第12章《全等三角形》导学案
- 格式:doc
- 大小:1.36 MB
- 文档页数:22
E DCBAN MO 八年级数学上册第十二章全等三角形导学案全等三角形(复习课)备课人:陈军营 审核人:余国霞 张金锋 备课时间:9.17 上课时间:学习目标:1、掌握全等三角形的性质.2、掌握三角形全等的判定方法。
2、熟练运用三角形全等的性质和判定方法解决线段相等及平行、角相等的相关问题。
一、课前知识回顾:1、(1)全等三角形的性质:全等三角形的对应边 、对应角 。
(2)全等三角形的判定(用字母表示):判断三角形全等的方法有: 、 、 、 。
判断直角三角形全等的方法有: 、 、 、 、 。
2、如图,AM=AN , BM=BN 说明△AMB ≌△ANB 的理由。
解:在△AMB 和△ANB 中⎪⎩⎪⎨⎧===)_________(_______)(___________)_______(__公共边已知BN AM ∴ △AMB ≌ ( )3、如图,∠B=∠DEF, BC= EF, 补充条件,使得ΔABC ≌ ΔDEF 。
(1) 若要以“SAS ”为依据,可补充条件 ; (2) 若要以“ASA ”为依据,可补充条件 (3) 若要以“AAS ”为依据,可补充条件 ;(4) 若补充条件AC=DF ,则 ΔABC 与 ΔDEF 一定全等吗?二、自主练习与合作探究:1、如图,线段AB 、CD 相交于O 点,AO=CO ,BO=DO ,试证明:AD=BC 。
2、24. 如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .4.如图,AD 、A ′D ′分别是锐角△ABC 和△A ′B ′C ′中BC 、B ′C ′边上的高,且AB =A ′B ′,AD =A ′D ′,若使△ABC ≌△A ′B ′C ′,请你补充条件________(只需填写一个你认为适当的条件).并证明三、当堂检测:1、如图,D 点在AB 上,E 点在AC 上,且∠B =∠C ,AB = AC,那么△ABE ≌△ACD 吗?为什么?2、如图,∠ACB =∠FDE ,AC =DF ,BD =EC ,请判断AB 与EF 是否平行,并说明理由。
第十二章全等三角形12.1 全等三角形一、课前预习(一)全等形1.定义:能够完全_____的两个图形.2.特点:_____和_____完全相同.二、全等三角形1.定义:能够完全_____的两个三角形.2.对应元素:两个全等的三角形重合在一起有如下对应元素(1)对应顶点:_____的顶点.(2)对应边:_____的边.(3)对应角:_____的角.3.表示方法:(1)表示:△ABC和△DEF全等,记作△ABC___△DEF.(2)注意:记两个三角形全等时,把表示对应顶点的字母写在_____位置上.4.性质:(1)全等三角形的_______相等.(2)全等三角形的_______相等.思维诊断(打“√”或“×”)(1)两个形状相同的图形是全等形.( )(2)比例尺相同的两张中国地图是全等形.( )(3)所有的正方形都是全等形.()(4)全等三角形的面积相等.()(5)两个三角形全等时,两个三角形中最长的边是对应边. ()二、课内探究知识点 1 找全等三角形的对应元素【例1】如图所示,△ABC≌△EDA,∠BAC与∠DEA是对应角,AB与ED是对应边,写出其他对应边及对应角.【解题探究】1.两个三角形全等时,对应角所对的边是对应边,由∠BAC与∠DEA是对应角可得的一组对应边是什么?2.AB与ED是一组对应边,那么另一组对应边是什么?3.根据对应边所对的角是对应角,可知这两个三角形中未知的两组对应角是什么?【互动探究】此题还有另外的方法找对应边和对应角吗?提示:可以根据所给字母的顺序确定对应关系.【总结提升】确定两个全等三角形对应边、对应角的方法(1)确定对应边的“三种方法”①若全等三角形中有公共边,则公共边是对应边.②若已知对应角或对应顶点,则对应角或对应顶点所对的边为对应边.③若已知全等三角形中有最长(或最短)边,则一对最长(或最短)边是对应边.(2)确定对应角的“四种方法”①若全等三角形中有公共角,则公共角为对应角.②若全等三角形中有对顶角,则对顶角为对应角.③若已知全等形的对应顶点,则以对应顶点为顶点的角为对应角.④若已知全等三角形中有最大(或最小)角,则一组最大(或最小)角是对应角.知识点 2 全等三角形性质的应用【例2】如图所示,已知△ABD≌△ACE,AD=6 cm,AC=4 cm,∠ABD=50°,∠E=30°,求BE的长及∠COD的度数.【思路点拨】△ABD≌△ACE→求AE,AB的长→BE的长;根据∠ABD和∠E的大小→∠BOE的大小→∠COD的大小【总结提升】全等三角形性质的两点应用(1)求线段:全等三角形的对应边相等,可以直接确定对应边的数量关系,也可以间接求解相关线段的长度等.(2)求角:全等三角形的对应角相等,可以直接确定对应角的数量关系,也可以间接求解相关角的大小等.三、限时练习1.一个图形经过下列变换得到的图形与原图形不全等的是( )A.平移B.旋转C.翻折D.放大2.下列四个图形中,与图1全等的是( )3.如图所示,△ABC≌△CDA,且AB与CD是对应边,那么下列说法错误的是( )A.∠1与∠2是对应角B.∠B与∠D是对应角C.BC与AC是对应边D.AC与CA是对应边3题4题5题6题4.如图,小强利用全等三角形的知识测量池塘两端M,N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )A.POB.QPC.MOD.MQ5.如图所示,沿直线AC对折,△ABC与△ADC重合,则△ABC≌______,AB的对应边是______,AC的对应边是______,∠B的对应角是______,∠BCA的对应角是______.6.如图,△ABC≌△ADE,写出其对应顶点、对应边、对应角.7.△ABC与△DEF的边长均为整数,且△ABC≌△DEF,若AB=2,BC=4,△DEF的周长为奇数,则DF的取值为( )A.3B.4C.3或5D.3或4或58.如图,△ABC绕点A旋转到△ADE,则下列说法不正确的是( )A. AB与DE是对应边B. △ABC≌△ADEC. ∠BAD=∠CAED. AC=AE9.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是( )A.5B.4C.3D.210.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的F处,如果AD=9 cm,DE=2.4 cm,∠BAF=60°,则AF=________cm,EF=________cm, ∠DAE=________.8题9题10题11题11.如图所示,将△ABC沿直线BC平移到点D,使BC=CD.(1)相等的边有________,相等的角有________.(2)∠ACE=∠E吗?为什么?四、自助练习1.如果∆ABC ≌∆ADC ,AB=AD ,∠B=70°,BC=3cm,那么∠D=____,DC=____cm.2.如果 ∆ABC ≌∆DEF,且∆ABC 的周长为100 cm,A,B 分别与D,E 对应, AB=30 cm,DF=25 cm,则BC 的长为( )A.45 cmB.55 cmC.30 cmD. 25 cm3.如图,矩形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,如果 AD=7cm,DM=5cm,则AN=___cm,NM=___cm.4.如图所示,已知△ABD ≌△ACE ,AD=6 cm ,AC=4 cm ,∠ABD=50°, ∠E=30°,求BE 的长及∠COD 的度数.5.如图,△ABD ≌△EBC ,AB=2 cm,BC=5 cm,求DE 的长.6、【想一想错在哪?】如图,△ABC ≌△DEF ,则此图中相等的线段有( ) A.1对 B.2对 C.3对 D.4对M DNBC12.2 三角形全等的判定第1课时 SSS一、课前预习1.判定三角形全等的方法: 已知:△ABC.画△A ′B ′C ′,使A ′B ′=AB,B ′C ′=BC,A ′C ′=AC. 请同学们参照下面的步骤画△A ′B ′C ′. (1)画B ′C ′=___.(2)分别以B ′,C ′为圆心,线段___,___长为半径画弧, 两弧相交于点A ′.(3)连接线段_______,_______,得△A ′B ′C ′. 请同学们把画得的△A ′B ′C ′剪下来,放到△ABC 上, 观察可发现△A ′B ′C ′与△ABC_________,即 △A ′B ′C ′___△ABC.【归纳】(1)判定方法: 分别相等的两个三角形全等. (简写成_______或____)(2)应用格式:在△ABC 和△A ′B ′C ′中,∴△ABC ≌△A ′B ′C ′(____).2.用直尺和圆规作一个角等于已知角的依据是 .(打“√”或“×”)(1)当两个三角形的三边和三角中有两个条件分别相等时,这两个三角形不一定全等.( ) (2)当两个三角形的三边和三角中有三个条件分别相等时,这两个三角形可能全等.( ) (3)当一个三角形的三边确定时,这个三角形的形状就确定了. ( ) (4)两个三角形中,只要三条边分别相等,这两个三角形就一定全等.( )AB A B ,BC B C ,AC A C ,=''⎧⎪=''⎨⎪=''⎩∵二、课内探究知识点1 应用“SSS”证明两个三角形全等【例1】如图,点B,C,D,F在同一直线上,已知AB=EC, AD=EF,BC=DF,探索AB与EC的位置关系,并说明理由.【思路点拨】先判定AB与EC的位置关系,由BC=DF先证出BD=CF,再由SSS证出△ABD与△ECF全等,得出∠B=∠ECF,从而得出答案.【总结提升】证明三角形全等的步骤及寻找边相等的方法(1)证明三角形全等的“四个步骤”①准备条件:未知的条件要先证明(公共边相等可以直接应用,不必推理说明).②写出在哪两个三角形中.③列出三个条件用大括号括起来.④写出全等结论.(2)寻找边相等的“三种方法”①图形中的隐含条件,如公共边.②利用线段中点的定义说明边相等.③多条线段共线时,利用线段的和(差)关系证明边相等.知识点2 “SSS”的实际应用【例2】如图是工人师傅自己设计的测量垂直的仪器.仪器中的AB=AC,D是BC的中点,让BC平行于地面,当铅锤经过D点时,工人师傅就断定AD垂直于地面.工人师傅的判断有道理吗?你能说明理由吗?【思路点拨】证△ABD≌△ACD→∠ADB=∠ADC→∠ADB=90°→AD⊥BC→BC∥地面→结论【总结提升】利用“SSS”解决实际问题“三步法”(1)建模:把实际问题转化为数学问题,构造两个三角形.(2)证明:利用“SSS”证明两个三角形全等.(3)应用:应用全等三角形的性质说明线段或角的大小关系.三、限时训练1.下列说法中正确的个数为( )①周长相等的两个三角形全等②周长相等的两个等腰三角形全等③周长相等的两个等边三角形全等④有三条边分别相等的两个三角形全等A.1B.2C.3D.42.如图,已知AB=AC,BD=DC,那么下列结论中不正确的是( )A.△ABD≌△ACDB.∠ADB=90°C.∠BAD是∠B的一半D.AD平分∠BAC3.如图,在△ABC中,AB=AC,EB=EC,则由“SSS”可以判定( )A.△ABD≌△ACDB.△ABE≌△ACEC.△BDE≌△CDED.以上答案都不对2题3题4题5题4.如图,若AB=AC,AD=AE,则需要______条件就可根据“SSS”判断△ABE≌△ACD.5.如图,AC=DF,BC=EF,AD=BE,∠BAC=72°,∠F=32°,则∠ABC=__________.6.如图,已知AB=DC,DB=AC,(1)求证:∠ABD=∠DCA.(注:证明过程要求给出每一步结论成立的依据.)(2)在(1)的证明过程中,需要作辅助线,它的目的是什么?7为稳固电线杆,从A处拉了两根等长的铁丝AC,AD,且C,D到杆脚B的距离相等,则有( )A.∠1>∠2B.∠1<∠2C.∠1=∠2D.∠1与∠2大小不能确定8.小明用四根竹棒扎成如图所示的风筝框架,已知AB=CD,AD=CB,下列判断不正确的是( )A.∠A=∠CB.∠ABC=∠CDAC.∠ABD=∠CDBD.∠ABD=∠C9.长为3 cm,4 cm,6 cm,8 cm的木条各两根,小明与小刚分别取了3 cm和4 cm的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为( )A.一个人取6 cm的木条,一个人取8 cm的木条B.两人都取6 cm的木条C.两人都取8 cm的木条D. B,C中的两种取法都可以10.如图为一三角形钢架(AB=AC),为使钢架更坚固,需在点A和BC间做一个支架,且使AD⊥BC于D,但只有一把可测长度的皮尺,应如何确定点D的位置.7题8题10题四、自助练习1、如图,D ,F 是线段BC 上的两点,AB=EC ,AF=ED ,要使△ABF ≌△ECD, 还需要条件2、如图,在四边形ABCD 中AB=CD ,则∠A=∠C ,请说明理由。
