⅰ)当a=0时,求f(x)在区间[0,2]上的最大值和最小值;(Ⅱ)求函数f(x)的最小值.【解答】解:(Ⅰ)当a=0,x∈[0,2]时,函数f(x)=x2﹣x+1,因为f(x)的图象抛物线开口向上,对称轴为,所以,当时,f(x)值最小,最小值为;当x=2时,f(x)值最大,最大值为3.(Ⅱ)①当x≤a时,函数.若,则f(x)在(﹣∞,a]上单调递减,在(﹣∞,a]上的最小值为f(a)=a2+1;若,则函数f(x)在(﹣∞,a]上的最小值为;②当x>a时,.若,则f(x)在[a,+∞)上的最小值为;若,则f(x)在[a,+∞)上单调递增,f(x)>f(a)=a2+1.所以,当时,,f(x)的最小值为.当时,,f(x)的最小值为.当时,f(x)的最小值为与中小者.所以,当时,f(x)的最小值为;当时,f(x)的最小值为综上,当a<0时,f(x)的最小值为;当a≥0时,f(x)的最小值为.27.(10分)若函数f(x)满足:对于s,t∈[0,+∞),都有f(s)≥0,f(t)≥0,且f(s)+f(t)≤f(s+t),则称函数f(x)为“T函数”.(Ⅰ)试判断函数与f2(x)=lg(x+1)是否是“T函数”,并说明理由;(Ⅱ)设f(x)为“T函数”,且存在x0∈[0,+∞),使f(f(x0))=x0,求证:f (x0)=x0;(Ⅲ)试写出一个“T函数”f(x),满足f(1)=1,且使集合{y|y=f(x),0≤x≤1}中元素的个数最少.(只需写出结论)【解答】解:(Ⅰ)对于函数,当s,t∈[0,+∞)时,都有f1(s)≥0,f1(t)≥0,又,所以f1(s)+f1(t)≤f1(s+t).所以是“T函数”.对于函数f2(x)=lg(x+1),当s=t=2时,f2(s)+f2(t)=lg9,f2(s+t)=lg5,因为lg9>lg5,所以f2(s)+f2(t)>f2(s+t).所以f2(x)=lg(x+1)不是“T函数”.(Ⅱ)设x1,x2∈[0,+∞),x2>x1,x2=x1+△x,△x>0.则f(x2)﹣f(x1)=f(x1+△x)﹣f(x1)≥f(x1+△x﹣x1)=f(△x)≥0所以,对于x1,x2∈[0,+∞),x1<x2,一定有f(x1)≤f(x2).因为f(x)是“T函数”,x0∈[0,+∞),所以f(x0)≥0.若f(x0)>x0,则f(f(x0))≥f(x0)>x0,不符合题意.若f(x0)<x0,则f(f(x0))≤f(x0)<x0,不符合题意.所以f(x0)=x0.…(8分)(Ⅲ)(注:答案不唯一)。