沪教版高三下册数学概率统计实验教案三级第二学期
- 格式:doc
- 大小:356.32 KB
- 文档页数:7
沪教版高中高三数学《频率与概率》教案及教学反思一、引言《频率与概率》是高中数学中的重要知识点,是学生理解概率统计的关键。
在授课时,我们采用了沪教版的教材,并结合自己的教学经验和研究成果,提出了一套基于互动性和实践性的教学方案。
本文旨在总结我们在教学中的具体措施和经验,并对教学成效进行反思。
二、教学设计1. 教学目标本节课通过学生的参与和探究,让学生理解频率、概率的概念,掌握事件的分类、根据频率估计概率、估计概率的精度以及概率加法公式的运用。
2. 教学内容教学内容分为以下几个模块:•分类与记录•事件的频率•事件的概率估计•精度的比较•概率的加法公式3. 教学方法为了增强学生的参与性和实践性,我们选择采用以下措施:•观察与记录:学生观察和记录更接近实际生活的情景,如抛硬币、掷骰子等情形。
•立体化呈现:在学生熟悉基本概念后,老师通过实物、图片、视频等形式进行立体化呈现,加深学生的认识与记忆。
•实验探究:在概念讲解的基础上,开展小型实验,让学生主动参与,探究与验证知识的正确性。
•课堂复习:在教学结束前,老师组织课堂复习,巩固学生理解和记忆,明确学习重点。
4. 教学流程•步骤一:介绍频率和概率的定义,进行分组讨论或豆腐块投票,收集学生的意见和感受,并指导学生将其整理为概括性的语言。
•步骤二:通过具体例子导入事件的频率概念,配以实物演示、模型展示等教学方式。
步骤三:学生通过小组合作和探究中,绘制事件分布列和频率表,并尝试估计概率,并借鉴实验结果对估计结果进行修正。
•步骤四:深入讲解频率与概率的本质区别,引导有针对性的实验设计和探究,激发学生对知识的探索兴趣。
步骤五:学生结合实验数据进行比较分析,从中找出遗漏并修正,最终得到一个准确的概率值。
•步骤六:讲解概率加法公式,并引导学生探究同一问题在不同场景下的应用。
•步骤七:清晰整理教学内容,并强调巩固学习内容的重要性,让学生课后对知识点进行再次复习。
三、评价与反思1. 教学成果评价教学效果良好,学生思维能力得到提升,概率概念掌握得更为牢固。
简单随机抽样
教学目标:1.结合实际问题情景,理解随机抽样的必要性和重要性
2.学会用简单随机抽样的方法从总体中抽取样本
教学重点:学会用简单随机抽样的方法从总体中抽取样本
教学过程:
1.总体和样本
在统计学中 , 把研究对象的全体叫做总体.
把每个研究对象叫做个体.
把总体中个体的总数叫做总体容量.
为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,
研究,我们称它为样本.其中个体的个数称为样本容量.
2.简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
3.简单随机抽样常用的方法:
(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;
③概率保证程度。
4.抽签法:
(1)给调查对象群体中的每一个对象编号;
(2)准备抽签的工具,实施抽签
(3)对样本中的每一个个体进行测量或调查
例:请调查你所在的学校的学生做喜欢的体育活动情况。
5.随机数表法:
例:利用随机数表在所在的班级中抽取10位同学参加某项活动。
课堂练习:
小结:本节重点介绍简单随机抽样常用的方法:⑴抽签法;⑵随机数表法;学会用简单随机抽样的方法从总体中抽取样本
课后作业:。
*18.5概率统计实验一、教学内容分析本节内容涉及到随机数问题 .利用概率统计实验来解决实际生活中的大量随机现象 .我们充分利用Scilab语言程序和几何概型的计算方法来解决这些问题,以达到利用计算机来解决随机现象 .一维随机数:等可能地落在(0,1)内的点所对应的实数叫做一维随机数.二维随机数:直角坐标系的平面上边长为1,其一个顶点在坐标原点,两边分别在OyOx、轴上的正方形内均匀分布点的坐标是二维随机数.伪随机数:利用计算机程序产生的一维随机数和二维随机数称为伪随机数.简称随机数.本课内容就是利用随机数在计算机上进行一些有趣的实验.二、教学目标设计1.理解随机数的基本概念;2.会用Scilab语言求一维和二维随机数;3.掌握随机投点法在实际问题中的基本应用.三、教学重点及难点重点:随机投点法的应用难点:几何概率、Scilab语言四、教学用具准备多媒体设备、网络(宋体四号)五、教学流程设计六、教学过程设计一、情景引入1.观察生活中无处不在的随机数问题:如点随机落入某一区域的概率、计算 的近似值方法等 .2.思考这容易引起我们思考用什么工具来完成上述问题,下面我们就这个问题展开讨论 .3.讨论1.本节中提到了几个概念?(分组讨论)2.对概率的基本概念是否熟悉?二、学习新课1.概念辨析一维随机数:等可能地落在(0,1)内的点所对应的实数叫做一维随机数.二维随机数:直角坐标系的平面上边长为1,其一个顶点在坐标原点,两边分别在Oy Ox 、轴上的正方形内均匀分布点的坐标是二维随机数.伪随机数:利用计算机程序产生的一维随机数和二维随机数称为伪随机数.简称随机数.本课内容就是利用随机数在计算机上进行一些有趣的实验. 2.例题分析例1 利用随机投点法求π得近似值. 解:如图: D 是正方形OABC 的内接圆.正方形的边长为1,在正方形内随机投N 个点,由n 个点落在D 内. 由几何概率:D OABC 4n N π==的面积正方形的面积,由此得:4nNπ=.只要统计随机投点P(x,y)落在D 中的点的个数n,即可求得π的近似值,0.5<是否成立即可. 统计投点落在D 内的个数的计算机程序框图如下:Scilab 语言程序:(N=);0;1:(1,2)[0.5,0.5];()0.51;;4/;()N input n fork Ns rand if norm s n n end endn n N disp n ====-<==+=*“”注:(1)rand(1,2)是1行2列随机数组,其中数的值均在0与1之间.(2)s 是1行2列的数组(行向量). (3)norm(s)表示向量的模.对于N=1000,10 000,100 000,三种实验结果列表如下:注:(1)表中计算机显示的结果当N=1 000时取3位小数,当N=10 000以上时,取4位小数.(2)关于几何概率的有关知识:(参考网页)(1) /upload/html/2007/5/14/zlm2377200751411324040558.doc(2) /lijh/html/kecheng/mathcrlm/D_lee02.ppt例 2 用随机投点法求抛物线24y x =-与x 轴组成的封闭图形的面积.解:在正方形中随机投N 个点,如果其中有n 个点落在所求得封闭图形(阴影部分)内,考虑到投点是等可能的,所以ABCD nN=阴影部分的面积正方形的面积,正方形ABCD 的面积是16,所以16=.nN阴影部分的面积 为了得到区间(2,2)-上的随机数,我们把计算机中的随机数取出后进行下列计算:((1)0.5)4,4(2).x rand y rand =-*=* (x,y )是均匀分布在正方形ABCD 内的随机数.