刘祖洞遗传学习题答案
- 格式:doc
- 大小:180.50 KB
- 文档页数:9
第二章孟德尔定律1、为什么分离现象比显、隐性现象有更重要得意义?答:因为1、分离规律就是生物界普遍存在得一种遗传现象,而显性现象得表现就是相对得、有条件得;2、只有遗传因子得分离与重组,才能表现出性状得显隐性。
可以说无分离现象得存在,也就无显性现象得发生。
2、在番茄中,红果色(R)对黄果色(r)就是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们得比例如何(1)RR×rr(2)Rr×rr(3)Rr×Rr(4) Rr×RR(5)rr×rr3、下面就是紫茉莉得几组杂交,基因型与表型已写明。
问它们产生哪些配子?杂种后代得基因型与表型怎白色粉红粉红粉红样?(1)Rr × RR(2)rr × Rr(3)Rr × Rr 粉红红色4、在南瓜中,果实得白色(W)对黄色(w)就是显性,果实盘状(D)对球状(d)就是显性,这两对基因就是自由组合得。
问下列杂交可以产生哪些基因型,哪些表型,它们得比例如何?(1)WWDD×wwdd (2)XwDd×wwdd(3)Wwdd×wwDd(4)Wwdd×WwDd5、在豌豆中,蔓茎(T)对矮茎(t)就是显性,绿豆荚(G)对黄豆荚(g)就是显性,圆种子(R)对皱种子(r)就是显性。
现在有下列两种杂交组合,问它们后代得表型如何?(1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr解:杂交组合TTGgRr × ttGgrr:即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。
杂交组合TtGgrr ×ttGgrr:即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8。
6、在番茄中,缺刻叶与马铃薯叶就是一对相对性状,显性基因C控制缺刻叶,基因型cc就是马铃薯叶。
第一部份习题一、细胞学基础1—1.在细胞周期中,先有染色体割裂仍是先有细胞割裂,这有什么意义?1—2.在细胞割裂进程中,什么时期最容易辨别染色体的形态特点?1—3.试述联会在遗传学上的重要意义?1—4.在减数割裂前期I,同源染色体间早就形成了联会复合体而且在整个粗线期都维持着,什么缘故不能说是联会复合体发动了偶线期的同源联会?l一5.互换对一个种来讲可能有什么优越性?也有什么有害性吗?1—6.试区别两条染色单体和两条染色体。
姐妹染色单体在哪一割裂时期形成?在哪一期形态可见?1—7.蚕豆正常体细胞有6对染色体,请写出以下各组织细胞中的染色体数量: (1)根尖; (2)叶; (3)种胚, (4)胚乳; (5)卵细胞; (6)花药壁; (7)反足细胞。
1—8.紫苏(Co1e u s)的体细胞是二倍体,有24条染色体。
指出以下有丝割裂和减数割裂中各割裂相一个细胞中的数据:a.后期染色体的着丝点数。
b.后期Ⅰ染色体的着丝点数。
C.中期Ⅰ的染色单体数。
d.后期的染色单体数。
e.后期的染色体数。
f.中期I的染色体数。
g.紧挨末期I的染色体数。
h.末期II的染色体数。
l一9.玉米的体细胞有20条染色体。
说出下面细胞周期中各时期一个体细胞中的数据:a.前期的着丝点数。
b.前期的染色单体数。
c.G1期的染色单体数。
d.G2期的染色单体数。
I一10.在一个小鼠单倍体核内的DNA数量约为2.5毫微克(2.5×l0-9克)。
以下不同核中DNA含量是多少?a.细胞周期中G l期的体细胞。
b.精子。
c.双线期的低级精母细胞。
d.前期Ⅱ的次级精母细胸。
e.末期Ⅱ的次级精母细胞。
f.处于第一次有丝割裂中期的合子。
1—11.小麦属的一个野生种的二倍体染色体数是14条。
在以下不同细胞中有多少染色单体或染色体?a.幼叶薄壁细胞组织的中期细胞b.花粉管中的营养核。
c.胚囊的中央极核细胞。
d.根尖的末期子细胞。
e.偶线期的小孢子母细胞。
1、在番茄中,圆形(O )对长形(o )是显性,单一花序(S )对复状花序(s )是显性。
这两对基因是连锁的,现有一杂交得到下面4种植株:圆形、单一花序(OS )23 长形、单一花序(oS )83 圆形、复状花序(Os )85 长形、复状花序(os )19 问O —s 间的交换值是多少?解:在这一杂交中,圆形、单一花序(OS )和长形、复状花序(os )为重组型,故O —s 间的交换值为:%20%100198583231923=⨯++++=r2、根据上一题求得的O —S 间的交换值,你预期杂交结果,下一代4种表型的比例如何?O_S_ :O_ss :ooS_ :ooss = 51% :24% :24% :1%, 即4种表型的比例为:圆形、单一花序(51%), 圆形、复状花序(24%), 长形、单一花序(24%), 长形、复状花序(1%)。