12.1全等三角形班级 小组 姓名 【学习目标】1.知道什么是全等形、全等三角形及全等三角形的对应元素;2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;3.能熟练找出两个全等三角形的对应角、对应边. 【重点难点】全等三角形的性质;找全等三角形的对应边、对应角.预习案【预习导学】预习课本第31-32页的内容,并完成下列问题:1.能够完全重合的两个图形叫做___________ .2.能够完全重合的两个三角形叫做____________,重合的顶点叫做 , 重合的边叫做___________,重合的角叫做_________,全等用符号_____表示,读作___________.3.如图所示,△ABC ≌△DEF.对应顶点有: ;对应角有: ;对应边有: .4.全等三角形的性质: .探究案探究一:图形的平移、翻折、旋转 如图甲:将△ABC 沿直线BC 平移得△DEF ;如图乙:将△ABC 沿BC 翻折180°得到△DBC ; 如图丙:将△ABC 旋转180°得△AED .甲DCABFE 乙DCAB丙DCABE上述各图中的两个三角形全等吗?得出: ≌△DEF ,△ABC ≌ ,△ABC ≌ .你能得到什么结论: 探究二 : 找对应顶点、对应边、对应角如图,△ABC ≌△CDA ,指出它们的对应顶点、对应边、对应角,并思考在书写两个三角形全等时,应该注意什么问题?探究三:全等三角形的性质的应用 1.如图,△ABC ≌△CDA,求证:AB ∥CD.ABC DEFABCDE2.如图,△ABC ≌△DEC,∠B=∠FCB.求证:ED ∥CF.训练案1.如图,已知△ABE ≌△ACD ,指出它们的对应边和对应角.2.已知如图△ABC ≌△ADE ,试找出对应边、对应角.3.如图所示,若△OAD ≌△OBC,∠O=65°,∠C=20°,则∠OAD= .4.如图,若△ABC ≌△DEF ,回答下列问题:⑴若△ABC 的周长为17 cm ,BC=6 cm ,DE=5 cm ,则DF = cm ; ⑵若∠A =50°,∠E=75°,则∠B= .5.如图,△ABN ≌△ACM.⑴写出它们的对应边和对应角; ⑵求证:BM=CN.DC ABEONMCBAF EDCB A ECADBOC 'B 'A 'CBA12.2 .1三角形全等的判定(SSS)班级 小组 姓名 【学习目标】1能自己试验探索出判定三角形全等的SSS 判定定理. 2.会应用判定定理SSS 进行简单的推理判定两个三角形全等. 【重点难点】三角形全等的条件;寻求三角形全等的条件.预习案【旧知回顾】1.什么是全等三角形?全等三角形有些什么性质?2.如图,ABC ∆≌C B A '''∆那么相等的边是: ; 相等的角是: . 【预习导学】预习课本第35-36页的内容,并完成下列问题:任意画出一个ABC ∆,再画一个C B A '''∆,使ABC ∆与C B A '''∆满足三边相等、三角相等六个条件中的一个.⑴一边或一角对应相等的两个三角形全等吗? 请画图说明.⑵两边或两角对应相等的两个三角形全等吗? 请画图说明⑶一角一边对应相等的两个三角形全等吗? 请画图说明探究案通过预习我们研究了满足全等三角形中的一个或两个条件的情况,现在我们探究满足全等三角形中三个条件(三边对应相等)的情况: 探究:三角形全等的判定方法1已知△ABC ,再画一个△C B A ''',使AB B A ='',BC C B ='',AC C A ='',比较这两个三角形,看它们是否全等?由此你能够得到什么结论?判定方法1: . 简写成: 或 . 用数学语言表述: 在△ABC 和中△C B A ''',∵⎪⎩⎪⎨⎧===AC BC AB ∴△ABC ≌ ( )练习:如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架. 求证:△ABD ≌△ACD .探究二:用尺规作图作一个角等于已知角. 已知:∠AOB. 求作:∠DEF,使∠DEF=∠AOB训练案1.下列说法中,错误的有( )个 ⑴周长相等的两个三角形全等. ⑵周长相等的两个等边三角形全等. ⑶有三个角对应相等的两个三角形全等. ⑷有三边对应相等的两个三角形全等A.1B.2C.3D.42.如图,OA=OB ,AC=BC.求证:△AOC ≌△BOC.3.已知:如图,AD=BC,AC=BD. 求证:∠OCD=∠ODC.4.如图,AB=AE ,AC=AD ,BD=CE ,求证:△ABC ≌△ADE.D CBACOAB AO B12.2.2三角形全等的判定(SAS)班级 小组 姓名 【学习目标】1能自己试验探索出判定三角形全等的SAS 判定定理. 2.会应用判定定理SAS 进行简单的推理判定两个三角形全等. 【重点难点】三角形全等的条件;寻求三角形全等的条件.预习案【旧知回顾】全等三角形的判定方法1: . 【预习导学】预习课本第37-39页的内容,并完成下列问题:任意画出一个ABC ∆,再画一个C B A '''∆,使ABC ∆与C B A '''∆满足两边和一角对应相等.⑴两边和其中一边的对角分别相等的两个三角形全等吗? 请画图说明.⑵两边和它们的夹角分别相等的两个三角形全等吗? 请画图说明.探究案探究:三角形全等的判定方法2已知△ABC ,再画一个△C B A ''',使AB B A ='',AC C A ='',A A ∠='∠,比较这两个三角形,看它们是否全等?由此你能够得到什么结论?判定方法2: . 简写成: 或 . 用数学语言表述: 在△ABC 和中△C B A ''',∵⎪⎩⎪⎨⎧==∠=AC A AB ∴△ABC ≌ ( )练习:如图,AC 和BD 相较于点O,OA=OC,OB=OD.求证:AB=CD.训练案1.如图,AC 和BD 相较于点O,OA=OC,OB=OD.求证:AB ∥CD.2.如图,AB=AC,AD=AE.求证:∠B=∠C.3.如图,BE=CF ,AB=DC ,∠B=∠C ,求证:∠A=∠D.4.如图,CD =CA ,∠1=∠2,EC =BC.求证:DE =AB.EABCD12DCABE12.2.3三角形全等的判定(ASA)班级 小组 姓名 【学习目标】1能自己试验探索出判定三角形全等的ASA 判定定理. 2.会应用判定定理ASA 进行简单的推理判定两个三角形全等. 【重点难点】三角形全等的条件;寻求三角形全等的条件.预习案【旧知回顾】全等三角形的判定方法1: . 全等三角形的判定方法2: . 【预习导学】预习课本第39-340页的内容,并完成下列问题:1.任意画出一个ABC ∆,再画一个C B A '''∆,使ABC ∆与C B A '''∆满足两角和它们的夹边分别相等,这两个三角形全等吗? 请画图说明.2.满足下列哪种条件时,就能判定△ABC ≌△DEF 的是( ) A.∠A =∠E,BC=EF, ∠D =∠C; B.AB=DE,BC=EF, ∠C =∠F C.∠A =∠D,AB=DE, ∠B =∠E; D.∠A =∠D,∠B =∠E, AC=EF探究案探究:三角形全等的判定方法3已知△ABC ,再画一个△C B A ''',使AB B A ='',A A ∠='∠,B B ∠='∠,比较这两个三角形,看它们是否全等?由此你能够得到什么结论?判定方法3: . 简写成: 或 . 用数学语言表述: 在△ABC 和中△C B A ''',∵⎪⎩⎪⎨⎧=∠==∠B AB A ∴△ABC ≌ ( )练习:如图, AB=AC ,∠B=∠C .求证:AD=AE.D CABE训练案1.如图,AB⊥BD,ED⊥BD,BC=CE,求证:AB=DE.2.如图,∠1=∠2,∠3=∠4,求证:AC=AD.3.如图,已知AF=CD,AB∥DE,EF∥BC,求证:AB=DE.4.如图,AB∥DC,AE⊥BD,CF⊥BD,BF=DE,求证:AE=CF.ABC DEF12AB CDEFAB CDEC 'B 'A 'C B A 12.2.4三角形全等的判定(AAS)班级 小组 姓名 【学习目标】1能自己试验探索出判定三角形全等的AAS 判定定理. 2.会应用判定定理AAS 进行简单的推理判定两个三角形全等. 【重点难点】三角形全等的条件;寻求三角形全等的条件.预习案【旧知回顾】全等三角形的判定方法1: . 全等三角形的判定方法2: . 全等三角形的判定方法3: . 【预习导学】预习课本第39-340页的内容,并完成下列问题:1.任意画出一个ABC ∆,再画一个C B A '''∆,使ABC ∆与C B A '''∆满足两角和其中一个角对边分别相等,这两个三角形全等吗? 请画图说明.2.满足下列哪种条件时,就能判定△ABC ≌△DEF 的是( ) A.AB=DE,BC=EF, ∠A =∠E; B.AB=DE,BC=EF, ∠C =∠F C.∠A =∠E,AB=EF, ∠B =∠D; D.∠A =∠D,∠B =∠E, AC=DF探究案探究:三角形全等的判定方法4如图,在△ABC 和△C B A '''中,A A '∠=∠,B B '∠=∠,C B BC ''=,求证:△ABC ≌△C B A '''.判定方法4: . 简写成: 或 . 用数学语言表述: 在△ABC 和中△C B A ''',∵⎪⎩⎪⎨⎧==∠=∠AB A C ∴△ABC ≌ ( )练习:如图, AD=AE ,∠B=∠C .求证:AB=AC.D CABE训练案1.如图,已知BC=EF ,AB ∥DE ,∠B=∠E ,求证:AB=DE.2.如图,AE ⊥BE ,AD ⊥DC ,CD =BE ,∠DAB=∠EAC .求证:AB =AC3.如图,E ,F 在线段AC 上,AD ∥CB ,AE = CF .若∠B =∠D ,求证:DF =BE .4.如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE. 求证:△ACD ≌△CBE.ABCD E A B CD EFABCDEABCDEF12.2.5直角三角形全等的判定(HL)班级 小组 姓名【学习目标】1.理解并掌握直角三角形全等的判定方法(HL );2.学会利用直角三角形全等的判定方法(HL )解决问题. 【重点难点】直角三角形全等的判定方法(HL );灵活运用直角三角形全等的判定方法(HL )解决问题.预习案【旧知回顾】1.判定两个三角形全等的方法: 、 、 、 .2.如图,Rt △ABC 中,直角边是 、 ,斜边是 .3.如图,AB ⊥BE 于B ,DE ⊥BE 于E ,下列情况下,△ABC 与△DEF 全等吗? ①若∠A=∠D ,AB=DE : . ②若∠A=∠D ,BC=EF : . ③若AB=DE ,BC=EF : . ④若AB=DE ,BC=EF ,AC=DF : .【预习导学】预习课本第39-41页的内容,并完成下列问题:任意画出一个Rt ABC ∆,再画一个Rt C B A '''∆,使Rt ABC ∆与Rt C B A '''∆满足斜边和直角边对应相等,这两个直角三角形全等吗? 请画图说明.探究案探究:直角三角形全等的判定方法已知Rt △ABC 中,∠C=90°,再画一个Rt △C B A ''',使∠C '=90°,BC C B ='',AB B A ='',比较这两个直角三角形,看它们是否全等?由此你能得到什么结论?直角三角形的判定方法: . 简写成: 或 . 用数学语言表述:在Rt △ABC 和Rt △C B A '''中, ∵⎩⎨⎧==BC AB ∴Rt △ABC ≌ ( )练习:如图,AB =CD ,AE ⊥BC ,DF ⊥BC ,垂足分别为E ,F ,CE =BF . 求证:AE =DF .训练案1.如图,△ABC 中,AB=AC ,AD 是高,求证:D 是BC 的中点.2.如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?3.如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,BE =CF. 求证:AD 是△ABC 的角平分线.5.如图,DE ⊥AC 于E 点,BF ⊥AC 于F 点,若AB=CD,AF=CE,BD 交AC 于M 点. 求证:MB=MD,ME=MFA B C DEF12.2三角形全等的判定复习班级 小组 姓名 【学习目标】1.进一步理解巩固三角形全等的判定方法;2.