计算投点落在阴影部分内的个数的Scilab 语言程序:^()0;1:()4((1)0.5);()4(2);()4()21;;16/;()N input N n for k Nx k rand y k rand ify k x k n n end endss n N disp ss =====*-=*<=-=+=*“”得到阴影部分面积(抛物线与x 轴组成的封闭图形的面积):3.问题拓展本节课中涉及到几何概型、Scilab 语言程序 .请同学们可参阅提供的网页,自行提出问题,进行讨论 .三、巩固练习已知图中四点的坐标:A(-1,0)、B(1,0)、C(0,1)、D(0,14),利用随机投点法求下图中月牙形(阴影部分)的面积.月牙形的边ACB 是圆心为O 的圆弧,椭圆弧ADB 是长轴为AB,短半轴为OD 的椭圆的一部分.四、课堂小结本节我们在理解几何概率和随机数的前提下进行了一些有趣的实验,直到利用Scilab 语言进行的概率统计试验的重要性,基本了解随机投点法在实际问题中的基本应用.五、作业布置:略七、教学设计说明本案例采用网络利用讲解结合板演,充分利用多媒体工具完成教学任务 .由于涉及内容较新、较广,对不同类型的学生的要求是不同的 .所以,充分利用网络资源,尽量做到信息技术与传统教学相结合,进而达到欲设效果 .同时对新的教学方法(如拾荒式教学)进行尝试.。
2019-2020年高三数学下118.4《统计实例分析》教案(2)沪教版一、教学目标设计(1)正确理解样本数据标准差的意义和作用,学会计算数据的标准差.(2)能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.(3)会用样本的基本数字特征估计总体的基本数字特征.(4)形成对数据处理过程进行初步评价的意识.(5)会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,进一步体会用样本估计总体的思想,能够辨证地理解数学知识与现实世界的联系.二、教学重点及难点重点:用样本平均数和标准差估计总体的平均数与标准差.难点:能应用相关知识解决简单的实际问题.三、教学过程设计【创设情境】1.对一个未知总体,我们常用样本的频率分布估计总体的分布,其中表示样本数据的频率分布的基本方法有哪些?2.美国NBA在xx——xx年度赛季中,甲、乙两名篮球运动员在随机抽取的12场比赛中的得分情况如下:甲运动员得分:12,15,20,25,31,31, 36,36,37,39,44,49.乙运动员得分: 8,13,14,16,23,26, 28,38,39,51,31,29.如果要求我们根据上面的数据,估计、比较甲,乙两名运动员哪一位发挥得比较稳定,就得有相应的数据作为比较依据,即通过样本数据对总体的数字特征进行研究,用样本的数字特征估计总体的数字特征.【探究新知】探究(一):众数、中位数和平均数思考1:在初中我们学过众数、中位数和平均数的概念,这些数据都是反映样本信息的数字特征,对一组样本数据如何求众数、中位数和平均数?思考2:在城市居民月均用水量样本数据的频率分布直方图中,你认为众数应在哪个小矩形内?由此估计总体的众数是什么?思考3:在频率分布直方图中,每个小矩形的面积表示什么?中位数左右两侧的直方图的面积应有什么关系?思考4:在城市居民月均用水量样本数据的频率分布直方图中,从左至右各个小矩形的面积分别是0.04,0.08,0.15,0.22,0.25,0.14,0.06,0.04,0.02.由此估计总体的中位数是什么?思考5:平均数是频率分布直方图的“重心”,在城市居民月均用水量样本数据的频率分布直方图中,各个小矩形的重心在哪里?从直方图估计总体在各组数据内的平均数分别为多少?思考6:根据统计学中数学期望原理,将频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积相加,就是样本数据的估值平均数. 由此估计总体的平均数是什么?思考7:从居民月均用水量样本数据可知,该样本的众数是2.3,中位数是2.0,平均数是1.973,这与我们从样本频率分布直方图得出的结论有偏差,你能解释一下原因吗?[说明]频率分布直方图损失了一些样本数据,得到的是一个估计值,且所得估值与数据分组有关.在只有样本频率分布直方图的情况下,我们可以按上述方法估计众数、中位数和平均数,并由此估计总体特征.思考8:一组数据的中位数一般不受少数几个极端值的影响,这在某些情况下是一个优点,但它对极端值的不敏感有时也会额成为缺点,你能举例说明吗?样本数据的平均数大于(或小于)中位数说明什么问题?你怎样理解“我们单位的收入水平比别的单位高”这句话的含义?探究(二):标准差样本的众数、中位数和平均数常用来表示样本数据的“中心值”,其中众数和中位数容易计算,不受少数几个极端值的影响,但只能表达样本数据中的少量信息. 平均数代表了数据更多的信息,但受样本中每个数据的影响,越极端的数据对平均数的影响也越大.当样本数据质量比较差时,使用众数、中位数或平均数描述数据的中心位置,可能与实际情况产生较大的误差,难以反映样本数据的实际状况,因此,我们需要一个统计数字刻画样本数据的离散程度.思考1:在一次射击选拔赛中,甲、乙两名运动员各射击10次,每次命中的环数如下:甲:7 8 7 9 5 4 9 10 7 4乙:9 5 7 8 7 6 8 6 7 7甲、乙两人本次射击的平均成绩分别为多少环?思考2:甲、乙两人射击的平均成绩相等,观察两人成绩的频率分布条形图,你能说明其水平差异在那里吗?思考3:对于样本数据x 1,x 2,…,x n ,设想通过各数据到其平均数的平均距离来反映样本数据的分散程度,那么这个平均距离如何计算?思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用s 表示.假设样本数据x 1,x 2,…,x n 的平均数为,则标准差的计算公式是:思考5:在数轴上,这两个统计数据有什么几何意义?由此说明标准差的大小对数据的离散程度有何影响? 【典型例题】计算甲、乙两名运动员的射击成绩的标准差,比较其射击水平的稳定性. 甲:7 8 7 9 5 4 9 10 7 4 乙:9 5 7 8 7 6 8 6 7 7 见ppt 【课堂小结】1.用样本的数字特征估计总体的数字特征,是指用样本的众数、中位数、平均数和标准差等统计数据,估计总体相应的统计数据.2.平均数对数据有“取齐”的作用,代表一组数据的平均水平.标准差描述一组数据围绕平均数波动的幅度.在实际应用中,我们常综合样本的多个统计数据,对总体进行估计,为解决问题作出决策.2019-2020年高三数学下 18.1《总体特征数之平均数》学案 沪教版【目标引领】 1. 学习目标:理解为什么能用样本数据的平均值估计总体的水平。