3、在家鸡中,白色由于隐性基因c 与o 的两者或任何一个处于纯合态有色要有两个显性基因C 与O 的同时存在,今有下列的交配:♀CCoo 白色 × ♂ccOO 白色↓ 子一代有色子一代用双隐性个体ccoo 测交。
做了很多这样的交配,得到的后代中,有色68只,白色204只。
问o —c 之间有连锁吗?如有连锁,交换值是多少?解:根据题意,上述交配:♀ CCoo 白色 ccOO 白色 ♂↓有色CcOo ccoo 白色 ↓有色C_O_ 白色(O_cc ,ooC_,ccoo )416820468=+ 4368204204=+此为自由组合时双杂合个体之测交分离比。
可见,c —o 间无连锁。
(若有连锁,交换值应为50%,即被测交之F1形成Co :cO :CO :co =1 :1 :1 :1的配子;如果这样,那么c 与o 在连锁图上相距很远,一般依该二基因是不能直接测出重组图距来的)。
4、双杂合体产生的配子比例可以用测交来估算。
现有一交配如下:问:(1)独立分配时,P=?(2)完全连锁时,P=?(3)有一定程度连锁时,p=?解:题目有误,改为:)21( )21(aabbaaBb Aabb AaBb p p p p --(1)独立分配时,P = 1/4;(2)完全连锁时,P = 0;(3)有一定程度连锁时,p = r /2,其中r 为重组值。
第二章孟德尔定律1、2、为什么分离现象比显、隐性现象有更重要的意义?答:因为1、分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;2、只有遗传因子的分离和重组,才能表现出性状的显隐性。
可以说无分离现象的存在,也就无显性现象的发生。
2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何(1)RR×rr(2)Rr×rr(3)Rr×Rr(4)Rr×RR(5)rr×rr明。
问它们产生哪些配子?杂种后代的基因型和表型怎样?(1)Rr×RR(2)rr×Rr(3)Rr×Rr粉红红色白色粉红粉红粉红性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。
问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd (2)XwDd×wwdd(3)Ww dd×wwDd(4)Wwdd×WwDd5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。
现在有下列两种杂交组合,问它们后代的表型如何?(1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr解:杂交组合TTGgRr×ttGgrr:即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。
杂交组合TtGgrr ×ttGgrr:即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8。
6.在番茄中,缺刻叶和马铃薯叶是一对相对性状,显性基因C控制缺刻叶,基因型cc是马铃薯叶。
紫茎和绿茎是另一对相对性状,显性基因A控制紫茎,基因型aa的植株是绿茎。
把紫茎、马铃薯叶的纯合植株与绿茎、缺刻叶的纯合植株杂交,在F2中得到9∶3∶3∶1的分离比。
第二章孟德尔定律1、为什么分离现象比显、隐性现象有更重要的意义?答:因为1、分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;2、只有遗传因子的分离和重组,才能表现出性状的显隐性。
可以说无分离现象的存在,也就无显性现象的发生。
2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何(1)RR×rr(2)Rr×rr(3)Rr×Rr(4)Rr×RR(5)rr×rr3、下面是紫茉莉的几组杂交,基因型和表型已写明。
问它们产生哪些配子?杂种后代的基因型和表型怎样?(1)Rr × RR(2)rr × Rr(3)Rr × Rr 粉红红色白色粉红粉红粉红4、在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。
问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd(2)XwDd×wwdd(3)Wwdd×wwDd(4)Wwdd×WwDd5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。