学会灵活选择三角形全等的判定方法解决问题. 【重点难点】三角形全等的判定方法;灵活选择三角形全等的判定方法解决问题. 【学前准备】1.全等三角形有哪些性质?2.判断全等三角形的方法有哪些?【典型例题】例1:如图,AC=BD ,AB=DC ,求证:∠B=∠C.例2:如图,AB=AD ,CD=CB ,∠A+∠C=180°,试探索CB 与AB 的位置关系.例3:如图,CE ⊥AB 于E ,BD ⊥AC 于D ,BD 、CE 交于点O ,且OD=OE ,求证:AB=AC.例4:已知AB 是等腰直角三角形ABC 的斜边,AD 是∠BAC 的角平分线, 求证:AC+CD=AB.DCBADCB AEODCBAECBDA例5:如图,AD 是△ABC 的高,∠B=2∠C ,求证:CD=AB+BD.例6:在△ABC 中,AB=AC ,在AB 上取一点D ,在AC 的延长线上取一点E ,使BD=CE ,连结DE 交BC 于F ,求证:DF=EF.例7:如图,OA=OB ,C 、D 分别是OA ,OB 上两点,且OC=OD ,连结AD 、BC 交于E , 求证:OE 平分∠AOB.例8:如图,在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D , BE ⊥MN 于E ,求证:DE=AD-BE.ACBD FEDCBAEDCBAON M EDCBA12.3角的平分线的性质(1)班级小组姓名【学习目标】1.经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理;2.能运用角的平分线性质定理解决简单的几何问题.【重点难点】掌握角的平分线的性质定理;角平分线定理的应用.预习案【旧知回顾】1.请说出三角形的判定方法:2.直角三角形有哪些判定方法:【预习导学】认真阅读课本P48-49,完成下列问题:1.怎样画一个角的平分线?画出图形,并写出做法.2.OC是∠AOB的平分线,点P是射线OC上的任意一点,操作测量:取点P的三个不同的位置,分别过点P作PD⊥OA,PE ⊥OB,点D、E 为垂足,测量PD、PE的长.将三次数据填入下表:观察测量结果,猜想线段PD与PE的大小关系,写出结论 .PD PE第一次第二次第三次探究案探究一:角平分线的性质求证:角平分线上的点到角的两边的距离相等.(提示:先画出图形,写出已知和求证,然后在证明.)小结:证明一个几何命题的步骤有那些?探究二:如图所示OC 是∠AOB 的平分线,P 是OC 上任意一点, 问PE=PD? 为什么?小结:在应用角平分线定理时应注意哪些问题:训练案1.在Rt △ABC 中,BD 平分∠ABC , DE ⊥AB 于E ,则 ⑴图中相等的线段有哪些?相等的角呢? ⑵哪条线段与DE 相等?为什么?⑶若AB =10,BC =8,AC =6,求BE ,AE 的长和△AED 的周长.2.如图:在△ABC 中,∠C=90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD=DF,求证:CF=EB3.如图,在△ABC 中,AC ⊥BC ,AD 平分∠BAC ,DE ⊥AB ,AB =7㎝,AC =3㎝, 求BE 的长OA BED C PED CBA EDCBA12.3角的平分线的性质(2)班级小组姓名【学习目标】1.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.2.能应用这两个性质解决一些简单的实际问题.3.激情参与,享受成功.【重点难点】角平分线的性质及其应用;灵活应用两个性质解决问题.预习案【旧知回顾】1.请写出角平分线定理:2.证明一个几何命题的步骤有那些?【预习导学】认真阅读课本P48-49,完成下列问题:1.画出三角形三个内角的平分线你发现了什么特点吗?探究案探究一:求证:到角的两边的距离相等的点在角的平分线上(提示:先画图,并写出已知、求证,再加以证明)探究二:如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等.PNMCBA探究三:如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于点O,OB=OC,训练案1.如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC,求证:∠A+∠C=180°ADCB第十二章全等三角形检测题班级小组姓名一.选择题(每小题3分,共30分)1.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.5D.2.52.如图,在△ABC中,AB=AC,∠BAD=∠CAD,则下列结论.①△ABD≌△ACD,②∠B=∠C,③BD=CD,④AD⊥BC.其中正确的个数有()A.1个B.2个C.3个D.4个3.如图,AB=AD,AE平分∠BAD,则图中有()对全等三角形。
最新精品部编版人教初中八年级数学上册第十二章全等三角形优秀学案(全章完整版)B AC 前言:该学案由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的学案是高效课堂的前提和保障。
(最新精品学案)12.1 全等三角形一.学习目的1.掌握全等三角形的性质。
2.在学习过程中培养学生的观察力和归纳能力。
3.增强学生的数学学习兴趣。
二.学习重难点全等三角形的性质及对应边和对应角的认识。
第一课时 全等三角形的性质(一)构建新知1.阅读教材31~32页(1)观察比较图(1)和图(2)①发现这两个图形_________和____________形同。
②__________和______________相等。
(2)△ABC________△EDF 。
(3)右图,在△ABC 和△EFD 中,①AB 的对应边______,BC 的对应边______, CA 的对应边______; ②∠A 的对应角______,∠B 的对应角______, ∠C 的对应角______; ③E 的对应点______,D 的对应点______, F 的对应点______;(二)合作学习1.如图,在四边形A BCD 中,若△ABC ≌△CDA 。
(1)点A 的对应点是________,点B 的对应点是________,点C 的对应点是________。
(2)AB 的对应边是__________,AC 的对应边是__________,AD 的对应边是__________。
(3)∠DAC 的对应角是_________,∠ADC 的对应角是_________, ∠ACD 的对应角是_________。
(三)课堂检查1. 如图,△ABD ≌△CBD ,若∠A=80°,∠ABC=70°,则∠ADC 的度数为________。
2. 如图,△ACB ≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为________。
《全等三角形》复习学案复习目标1. 全等三角形的概念和性质。
2.掌握全等三角形的判定条件 ,并能进行简单的证明和计算。
3.掌握角平分线的性质及判定,并能灵活应用。
题组练习一(问题习题化)1.(2013•柳州)如图,△ABC ≌△DEF ,请根据图中提供的信息,写出x =4.(2013•铁岭)如图,在△ABC 和△DEC 中,已知AB =DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC =EC ,∠B =∠E B .BC =EC ,AC =DC C .BC =DC ,∠A =∠D D .∠B =∠E ,∠A =∠D 3.(2013•巴中)如图,已知点B 、C 、F 、E 在同一直线上,∠1=∠2,BC =EF ,要使△ABC ≌△DEF ,还需添加一个条件,这个条件可以是2.如图,在ABC △中,90C ∠=,AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点到直线AB 的距离是 cm .梳理知识点:。
一、全等图形的定义和性质 1.概念能够 的两个图形叫做全等图形. 能够 的两个三角形叫做全等三角形. 2.性质全等图形的__________、__________相等. 二、全等三角形的性质与判定 1.全等三角形的性质全等三角形的__________、__________分别相等. 2.全等三角形的判定(1)有三边对应相等的两个三角形全等,简记为( );(2)有两边和它们的夹角对应相等的两个三角形全等,简记为( ); (3)有两角和它们的夹边对应相等的两个三角形全等,简记为( ); (4)有两角和其中一角的对边对应相等的两个三角形全等,简记为( ); (5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为( ).三、角平分线的性质与判定1.角平分线的性质:__________角平分线的判定:__________B题组练习二(知识网络化)7.(2013•舟山)如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A =∠D ,AB =DC .(1)求证:△ABE ≌△DCE ; (2)当∠AEB =50°,求∠EBC 的度数?6.如图,CD ⊥AB ,BE ⊥AC ,OB =OC.求证:∠1=∠2.5.如图,AB =DE ,AC =DF ,BE =CF.求证:AB ∥DE.题组练习三(选做题)如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE. 求证:△ACD ≌△CBE.21E D C BAOABCDE FABCDE。
第十二章全等三角形《12.1 全等三角形》导学案 N0.1一、学习目标1.了解全等形及全等三角形的概念.2.理解全等三角形的性质.二、教学重、难点1.重点:探究全等三角形的性质.2.难点:掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个全等三角形的对应元素.三、自主学习1.自学课本P31-32页“探究、思考1、思考2”,理解“全等形”“全等三角形”的概念及其对应元素,掌握全等三角形的性质及应用,完成填空:(1)形状、大小相同的图形放在一起能够完全重合,_________的两个图形叫做全等形._________的两个三角形叫做全等三角形.(2)全等三角形的_________相等,全等三角形的_________相等.四、合作探究知识点一:全等三角形的概念观察△ABC与△A′B′C′重合的情况.总结:对应顶点、对应角、对应边.全等的符号:“≌”,读作:“全等于”.如:△ABC≌△A′B′C′.归纳:能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形.知识点二:全等三角形的性质把△ABC沿直线BC平移、翻折,绕定点旋转,观察图形的大小形状是否变化.结论:平移、翻折、旋转只能改变图形的位置,而不能改变图形的大小和形状.归纳:全等三角形的性质:全等三角形的对应边、对应角、周长分别对应相等。
找对应元素的常用方法有两种:(一)从运动角度看1.翻折法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.2.旋转法:三角形绕某一点旋转一定角度能与另一个三角形重合,从而发现对应元素.3.平移法:沿某一方向平移使两个三角形重合来找对应元素.(二)根据位置元素来推理1.全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.练习:1.下列图形中的全等图形是______.d与g,e与h.2.课本P32. 1. 2.知识点三:全等三角形的性质的应用例1.如图,△ADE≌△BCF,AD=6 cm,CD=5 cm,求BD的长.解:∵△ADE≌△BCF,∴AD=BC.∵AD=6 cm,∴BC=6 cm.又∵CD=5 cm,∴BD=BC-CD=6-5=1(cm).五、课堂总结:1.全等三角形的概念;2.全等三角形的性质及其应用。