17.1古典概率(2)一、教学内容分析本节课是高中数学古典概率的第二课时,是在学生学习古典概率第一节课情况下的教学.学生已经掌握了古典概率的基本概念,并且会求简单的古典概率.学好古典概率可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中常见的一些问题.二、教学目标设计在前面教学的基础上进一步加深对古典概率的理解,会运用古典概率的公式解决一些概率问题.三、教学重点及难点重点是求随机事件的概率,难点是运用前面学过的排列组合的知识解决随机事件的基本事件数及试验中所有的基本事件数.四、教学用具准备多媒体设备五、教学过程设计一、课堂复习回顾上节课的基本概念,包括基本事件、随机现象、随机事件,复习古典概率的概念,及其求古典概率的公式.二、学习新课例1:一枚硬币连掷四次,试求恰好出现两次是正面的概率?最后两次出现正面的概率?解:一枚硬币连掷四次会有24=16种结果,我们可以将恰好出现两次是正面记为随机事件A,最后两次出现正面记为随机事件B.则随机事件A所包含的基本事件数就为24C,即四次中选择两次为正面,其余两次则为反面,故244C3P(A)28==.随机事件B所包含的基本事件数为22,即前两次有22个结果,后两次均为正面,故2421P(B)24==.例2:一批产品共有82只,其中6只特级品,现拿出2只; (1)全是特级品的概率? (2)只有1只特级品的概率? (3)都不是特级品的概率?解:从82只产品中拿出2只会有282C 种结果,全是特级品记为随机事件A ,只有1只特级品记为随机事件B ,都不是特级品记为随机事件C.(1) 随机事件A 包含的基本事件数为26C ,故26282C 5P(A)C 1107==(2) 随机事件B 包含的基本事件数为11676C C ,故11676282C C 152P(B)C 1107== (3) 随机事件C 包含的基本事件数为276C ,故276282C P(C)C =.例3:现有一批产品共10件,其中8个正品,2个次品;(1)若从中取1件,然后放回,再取1件,再放回,再取1件,求连续3次都是正品的概率?(2)若从中1次取3件,求3件都是正品的概率 解:我们可以将产品编号为1至10号.(1) 三次放回地取产品会有103个结果,连续三次都是正品记为随机事件A ,随机事件A所包含的基本事件数为83,则33864P(A)10125==.(2) 从中一次取3件,会有310C 种结果,3件都是正品记为随机事件B ,随机事件B 所包含为的基本事件数为38C,则38310C 7P(B)C 15==.例4:某单位36人,A 型血12人,B 型血10人,AB 型血8人,O 型血6人,现任取2人,求同一血型概率.解:从36人中选2人,会有236C 种结果.所选2人为同一血型记为随机事件A ,随机事件A 包括同为A 型,同为B 型,同为AB 型,同为O 型.同为A 型有212C 人,同为B 型有210C 人,同为AB 型有28C 人,同为O 型有26C 人.随机事件A 包括的基本事件数为212C +210C +28C +26C .故2222121086236C C C C 11P(A)=C 25+++= 例5:从一副牌(52)张中,任取4张,求下列情况: (1)取出4张全是“A ”; (2)取出4张的数字相同; (3)取出4张全是黑桃; (4)取出4张的花色相同; (5)取出4张的花色各不相同. 解:取出4张有452C 个结果.(1)4张全是“A ”记为随机事件A ,只有一个结果,4张为4个花色的A ,故45211P(A)C 270725== (2)取出4张的数字相同记为随机事件B ,52张牌中共有13种数字,每种数字有4个花色,所以随机事件B 包括113C 个基本事件,故所求随机事件概率为 113452C 1P(B)C 20825==. (3)取出4张全是黑桃记为随机事件C ,13张黑桃中取出4张,所以有413452C 11P(C)=C 4165=.(4)取出4张相同花色记为随机事件D ,4种花色选一种14C ,在选出的花色中13张牌再选出4张相同花色413C ,故随机事件D 共有14413C C个基本事件,故14413452C C P(D)=C =444165. 例6:有九张卡片分别写着数字1、2、3、4、5、6、7、8、9,甲、乙两人依次从中各抽取一张卡片(不放回).(1)求甲抽到写有奇数数字卡片,且乙抽到写有偶数数字的概率; (2)求甲、乙二人至少抽到一张奇数数字卡片的概率.解:(1)甲、乙二人一次从九张卡片中各抽取一张的结果有1198C C ,甲抽到写有奇数数字卡片,且乙抽到写有偶数数字记为随机事件A ,随机事件A 包含的基本事件数为1154C C ,故115429C C 205P(A)=P 728==.(2)甲、乙二人至少抽到一张奇数数字卡片记为随机事件B ,随机事件B 包括“甲抽到奇数,乙抽到偶数”、“甲抽到偶数,乙抽到奇数”、“甲乙均抽到奇数”,故111125445529C C C C P 605P(B)=P 726++== 例7:从1到9九个数字中不重复地取出3个组成3位数,求: (1)这个3位数是偶数的概率; (2)这个3位数是5的倍数的概率; (3)这个3位数是4的倍数的概率; (4)这个3位数是3的倍数的概率.解:9个数字中取出3个组成3位数,有39P 个结果.(1)“3位数是偶数”记为随机事件A ,有1248P P 个结果,124839P P P(A)=P =49;(2)“3位数是5的倍数”记为随机事件B ,末尾须是5,故随机事件B 包含28P 个结果,所以2839P 1P(B)=P 9=;(3)“3位数是4的倍数”记为随机事件C ,3位数是4的倍数须后两位能被4整除,后两位可以是12、16、24、28、32、36、48、52、56、64、68、72、76、84、94、98,只要定下百位即可,所以随机事件C 包含1716P个结果,故173916P P(C)=P 29=.(4)“3位数是3的倍数”记为随机事件D ,3位数是3的倍数须各个位置上的数字之和能被3整除,9个数字,其中3、6、9能被3整除,1、4、7被3除余1,2、5、8被3除余2,所以3位数被3整除包括4种情况:三个数字均被3整除;三个数字都被3除余1;三个数字都被3除余2;三个数字一个被3整除、一个被3除余1、一个被3除余2,故333111333333339P (C +C +C +C C C )5P(D)P 14==. 三、课堂小结学习古典概率需要了解所求随机事件所包含的基本事件数,在这过程中,简单问题我们可以通过列举法、图表法简单得可以数出,但相对于复杂问题,就需要大家利用排列组合的知识来加以解决,我们既要搞清楚基本事件的总数,又要搞清楚随机事件的基本事件数,只有这样才能准确地求随机事件的概率. 四、作业布置(略)五、教学设计说明这是古典概率的第二节课,在前面一节课中学生们已经对概率有了一定了解,会计算一些简单概率问题,本节课是对概率学习的一个提高.学生在前面一个阶段学习过排列组合,所以对于本节课的学习一方面是巩固古典概率,另一方面也是对前面排列组合学习的复习和实际应用.在课程设计中以讲解例题为主,题目由简到难,层层递进,既有数字问题,也有扑克牌问题,对于例题的选取注意了相对的全面性,在方法上注意以排列组合为主,还加了隔板法的问题,希望对学生们学习古典概率有帮助.。
概率统计实验【教学目标】1.理解随机数的基本概念;2.会用Scilab 语言求一维和二维随机数; 3.掌握随机投点法在实际问题中的基本应用。
【教学重难点】重点:随机投点法的应用。
难点:几何概率、Scilab 语言。
【教学准备】多媒体设备、网络。
【教学流程】【教学过程】一、情景引入1.观察生活中无处不在的随机数问题:如点随机落入某一区域的概率、计算的近似值方法等。
引入、提出问题 网络几何概型例题拓展Scilab 语言练习2.思考这容易引起我们思考用什么工具来完成上述问题,下面我们就这个问题展开讨论。
3.讨论(1)本节中提到了几个概念?(分组讨论) (2)对概率的基本概念是否熟悉? 二、学习新课1.概念辨析一维随机数:等可能地落在内的点所对应的实数叫做一维随机数。
二维随机数:直角坐标系的平面上边长为1,其一个顶点在坐标原点,两边分别在轴上的正方形内均匀分布点的坐标是二维随机数。