现在有下列两种杂交组合,问它们后代的表型如何?(1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr解:杂交组合TTGgRr × ttGgrr:即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。
杂交组合TtGgrr ×ttGgrr:即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8。
6.在番茄中,缺刻叶和马铃薯叶是一对相对性状,显性基因C控制缺刻叶,基因型cc是马铃薯叶。
第五章性别决定与伴性遗传1、哺乳动物中,雌雄比例大致接近1∶1,怎样解释?解:以人类为例。
人类男性性染色体XY,女性性染色体为XX。
男性可产生含X和Y 染色体的两类数目相等的配子,而女性只产生一种含X染色体的配子。
精卵配子结合后产生含XY和XX两类比例相同的合子,分别发育成男性和女性。
因此,男女性比近于1 :1。
2、你怎样区别某一性状是常染色体遗传,还是伴性遗传的?用例来说明。
3、在果蝇中,长翅(Vg)对残翅(vg)是显性,这基因在常染色体上;又红眼(W)对白眼(w)是显性,这基因在X染色体上。
果蝇的性决定是XY型,雌蝇是XX,雄蝇是XY,问下列交配所产生的子代,基因型和表型如何?(l)WwVgvg×wvgvg (2)wwVgvg×WVgvg解:上述交配图示如下:即基因型:等比例的WwVgvg,WwVgvg,wwVgvg,wwvgvg,WYVgvg,WYvgvg,wYVgvg,wYvgvg。
表现型:等比例的红长♀,红残♀,白长♀,白残♀,红长♂,红残♂,白长♂,白残♂。
即,基因型:1WwVgVg :2WwVgvg :1Wwvgvg :1wYVgVg :2wYVgvg :1wYvgvg。
表现型:3红长♀:1红残♀:3白长♂:1白残♂。
4、纯种芦花雄鸡和非芦花母鸡交配,得到子一代。
子一代个体互相交配,问子二代的芦花性状与性别的关系如何?解:家鸡性决定为ZW型,伴性基因位于Z染色体上。
于是,上述交配及其子代可图示如下:可见,雄鸡全部为芦花羽,雌鸡1/2芦花羽,1/2非芦花。
5、在鸡中,羽毛的显色需要显性基因C的存在,基因型cc的鸡总是白色。
我们已知道,羽毛的芦花斑纹是由伴性(或Z连锁)显性基因B控制的,而且雌鸡是异配性别。
一只基因型是ccZ b W的白羽母鸡跟一只芦花公鸡交配,子一代都是芦花斑纹,如果这些子代个体相互交配,它们的子裔的表型分离比是怎样的?注:基因型C—Z b Z b和C—Z b W鸡的羽毛是非芦花斑纹。
第七章细菌和噬菌体的重组和连锁1.为什么说细菌和病毒是遗传学研究的好材料?2.大肠杆幽的遗传物质的传递方式与具有典型减数分裂过程的生物有什么不同?3.解释卜列名词:(1)F菌株,F■菌株,Hfr菌株;(2)F因子,F因子,质粒,附加体;(3)溶源性细菌,非溶源性细菌;(4)烈性噬菌体,温和噬菌体,原噬菌体;(5)部分合子(部分二倍体);4.部分合子在细菌的遗传分析中有什么用处?5.什么叫转导、普遍性转导、特异性转导(局限性转导)?6.转导和性转导有何不同?7.一个基因型为a+b+c+d+e+并对链霉素敏感的E.coliHfr菌株与基因型为abc de并对链霉素耐性的F-菌株接合,30分钟后,用链霉素处理,然后从成活的受体中选出&型的原养型,发现它们的其它野生型(+)基因频率如下:a+70%, bJ c+85%, d+l0%o问a, b, c, d 四个基因与供体染色体起点(最先进入F-受体之点)相对位置如何?解:根据中断杂交原理,就一对接合个体而言,某基因自供体进入受体的时间,决定于该基因同原点的距离。
因此,就整个接合群体而论,在特定时间内,重组个体的频率反映着相应基因与原点的距离。
报据题目给定的数据,a、b、c、d与供体染色体的距离应该是:b d aceI i i i i 卜--- ----- --------------------- ----- ----- --- ► O8.为了能在接合后检出重组了,必须要有一个可供选择用的供体标记基因,这样可以认出重组子。
另一方面,在选择至组子的时候,为了不选择供体细胞本身,必须防止供体菌株的继续存在,换句话说,供体菌株也应带有一个特殊的标记,能使它自己不被选择。
例如供体菌. 株是链霉素敏感的,这样当结合体(conjugants)在含有链霉素的培养基上生长时,供体菌株就被杀死了。