新人教版八年级数学上册第十二章全等三角形导教案一、本章地位中学阶段要点研究的两个平面图形间的关系是全等和相像,本章以三角形为例研究全等.对全等三角形研究的问题和研究方法将为后边相像的学习供给思路,并且全等是一种特别的相像,全等三角形的内容是学生学习相像三角形的重要基础.本章还借助全等三角形进一步培育学生的推理论证能力,主要包含用剖析法剖析条件与结论的关系,用综合法书写证明格式,以及掌握证明几何命题的一般过程.因为利用全等三角形能够证明线段、角等基本几何元素相等,因此本章的内容也是后边将学习的等腰三角形、四边形、圆等内容的基础.二、课程学习目标(1)理解全等三角形的观点,能辨别全等三角形中的对应边、对应角,掌握并能运用全等三角形的性质.(2)经历研究三角形全等条件的过程,掌握判断三角形全等的基本领实(“边边边”“边角边”和“角边角” )和定理(“角角边”),能判断两个三角形全等.(3)能利用三角形全等证明一些结论.(4)研究并证明角均分线的性质定理,能运用角的均分线的性质.三、本章知识构造图四、课时安排:共安排11 课时(仅供参照)12. 1全等三角形 1 课时12. 2三角形全等的判断 6 课时12. 3角的均分线的性质 2 课时数学活动小结 2 课时五、教课建议1.用研究几何图形的基本思想和方法贯串本章的教课学生在前面的几何学习中研究了订交线与平行线、三角形等几何图形,关于研究几何图形的基本问题、思路和方法形成了必定的认识,本章在教课中要充足利用学生已有的研究几何图形的思想方法,用几何思想贯串全章的教课.2.让学生充足经历研究过程本章在编排判断三角形全等的内容时建立了一个完好的研究活动,包含研究的目标、研究的思路和分阶段的研究活动.教课中能够让学生充足经历这个研究过程,在明确研究目标、形成研究思路的前提下,按计划逐渐研究两个三角形全等的条件.本章在编排中将绘图与研究三角形的全等条件联合起来,既实用尺规画一个三角形与已知三角形全等,又实用技术手段依据已知数据画三角形.教课中要充足利用研究绘图方法的过程对形成结论的价值,让学生自主研究绘图的步骤、创建多种画法、解说作图依照等,在活动中发现结论.3.重视对学生推理论证能力的培育本章是初中阶段培育逻辑推理能力的重要内容,主要包含证明两个三角形全等,经过证明三角形全等进而证明两条线段或两个角相等.教课中要在学生已有推理论证经验的基础上,利用三角形全等的证明,进一步培育学生推理论证的能力.依照整套教科书对推理能力培育的顺序渐进的目标,本章的教课要点是指引学生剖析条件与结论的关系,书写谨慎的证明格式,关于以文字形式给出的几何命题,从详细问题的证明中总结出证明的一般步骤.六、详细内容12.1 全等三角形【教课要点】1.理解全等三角形的观点;2.能辨别全等三角形中的对应边、对应角;3.初步掌握并能运用全等三角形的性质.【教课难点】在全等三角形中正确地找出对应边、对应角.第一课时:全等三角形【参照例题】1.下边是两个全等的三角形,按以下图形的地点摆放,指出它们的对应极点、对应边、对应角.ADB C AA C CoOOB EC FDA D BDBDAAC CCD DDCDC CBD B AAD BBABB2.如图 1,△ADC≌△ AEB,A43 , B30,求ADC的大小.3.如图 2,△ EFG ≌△ NMH ,∠ F 和∠ M 是对应角,在△EFG 中, FG 是最长边,在△NMH 中,MH 是最长边, EF=2.1 ㎝, EH =1.1 ㎝, HN =3.3 ㎝.求线段MN 及线段 HG 的长度.4.如图 3,把△ ABC 绕点 C 顺时针旋转35 度,获得△ A ′ ′′ ′交 AC 于点 D,已知B C,A B∠ A′ DC=90 °,则∠ A=.ADEB C图 1图 2图 3练习 :1.全等用符号表示,读作:.2.若△ ABC≌△ DEF ,则∠ B=,∠ BAC=, BC=, AC=.3.判断题1)全等三角形的对应边相等,对应角相等.()2)全等三角形的周长相等.()3)全等三角形的面积不相等.()4.找一找ADA DC E DOBB CA CB①若△ AOC≌△ BOD , AC=_______ ∠A= ______② ②若△ ABD ≌△ ACE , BD=∠ BDA=③若△ ABC≌△ CDA, AB =∠ BAC=_____5.拼一拼请你利用两个全等三角形画出有公共极点或公共边或公共角的图形.有公共边:有公共点:6.如图,小强利用全等三角形的知识丈量池塘两头M、 N 的距离,假如△PQO ≌△ NMO ,则只要测出其长度的线段是A.PO B. PQ C.MO D.MQ7.如图,长方形 ABCD 沿 AM 折叠,使 D 点落在 BC 上的 N 点处,AD =7cm,DM =5cm,∠ DAM =39°,则△ ABC≌△ EFD AN =___cm, NM =___cm,∠ NAB=___.8.△ ABC≌△ FED(1)写出图中相等的线段,相等的角;(2)图中线段除相等外,还有什么关系吗.A D AD B CEMFB N C12. 2 三角形全等的判断【教课要点】1.研究判断三角形全等的条件;2.利用三角形全等进行简单的证明.【教课难点】利用三角形全等的判断方法进行推理论证.第二课时:三角形全等的判断SSS(一 ) 【参照例题】1.如图, AB= AC,BD =CD ,BH= CH ,图中有几组全等的三角形.它们全等的条件是什么.2.如图,已知 AB=CD, BC=DA.你能说明△ ABC 与△ CDA 全等吗.你能说明 AB∥ CD ,AD ∥ BC 吗.为何.ADBH CADBC练习:1.如图,在四边形ABCD 中, AB=AD, CB=CD.求证:∠ B=∠ D.2.如图,已知点A, D, C, F 在同一条直线上,AB=DE ,BC=EF ,要使△ ABC ≌△ DEF ,还需要增添一个条件是B EA D C FA . ∠ BCA=∠F B. AD =CF∥ EF D. ∠ A=∠ EDF3.如图,等腰梯形ABCD 中,点 M 是 AD 的中点,且MB=MC ,若 AD =4, AB=6,BC=8 ,则梯形ABCD 的周长为A .22B. 24C. 26D. 284.( 2015 广西玉林)依据图中尺规作图的印迹,先判断得出结论:,而后证明你的结论(不要求写已知、求证)第三课时 :三角形全等的判断SAS (二 )【讲堂练习】练习一 :在以下图中找出全等三角形,并把它们用线连起来.8?8830ocm 8cm8cm ⅠⅡcmⅢcm30o9cm30o5 cmⅢ Ⅳ ??Ⅳ5 cm3xm8 cm8 30o8 cm8?ⅤⅥcmⅧcm9530o8cmⅦcmcm【例题】1.如图, AC =BD ,∠ CAB= ∠DBA ,你能判断∠ C=∠D 吗.说明原因.2.如图, 有—池塘, 要测池塘两头 A 、B 的距离, 可先在平川上取一个能够直接抵达 A 和 B 的点 C ,连结 AC 并延伸到 D ,使 CD = CA ,连结 BC 并延伸到 E ,使 CE =CB .连结 DE ,那么量出 DE 的长就是 A 、 B 的距离,为何.CDA B练习:1.如图 CE=CB ,CD =CA ,∠ DCA=∠ ECB ,求证: DE =AB .2.如图, AB =AE , AD=AC ,∠ BAD =∠EAC , BC 、 DE 交于点 O . 求证:∠ ABC=∠AED .ADDCOEFBEO3.如图,在△ ABC 中, AB=AC,点 D 是 BC 的中点,点 E 在 AD 上.求证:(1)△ ABD ≌△ ACD ,(2) BE=CE4.小明用六根竹签做了一个以下图的风筝,此中ED =FD ,HE =HF .小明不丈量就能知道EO=FO .你知道小明是如何想的.5.(2015 杭州 )如图,在△ ABC 中,已知 AB=AC, AD 均分∠ BAC,点 M、 N 分别在 AB、 AC 边上, AM=2MB, AN=2NC,求证: DM =DNAABM N EFB DCDC6.( 2015 燕山毕业)如图,点E, F 在线段 AC 上, AB∥ CD, AB= CD, AE=CF .求证: BE =DF .7. ( 2015 丰台一模)已知:如图,点 B,F,C,E 在一条直线上, BF = CE,AC= DF ,且 AC∥ DF .求证:∠ B=∠E.AAE CCBF EB DD8.( 2015 平谷一模)如图, AB =AD,AC=AE,∠ CAD=∠EAB.求证: BC=DE .第四课时:三角形全等的判断ASA, AAS (三 )【参照例题】1.已知:点 D 在 AB 上,点 E 在 AC 上,BE 和 CD 订交于点O,AB=AC,∠ B=∠ C,求证:BD =CE .2.在 Rt△ ABC 中,∠ ACB =90°, BC=2cm , CD ⊥AB,在 AC 上取一点 E,使 EC=BC,过点 E 作EF ⊥ AC 交 CD 的延伸线于点 F ,若 EF=5cm ,则 AE=cm.3.如图,点A、 B、 D、 E 在同向来线上,AD =EB, BC∥ DF ,∠ C=∠ F,求证: AC=EF.ADEOBC练习:1.如图,在△AEC 和△ DFB 中,∠ E=∠F ,点 A, B, C,D 在同向来线上,有以下三个关系式:①AE∥ DF ,② AB=CD ,③ CE=BF.M ( 1)请用此中两个关系式作为条件,另一个作为结论,写出你以为正确的全部命题(用序号写出命题书写形式:“假如,,那么”),C ( 2)选择( 1)中你写出的一个命题,说明它正确的原因.ADE B 2.如图,在△ ABC 中,C9 0o,点 D 是 AB 边上一点, D M A B且DMAC,过点 M 作3.( 2015 永州)如图,在△ME ⊥BC,交 AB 于点 E.求证:△ ABC ≌△ MED .ABC 中,已知∠ 1=∠2, BE=CD, AB=5,AE =2,则 CE=.EFA B C D4.( 2015 通辽)如图,四边形 ABCD 中,E 点在 AD 上,此中∠ BAE=∠ BCE=∠ ACD=90°,且 BC=CE ,求证:△ ABC 与△ DEC 全等.5.( 2015 海淀一模)如图,点A,B,C, D 在同一条直线上,AB=FC ,∠ A=∠ F ,∠ EBC=∠ FCB .求证:BE=CD .6.( 2015 门头沟一模)如图,点 A、 B、 C、 D 在同一条直线上, BE∥ DF ,∠ A=∠ F ,AB=FD .求证: AE=FC .EFA CB D7. 如图,点 O 是直线 l 上一点,点 A、B 位于直线l 的双侧,且∠°,分别过 A、AOB=90 , OA=OBB 两点作 AC⊥ l ,交直线 l 于点 C, BD⊥ l,交直线 l 于点 D .求证: AC=OD.8. ( 2015 西城一模)如图,∠C=∠E,∠ EAC=∠ DAB, AB=AD .求证: BC=DE .EEA CD CDA BB9. ( 2015 昌平二模)如图,ABAD ,AE AC, E C,DEBC.求证: ADAB10. ( 2015 海淀二模)如图,已知∠BAC=∠ BCA ,∠ BAE=∠ BCD=90 °,BE=BD .求证:∠ E=∠D .11.( 2015 旭日二模)已知:如图,在△ ABC 中,∠ ACB=90 °, AC=BC , BE⊥ CE 于点 E,AD⊥ CE 于点 D.求证: BE=CD .第五课时:全等三角形的判断(四)HL【参照例题】例如图,AC BC ,BD AD ,AC BD求证:BC AD.练习: 1.如图,两根长度为12 米的绳索,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗.请说明你的原因.2. 如图,有两个长度同样的滑梯,左侧滑梯的高度AC 与右侧滑梯水平方向的长度 DF 相等,两个滑梯的倾斜角∠ ABC 和∠ DFE 的大小有什么关系.3.求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等.4.如图 6,A, F 和 B 三点在一条直线上,CF⊥ AB 于 F, AF =FH ,CF= FB.求证:BE⊥ AC.第六课时:全等三角形的习题课【复习小结】全等的常有图形BA B A CA BO OC O DD D C DA D D AB EC F F B E C BA AB DB DBE C EC A BA BFE F ECD CD AAC B F C EA ADB DC E C 判断两个三角形全等的方法有:________________________ ______________________.【练习】1.如图,在△ ABC 中,点 D 是 BC 的中点,作射线AD ,在线段 AD 及其延伸线上分别取点E、F ,连结 CE、 BF .增添一个条件,使得△ BDF≌△ CDE,并加以证明.你增添的条件是.(不增添协助线).2.在 Rt△ ABC 中,∠ ACB =90°, BC=2cm , CD ⊥ AB,在 AC 上取一点E,使 EC=BC,过点 E 作EF⊥ AC 交 CD 的延伸线于点 F,若 EF=5cm ,求 AE.3.如图,点 D 在 AB 上,点 E 在 AC 上, AB =AC,∠ B=∠C.