伪随机数:利用计算机程序产生的一维随机数和二维随机数称为伪随机数。
简称随机数。
本课内容就是利用随机数在计算机上进行一些有趣的实验。
2.例题分析例1:利用随机投点法求得近似值。
解:如图:D 是正方形OABC 的内接圆。
正方形的边长为1,在正方形内随机投N 个点,由n 个点落在D 内。
由几何概率:,由此得:。
只要统计随机投点P(x ,y)落在D 中的点的个数n ,即可求得π的近似值,只要判断是否成立即可。
统计投点落在D 内的个数的计算机程序框图如下:(0,1)Oy Ox 、πe e D OABC 4n N π==e 的面积正方形的面积4nNπ=e 0.5<eScilab 语言程序:注:(1)rand(1,2)是1行2列随机数组,其中数的值均在0与1之间。
(N=);0;1:(1,2)[0.5,0.5];()0.51;;4/;()N input n fork Ns rand if norm s n n end endn n N disp n ====-<==+=*“”(2)s 是1行2列的数组(行向量)。
高三数学复习教案:概率统计一、教学目标1.理解概率统计的基本概念,掌握概率的计算方法。
2.能够运用概率统计的方法解决实际问题。
3.提高学生分析问题和解决问题的能力。
二、教学内容1.概率的基本概念与计算方法2.离散型随机变量及其分布列3.连续型随机变量及其概率密度函数4.随机变量的期望和方差5.统计量的概念与计算方法6.假设检验与置信区间三、教学重点与难点1.教学重点:概率的基本概念与计算方法,离散型随机变量及其分布列,连续型随机变量及其概率密度函数,随机变量的期望和方差。
2.教学难点:离散型随机变量分布列的求解,连续型随机变量概率密度函数的应用,随机变量期望和方差的计算。
四、教学过程第一课时:概率的基本概念与计算方法1.引入同学们,大家好!今天我们开始复习概率统计这一模块。
让我们回顾一下概率的基本概念和计算方法。
2.概念讲解(1)概率的定义:在一定条件下,某个事件发生的可能性大小。
①0≤P(A)≤1②P(∅)=0,P(S)=1③对于任意可列个两两互斥的事件A1,A2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+…3.概率的计算方法(1)古典概型:若样本空间S中的每个基本事件等可能发生,则事件A的概率为:P(A)=A中基本事件数/样本空间S中基本事件数(2)条件概率:在事件B发生的条件下,事件A发生的概率,记为P(A|B)。
根据条件概率的定义,有:P(A|B)=P(AB)/P(B)(3)乘法公式:P(AB)=P(A)P(B|A)(4)全概率公式与贝叶斯公式4.例题讲解(1)古典概型:掷一枚硬币,求正面朝上的概率。
(2)条件概率与乘法公式:甲、乙两人比赛,甲胜的概率为0.6,乙胜的概率为0.4。
若甲先赢一局,求甲最终获胜的概率。
(3)全概率公式与贝叶斯公式:某工厂有两个车间,第一车间生产的产品占60%,第二车间生产的产品占40%。
第一车间不合格率为0.01,第二车间不合格率为0.02。
从工厂中随机抽取一件产品,发现不合格,求这件产品来自第一车间的概率。
第8课时:线性回归方程【目标引领】 1. 学习目标:了解非确定性关系中两个变量的统计方法;掌握散点图的画法及在统计中的作用,掌握 回归直线方程的求解方法。
2. 学法指导:①求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实标意义.否则,求出的回归直线方程毫无意义.因此,对一组数据作线性回归分析时,应先看其散点图是否成线性.②求回归直线方程,关键在于正确地求出系数a 、b ,由于求a 、b 的计算量较大,计算时仔细谨慎、分层进行,避免因计算产生失误.③回归直线方程在现实生活与生产中有广泛的应用.应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并对情况进行估测、补充.因此,学过回归直线方程以后,应增强学生应用回归直线方程解决相关实际问题的意识.【教师在线】 1. 解析视屏:1.相关关系的概念在实际问题中,变量之间的常见关系有两类:一类是确定性函数关系,变量之间的关系可以用函数表示。
例如正方形的面积S 与其边长x 之间的函数关系2x S =(确定关系);一类是相关关系,变量之间有一定的联系,但不能完全用函数来表达。
例如一块农田的水稻产量与施肥量的关系(非确定关系)相关关系:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。
相关关系与函数关系的异同点: 相同点:均是指两个变量的关系。
不同点:函数关系是一种确定关系;而相关关系是一种非确定关系;函数关系是自变量与因变量之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系。
2.求回归直线方程的思想方法观察散点图的特征,发现各点大致分布在一条直线的附近,思考:类似图中的直线可画几条?引导学生分析,最能代表变量x 与y 之间关系的直线的特征:即n 个偏差的平方和最小,其过程简要分析如下:设所求的直线方程为ˆybx a =+,其中a 、b 是待定系数。
18.4(3)统计实例分析一、教学目标设计通过实例进一步体会分布的意义和作用.进一步体会样本估计总体的思想,会解决一些简单的实际问题.二、教学重点及难点重点:用样本平均数和标准差估计总体的平均数与标准差.难点:能应用相关知识解决简单的实际问题.三、教学过程设计【知识回顾】1.如何根据样本频率分布直方图,分别估计总体的众数、中位数和平均数?2.对于样本数据x 1,x 2,…,x n,其标准差如何计算? 【知识补充】1.标准差的平方s 2称为方差,有时用方差代替标准差测量样本数据的离散度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.2.现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.【例题分析】例1 画出下列四组样本数据的条形图,说明他们的异同点.(1) 5,5,5,5,5,5,5,5,5;(2) 4,4,4,5,5,5,6,6,6;(3) 3,3,4,4,5,6,6,7,7;(4) 2,2,2,2,5,8,8,8,8.见ppt例2 甲、乙两人同时生产内径为25.40mm 的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各随机抽取20件,量得其内径尺寸如下(单位:mm):甲:25.46 25.32 25.45 25.39 25.36 25.34 25.42 25.45 25.38 25.42 25.39 25.43 25.39 25.40 25.44 25.40 25.42 25.35 25.41 25.39乙:25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.49 26.36 25.34 25.33 25.43 25.43 25.32 25.47 25.31 25.32 25.32 25.32 25.48从生产零件内径的尺寸看,谁生产的零件质量较高?见ppt[说明] 1.