现在要问:如果一个Hfr菌株是链霉素敏感的,你认为这个基因应位于染色体的那一端为好,是在起始端还是在末端?解:在起始端9.有一个环境条件能使T偶数噬菌体(T-even phages)吸附到寄主细胞上,这个环境条件就是色氛酸的存在。
遗传学课后习题答案刘祖洞完整版pdf农学院普通遗传学教研组第一章绪论(练习)一、解释下列名词:遗传学,遗传,变异二、什么是遗传学?为什么说遗传学诞生于1900年?三、在达尔文前后有哪些思想与达尔文理论有联系?四、和是生物界最普遍和最基本的两个特征。
五、、和是生物进化和新品种选育的三大因素。
第一章绪论(参考答案)一、遗传学:遗传学是研究生物遗传和变异的科学。
遗传:亲代与子代相似的现象就是遗传。
变异:亲代与子代之间、子代个体之间,总是存在着不同程度的差异二、答:真正系统研究生物的遗传和变异是从孟德尔开始的。
他在前人植物杂交试验的基础上,于1856-1864年从事豌豆杂交试验,进行细致的后代记载和统计分析,1866年发表“植物杂交试验”论文,首次提出分离和独立分配两个遗传基本规律,认为性状遗传是受细胞里的遗传因子控制的。
这一重要理论当时未能受到重视,直到1900年,狄.弗里斯、柴马克和柯伦斯三人同时重新发现孟德尔规律,这时才引起人们的重视,所以说遗传学诞生于1900年。
三、答:达尔文前的拉马克的用进废退学说,达尔文后的魏斯曼的种质连续论等。
四、遗传和变异是生物界最普遍和最基本的两个特征。
五、遗传、变异和选择是生物进化和新品种选育的三大因素。
第二章遗传的细胞学基础(练习)一、解释下列名词:染色体染色单体着丝点细胞周期同源染色体异源染色体无丝分裂有丝分裂单倍体联会胚乳直感果实直感二、植物的10个花粉母细胞可以形成:多少花粉粒?多少精核?多少管核?又10个卵母细胞可以形成:多少胚囊?多少卵细胞?多少极核?多少助细胞?多少反足细胞?三、玉米体细胞里有10对染色体,写出下列各组织的细胞中染色体数目。
四、假定一个杂种细胞里含有3对染色体,其中A、B、C来自父本、A’、B’、C’来自母本。
通过减数分裂能形成几种配子?写出各种配子的染色体组成。
五、有丝分裂和减数分裂在遗传学上各有什么意义?六、有丝分裂和减数分裂有什么不同?用图解表示并加以说明。
刘祖洞《遗传学》参考答案全面版第二章孟德尔定律1、为什么分离现象比显、隐性现象有更重要的意义?答:因为(1)分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;(2)只有遗传因子的分离和重组,才能表现出性状的显隐性。
可以说无分离现象的存在,也就无显性现象的发生。
2、解:序号杂交基因型表现型(1)RR×rr Rr 红果色(2)Rr×rr 1/2Rr,1/2rr 1/2红果色,1/2黄果色(3)Rr×Rr 1/4RR,2/4Rr,1/4rr 3/4红果色,1/4黄果色(4)Rr×RR 1/2RR,1/2Rr 红果色(5)rr×rr rr 黄果色3、下面是紫茉莉的几组杂交,基因型和表型已写明。
问它们产生哪些配子?杂种后代的基因型和表型怎样?(1)Rr × RR(2)rr × Rr(3)Rr × Rr粉红红色白色粉红粉红粉红解:序号杂交配子类型基因型表现型(1)Rr × RR R,r;R 1/2RR,1/2Rr 1/2红色,1/2粉红(2)rr × Rr r;R,r 1/2Rr,1/2rr 1/2粉红,1/2白色(3)Rr × Rr R,r 1/4RR,2/4Rr,1/4rr 1/4红色,2/4粉色,1/4白色4、在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。
问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd(2)XwDd×wwdd(3)Wwdd×wwDd(4)Wwdd×WwDd解:序号杂交基因型表现型1 WWDD×wwdd WwDd 白色、盘状果实2 WwDd×wwdd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状2 wwDd×wwdd 1/2wwDd,1/2wwdd 1/2黄色、盘状,1/2黄色、球状3 Wwdd×wwDd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状4 Wwdd×WwDd 1/8WWDd,1/8WWdd,2/8WwDd,2/8Wwdd,1/8wwDd,1/8wwdd 3/8白色、盘状,3/8白色、球状,1/8黄色、盘状,1/8黄色、球状5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。