求证: BE=CD .4.如图,点 B 在射线 AE 上,∠ CAE=∠ DAE ,∠ CBE=∠DBE .求证: AC =AD .5.如图,点A、 B、 D、 E 在同向来线上,AD =EB, BC∥ DF ,∠ C=∠ F.求证: AC =EF .6. ( 2015 宜昌)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中 AD=CD, AB=CB,詹姆斯在研究筝形的性质时,获得以下结论:① AC⊥ BD ;② AO=CO= AC ;③△ABD≌△ CBD ,此中正确的结论有()A.0 个B.1 个C.2 个D.3 个-11-12. 3 角的均分线的性质(一)【教课要点】1.研究并证明角的均分线的性质定理及其逆定理;2.能用角的均分线的性质解决简单问题.【教课难点】利用角的均分线的性质定理解题.【参照例题】1.如图 1,AB =AC ,BD=CD , DE⊥ AB 于 E, DF ⊥ AC 于 F.A 求证: DE =DF .E EFBDAC F图 1B D C图 22.如图 2,D 、E、 F 分别是△ ABC 的三边上的点,CE =BF ,△ DCE 和△ DBF 的面积相等.求证: AD 均分∠ BAC.练习:1.已知△ ABC 中,∠ A=80°,∠ B 和∠ C 的角均分线交于O 点,则∠ BOC =.2.如图,已知订交直线AB 和 CD,及另向来线EF.假如要在EF 上找出与AB、 CD 距离相等的点,方法是,这样的点起码有个,最多有个.3.以下图,已知△ ABC 中,∠ C=90°,AC=BC,AD 均分∠ CAB,交 BC 于点 D,DE⊥ AB 于点 E,且 AB=6 cm, 则△ DEB 的周长为A . 9 cm B. 5 cm C. 6 cm D. 不可以确立4. 如图, AB// CD ,CE 均分∠ ACD ,若∠ 1=250,那么∠ 2 的度数是.5.如图, OP 均分AOB , PA OA,PB O B ,A 垂足分别为 A,B.以下结论中不必定建立的是A.PA P B B.PO均分APBC.OA O B D.AB垂直均分O P6.( 2015?永州)如图,在四边形 ABCD 中, AB=CD ,BA 和 CD 的延伸线交于点E,若点 P 使得S△PAB=S△PCD,则知足此条件的点P()A .有且只有 1 个B .有且只有 2 个C.构成∠ E 的角均分线D .构成∠E 的角均分线所在的直线( E 点除外)角均分线的性质(二)【复习】1.以下图,在△ABC 中,∠ A=90°, BD 均分∠ ABC, AD = 2 cm,则点 D 到 BC 的距离为________ cm.AC D B2.如图,在△ABC 中,∠ C=900, BC= 40,AD 是∠ BAC 的均分线交 BC 于 D,且 DC∶ DB= 3∶5,则点 D 到 AB 的距离是.3.如图,已知BD 是∠ ABC 的内角均分线,CD 是∠ ACB 的外角平分线,由 D 出发,作点 D 到 BC、AC 和 AB 的垂线 DE 、DF 和 DG ,垂足分别为E、F 、G,则 DE 、DF 、DG 的关系是.4. AD 是△ BAC 的角均分线,自 D 向 AB、 AC 两边作垂线,垂足为E、F,那么以下结论中错误的选项是A . DE =DF B. AE=AF C.BD=CD D.∠ADE =∠ ADF5.如图,已知AB∥ CD ,O 为∠ A、∠ C 的角均分线的交点,OE⊥AC于 E,且 OE=2,则两平行线间AB、 CD 的距离等于.6.到三角形三条边的距离都相等的点是这个三角形的()A .三条中线的交点B .三条高的交点C.三条边的垂直均分线的交点 D .三条角均分线的交点【例题】1.如图,已知AC∥ BD、EA 、EB 分别均分∠ CAB 和△ DBA , CD 过点 E,则 AB 与 AC+BD?相等吗.请说明原因.CED 2.在△ ABC 中,∠ B=60°,∠ A,∠ C 的角均分线AE ,CF 订交于点O,( 1)如图 1,若 AB=BC,求证: OE=OF;( 2)如图 2,若 AB≠BC,试判断线段OE 与 OF 能否相等,并说明原因A B练习:1. 如图,已知BD ⊥ AE 于 B, DC ⊥ AF 于 C,且 DB = DC,∠ BAC= 40o,∠ ADG =130o,则∠ DGFD C=_________F BGCMDA B E C AM A B( 1 题图 )(2题图)(3题图)2.如图,在△oABC 中,∠ C= 90 , AM 是∠ CAB 的均分线, CM = 20cm,那么 M 到 AB 的距离为.o,M 是 BC 上一点,且∠o,DM 均分∠ ADC ,3. 如图,∠ B=∠ C= 90AMD = 90求证: AM 均分∠ DAB .4. 如图, BD =CD , BF ⊥ AC, CE⊥ AB.求证: D 在∠ BAC 的角均分线上.NBCAED CD OPA EB BA MF C(4 题图)(5 题图)(6 题图)o, AC= BC, AD 为∠ BAC 的均分线, AE= BC, DE⊥ AB 垂5. 已知:如图, Rt △ABC 中,∠ C= 90足为 E,求证△ DBE 的周长等于 AB.6. 如图,已知PA⊥ ON 于 A, PB⊥ OM 于 B,且 PA= PB.∠ MON = 50o,∠ OPC= 30o,求∠ PCA的大小.A专题练习 1:常有协助线1.倍长中线法【例 1】如图,△ ABC 中, AD 为中线.(1)求证: AB+AC>2AD ;B D C(2)若 AB=5, AC=3,则中线 AD 的取值范围是 _________________ .A【例 2】如图,△ ABC 中, E、F 分别在 AB 、AC 上, DE ⊥ DF ,D 是中点.E 试比较 BE+CF 与 EF 的大小.F 练习: 1. 已知:如图, AD 是△ ABC 的中线, AB=AE,B CD AC=AF ,∠ BAE=∠ FAC=90° .尝试究线段AD 与 EF 数目和地点关系.提示:EEN7FFA 6 5A341B DC BD 2CM2.如图,已知AD 是△ ABC 的中线, BE 交 AC 于 E,提示:交 AD 于 F,且 AE=EF.求证: AC=BFAAEFBD CEFBD CG2.截长补短法【例 1】如图, AD∥ BC, EA, EB 分别均分∠ DAB,∠ ABC, CD 过点 E.求证: AB= AD+BC.【例 2】如图,在四边形ABCD 中, BC> BA, AD =CD , BD 均分ABC ,求证:AA DC 180.ADEBC BC练习: 1.已知:如图,在△ ABC中,AB = AC,D为△ ABC外一点,∠ABD = 60,∠ADB = 90 1 ∠BDC.2求证: AB=BD+DC提示:DDE3.借助角均分线造全等【例 1】如图,已知在△ ABC 中,∠B=60°,△ ABC 的角均分线AD,CE 订交于点O,求证:OE=ODA AEO EGBCB C FDD【例 2】如图,△ ABC 中, AD 均分∠ BAC, DG⊥ BC 且均分 BC,DE ⊥ AB 于 E,DF ⊥ AC 于 F.(1)说明 BE=CF 的原因;( 2)假如 AB= a, AC=b,求 AE、BE 的长 .练习: 1. 已知△ ABC 中,∠ B=2∠ A,AB=2BC求证:△ ABC 是直角三角形 .A提示:C B4.三垂直问题基本图形:【例 1】如图,∠ ABC= 90°, AB= BC, D 为为 E、F,求证:△ ABE≌△ CBFAE CDFA EB C AC 上一点,分别过A、 C 作 BD 的垂线,垂足分别DB练习:如图,已知AC⊥ AB,DB⊥ AB,AC= BE,AE= BD ,试猜想线段 CE 与 DE 的大小与地点关系,并证明你的结论 .5.共极点的两个特别的图形(手拉手)基本图形O21C D1= 2AOC= BODAB【例 1】已知:如图,ABC 中,AB=BC,ABC90 ,点D在AC上, DBE90,BE=BD .求证: CD=AE .FA EE A DAE DMB C B CB C【例 2】以下图,已知AE⊥ AB, AF⊥ AC, AE=AB, AF=AC.求证:( 1) EC=BF,( 2)EC ⊥BF练习:如图,在 Rt△ ABC 中,∠ BAC=90°, AC=2AB,点 D 是 AC 的中点,将一块锐角为45°的直角三角板如图搁置,使三角板斜边的两个端点分别与A、D 重合,连结 BE、 EC.试猜想线段BE 和 EC 的数目及地点关系,并证明你的猜想.七、与中考链接(一)基础题A1. (06 北京 ) 已知:如图, AB∥ED ,点 F、点 C 在 AD 上,FEAB =DE, AF =DC .求证: BC=EF.BCD2. (07北京)已知:如图,OP是AOC 和BOD 的均分线,OO A OC, OB OD .求证: AB CD .A B DC 3. (08 北京 ) 已知:如图, C 为 BE 上一点,点 A、D 分别在 BE 双侧, AB∥ ED,AB=CE ,BC=ED .P求证: AC=CD.4. (09 北京 ) 已知:如图,在△ABC 中,∠ ACB=90 °, CD⊥ AB 于点 D,点 E 在 AC上, CE =BC,过 E 点作 AC 的垂线,交 CD 的延伸线于点 F .求证: AB =FC .5. (10 北京 ) 已知:如图,点A、 B 、 C 、 D 在同一条直线上, EA AD ,FD AD,AE DF ,AB DC.求证:AC E DBF .6. (11 北京 ) 已知:如图,点A、C、B、D 在同一条直线上,BE //DF ,A F,ABFD .求证: AE F C .7. (12 北京 ) 已知:如图,点 E,A, C 在同向来线上, AB// CD ,EABCE,ACCD.新人教版八年级数学上册第十二章全等三角形导教案 21 / 21求证:BC ED .8. (13 北京 ) 已知:如图, D 是 AC 上一点, AB =DA , DE ∥ AB ,B DAE .求证: BC=AE .9. (14 北京 ) 已知:如图,点B 在线段 AD 上, BC ∥ DE , A B ED ,BCDB . 求证: AE .10.( 15 北京)如图,在求证:ABC 中, ABAC ,AD 是 BC 边上的中线, B E AC 于点 E. CBEBAD .AEB D C-20-。
DCABODC ABE C 1B 1CABA1第一课时 12.1 全等三角形【学习目标】1、知道什么是全等形,什么是全等三角形,能够找出全等三角形的对应元素。
2、会正确表示两个全等三角形,掌握全等三角形的性质。
【学习重点】全等三角形的性质。
【学习难点】正确寻找全等三角形的对应元素 一、学前准备1、三角形的定义:____________________________________2、三角形按边分类: 三角形按角分类:二、探索思考(一)阅读书P31-32,完成下列问题(1) 的两个图形叫做全等形; 叫做全等三角形。
请举出一个生活中全等形的实例 平移、翻折、旋转前后的两个图形 改变了, 、 没变,即它们 (2)全等三角形的对应元素:两个全等的三角形重合到一起,重合的顶点叫 ;重合的边叫 ;重合的角叫如图:两个三角形全等,点C 和点B ,点A和点D是对应顶点, 则△ACO 与△BOD 全等记作 对应边: 和 、 和 、 和 对应角: 和 、 和 、 和 (3)全等三角形的性质:全等三角形的 , 全等三角形的 符号语言:∵△ABC ≌△A 1B 1C 1,∴练习11、将△ABC 沿BC 翻折180°得到△DBC ,则△ABC ≌ ,对应顶点: 和 、 和 、 和 对应边: 和 、 和 、 和 ; 对应角: 和 、 和 、 和2、将△ABC 旋转180°得△AED ,△ABC ≌ .对应顶点: 和 、 和 、 和 对应边: 和 、 和 、 和 ; 对应角: 和 、 和 、 和3、如图,已知△ABE ≌△ACD ,则对应顶点: 和 、 和 、 和 ∠ADE= ,∠B= ,∠BAE= ;AB= ,BE= ,AD=4、已知如图,△ABC ≌△ADE ,,则对应顶点: 和 、 和 、 和 ∠A= ,∠B= ,∠ACB= ;AB= ,BC= ,AC=三、典例分析1、 将△ABC 沿直线BC 平移,得到△DEF (如图)(1) 线段AB 、DE 是对应线段,有什么关系?线段AC 和DF 呢? (2)线段BE 和CF 有什么关系?为什么?(3)若∠A=50º,∠ABC=30º,求∠D 、∠DEF 、∠DFE 的度数四、当堂反馈1、如图△ BCE ≌ △ CBF ,若BE=3cm ,BF=5cm ,∠CBE=80°, ∠BEC=60, 则∠FBC= ,∠FCB= ,BE= , CE= .2、△ABC ≌△BAD ,A 和B ,C 和D 是对应顶点,如果AB =8cm ,BD =•6cm ,AD =5cm ,则BC =________cm .3、在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A.∠AB.∠BC.∠CD.∠B 或∠C4、如图:△ABC ≌△DEF, △ ABC 的周是32cm,DE=9cm,EF=12cm ,求AC.5、如图,△ABC ≌△DEC ,CA 和CD ,CB 和CE 是对应边,∠ACD 和∠BCE 相等吗?为什么?6、如图,△AEC ≌△ADB ,点E 和点D 是对应顶点,若∠A=50°,∠ABD=35°,且∠1=∠2,求∠1的度数。