生产质量可以从总体的平均数与标准差两个角度来衡量,但甲、乙两个总体的平均数与标准差都是不知道的,我们就用样本的平均数与标准差估计总体的平均数与标准差.2.问题中25.40mm是内径的标准值,而不是总体的平均数.例3 以往招生统计显示,某所大学录取的新生高考总分的中位数基本稳定在550分,若某同学今年高考得了520分,他想报考这所大学还需收集哪些信息?要点:(1)查往年录取的新生的平均分数.若平均数小于中位数很多,说明最低录取线较低,可以报考;(2)查往年录取的新生高考总分的标准差.若标准差较大,说明新生的录取分数较分散,最低录取线可能较低,可以考虑报考.见ppt例4 在去年的足球甲A联赛中,甲队每场比赛平均失球数是1.5,全年比赛失球个数的标准差为1.1;乙队每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4.你认为下列说法是否正确,为什么?(1)平均来说甲队比乙队防守技术好;(2)乙队比甲队技术水平更稳定;(3)甲队有时表现很差,有时表现又非常好;(4)乙队很少不失球.见ppt例5 有20种不同的零食,它们的热量含量如下:110 120 123 165 432 190 174 235 428 318 249 280 162 146 210 120 123 120 150 140(1)以上20个数据组成总体,求总体平均数与总体标准差;(2)设计一个适当的随机抽样方法,从总体中抽取一个容量为7的样本,计算样本的平均数和标准差.见ppt【课堂小结】1.对同一个总体,可以抽取不同的样本,相应的平均数与标准差都会发生改变.如果样本的代表性差,则对总体所作的估计就会产生偏差;如果样本没有代表性,则对总体作出错误估计的可能性就非常大,由此可见抽样方法的重要性.2.在抽样过程中,抽取的样本是具有随机性的,如从一个包含6个个体的总体中抽取一个容量为3的样本就有20中可能抽样,因此样本的数字特征也有随机性.用样本的数字特征估计总体的数字特征,是一种统计思想,没有惟一答案.3.在实际应用中,调查统计是一个探究性学习过程,需要做一系列工作,我们可以把学到的知识应用到自主研究性课题中去.。
18.2 抽样技术一、教学内容分析在实际统计应用中,如何根据样本情况对总体情况作出推断是统计学的核心问题.而样本的合理选取和科学抽样方法的正确选用是解决上述核心问题的关键.本节内容是在掌握了统计学中的一些基本概念和基本统计量的基础上,学习科学的抽样技术,掌握常用的抽样方法,为统计估计打下基础.二、教学目标设计理解抽样的必要性与科学性,掌握抽样的基本方法和抽样原则;理解总体与样本的联系与区别,理解样本容量与统计估计精确度的关系.三、教学重点及难点教学重点:抽样方法的科学选择.教学难点:运用样本统计分析推断总体四、教学流程设计五、教学过程设计一、情景引入播放奥运“鸟巢”的施工现场采访武钢党委书记顾强圻的视频.思考:“鸟巢”钢筋铁骨中最坚硬的一部分400吨Q460型自主研发钢材的质量检验(如厚度、强韧度等)如何完成?[说明]北京奥运牵动着每个国人的心.以让国人骄傲的“鸟巢”引入课题《抽样技术》,容易激发起学生学习的积极性.二、学习新课1.基本概念(1)样本:从总体中抽出的一部分个体所组成的集合叫做样本(也叫做子样).(2)样本容量:样本中所含个体的个数叫做样本容量.(3)抽样:抽取样本的过程叫做抽样.[说明]在学习基本概念的同时,通过具体实例说明抽样的必要性和科学抽样的重要性.2.常用抽样方法介绍方法一:随机抽样若在抽样过程中能使总体中的每一个个体都有同样的可能性被选入样本,则这种抽样方法叫做随机抽样.当样本容量不大时,随机抽样可采用抽签法;当样本容量较大时,随机抽样可采用随机数进行抽样.方法二:系统抽样把总体中的每一个个体编上号,按某种相等的间隔抽取样本的方法叫做系统抽样.方法三:分层抽样把总体分成若干个部分,然后再每个部分进行随机抽样的方法,叫做分层抽样.[说明]由学生自行阅读教材,初步了解上述常用的抽样方法.3、实例说明学校即将召开学生代表大会.在准备期间,筹备委员会为了了解学生的所思所想,准备进行一系列抽样调查:调查一:学生对校园环境满意度调查调查方法——随机抽样:在全校千余名学生的学籍卡中,随机抽取50位学生开展调查.总结给出美化校园环境的措施与方案.调查二:高一理科特色班学生数学素养调查调查方法——系统抽样:在高一理科特色班48名学生中,抽出12名学生,根据系统抽样法,先在1至4号中随机抽取一个学号a,再将班级学号被4除余a的学生抽出组成一个样本进行调查测试.通过调查反馈,来更好地开展理科特色班的教学.调查三:高中学生体煅达标抽样测试为了更合理地让学生在校内做到劳逸结合,校方连同体育组和学生会等部门,决定根据学生体煅现状,制定出校内学生体煅计划.受场地、人员、时间等限制,将抽取部分学生进行体煅达标抽样测试.高一360名学生抽取9人,高二400名学生中抽取10人,高三440名学生中抽取12人,组成一个容量为31人的样本开展调查测试.[说明]通过上述与学生贴近的实例,帮助学生进一步理解上述常用的三种抽样方法.三、尝试练习阅读材料:北京奥运虽然已经落幕,但新建的奥运场馆和国家大剧院尽展风姿,基础设施不断完善,城市环境更加优美,由此带来的城市变化逐渐形成了对外地游客新的吸引力,使北京的国内旅游市场表现出更大的潜力.北京假日旅游市场兴旺平稳,活跃安全,秩序景然,效益增加,在京旅游的满意度也得到提高.2008年“十一”黄金周即将到来,北京市统计调查咨询中心将在“十一“期间的开展黄金周游客满意度调查.小组讨论:请给出北京市统计调查咨询中心一个合理的抽样调查方案,并说明采用的抽样方法. [说明]学以致用,让学生体会数学的实用性.四、课堂小结掌握科学的抽样方法,并会合理选择运用于实际工作生活中.五、作业布置习题18.2七、教学设计说明本节课从生活实际出发,让学生理解常用抽样方法的合理选择和科学运用.通过阅读教材,提高学生的阅读理解能力.在由学生讨论,合作完成抽样调查统计的过程中,去体会抽样技术的科学性和必要性.同时培养了学生的团队意识和协作精神.。
高一上第一章集合与命题一集合1.1 集合及其表示法1.2 集合之间的关系1.3 集合的运算二四种命题的形式1.4 命题的形式及等价关系三充分条件与必要条件1.5 充分条件、必要条件1.6 子集与推出关系第二章不等式2.1 不等式的基本性质2.2 一元二次不等式的解法2.3 其他不等式的解法2.4 基本不等式及其应用*2.5 不等式的证明第三章函数的基本性质3.1 函数的概念3.2 函数关系的建立3.3 函数的运算3.4 函数的基本性质第四章幂函数、指数函数和对数函数(上)一幂函数4.1 幂函数的性质与图像二指数函数4.2 指数函数的性质与图像*4.3 借助计算器观察函数递增的快慢高一下第四章幂函数、指数函数和对数函数(下)三对数4.4 对数的概念及其运算四反函数4.5 反函数的概念五对数函数4.6 对数函数的性质与图像六指数方程和对数方程4.7 简单的指数方程4.8 简单的对数方程第五章三角比一任意角的三角比5.1 任意角及其度量5.2 任意角的三角比二三角恒等式5.3 同角三角比的关系和诱导公式5.4 两角和与差的正弦、余弦和正切5.5 二倍角与半角的正弦、余弦和正切三解斜三角形5.6 正弦定理、余弦定理和解斜三角形第六章三角函数一三角函数的图像及性质6.1 正弦函数和余弦函数的图像与性质6.2 正切函数的图像与性质6.3 