第二章孟德尔定律1、欧阳引擎(2021.01.01)2、为什么分离现象比显、隐性现象有更重要的意义?答:因为1、分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;2、只有遗传因子的分离和重组,才能表现出性状的显隐性。
可以说无分离现象的存在,也就无显性现象的发生。
2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何(1)RR×rr (2)Rr×rr(3)Rr×Rr(4)Rr×RR(5)rr×rr3、下面是紫茉莉的几组杂交,基因型和表型已写明。
问它们产生哪些配子?杂种后代的基因型和表型怎样?(1)Rr×RR (2)rr×Rr(3)Rr×Rr粉红红色白色粉红粉红粉红4、在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。
问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd(2)XwDd×wwdd(3)Wwdd×wwDd(4)Wwdd×WwDd序号杂交基因型表现型1 WWDD×wwdd WwDd 白色、盘状果实2 WwDd×wwdd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状2 wwDd×wwdd 1/2wwDd,1/2wwdd 1/2黄色、盘状,1/2黄色、球状3 Wwdd×wwDd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状4 Wwdd×WwDd 1/8WWDd,1/8WWdd,2/8WwDd,2/8Wwdd,1/8wwDd,1/8wwdd 3/8白色、盘状,3/8白色、球状,1/8黄色、盘状,1/8黄色、球状5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。
第十五章遗传和进化1.白花三叶草是自交不亲和的,所以阻止了自花授粉。
白花三叶草的叶子上缺乏条斑是一种隐性纯合状态,VV,大约16%植株有这种表型。
白花三叶草植株中有多少比例对这个隐性等位基因v是杂合的?白花三叶草植株产生的花粉屮,有多少比例带有这个隐性等位基因?解:q = V16% = 0.4 , p = l-q = 0.6隐性等位基因v是杂合的植株的比例为:2pq = 2x0.6x0.4 = 0.4840%的花粉带有这个隐性等位基因。
2.参考上一题目。
假使你把相互交配的白花三叶草群体中,所有非条斑叶的植株都淘汰($ =1 ),那么一代有多少比例的植株将是非条斑叶的?假使你只把非条斑叶的植株淘汰一半(s = 0・50),那么下一代有多少比例将是非条斑叶的?解:p — 0.6, q — 0.4$ = 1时,下一代非条斑叶植株的比例为:(2竺)?X1OO% = 8.16%0.84$ = 0.5时,下一代非条斑叶植株的比例:(°・24 + 0・08 2x100% = 12」%0.923.对个体生存有害的基因会受到自然选择的作用而逐渐淘汰,请问有害的伴性基因和有害的常染色体隐性基因,那一种容易受到自然选择的作用?4.人类中,色盲男人在男人中约占8%,假定色盲是X连锁隐性遗传,问你预期色盲女人在总人口中的比例应为多少?解:(8%)2 =0.64%5.在一个随机交配的群体屮,如AA个体占18%, Aa个体占82%,且假定隐性个体全部淘汰,结果应该如下表所示:交配组合频率下代(频率)AA Aa aaAAxAA(0.18) 2=0.030.03AAxAa 2 (0.18) (0.82) =0.300.150.15AaxAa(0.82) —0.670.170.330」7合计 1.000.350.480」7请你在算一代,证明隐性基因型的频率将从0.17降低到大约0.09o解:AA 个体约占0.354-0.83=41%, Aa 个体约占0.48一0.83 = 59%交配组合频率下代(频率)AA Aa aaAAxAA(0.41) 2=0.170.17AAxAa 2 (0.41) (0.59) =0.480.240.24AaxAa(0.59) 2=0.350.090」70.09合计 1.000.500.410.096.家养动物和栽培植物的遗传变界比相应的野生群体要丰富得多,为什么?请从下列几方面來考虑:① 交配体系,即杂交和自交所占的比例,② 自然选择,③ 突变。
第二章孟德尔定律1、2、为什么分离现象比显、隐性现象有更重要的意义?答:因为1、分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;2、只有遗传因子的分离和重组,才能表现出性状的显隐性。
可以说无分离现象的存在,也就无显性现象的发生。