第十二章全等三角形小结复习导学案一、新课导入1、导入课题:在这一章,我们深入的研究了全等三角形的性质、判定以及相关的应用,这节课我们把这章的知识整体回顾一下。
2、学习目标:(1)知道全等三角形的性质、判定;(2)能说出角平分线性质、判定以及它与全等三角形知识的联系;(3)灵活运用全等三角形的性质、判定解决问题。
3、学习重难点重点:全等三角形的性质、判定难点:全等三角形的性质、判定的应用二、分层学习第一层次自学1、自学指导(1)自学内容:自学P31页--- P56页的内容.(2)自学时间:10分钟.(3)自学方法:回顾、反思.(4)自学参考提纲:知识回顾:请你带着下面的问题,复习一下全章的内容:①你能举出一些实际生活中全等形的例子吗?②全等三角形有什么性质?③全等三角形的判定有哪些?试着说说这些判定之间的区别。
④学习本章内容之后,你对角平分线有哪些新认识,你能用全等三角形的相关知识进行证明吗?⑤说说证明几何问题的一般步骤有哪些?2.自学:同学们可结合自学指导进行复习.3.助学:师助生:(1)明了学情:通过本章的学习,了解学生是否学会了利用证明三角形全等来得到线段相等、角相等,利用全等三角形证明角的平分线的性质。
(2)差异指导:引导学生总结证明线段相等、角相等的方法是证明三角形全等来完成的。
生助生:学生之间相互交流帮助。
4. 强化复述全等三角形的性质、判定。
第二层次自学1、自学指导(1)自学内容:参考提纲中的例题.(2)自学时间:10分钟.(3)自学方法:动手完成.(4)自学参考提纲:①巧添辅助线构造全等三角形例1:如图,在△ABC 中,AB=12,AC=8,AD 是BC 边上的中线,求AD 的取值范围。
AB D C②利用三角形全等解决开放与探究问题例2:如图,在△ABC 和△ACE 中,有下列四个条件:①AB=AC ,②AD=AE ,③∠1=∠2,④BD=CE请你以其中三个条件为题设,余下的作为结论,写出一个真命题(要求写出已知、求证、及证明过程)2、自学:先动手独立完成,不会的小组合作。
12.2三角形全等的判定第2课时边角边一、新课导入1.导入课题:上一节课,我们探究了三条边对应相等的两个三角形全等.如果两个三角形有两条边和一个角分别对应相等,这两个三角形会全等吗?——这就是本节课我们要探讨的课题.2.学习目标:(1)能说出“边角边”判定定理.(2)会用“边角边”定理证明两个三角形全等.3.学习重、难点:重点:“边角边”定理及其应用.难点:“边角边”定理的应用.二、分层学习1.自学指导:(1)自学内容:探究有两条边和它们的夹角对应相等的两个三角形是否全等.(2)自学时间:5分钟.(3)自学方法:根据探究提纲进行操作,并观察归纳得出结论.(4)探究提纲:①如果两个三角形有两条边和一个角分别对应相等,有几种可能的情形?②画△ABC和△A′B′C′,使AB=A′B′,BC=B′C′,∠A=∠A′,剪下两个三角形,相互交流一下,看△ABC与△A′B′C′是否一定能重合?不一定③画△ABC和△A′B′C′, 使A′B′=AB,∠A′=∠A,A′C′=AC,剪下△ABC和△A′B′C′,大家试一试,△A′B′C′与△ABC能重合吗?能a.由上面的探究得到判定两个三角形全等的方法是两边和它们的夹角分别相等的两个三角形全等(简写成边角边或SAS).b.将上述结论写成几何语言:∵AB=A′B′,∠BAC=∠B′A′C′,AC=A′C′,∴△ABC≌△A′B′C′(SAS)④寻找题目中的隐含条件.a.如图(a),AB、CD相交于点O,且AO=OB.观察图形,图中已具备的另一个相等的条件是∠AOC=∠BOD;联想SAS公理,只需补充条件OC=OD,则有△AOC≌△BOD.b.如图(b),AB⊥AC,AD⊥AE,AB=AC, AD=AE.能得出△DAC≌△EAB吗?能.∵AB⊥AC,AD⊥AE,∴∠BAC=∠DAE=90°,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠EAB=∠DAC.在△DAC和△EAB中,AC=AB,∠DAC=∠EAB,∴△DAC≌△EAB(SAS)AD=AEc.如图(c),AB=CD,∠ABC=∠DCB,能判定△ABC≌△DCB吗?解:∵AB=CD,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS).2.自学:学生结合探究提纲进行探究学习.3.助学:(1)师助生:①明了学情:部分学生在归纳结论上会存在一定的困难,特别是“夹角”的理解及表述上.②差异指导:根据学生学习中存在的问题予以分类指导.(2)生助生:探究提纲中的问题可以由小组合作学习,相互交流帮助寻找出题目条件或隐含条件和说明方式.4.强化:(1)已知两边和夹角,会用尺规作图画三角形.(2)边角边公理内容及几何语言的表达.(3)边角边公理是判定两个三角形全等的第二个方法,现在一共学习了两个判定三角形全等的方法:SSS、SAS,结合条件可以选用这两个判定方法证明三角形全等.(4)强化练习:①下列条件中,能用SAS判定△ABC≌△DEF的条件是(B)A.AB=DE,∠A=∠D,BC=EFB.AB=DE,∠B=∠E,BC=EFC.AB=EF,∠A=∠D,AC=DFD.BC=EF,∠C=∠F,AB=DF②已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出7个.1.自学指导:(1)自学内容:教材第38页例2到教材第39页练习前的“思考”.(2)自学时间:10分钟.(3)自学指导:结合自学参考提纲,阅读教材.(4)自学参考提纲:①看懂例题题意,对照定理,在证明过程的后面注上理由.②此题证明△ABC≌△DEC的理论依据是什么?SAS③归纳:线段相等或者角相等,可以通过什么方法得到?证明三角形全等,再根据全等三角形的性质得到.④思考:定理中为什么要强调“夹角”?因为只有满足“两边及夹角”的两个三角形才能全等,否则不一定全等.动手操作:把一长一短的两根木棍的一端固定在一起,摆出△ABC,固定住长木棍,转动短木棍,得到△ABD,这个实验说明了什么?两边相等,夹角不相等的两个三角形不一定全等.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:第二层次的学习是教会学生证明角、线段相等的方法是构造全等三角形,学生在初次接触到这种方法,应用起来会比较生疏.②差异指导:a.指导学生构造全等三角形来证明角或者边相等;b.引导学生理解“两边及一角对应相等是不是一定可以得到两个三角形全等?”(2)生助生:小组共同探讨帮助认知例题的证明方法及教材第39页的思考所反映的问题.4.强化:(1)判定两个三角形全等到目前学习的方法有“SSS”、“SAS”,注意没有“SSA”或“ASS”(特殊情形除外).(2)证明三角形全等的方法和步骤.(3)课堂练习:①课本教材第39页练习.练习1:相等,根据边角边定理,△BAD≌△BAC,∴DA=CA.练习2:证明:∵BE=FC,∴BE+EF=FC+EF,即BF=CE,又AB=DC,∠B=∠C,∴△ABF≌DCE,∴∠A=∠D.②如图,在四边形ABCD中,AD∥BC,AD=BC,你能得出AB=CD吗?若能,试说明理由.解:连接AC.∵AD∥BC,∴∠DAC=∠BCA.在△ABC和△CDA中,AD=BC,∠DAC=∠BCA,AC=CA,∴△ABC≌△CDA(SAS).∴AB=CD.三、评价1.学生的自我评价:学生交谈自己的学习收获及学习中的困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及存在的不足进行点评.(2)纸笔评价(课堂评价检测).3.教师的自我评价(教学反思):本节课的引入,可采用探究的方式,引导学生通过操作、观察、探索、交流、发现思索的过程,得出判定三角形全等的“SAS”条件,同时利用一个联系生活实际的问题——测量池塘两端的距离,对得到的知识加以运用,最后再通过实际图形让学生认识到“两边及其中一边的对角对应相等”的条件不能判定两个三角形全等.一、基础巩固(第1、2题每题10分,第3、4题每题20分,共60分)1.下列命题错误的是(D)A.周长相等的两个等边三角形全等B.两条直角边对应相等的两个直角三角形全等C.有两条边对应相等的两个等腰三角形不一定全等D.有两条边和一个角对应相等的两个三角形全等2.如图,AB=AC,若想用“SAS”判定△ABD≌△ACE,则需补充一个条件AD=AE.第2题图第3题图第4题图3.如图,给出5个等量关系:①AD=BC;②AC=BD;③CE=DE;④∠D=∠C;⑤∠DAB=∠CBA.请你以其中两个为条件,另三个中的一个为结论,组成一个正确的命题(用“若……则……”的形式表述)(只需写出一个),并加以证明.解:命题:若AD=BC,∠DAB=∠CBA,则AC=BD.证明如下:在△ABD和△BAC中,AD=BC,∠DAB=∠CBA,AB=BA,∴△ABD≌△BAC(SAS).∴AC=BD.4.如图,点B,E,C,F在同一直线上,AB=DE,∠B=∠DEF,BE=CF.求证:AC=DF.证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF.在△ABC和△DEF中,AB=DE,∠B=∠DEF,∴△ABC≌△DEF(SAS).∴AC=DF.BC=EF二、综合应用(20分)5.已知:如图AB=AC,AD=AE,∠BAC=∠DAE,求证:△ABD≌△ACE.证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△ABD和△ACE 中,AB=AC,∠BAD=∠CAE,∴△ABD≌△ACE(SAS),AD=AE,三、拓展延伸(20分)6.小明做了一个如图所示的风筝,测得DE=DF,EH=FH,由此你能推出哪些正确结论?并说明理由.解:结论:(1)DH平分∠EDF和∠EHF.(2)DH垂直平分EF.理由.(1)在△EDH和△FDH中,DE=DF,EH=FH,DH=DH,∴△EDH≌△FDH(SSS).∴∠EDH=∠FDH,∠EHD=∠FHD.即DH平分∠EDF和∠EHF.(2)由(1)知,在△EOD和△FOD中,ED=DF,∠EDO=∠FDO,OD=OD, ∴△EOD≌△FOD(SAS).∴EO=OF,∠EOD=∠FOD=90°,∴DH垂直平分EF.11.2 与三角形有关的角(2)教学目标知识与技能 1.了解三角形的外角;2、探索并了解三角形的一个外角等于与它不相邻的两个内角的和过程与方法 通过小组学习等活动经历得出三角形的外角概念和三角形的外角性质。
第十二章全等三角形小结导学案一、学习目标:1. 复习全等形与全等三角形的概念、全等三角形的判定定理,以及角平分线的作图方法和角平分线的性质等知识,建立知识系统;2. 使学生总结寻找全等三角形及其全等条件的方法、归纳常见辅助线的作法,使学生掌握分析问题的方法,提升解题能力。
二、学习重点、难点:学习重点:将所学知识科学地组织起来,将其纳入已有的知识结构中。
学习难点:提升分析问题、解决问题的能力。
三、本章知识结构图:。
四、回顾与思考:1、请你举一些生活中的全等形。
2、全等三角形的概念及性质;3、三角形全等的判定;4、 角平分线的性质及判定5、你能举例说明证明一个几何命题的一般过程吗?知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSS HL AAS SAS ASA AAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边 切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。