函数y=Asin(ωx+ψ)的图像与性质二反三角函数与最简三角方程6.4 反三角函数6.5 最简三角方程高二上第七章数列与数学归纳法一数列7.1 数列7.2 等差数列7.3 等比数列二数学归纳法7.4 数学归纳法7.5 数学归纳法的应用7.6 归纳—猜想—证明三数列的极限7.7 数列的极限7.8 无穷等比数列各项的和第八章平面向量的坐标表示8.1 向量的坐标表示及其运算8.2 向量的数量积8.3 平面向量的分解定理8.4 向量的应用第九章矩阵和行列式初步一矩阵9.1 矩阵的概念9.2 矩阵的运算二行列式9.3 二阶行列式9.4 三阶行列式第十章算法初步10.1 算法的概念10.2 程序框图*10.3 计算机语句和算法程序高二下第十一章坐标平面上的直线11.1 直线的方程11.2 直线的倾斜角和斜率11.3 两条直线的位置关系11.4 点到直线的距离第十二章圆锥曲线12.1 曲线和方程12.2 圆的方程12.3 椭圆的标准方程12.4 椭圆的性质12.5 双曲线的标准方程12.6 双曲线的性质12.7 抛物线的标准方程12.8 抛物线的性质第十三章复数13.1 复试的概念13.2 复数的坐标表示13.3 复数的加法和减法13.4 复数的乘法和除法13.5 复数的平方根和立方根13.6 实系数的一元二次方程高三上第十四章空间直线与平面14.1 平面及其基本性质14.2 空间直线与直线的位置关系14.3 空间直线与平面的位置关系14.4 空间平面与平面的位置关系第十五章简单集合体一多面体15.1 多面体的概念15.2 多面体的直观图二旋转体15.3 旋转体的概念三几何体的表面积、体积和球面距离15.4 几何体的表面积15.5 几何体的体积15.6 球面距离第十六章排列组合与二项式定理16.1 计数原理Ⅰ——乘法原理16.2 排列16.3 计数原理Ⅱ——加法原理16.4 组合16.5 二项式定理高三下第十七章概率论初步17.1 古典概型17.2 频率与概率第十八章基本统计方法18.1 总体和样本18.2 抽样技术18.3 统计估计18.4 实例分析*18.5 概率统计实验。
第三单元统计(单元教学设计)一、教学目标1.1 知识目标:学生初步了解统计的概念、数据的收集与整理、数据的读取、数据的分析的方法,学生能够对图形进行分析,能够解决相关问题。
1.2 能力目标:通过对图表的观察能够了解到统计,对数据的线性图分析能够正确解答有关问题,能够总结数据,对数据加深了解。
1.3 情感态度:学生能够通过学习统计,了解到数据分析的方法,认识到统计给我们的帮助,引导学生形成正确的数据意识。
二、教学内容2.1 统计的概念2.2 数据的收集与整理2.3 数据的读取2.4 数据的分析方法2.5 线性图的分析三、教学过程3.1 前置知识准备3.1.1 问答:强调统计对我们生活的影响,以及让学生谈谈在日常生活中已经学会的搜集和处理数据的方法。
3.1.2 教师采用物品统计法为学生做示范,如进行各种颜色的物品的统计,让学生了解到数据的收集与整理。
3.2 学习内容和方法3.2.1 师生展示法,学生了解到统计的概念,学习数据的收集与整理。
3.2.2 停、问、答辅助法,引导学生初步了解图形的分析方法,学习数据的读取和分析方法,进一步巩固所学内容。
3.2.3 举例法,教师通过举例,让学生了解到线性图的分析方法,在做题中巩固所学内容。
3.3 操作环节3.3.1 学生一起做统计教师将学生分成若干组,要求每个组员至少要找一种数据进行统计,然后共同整理数据并进行展示分析,学生能够动手操作加强记忆并且能够了解到统计数据的方法。
3.3.2 组内分析学生进行组内交流,共同学习统计方法及图表分析。
3.3.3 个人思考以个人为单位,对数据进行统计分析,并总结出相关数据信息。
四、教学评价4.1 课堂综合评价,包括学生组统计的展示、学生组内交流、个人思考总结的结果等。
4.2 教师对学生学习情况的评价,以学生的掌握程度进行评分。
五、教学反思本节课主要介绍了统计方法的基本知识,通过实际操作、案例分析和问题解决,使学生了解统计的意义和方法,掌握统计的基本工具,初步了解图表的读取和分析方法,在引导学生加强练习的同时,让学生更深刻的认识到数据的重要性,也更明确地了解到统计的作用。
【目标引领】 1. 学习目标:体会分布的意义和作用,学会列频率分布表,会画频率分布条形图、直方图,会用频率分布表或分布条形图、直方图估计总体分布,并作出合理解释。
在解决问题过程中,进一步体会用样本估计整体的思想,认识统计的实际作用,初步经历收集数据到统计数据的全过程,体会统计思维与确定性思维的差异。
2. 学法指导:当总体中的个体取不同数值很少时,可用频率分布表或频率分布条形图估计总体分布;当总体中的个体取不同数值较多,甚至无限时,可用频率分布表或频率分布直方图估计总体分布。
【教师在线】 1. 解析视屏:(1) 频率分布表:当总体很大或不便于获得时,可以用样本的频率分布来估计总体的频率分布。
我们把反映总体频率分布的表格为频率分布表。
(2) 编制频率分布表的步骤:① 求全距,决定组数和组距,组距=组数全距; ② 分组,区间一般左闭右开(为了遵循统计分组穷尽和互斥原则,所以统计上规定,凡是总体某一个单位的变量值是相邻两组的界限值,这一个单位归入作为下限值的那一组内,即所谓“上限不在内”原则);⑶ 登记频数,计算频率,列出频率分布表。
(3) 条形图:条形图是用宽度相同的条形的高度或长度来表示数据变动的图形。
条形图可以横置也可以纵置,纵置时又称为柱形图,也就是说,当各类别放在纵轴时,称为条形图;当各类别放在横轴时,称为柱形图。
(4) 频率分布直方图:直方图是用矩形的宽度和高度来表示频率分布的图形(在平面直角坐标中,横轴表示数据分组,即各组组距,纵轴表示频率)。
(5)直方图与条形图的不同点:① 条形图是用条形的长度表示各类别频数的多少,其宽度(表示类别)是固定的;直方图是用面积表示各组频率的多少,矩形的高度表示每一组的频率除以组距,宽度则表示各组的组距,因此其高度与宽度均有意义。
② 此外,由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列。
2. 经典回放:例1 :为检测某产品的质量,抽取了一个容量为30的样本,检测结果为一级品5件,二级品8件,三级品13件,次品4件。
统计估计【教学目标】1.理解和掌握统计估计的两种方法:概率估计、参数估计;2.会计算用样本的频率、均值和标准差来估计总体的频率、均值和标准差。
【教学重难点】用样本的频率、均值和标准差来估计总体的频率、均值和标准差。
【教学过程】一、情景引入1.观察:(2)从一定的高度落下的图钉,落地后可能图钉尖着地,也可能图钉尖不找地,估计一下哪种事件的概率更大,与同学合作,通过做实验来验证一下你事先估计是否正确?(3)实验是估计概率大小的一种方法。
问题一:上面所说的事件如果不做实验,我们能否估计出事件发生的概率。
问题二:我们为什么要做这些实验?问题三:一枚图钉下落后针尖触地的概率有多大?(4)由于频率稳定于概率,所以可以用频率来估计概率。
2.思考:(1)随机事件在每次实验中发生与否具有不确定性;(2)实验次数逐渐增加后,事件出现的频率逐渐会趋于稳定;(3)可用稳定的频率值来估计概率的大小。