2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何(1)RR×rr(2)Rr×rr(3)Rr×Rr(4)Rr×RR (5)rr×rr3生哪些配子?杂种后代的基因型和表型怎样?(1)Rr×RR (2)rr×Rr(3)Rr×Rr粉红红色白色粉红粉红粉红4、在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。
问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd(2)XwDd×wwdd(3)Ww dd×wwDd(4)Wwdd×WwDd豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。
现在有下列两种杂交组合,问它们后代的表型如何?(1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr解:杂交组合TTGgRr×ttGgrr:即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。
杂交组合TtGgrr ×ttGgrr:即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8。
6.在番茄中,缺刻叶和马铃薯叶是一对相对性状,显性基因C 控制缺刻叶,基因型cc是马铃薯叶。
紫茎和绿茎是另一对相对性状,显性基因A控制紫茎,基因型aa的植株是绿茎。
把紫茎、马铃薯叶的纯合植株与绿茎、缺刻叶的纯合植株杂交,在F2中得到9∶3∶3∶1的分离比。
第二章孟德尔定律1、为什么分离现象比显、隐性现象有更重要的意义?答:这是因为:(1)性状的分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;(2)只有基因发生分离和重组,才能表现出性状的显隐性。
可以说无分离现象的存在,也就无显性现象的发生。
2、在番茄中,红果色〔R〕对黄果色〔r〕是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何?〔1〕RR×rr〔2〕Rr×rr〔3〕Rr×Rr〔4〕Rr×RR〔5〕rr×rr解:3、下面是紫茉莉的几组杂交,基因型和表型已写明。
问它们产生哪些配子?杂种后代的基因型和表型怎样?〔1〕Rr × RR〔2〕rr × Rr〔3〕Rr × Rr粉红红色白色粉红粉红粉红解:4、在南瓜中,果实的白色〔W〕对黄色〔w〕是显性,果实盘状〔D〕对球状〔d〕是显性,这两对基因是自由组合的。
问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?〔1〕WWDD×wwdd〔2〕XwDd×wwdd〔3〕Wwdd×wwDd〔4〕Wwdd×WwDd解:2 WwDd×wwdd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状2 wwDd×wwdd 1/2wwDd,1/2wwdd 1/2黄色、盘状,1/2黄色、球状3 Wwdd×wwDd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状4 Wwdd×WwDd 1/8WWDd,1/8WWdd,2/8WwDd,2/8Wwdd,1/8wwDd,1/8wwdd 3/8白色、盘状,3/8白色、球状,1/8黄色、盘状,1/8黄色、球状5.在豌豆中,蔓茎〔T〕对矮茎〔t〕是显性,绿豆荚〔G〕对黄豆荚〔g〕是显性,圆种子〔R〕对皱种子〔r〕是显性。
第六章 染色体和连锁群1、在番茄中,圆形(O )对长形(o )是显性,单一花序(S )对复状花序(s )是显性。
这两对基因是连锁的,现有一杂交得到下面4种植株:圆形、单一花序(OS )23 长形、单一花序(oS )83 圆形、复状花序(Os )85 长形、复状花序(os )19 问O —s 间的交换值是多少解:在这一杂交中,圆形、单一花序(OS )和长形、复状花序(os )为重组型,故O —s 间的交换值为:%20%100198583231923=⨯++++=r2、根据上一题求得的O —S 间的交换值,你预期杂交结果,下一代4种表型的比例如何 解:O_S_ :O_ss :ooS_ :ooss = 51% :24% :24% :1%, 即4种表型的比例为:圆形、单一花序(51%), 圆形、复状花序(24%), 长形、单一花序(24%), 长形、复状花序(1%)。
