第8章 不对称合成-氧化反应37
- 格式:ppt
- 大小:417.00 KB
- 文档页数:37
有机催化的不对称氧化反应Sharpless不对称环氧化反应(Sharpless Epoxidation)
Sharpless不对称环氧化反应,是一种不对称选择的化学反应,可以用来从一级或者二级烯丙醇制备2,3-环氧醇。
该反应大约在1970年代开始得到系统研究,80年代后日臻成熟。
环氧化产物的立体化学是由反应中使用的手性酒石酸酯的非对映体(通常为酒石酸二乙酯或者酒石酸二异丙酯)决定的。
氧化试剂为过氧叔丁醇。
反应中使用一个催化剂可以形成产物的对映体选择性,该催化剂通过四异丙氧基钛和酒石酸二乙酯反应获得。
反应在存在3Å分子筛(3Å MS)的条件下只需5-10 mol%的催化剂量。
Sharpless不对称环氧化反应的成功取决于五大主要原因:
首先,环氧化合物能够简单的转化为二醇、氨基
醇或者醚,所以在天然产物的全合成当中形成手性的环氧化合物是非常重要的步骤。
第二,该反应能够和许多一级或者二级烯丙醇反应。
第三,夏普莱斯环氧化的产物通常具有超过90%的ee值(对映体过量)。
第四,通过夏普莱斯环氧化模型可以预测出产物的手性。
最后,夏普莱斯环氧化的反应试剂都是商业化的且非常廉价易得。
反应机理
用于环氧化的氧化剂是叔丁基氢过氧化物。
该反应由Ti(OiPr)4催化,Ti(OiPr)4通过氧原子结
合氢过氧化物,烯丙基醇基和不对称酒石酸酯配体(假设的过渡态如下所示)。
第一章 绪论1.1 手性和不对称合成的意义当一个物体没有对称中心或者没有对称平面的时候,物体与它的镜影就不能重合,他们之间互为对映体,就象人的左手和右手一样,这种物体具有对映体的现象就称为物体的手性。
如大部分攀登植物的缠绕具有右手性,大部分海螺的花纹也具有右手性。
如果化学分子也具有对映体,这种现象就称为分子的手性,这种分子就称为手性分子。
3HL-(+)-乳酸D-(-)-乳酸尽管手性分子的两个对映体具有相同的分子式,相同的原子结合顺序,只是原子或者原子团的空间排列顺序不一样,但它们的性能往往会表现出很大的差异。
当把具有对映异构体的化合物用作药物时,它们可能表现出极不相同的生物或者生理现象。
比如,在上世纪六十年代德国一家制药公司开发的一种治疗孕妇早期不适的药物——酞胺哌啶酮(thalidomide ),商品名叫反应停,其中R-构型对映异构体是强力镇定剂, S-构型对映异构体是强烈的致畸剂,但由于当时对此缺少认识,将反应停以等量的R-和S-构型对映体的混合物出售,虽然药效很好,但很多服用了反应停的孕妇生出的婴儿是四肢残缺,引起了轩然大波。
此外,许多其它对映异构体的生物或者生理性能也是相差很大的,如表1所示。
HN N O OOONHNOOOOS-thalidomider反应停, 致畸R-thalidomider反应停, 镇定表1 手性分子不同异构体不同的生理或者生物性能当我们认识到手性是生命的一个本质属性后,这种仅由于分子的立体结构不同而引起在生物体内极不相同的生理性能现象就容易得到解释。
在生命的产生和演变过程中,自然界往往只对一种手性有偏爱,构成生命的糖为D-构型,氨基酸为L-构型,蛋白质和DNA的螺旋结构又都是右旋的,因此整个生命体处在高度不对称的环境中。
当具有不同对称性的两个对映体进入生命体后,只有与生命体某种不对称受体在空间构型上相匹配的对映体才能表现出活性。
所以不同的构型会产生不同的生理活性和药理作用。