3.讨论:(1)你能根据实验结果估计一下图钉触地的机会是百分之几吗?(2)如果实验中两个人用的图钉不同形状,那么两种图钉针尖触地的机会相同吗? 实验结论:(1)通过实验的方法,用频率估计概率的大小,必须在相同的实验条件下进行。
(2)实验次数越多,得到的估计值就越好。
(3)不同小组实验得出的估计值可能不相同。
(4)要获得大量数据,最好借助集体的力量或计算机。
二、学习新课1.概念辨析:(1)概率估计:用样本中某事件出现的来频率估计该事件出现的概率,简称概率估计(又称:可能性估计);(2)参数估计:用样本的算术平均数和样本标准差估计总体均值和总体标准差,简称参数估计。
如果样本为,样本的容量为,那么可以用样本的平均值,作为总体均值的点估计值;用样本的标准差准差的点估计值;其中叫做均值的区间估计,叫做均值的区间估计。
2.例题分析:例1.估计在高架路行驶的一辆轿车分别是下列车的概率。
(1)小排量车;(2)中排量车;(3)大排量车。
18.4(1)统计实例分析一、教学目标设计(1)通过实例体会分布的意义和作用.(2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图.(3)通过实例体会频率分布直方图的特征,准确地做出总体估计.(4) 通过对样本分析和总体估计的过程,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.感受数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系.二、教学重点及难点重点:会列频率分布表,画频率分布直方图.难点:能通过样本的频率分布估计总体的分布.三、教学过程设计【创设情境】高三某班有50名学生,在数学考试后随机抽取10名,其考试成绩如下:82, 75, 61, 93, 62,55, 70, 68, 85, 78.如果要求我们根据上述抽样数据,估计该班数学的总体学习水平,特别是成绩优秀学生、成绩较差学生的分布状况,就需要有相应的数学方法作为理论指导,本节课我们将学习概率估计和参数估计.【探究新知】探究(一)我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,为我们提供解释数据的新方式.探究(二):频率分布直方图下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚的看到整个样本数据的频率分布情况.〈一〉频率分布的概念:频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为:(1)计算一组数据中最大值与最小值的差,即求极差;(2)决定组距与组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布直方图.频率分布直方图的特征:(1)从频率分布直方图可以清楚的看出数据分布的总体趋势.(2)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.见ppt探究(三)同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同.不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0.1和1为组距重新作图,然后谈谈你对图的印象?(把学生分成两大组进行,分别作出两种组距的图,然后组织同学们对所作图不同的看法进行交流……)接下来请同学们思考下面这个问题:〖思考〗如果当地政府希望使85%以上的居民每月的用水量不超出标准,根据频率分布表和频率分布直方图,你能对制定月用水量标准提出建议吗?(让学生仔细观察表和图)【典型例题】例某地区为了了解知识分子的年龄结构,随机抽样50名,其年龄分别如下:42,38,29,36,41,43,54,43,34,44,40,59,39,42,44,50,37,44,45,29,48,45,53,48,37,28,46,50,37,44,42,39,51,52,62,47,59,46,45,67,53,49,65,47,54,63,57,43,46,58.(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计年龄在32~52岁的知识分子所占的比例约是多少.见ppT【课堂小结】1.频率分布是指一个样本数据在各个小范围内所占比例的大小,总体分布是指总体取值的频率分布规律.我们通常用样本的频率分布表或频率分布直方图去估计总体的分布.2.频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.3.样本数据的频率分布表和频率分布直方图,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚的看到整个样本数据的频率分布情况,并由此估计总体的分布情况.。
沪教版高三下册数学概率统计实验教案三级第二学期做学问的功夫,是细嚼慢咽的功夫。
18.5?概率统计实验一、教学内容分析^p本节内容涉及到随机数问题?.利用概率统计实验来解决实际生活中的大量随机现象?.我们充分利用?Scilab?语言程序和几何概型的计算方法来解决这些问题,以达到利用计算机来解决随机现象?.一维随机数:等可能地落在?(0,1)?内的点所对应的实数叫做一维随机数.二维随机数:直角坐标系的平面上边长为?1,其一个顶点在坐标原点,两边分别在?O?、Oy?轴上的正方形内均匀分布点的坐标是二维随机数.伪随机数:利用计算机程序产生的一维随机数和二维随机数称为伪随机数.简称随机数.本课内容就是利用随机数在计算机上进行一些有趣的实验.二、教学目标设计1.理解随机数的基本概念;2.会用?Scilab?语言求一维和二维随机数;3.掌握随机投点法在实际问题中的基本应用.三、教学重点及难点重点:随机投点法的应用难点:几何概率、Scilab?语言四、教学用具准备多媒体设备、网络(1)/upload//207/5/14/zlm2377200751411324040558.doc(2)/lijh//kecheng/mathcrlm/Dlee02.例?2 用随机投点法求抛物线y4?2?与?轴组成的封闭图形的面积.解:在正方形中随机投?N?个点,如果其中有?n?个点落在所求得封闭图形做学问的功夫,是细嚼慢咽的功夫。
(阴影部分)内,考虑到投点是等可能的,所以阴影部分的面积n?,正方形ABCD的面积N正方形?ABCD?的面积是?16,所以阴影部分的面积=?16n?.N为了得到区间?(?2,2)?上的随机数,我们把计算机中的随机数取出后进行下列计算:(rand?(1)0.5)4,?y4rand?(2).(,y)是均匀分布在正方形?ABCD?内的随机数.计算投点落在阴影部分内的个数的?Scilab?语言程序:( )Ninput“N( )n0;for?k1:?N(k?)4(rand?(1)0.5);y(k?)4rand?(2);if y(k?)?4(k?)^2nn1;end?;endss16n?/?N?;disp(?ss)得到阴影部分面积(抛物线与?轴组成的封闭图形的面积):第一次试验第二次试验第三次试验三次试验结投点数?N1000100?00010.768 10.663?6 10.673?010.784 10.628?8 10.655?810.688 10.582?4 10.633?9果平均值10.74710.624?910.654?23.问题拓展做学问的功夫,是细嚼慢咽的功夫。