3、在家鸡中,白色由于隐性基因c 与o 的两者或任何一个处于纯合态有色要有两个显性基因C 与O 的同时存在,今有下列的交配:♀CCoo 白色 × ♂ccOO 白色↓ 子一代有色子一代用双隐性个体ccoo 测交。
做了很多这样的交配,得到的后代中,有色68只,白色204只。
问o —c 之间有连锁吗如有连锁,交换值是多少解:根据题意,上述交配:♀ CCoo 白色 ccOO 白色 ♂ ↓有色CcOo ccoo 白色 ↓有色C_O_ 白色(O_cc ,ooC_,ccoo )416820468=+ 4368204204=+此为自由组合时双杂合个体之测交分离比。
可见,c —o 间无连锁。
(若有连锁,交换值应为50%,即被测交之F1形成Co :cO :CO :co =1 :1 :1 :1的配子;如果这样,那么c 与o 在连锁图上相距很远,一般依该二基因是不能直接测出重组图距来的)。
4、双杂合体产生的配子比例可以用测交来估算。
现有一交配如下:问:(1)独立分配时,P=(2)完全连锁时,P=(3)有一定程度连锁时,p=解:题目有误,改为:)21( )21(aabbaaBb Aabb AaBb p p p p --(1)独立分配时,P = 1/4;(2)完全连锁时,P = 0;(3)有一定程度连锁时,p = r /2,其中r 为重组值。
5、在家鸡中,px 和al 是引起阵发性痉挛和白化的伴性隐性基因。
今有一双因子杂种公鸡alPx Alpx 与正常母鸡交配,孵出74只小鸡,其中16只是白化。
假定小鸡没有一只早期死亡,而px 与al 之间的交换值是10%,那么在小鸡4周龄时,显出阵发性痉挛时,(1)在白化小鸡中有多少数目显出这种症状,(2)在非白化小鸡中有多少数目显出这种症状解:上述交配子代小鸡预期频率图示如下:♀W AlPx alPx Al px ♂在雄性小鸡中,由于从正常母鸡得到Px 、A 基因,既不显px ,也不显al ;只有雌性小鸡中有可能显px 或al 性状。
很据上述频率可得:在白化小鸡中显阵发痉挛性状者为:)21( 6.1%1005.25.225.216只-=⎪⎭⎫⎝⎛⨯+⨯在非白化小鸡中显阵发痉挛性状者为:)1817( 4.17%100755.22)1674(只-=⎪⎭⎫⎝⎛⨯⨯-6、因为px 是致死的,所以这基因只能通过公鸡传递。
上题的雄性小鸡既不显示px ,也不显示al ,因为它们从正常母鸡得到Px 、Al 基因。
问多少雄性小鸡只带有px 多少雄性小鸡只带有al解:根据上题的图示可知,有45%的雄性小鸡带有px ,45%的雄性小鸡带有al ,5%的雄性小鸡同时带有px 和al 。
7、在果蝇中,有一品系对三个常染色体隐性基因a 、b 和c 是纯合的,但不一定在同一条染色体上,另一品系对显性野生型等位基因A 、B 、C 是纯合体,把这两品系交配,用F1雌蝇与隐性纯合雄蝇亲本回交,观察到下列结果:表型 数目 a b c 211 ABC 209 a B c 212 AbC 208(1)问这三个基因中哪两个是连锁的 (2)连锁基因间重组值是多少解:(a)、两个杂交亲本的基因型分别为aabbcc 和AABBCC ,F1雌性杂合子的ABC 来自一个亲本,而abc 来自另一个亲本。
在此基础上,观察亲本表型组合是保持(如AB ,ab ),还是改变(Ab ,aB ),对回交(雄蝇亲本是隐性纯合的,所以相当于测交)子代进行分类,看它们对每一对基因分别属于亲本型还是重组型。
A-B 之间的重组值是50%,说明A-B 是自由组合的;B-C 之间的重组值也是50%,说明B-C 之间也是自由组合的;但基因A-C 之间的重组值是0,说明A 和C 是紧密连锁的,所以没有重组发生。
上述实验可图示如下:(b )、0%。
8、在番茄中,基因O (oblate = flattened fruit ),p (peach = hairyfruit )和S (compound inflorescence )是在第二染色体上。
对这三个基因是杂合的F 1,用对这三个基因是纯合的隐性个体进行测交,得到下列结果:(1)这三个基因在第二染色体上的顺序如何 (2)两个纯合亲本的基因型是什么 (3)这些基因间的图距是多少 (4)并发系数是多少解:对这三对基因杂合的个体产生8种类型配子,说明在两个连锁间区各有单交换发生,同时也有双交换出现。
由于每交换只发生在四线体的2条中,所以,互换率<50%,于是,各型配子中,亲本类型最多,++s 和op+一组即是;而双交换是两个单交换同时发生,所以最少,+p+,o+s 一组即是。
在双交换中,只有位于中间的基因互换,所以前两组比较推知基因o 在中间。
于是:三基因的顺序应是pos 。