第八章 氧化反应朱启华zhuqihua@159********Chapter 8 Oxidation Reaction氧化反应的概述定义:有机分子中增加氧、失去氢,或者同时增加氧失去氢的反应增氧脱氢 增氧脱氢分类:操作方式1、化学氧化2、电解氧化3、生化氧化4、催化氧化氧化剂种类(Oxidation Agent )oxidizing agentorganic :t-BuOOH , DMSO ----化学氧化inorganic : SeO 2,KMnO 4,CrO 3 ----化学氧化 Bio-oxidant :微生物----生物氧化本章侧重化学氧化及催化氧化反应生化氧化Rhizopus nigricans (黑根霉菌)Cunnighamilla blackesloaus 布什小克银汉菌分类:操作方式1、化学氧化2、电解氧化3、生化氧化4、催化氧化氧化剂种类(Oxidation Agent )oxidizing agentorganic :t-BuOOH , DMSO ----化学氧化inorganic : SeO 2,KMnO 4,CrO 3 ----化学氧化 Bio-oxidant :微生物----生物氧化本章侧重化学氧化及催化氧化反应本章主要内容1.醇的氧化2.羰基化合物的氧化3.烃类的氧化(1)饱和烃 (苄基,羰基α-活性烃 基,烯丙基)(2)不饱和烃 (烯键,芳烃) 4.胺的氧化5.含硫化合物的氧化一、醇的氧化1、伯、仲醇氧化成醛或酮金属氧化剂非金属氧化剂含金属铬,锰,银,铝等的氧化剂DMSO-亲电试剂,高价碘,次氯酸钠,氧气等1.1、铬(VI)氧化剂常用铬氧化剂:1、三氧化铬和重铬酸盐2、Jones 试剂(CrO 3/H 2SO 4/丙酮)3、Collins 试剂(CrO 3:吡啶=1:2)4、PCC(氯铬酸吡啶鎓盐)5、PDC(重铬酸吡啶盐)(1)三氧化铬和重铬酸盐 重铬酸钾(K 2CrO 4)、重铬酸纳(Na 2CrO 4 ) 酸性条件:硫酸水溶液,乙酸等三氧化铬(CrO 3)不适用于:对酸敏感的体现(醚,缩酮,缩醛等)易氧化的基团(烯基、硫醚基、酚羟基、 胺基等)易被过度氧化的醇,如伯醇(2)Jones 试剂(CrO 3/H 2SO 4/丙酮)反应操作:26.72gCrO 3溶于23mL 浓硫酸中,加水稀释到 100mL,在0~20℃滴加到溶有醇的丙酮溶液中进行 氧化。
Jacobsen不对称环氧化反应是有机合成领域中一种重要的反应,它可以有效地将不对称性引入到环氧化合物的合成中。
本文将从反应机理、应用领域和未来发展方向等方面进行详细介绍。
一、反应机理Jacobsen不对称环氧化反应是由美国化学家Jacobsen等人于20世纪90年代初首次提出的。
它的反应机理如下:手性金属配合物与碳碳双键发生配位作用,形成一个活性中间体。
过氧化物与金属配合物发生氧化还原反应,从而实现环氧化合物的合成。
在反应过程中,手性金属配合物起到催化剂的作用,使得环氧化合物具有不对称结构。
二、应用领域Jacobsen不对称环氧化反应在有机合成领域具有广泛的应用。
它可以用于合成医药领域中的药物分子。
由于手性分子在生物活性中起到重要作用,因此能够合成具有不对称结构的环氧化合物对于开发新型药物具有重要的意义。
Jacobsen反应还可以应用于材料领域,合成具有特定空间结构的高分子材料,从而拓展新型功能材料的应用范围。
Jacobsen不对称环氧化反应还在农药合成和天然产物全合成中得到了广泛的应用。
三、未来发展方向随着有机化学合成领域的不断发展,Jacobsen不对称环氧化反应也在不断进行改进和拓展。
未来,可以通过改变金属配合物的结构和配体,提高反应的催化效率和选择性。
另外,还可以探索新的反应底物和反应条件,进一步拓展该反应的应用范围。
结合计算化学和实验方法,研究反应机理,也是未来发展的重要方向之一。
Jacobsen不对称环氧化反应是有机合成领域中一种重要的反应,它可以有效地引入不对称结构,拓展了有机合成的方法和应用领域。
随着有机合成领域的不断发展,相信Jacobsen不对称环氧化反应在未来会有更广阔的应用前景。
四、改进方法为了提高Jacobsen不对称环氧化反应的效率和选择性,研究人员可以通过改进金属配合物的结构和配体,来优化反应条件。
通过设计合适的手性配体,可以提高金属配合物对底物的识别能力,提高反应的立体选择性。