第1课时:抽样方法(一)【目标引领】1.学习目标:(1)理解简单随机抽样的概念,会用简单随机抽样(抽签法、随机数表法)从总体中抽取样本。
(2)初步感受收集数据的科学性对决策所起的作用。
2.学法指导:统计的特征之一是通过部分的数据来推测全体数据的性质, 体会统计结果具有随机性,统计推断是有可能犯错误的,感受统计思维与确定性思维的不同。
统计思维和确定性思维一样成为人们不可缺少的思想武器。
【教师在线】1.解析视屏:数理统计学的核心问题是如何根据样本的情况对总体的情况作出一种推断。
这里包括两类问题:一类是如何从总体中抽取样本;另一类是如何根据对样本的整理、计算和分析,对总体的情况作出判断。
科学合理地抽取样本是对总体进行分析的前提。
简单随机抽样是在特定总体中抽取样本,总体中每一个个体被抽取的可能性是等同的,而且任何个体之间彼此被抽取的机会是独立的。
如果用从个体数为N的总体中抽取一个容量为n的样本,那么每个个体被抽取的可能性等于nN。
简单随机抽样在本章既是重点又是难点。
简单随机抽样是抽样中最简单的一种模型,它是本节另两种抽样方法,乃至更复杂的抽样方法的基础。
(1)关于简单随机抽样的定义,我们可以从以下几个方面来理解。
①它要求被抽取样本的总体的个体数有限。
这样,就便于对其中各个个体被抽取的可能性进行分析。
②它是从总体中逐个地进行抽取。
这样,就便于在抽样实践中进行操作。
③它是不放回抽样。
由于抽样实践中多采用不放回抽样,使其具有较广泛的实用性,而且由于所抽取的样本中没有被重复抽取的个体,便于进行有关的分析和计算。
④它是一种等可能抽样。
不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程当中,各个个体被抽取的可能性相等,从而保证了这种抽样方法的公平性。
(2)进行简单随机抽样,从含有N个个体的总体中抽取一个容量为n的样本时,在整个抽样过程中每个个体被抽取的可能性都相等,即等于nN。
(3)实施简单随机抽样,主要有两种方法:抽签法和随机数表法。
*18.5概率统计实验
一、教学内容分析
本节内容涉及到随机数问题 .利用概率统计实验来解决实际生活中的大量随机现象 .我们充分利用Scilab语言程序和几何概型的计算方法来解决这些问题,以达到利用计算机来解决随机现象 .
一维随机数:等可能地落在(0,1)内的点所对应的实数叫做一维随机数.
二维随机数:直角坐标系的平面上边长为1,其一个顶点在坐标原点,两边分别在Oy
Ox、轴上的正方形内均匀分布点的坐标是二维随机数.
伪随机数:利用计算机程序产生的一维随机数和二维随机数称为伪随机数.简称随机数.
本课内容就是利用随机数在计算机上进行一些有趣的实验.二、教学目标设计
1.理解随机数的基本概念;
2.会用Scilab语言求一维和二维随机数;
3.掌握随机投点法在实际问题中的基本应用.
三、教学重点及难点
重点:随机投点法的应用
难点:几何概率、Scilab语言
四、教学用具准备
多媒体设备、网络(宋体四号)
五、教学流程设计
六、教学过程设计
一、情景引入
1.观察
生活中无处不在的随机数问题:如点随机落入某一区域的概率、计算 的近似值方法等 .
2.思考
这容易引起我们思考用什么工具来完成上述问题,下面我们就这个问题展开讨论 .
3.讨论
1.本节中提到了几个概念?(分组讨论)
2.对概率的基本概念是否熟悉?
二、学习新课
1.概念辨析
一维随机数:等可能地落在(0,1)内的点所对应的实数叫做一维随机数.
二维随机数:直角坐标系的平面上边长为1,其一个顶点在坐标原点,两边分别在Oy Ox 、轴上的正方形内均匀分布点的坐标是二维随机数.
伪随机数:利用计算机程序产生的一维随机数和二维随机数称为伪随机数.简称随机数.
本课内容就是利用随机数在计算机上进行一些有趣的实验. 2.例题分析
例1 利用随机投点法求π得近似值. 解:如图: D 是正方形OABC 的内接圆.正方形的边长为1,在正方形内随机投N 个点,由n 个点落在D 内. 由几何概率:
D OABC 4
n N π
==的面积正方形的面积,
由此得:4n
N
π=.
只要统计随机投点P(x,y)落在D 中的点的个数n,即可求得π的近似值,
0.5<是否成立即可. 统计投点落在D 内的个数的计算机程序框图如下:
Scilab 语言程序:
(N=);0;1:(1,2)[0.5,0.5];()0.51;;4/;()
N input n fork N
s rand if norm s n n end end
n n N disp n ====-<==+=*“”
注:(1)rand(1,2)是1行2列随机数组,其中数的值均在0与1之间.
(2)s 是1行2列的数组(行向量). (3)norm(s)表示向量的模.
对于N=1000,10 000,100 000,三种实验结果列表如下:
注:(1)表中计算机显示的结果当N=1 000时取3位小数,当N=10 000以上时,取4位小数.
(2)关于几何概率的有关知识:(参考网页)
(1) /upload/html/2007/5/14/zlm23772
00751411324040558.doc
(2) /lijh/html/kecheng/mathcrlm
/D_lee02.ppt
例 2 用随机投点法求抛物线
24y x =-与x 轴组成的封闭图形的面
积.
解:在正方形中随机投N 个点,如果其中有n 个点落在所求得封闭图形
(阴影部分)内,考虑到投点是等可能的,所以
ABCD n
N
=阴影部分的面积正方形的面积,
正方形ABCD 的面积是16,所以
16=
.n
N
阴影部分的面积 为了得到区间(2,2)-上的随机数,我们把计算机中的随机数取出后进行下列计算:((1)0.5)4,4(2).x rand y rand =-*=* (x,y )是均匀分布在正方形ABCD 内的随机数.
计算投点落在阴影部分内的个数的Scilab 语言程序:
^()0;1:()4((1)0.5);()4(2);()4()2
1;;16/;()
N input N n for k N
x k rand y k rand if
y k x k n n end end
ss n N disp ss =====*-=*<=-=+=*“”
得到阴影部分面积(抛物线与x 轴组成的封闭图形的面积):
3.问题拓展
本节课中涉及到几何概型、Scilab 语言程序 .请同学们可参阅提供的网页,自行提出问题,进行讨论 .
三、巩固练习
已知图中四点的坐标:A(-1,0)、B(1,0)、C(0,1)、D(0,1
4
),利用随机投点法求下图中月牙形(阴影部分)的
面积.月牙形的边ACB 是圆心为O 的圆弧,椭圆弧ADB 是长轴为AB,短半轴为OD 的椭圆的一部分.
四、课堂小结
本节我们在理解几何概率和随机数的前提下进行了一些有趣的实验,直到利用Scilab 语言进行的概率统计试验的重要性,基本了解随机投点法在实际问题中的基本应用.
五、作业布置:略
七、教学设计说明
本案例采用网络利用讲解结合板演,充分利用多媒体工具完成教学任务 .由于涉及内容较新、较广,对不同类型的学生的要求是不同的 .所以,充分利用网络资源,尽量做到信息技术与传统教学相结合,进而达到欲设效果 .同时对新的教学方法(如拾荒式教学)进行尝试
.。