而二纯合亲本的基因型是: po+/po+和++s /++s 两个间区的重组值是;%21%10010002211096)(=⨯+++=-o p RF%14%1001000226373)(=⨯+++=-s o RF因此,这三个基因的连锁图为:P 21 o 14 s +++%6.13%1001001410021100022=⨯⎪⎭⎫⎝⎛⨯⎪⎭⎫ ⎝⎛+==预期双交换率实测双交换率并发系数9、下面是位于同一条染色体上的三个基因的隐性基因连锁图,并注明了重组频率。
如果并发率是60%,在αβγ/+++×αβγ/αβγ杂交的1000个子代中预期表型频率是多少解:因为%100⨯=理论双交换率实际双交换率并发系数,所以,实际双交换率 = 并发系数 × 理论双交换率。
依此,上述交配的子代顶期频率可图示如下:/+++ / (10%)2(60%)/2 ++ % ++/ ++% + % +/ +(10% %)/2 + % +/ +% ++ % ++/ ++(10% %)/2 + % +/ +% ++ % ++/ ++ % % / % +++/10、如做一个实验,得到重组率为25%,请用Haldane 作图函数,求校正后图距。
如得到的重组率为5%,求校正后的图距。
请根据上面的重组率与校正后图距的关系,讨论在什么情况下要用作图函数校正,并说明为什么 解:)1(212x e R --=公式中R 为重组值,x 为交换值,交换值代表真实图距。
cM 7.34%7.34347.0)25.021ln(211===⨯--=xcM 3.5%3.5053.0)05.021ln(212===⨯--=x由以上计算可以看出,当重组率较大时,必须进行校正;而当重组率较小时,校正后的图距与未经校正的图距相差不大。
11、突变基因a 是杂合的链孢霉所形成的子囊,现把子囊中的孢子排列顺序和各种子囊数目写在第208页下面(见下表),请计算突变基因a 与着丝粒间的图距。
解:分析表列子囊得知:后面4类型子囊是由于突变基因与其等位的野生型基因(+)发生交换,而使它们在减数分裂第二次分裂分离(M 2)。
然而它们属于同一类型,各自子囊孢子的排列顺序不同,是由于着丝粒的不同取向形成的。
因此,突变基因a 与着丝粒间的交换值是:%4%1001232484412322121=⨯⎪⎭⎫ ⎝⎛++++++++=⎪⎭⎫ ⎝⎛全部子囊数交换子囊数 也就是说,突变基因a 与着丝粒间的图距是4个遗传单位。
12、减数分裂过程中包括两次减数分裂,染色体的减数发生在第一次减数分裂的时候。
我们已经知道基因在染色体上,既然染色体在第一次分裂时减数,为什么位于染色体上的基因有时可以在第二次分裂时分离呢提示:参考图6-21。
解:同源染色体的异质等位基因有可能通过非姊妹染色单体的交换而互换位置,是姊妹染色单体异质化。
只有到细胞第二次分裂,姊妹染色单体分离时,这对异质基因才能分离。
13、设第一次交换发生在非姊妹染色单体2—3间,如第二次交换可发生在任意两非姊妹染色单体间,机会相等,请画出四种可能的双交换,并分别写出子囊的基因型。
解:14、根据表6-5的资料,计算重组值,得到·—nic % nic —ade % ·—ade %为什么%+%>%呢因为·—ade 间的重组值低估了。
我们看下表:(见第210页)。
这儿,%95.04000372208202=-+,是低估的重组值。
把这低估的数值加上去,就完全符合了。
202+208≠372请在表中空白处填上数字。
解:下面是(2)~(7)的四分孢子的起源图,各图的右边列出了子囊中孢子对的基因型及其排列方式:根据上面的图式和孢子对的排列顺序,可以得到:(有一个判断基因与着丝点之间有没有发生交换的简单办法:在右边的子囊中,每次只看一个基因位点,从上到下,每两个基因为一组,如果每组内的基因符号相同,则说明该位点与着丝点之间没发生交换;如果每组内的基因符号不相同,则说明该位点与着丝点之间发生了交换。
)子囊型 每一子囊中的重组型染色单体数 子囊数 在所有子囊中的重组型染色单体数 nic -•adenic - ade -•nic -•ade nic -ade -•1 2 3 4 5 6 70 0 0 2 2 2 20 4 2 2 0 4 2 0 0 2 0 2 2 2808 1 90 5 90 1 50 0 0 10 180 2 100 4 180 10 0 4 100 0 180 0 180 2 10202 + 208 37215、你如何辨别果蝇中同一染色体上相距很远的基因和非同源染色体上独立分配的基因解:假设这两个位点分别为A-a ,B-b ,在AB/AB ab/ab 杂交的F1代中选雄性个体与ab/ab 测交,如果测交后代只有两种类型,说明AB 连锁,如果有四种类型,说明为独立分配。
图示如下:(1)连锁:16、雌果蝇X染色体的遗传组成是有一隐性致死基因l位于上面一个X染色体的某处,但不知其确切位置。