例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。
求证:ACF BDE ∆≅∆。
思路分析:从结论ACF BDE ∆≅∆入手,全等条件只有AC BD =;由AE BF =两边同时减去EF 得到AF BE =,又得到一个全等条件。
还缺少一个全等条件,可以是CF DE =,也可以是A B ∠=∠。
知识点二:构造全等三角形例2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。
求证:21C ∠=∠+∠。
思路分析:直接证明21C ∠=∠+∠比较困难,我们可以间接证明,即找到α∠,证明2α∠=∠且1C α∠=∠+∠。
新人教版八年级上册数学第十二章《全等三角形》四步导学案学习目标1.知道什么是全等形、全等三角形;2.能熟练找出全等三角形的对应元素,能用符号正确地表示两个三角形全等;3.掌握全等三角形的性质.学习重点:1全等三角形的概念、性质。
学习难点:1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.教学流程【导课】有现实生活中三角形的实例导入新课【阅读质疑 自主探究】一、全等形、全等三角形的概念阅读课本P2内容,回答课本思考问题,并完成下面填空:1. 能够完全重合的两个图形叫做 .全等图形的特征:全等图形的 和 都相同.2.能够完全重合的两个三角形叫做 .二、全等三角形的对应元素及表示阅读课本P3第一个思考及下面两段内容,完成下面填空:1.平移 翻折 旋转启示:一个图形经过平移、翻折、旋转后, 变化了,•但 、 都没有改变,所以平移、翻折、旋转前后的图形 ,这也是我们通过运动的方法寻全等的一种策略.2.全等三角形的对应元素(1)对应顶点(三个)---重合的顶点(2)对应边(三条)--- 重合的边(3)对应角(三个)--- 重合的角请同学们写出上图甲、乙、丙的对应顶点、对应边、对应角图甲:对应边是: 对应顶点是: 对应角是:图乙:对应边是: 对应顶点是: 对应角是:图丙:对应顶点是: 对应边是: 对应角是:寻找对应元素的规律(1)有公共边的,公共边是对应边;(2)有公共角的,公共角是对应角;(3)有对顶角的,对顶角是对应角;(4)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(5)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
3.“全等”用“≌”表示,读作“全等于”乙D C A B 甲D C A B F E 丙D C AB E如图甲记作:△ABC ≌△DEF 读作:△ABC 全等于△DEF如图乙记作: 读作:如图丙记作: 读作:注意:两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.三、全等三角形的性质阅读课本P3第二个思考及下面内容,完成下面填空:全等三角形的性质:全等三角形的 相等, 相等.【多元互动 合作探究】1.如图1,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,说出这两个三角形中相等的边和角.图1 图22.如图2,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角.【训练检测 目标探究】1.全等用符号 表示,读作: .2.若△BCE ≌△CBF ,则∠CBE= , ∠BEC= ,BE= , CE= .3.判断题1)全等三角形的对应边相等,对应角相等.( )2)全等三角形的周长相等,面积也相等. ( )3)面积相等的三角形是全等三角形. ( )4)周长相等的三角形是全等三角形. ( )4.如图:△ABC ≌△DBF,找出图中的对应边,对应角.答:∠B 的对应角是 ,∠C 的对应角是 ,∠BAC 的对应角是 ;AB 的对应边是 ,AC 的对应边是 ,BC 的对应边是 .【迁移应用 拓展探究】基础训练有关训练【布置作业】课本P69习题7.1第 1、2、6、7题.【板书设计】12.1.1 全等三角形一、全等形、全等三角形的概念二、全等三角形的对应元素及表示三、全等三角形的性质【教后反思】B D AC F DC A B OD C A B EB CA DFE授课时间:累计课时:12.2.1 三角形全等的判定学习目标1.理解三边对应相等的两个三角形全等的内容.2.会运用“边边边”条件证明两个三角形全等.3. 会作一个角等于已知角.学习重点:1.理解三边对应相等的两个三角形全等的内容.学习难点:1运用“边边边”条件证明两个三角形全等.教学流程【导课】一、课前准备1. 叫做全等三角形2.全等三角形的和相等3.将△ABC沿直线BC平移,得到△DEF,说出你得到的结论,说明理由?如果AB=5, ∠A=55°, ∠B=45°,那么DE= ,∠F= .【阅读质疑自主探究】自主探究三角形全等的条件:阅读课本P6探究2之前,回答下面问题:通过探究(1)只给一个条件对应相等的两个三角形一定全等吗?①只给一条边时;②只给一个角时;(2)如果给出两个条件画三角形,你能说出有哪几种可能的情况?①给出两个角时;②给出两条边时;③给出一条边和一个角时;3㎝3㎝3cm 45◦45◦45◦BC D A(3)由上面的几种情景,两个三角形满足一个或两个条件时,它们一定全等吗?(4)如果两个三角形有三个条件对应相等,这两个三角形全等吗?我们也可以分情况讨论,有哪几种情况? ①我们先来探究两个三角形三个角相等的情况:②画出一个三角形,使它的三边长分别为3cm 、 4cm 、6cm ,把你画的三角形与小组内画的进行比较,它们一定全等吗?③上面的探究反映了什么规律?阅读课本P6-7探究2至例1前,回答下面问题:的两个三角形全等,简写为“ ”或“ ”.三、例题学习阅读课本P7例1,学习“边边边”证明两个三角形全等的格式.【多元互动 合作探究】1. 如图,AB=AD ,BC=CD ,求证:(1)△ABC ≌△ADC (2)∠B=∠D2.如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?【训练检测 目标探究】如图,AB=CD ,AC=BD ,△ABC 和△DCB 是否全等?试说明理由。
全等三角形导学案设计嘿,大家好,今天咱们聊聊全等三角形!这个词听上去是不是有点严肃啊?但三角形就像咱们身边的好朋友,随处可见,简直是生活中的小明星。
想想看,吃披萨的时候,切开的那块就像个三角形,对吧?不管你从哪个角度看,都一样美味。
这就像全等三角形,无论怎么旋转、翻转,它们总是保持着相同的形状和大小,真是太神奇了。
说到全等三角形,咱们得先搞清楚啥叫“全等”。
它就是指两个三角形的边长和角度都一模一样,简直就像一对双胞胎,走到哪儿都能被认出来。
你可以把它想象成两个不同的房间,里边的家具摆放得一模一样,甚至连墙上的画都没有差别。
这种“完美一致”让人觉得特别有趣。
好啦,想象一下你和朋友一起去画画,你们都用同样的颜料、同样的画布,结果画出的画却截然不同,那可就有意思了!我们来聊聊全等三角形的判定方法,听起来是不是有点复杂?其实一点都不!就像你在挑选衣服一样,看看合不合身、颜色好不好看,三角形也是要符合几个条件的。
首先有“边边边”这个条件,也就是说三角形的三条边都得一样长,才算是好朋友。
然后还有“边角边”,这就像是说,两条边相等的三角形,夹着的角也得相等。
还有个“角边角”,这个条件就有点像在做“传声筒”,两个角相等,再加上一条边相等,嘿嘿,完美!最后还有一个“角角角”,三角形的三个角都相等,那就稳了。
想想看,就像找人一起合唱,声音、节奏都得对上,才能唱出美妙的和声。
我们来想象一下,如果生活中有这些全等三角形,那得多好玩啊!比如,你和你的好基友一起去参加一个DIY活动,结果你们俩做了同样的纸飞机。
你们把它们一起放飞,结果两只飞机几乎平行飞向天空,回头一看,简直就是两个孪生兄弟,飞行轨迹都那么相似。
那种感觉简直棒极了,有没有?这就是全等三角形带来的乐趣,让人觉得生活中无处不在的规律,真是神奇!对了,还有个小故事,讲的是有一天,一只猫咪走进了一家数学商店,看到一块黑板上写着全等三角形的公式。
猫咪抬头一看,心里想:“这些三角形真有意思,要是我也能变成一个全等三角形,那我和我的小伙伴们就能永远在一起了!”这只猫咪的心愿就像我们渴望友情一样,想要和最好的朋友一直保持一致。
人教版八年级上数学教学设计《第12章全等三角形》一. 教材分析人教版八年级上数学第12章《全等三角形》是初中数学中的重要内容,主要介绍了全等三角形的概念、性质和判定方法。
通过本章的学习,使学生理解和掌握全等三角形的判定和性质,能运用全等三角形的知识解决一些实际问题。
教材中安排了丰富的例题和练习题,有利于学生巩固所学知识。
二. 学情分析学生在学习本章内容前,已经掌握了相似三角形的知识,并具备一定的逻辑思维能力和空间想象能力。
但全等三角形与相似三角形既有联系又有区别,学生需要通过对比、分析、归纳等方法,理解和掌握全等三角形的概念和性质。
同时,学生需要通过大量的练习,提高运用全等三角形知识解决实际问题的能力。
三. 教学目标1.知识与技能目标:使学生理解和掌握全等三角形的概念、性质和判定方法,能运用全等三角形的知识解决一些实际问题。
2.过程与方法目标:通过观察、操作、对比、分析等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的勇气。
四. 教学重难点1.教学重点:全等三角形的概念、性质和判定方法。
2.教学难点:全等三角形的判定方法以及在实际问题中的运用。
五. 教学方法1.情境教学法:通过生活实例引入全等三角形的概念,激发学生的学习兴趣。
2.对比教学法:对比全等三角形与相似三角形的异同,帮助学生深入理解全等三角形的性质。
3.实践操作法:让学生动手操作,通过实际操作得出全等三角形的判定方法。
4.小组合作学习法:培养学生团队合作精神,共同解决实际问题。
六. 教学准备1.教学课件:制作全等三角形的相关课件,包括图片、动画、例题等。
2.教学素材:准备一些全等三角形的实际问题,用于巩固和拓展学生的知识。
3.练习题:挑选一些具有代表性的练习题,用于检验学生对全等三角形知识的掌握程度。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,引导学生思考:如何判断两个三角形是否全等?从而引出全等三角形的概念。
课题:19.1命题班级:姓名:小组:小组内评价:★学习目标:1、知识与技能:了解命题、定义的含义;对命题的概念有正确的理解。
会区分命题的条件和结论。
知道判断一个命题是假命题的方法。
2、过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识。
3、情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值。
★重点:找出命题的条件(题设)和结论。
★难点:命题概念的理解。
课前预习案一、知识点:1、叫做命题。
2、每个命题都由________和_______两部分组成,已知的事项是________,由已知事项推断出的事项是________.命题可分为_______命题和_____命题,其中正确的命题称为______命题,错误的命题称为_______命题.二、预习自测:1、把下列命题写成“如果.....,那么......”的形式,并说出它们的条件和结论,再判断它是真命题,还是假命题。
(1)菱形的四条边都相等;(2)全等三角形的面积相等。
2.下列命题中是真命题的是()A.平行于同一条直线的两条直线平行;B.两直线平行,同旁内角相等C.两个角相等,这两个角一定是对顶角;D.相等的两个角是平行线所得的内错角3.下列语句中不是命题的是()A.延长线段ABB.自然数也是整数C.两个锐角的和一定是直角;D.同角的余角相等4.下列语句中是命题的是()A.这个问题B.这只笔是黑色的C.一定相等D.画一条线段5.下列命题是假命题的是()A.互补的两个角不能都是锐角;B.若a⊥b,a⊥c,则b⊥cC.乘积是1的两个数互为倒数;D.全等三角形的对应角相等三、我的疑惑:课内探究案探究点一:“对顶角相等”写成“如果.....,那么......”的形式,并说出它的条件和结论,探究点二:在四边形ABCD中,给出下列论断:①AB∥DC;②AD=BC;③∠A=∠C.•以其中两个作为条件,另外一个作为结论,用“如果……那么……”的形式,•写出一个你认为正确的命题.探究点三:如果a>b,b>c, 那么a=c;是真命题还是假命题。
八年级数学上册《第12章全等三角形》导学案(新版)新人教版【学习目标】知识与技能:掌握全等形、全等三角形及相关概念和全等三角形性质。
过程与方法:理解“平移、翻折、旋转”前后的图形全等,确定全等三角形的对应元素。
情感态度与价值观:培养学生对三角形的认识及推理论证能力。
【学习重点】掌握全等形、全等三角形及相关概念。
【学习难点】全等三角形性质。
【自学展示】自学课本P31-32页,完成下列要求:1、理解并背诵全等形及全等三角形的定义。
2、注意全等中对应点位置的书写。
3、理解并记忆全等三角形的性质。
4、自学后完成展示的内容,20分钟后,进行展示。
【合作学习】1、________相同的图形放在一起能够____。
这样的两个图形叫做____。
2、能够_____的两个三角形叫做全等三角形。
3、一个图形经过__、__、__后位置变化了,但形状‘大小都没有改变,即平移、翻折‘旋转前后的图形____。
4、______叫做对应顶点。
_______叫做对应边。
_____叫做对应角。
5、全等三角形的对应边__。
____相等。
【质疑导学】1、课本P32练习1、22、如图1,若△ABC≌△EFC,且CF=3cm,∠EFC=64,则BC=_____cm,∠B=___、毛图1 图23、如图2,△ABC≌△DEF,求证:AD=BE、【学习检测】1、如图1,△ABC≌△DEF,对应顶点是____对应角是____________,对应边是__________2、如图2,△ABC≌△CDA,AB和CD,BC和DA是对应边,写出其他对应边及对应角________________3、如图3,△ABN≌△ACM,∠B=∠C,AC=AB,则BN=____,∠BAN=______,_____=AN,_____= ∠AMC、图3 图44、如图4,△ABC≌△DEC,CA和CD,CB和CE是对应边,∠ACD和∠BCE相等吗?为什么?【学后反思】板书设计:课题:12、2三角形全等的判定(1)【学习目标】知识与技能:掌握三角形全等的判定(SSS)过程与方法:初步体会尺规作图,掌握简单的证明格式情感态度与价值观:初步体会三角形全等的认识,从而提高对几何图形的推理论证能力。
第十一章:全等三角形导学案黑龙江省依兰县第一中学11.1《全等三角形》导学案【使用说明与学法指导】1. 课前完成预习案,牢记基础知识,掌握基本题型,时间不超过15分钟。
2 .组内探究、合作学习完成《课内探究》不超过20分钟。
3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。
4.人人参与,合作学习,人人都有收获,人人都有进步。
5.带﹡的题要多动脑筋,展示你的能力。
一、学习目标:1.理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。
2.掌握全等三角形的性质,并运用性质解决有关的问题。
3.会用符号表示全等三角形及他们的对应元素,培养大家的符号意识。
二、重点难点:运用全等三角形的性质解决相关的计算及证明等问题。
三、学习过程《课前预习案》(一)、自主预习课本2—3页内容,回答下列问题:1、能够______________的图形就是全等图形, 两个全等图形的_________和________完全相同。
2、一个图形经过______、______、_________后所得的图形与原图形 。
3、把两个全等的三角形重合在一起,重合的顶点叫做 ,重合的边叫做 ,重合的角叫做 。
“全等”用“ ”表示,读作 。
4、如图所示,△OCA ≌△OBD ,对应顶点有:点___和点___,点___和点___,点___和点___; 对应角有:____和____,_____和_____,_____和_____; 对应边有:____和____,____和____,_____和_____.DBACO5、全等三角形的性质:全等三角形的 相等, 相等。
(二)、练一练1.如图,△AB C ≌△CDA ,AB 和CD ,BC 和DA 是对应边。
写出其他对应边及对应角。
2如图,△ABN ≌△ACM ,∠B 和∠C 是对应角,AB与AC 是对应边。
写出其他对应边及对应角。
《课内探究》1.如图△EFG ≌△NMH,∠F 和∠M 是对应角.在△EFG 中,FG 是最长边. 在△NMH 中,MH 是最长边.EF=2.1㎝,EH=1.1㎝,HN=3.3㎝. (1)写出其他对应边及对应角.(2)求线段MN 及线段HG 的长.2.如图,△ABC ≌△DEC,CA 和CD,CB 和CE 是对应边.∠ACD 和∠BCE 相等吗?N M CB ADC B ANMG H F E为什么?3.本节课小结(我的收获) (1)知识方面:(2)学习方法方面:《课后训练》1. 如图所示,若△OAD ≌△OBC,∠O=65°,∠C=20°,则∠OAD= .第1题图 第2题图2. 如图,若△ABC ≌△DEF ,回答下列问题:(1)若△ABC 的周长为17 cm ,BC=6 cm ,DE=5 cm ,则DF = cm (2)若∠A =50°,∠E=75°,则∠B=3. 如图,△AOB ≌△COD ,那么∠ABD 与∠CDB 相等吗?为什么?第3题图﹡4. 如图:Rt △ABC 中,∠ A=90°,若△ADB ≌△ B DO A C DCBEA F EDCBAECADBO课题:《11.2三角形全等的判定》(SSS)导学案【使用说明与学法指导】:1.学生利用自习先预习课本第6、7页完成《课前预习案》(15分钟)。
2 .组内探究、合作学习完成《课内探究》(20分钟)3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。
4. 积极投入,激情展示,做最佳自己。
5.带﹡的题要多动脑筋,展示你的能力。
【学习目标】 1、能自己试验探索出判定三角形全等的SSS 判定定理。
2 、会应用判定定理SSS 进行简单的推理判定两个三角形全等 3、会作一个角等于已知角.【学习重点】:三角形全等的条件. 【学习难点】:寻求三角形全等的条件. 【学习过程】:《课前预习案》一、自主学习1、复习:什么是全等三角形?全等三角形有些什么性质? 如图,△A BC ≌△DCB 那么 相等的边是: 相等的角是:2、讨论三角形全等的条件(动手画一画并回答下列问题) (1).只给一个条件:一组对应边相等(或一组对应角相等),•画出的两个三角形一定全等吗? (2).给出两个条件画三角形,有____种情形。
按下面给出的两个条件,画出的两个三角形一定全等吗?①一组对应边相等和一组对应角相等②两组对应边相等③两组对应角相等 (3)、给出三个条件画三角形,有____种情形。
按下面给出三个条件,画出的两个三角形一定全等吗?①三组对应角相等D C B A②三组对应边相等已知一个三角形的三条边长分别为6cm 、8cm 、10cm .你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗? a .作图方法:b .以小组为单位,把剪下的三角形重叠在一起,发现 ,•这说明这些三角形都是 的.c .归纳:三边对应相等的两个三角形 ,简写为“ ”或“ ”.d 、用数学语言表述:在△ABC 和'''A B C ∆中,∵''AB A B AC BC =⎧⎪=⎨⎪=⎩∴△ABC ≌ ( )用上面的规律可以判断两个三角形 . “SSS ”是证明三角形全等的一个依据.《课内探究》二、合作探究1、[例]如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .证明:∵D 是BC∴ =∴在△ 和△ 中AB=BD= AD=∴△ABD △ACD( ) 温馨提示:证明的书写步骤:①准备条件:证全等时需要用的间接条件要先证好; ②三角形全等书写三步骤:A 、写出在哪两个三角形中,B 、摆出三个条件用大括号括起来,C 、写出全等结论。
2、如图,OA =OB ,AC =BC. 求证:∠AOC =∠BOC.3、尺规作图。
已知:∠AOB. 求作:∠DEF,使∠DEF=∠AOBC 'B 'A 'C BAC O AB4.本节课小结(我的收获) (1)知识方面: (2)学习方法方面:三、课堂巩固练习.1、如图,AB=AE ,AC=AD ,BD=CE ,求证:△ABC ≌ ADE 。
2、已知:如图,AD=BC,AC=BD. 求证:∠OCD=∠ODC《课后训练》1、下列说法中,错误的有( )个 (1)周长相等的两个三角形全等。
(2)周长相等的两个等边三角形全等。
(3)有三个角对应相等的两个三角形全等。
(4)有三边对应相等的两个三角形全等 A 、1 B 、2 C 、3 D 、42.如图,点B 、E 、C 、F 在同一直线上,且AB=DE ,AC=DF ,BE=CF ,请将下面说明ΔABC ≌ΔDEF 的过程和理由补充完整。
解:∵BE=CF (_____________) ∴BE+EC=CF+EC 即BC=EF在ΔABC 和ΔDEF 中AB=________ (________________) __________=DF (_______________) BC=__________∴ΔABC ≌ΔDEF (_____________) 3.如图,已知AB=DE ,BC=EF ,AF=DC ,则∠EFD=∠BCA ,请说明理由。
﹡4.如图,在△ABC 中,AB =AC ,D 是BC 的中点,点E 在AD 上,找出图中全等的三角形,并说明它们为什么是全等的.A C D E FAB C D EF'A 'A CB A课题:《11.2三角形全等的判定》(SAS )导学案【使用说明与学法指导】:1.学生课前预习课本第9页完成(自主学习1、4) 2 .组内探究、合作学习完成(探究一、探究二)3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。
4. 积极投入,激情展示,做最佳自己。
5.带﹡的题要多动脑筋,展示你的能力。
【学习目标】1、掌握三角形全等的“S AS ”条件,能运用“S AS ”证明简单的三角形全等问题 2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 3、积极投入,激情展示,做最佳自己。
教学重点:SAS 的探究和运用.教学难点:领会两边及其中一边的对角对应相等的两个三角形不一定全等. 【学习过程】 一、自主学习 1、复习思考 (1)怎样的两个三角形是全等三角形?全等三角形的性质是什么?三角形全等的判定(一)的内容是什么?(2)上节课我们知道满足三个条件画两个三角形有4种情形,三个角对应相等;三条边对应相等;两角和一边对应相等;两边和一角对应相等;前两种情况已经研究了,今天我们来研究第三种两边和一角的情况,这种情况又要分两边和它们的夹角,两边及其一边的对角两种情况。
2、探究一:两边和它们的夹角对应相等的两个三角形是否全等? (1)动手试一试 已知:△ABC求作:'''A B C ∆,使''A B AB =,''B C BC =,'A A ∠=∠(2) 把△'''A B C 剪下来放到△ABC 上,观察△'''A B C 与△ABC 是否能够完全重合? (3)归纳;由上面的画图和实验可以得出全等三角形判定(二):两边和它们的夹角对应相等的两个三角形 (可以简写成“ ”或“ ”) (4)用数学语言表述全等三角形判定(二) 在△ABC 和'''A B C ∆中,∵''AB A B B BC =⎧⎪∠=⎨⎪=⎩∴△ABC ≌3、探究二:两边及其一边的对角对应相等的两个三角形是否全等?通过画图或实验可以得出:4.例题学习(再次温馨提示:证明的书写步骤:①准备条件:证全等时需要用的间接条件要先证好; ②三角形全等书写三步骤:A 、写出在哪两个三角形中,B 、摆出三个条件用大括号括起来,C 、写出全等结论。
)三、当堂检测1、 如图,AD ⊥BC ,D 为BC 的中点,那么结论正确的有A、△ABD ≌△ACD B 、∠B=∠C C 、AD 平分∠BAC D 、△ABC 是等边三角形2、如图,已知OA=OB,应填什么条件就得到△AOC ≌△BOD(允许添加一个条件)3、﹡四、能力提升:(学有余力的同学完成)如图,已知CA=CB,AD=BD,M 、N 分别是CA 、CB 的中点,求证:DM=DN五、课堂小结1、两边和它们的夹角对应相等的两个三角形全等。
简写成“ ”或“ ”2、到目前为止,我们一共探索出判定三角形全等的2种方法,它们分别是: 和六、作业:第15页习题11.2 3-4 第16页第10题课题:《11.2三角形全等的判定》(ASA 、AAS)导学案使用说明:学生利用自习先预习课本第11页-12页10分钟,然后35分钟独立做完学案。