Science-2014-You-623-4
- 格式:pdf
- 大小:339.58 KB
- 文档页数:3
生命科学中YWHAZ的功能及其与肿瘤关联YWHAZ(也称为14-3-3ζ)是一种广泛存在于细胞中的蛋白质,与许多重要的细胞功能和信号调控过程密切相关。
在生命科学中,YWHAZ的功能及其与肿瘤的关联引起了广泛的研究兴趣。
本文将探讨YWHAZ在细胞中的功能和其在肿瘤发展中的作用。
首先,YWHAZ属于14-3-3家族蛋白质的一员,这个家族由七个亚型组成(α、β、γ、δ、ζ、η和θ),它们在细胞中广泛表达,并且存在于不同的亚细胞定位。
YWHAZ在信号转导、细胞凋亡、细胞周期调控、细胞增殖、细胞运动等多个细胞过程中发挥重要的功能。
一方面,YWHAZ通过与各种蛋白质的结合,参与了多种信号转导通路。
它能够调节蛋白质的亚细胞定位,影响它们的活性和稳定性。
例如,当YWHAZ与细胞凋亡相关的蛋白结合时,它能够抑制细胞凋亡的发生,从而促进细胞的存活。
此外,YWHAZ还参与了细胞周期的调控,通过与细胞周期蛋白结合,影响细胞的进程和细胞周期的顺利进行。
另一方面,YWHAZ与肿瘤的关系备受关注。
研究表明,YWHAZ在肿瘤的发生和发展中起到重要的作用。
例如,一些研究发现,YWHAZ的表达水平在多种肿瘤中明显升高。
高水平的YWHAZ表达与肿瘤的侵袭、转移和预后不良相关。
此外,YWHAZ还参与了肿瘤细胞的增殖和耐药性的调控。
它可以通过调节细胞周期蛋白的活性,促进肿瘤细胞的增殖。
同时,YWHAZ的高表达还与肿瘤细胞对化疗药物的耐药性相关。
近年来,研究人员还发现了YWHAZ与肿瘤干细胞的关联。
肿瘤干细胞具有自我更新能力和多向分化潜能,被认为是肿瘤起源和进展的驱动力。
研究发现,YWHAZ的表达在肿瘤干细胞中明显上调,并且其过度表达与肿瘤干细胞的增殖、耐药性和转移能力的增强相关。
因此,YWHAZ被认为是抑制肿瘤干细胞活性的一个潜在靶点,研究YWHAZ的功能机制有助于发展新的抗癌治疗策略。
关于YWHAZ与肿瘤的关联机制,研究正在不断深入。
DOI:10.16659/ki.1672-5654.2023.16.189基于微助教的麻醉科住院医师规范化培训提升教学满意度的应用探究张慧,张琳,姚波,王亚亚陕西省人民医院麻醉科,陕西西安 716000[摘要] 目的分析微助教的麻醉科住院医师规范化培训提升教学满意度的应用效果。
方法选取2017年7月—2022年3月在陕西省人民医院麻醉科住院医生67名为研究对象,按入科序号分组,单号为对照组,共34名麻醉科住院医生,实施常规传统教学法;双号为研究组,共33名麻醉科住院医生,实施微助教的教学模式。
比较两组麻醉科住院医生理论成绩、临床能力测试、对教学满意度。
结果研究组麻醉科住院医生基础理论知识、临床病例分析及总分均高于对照组,差异有统计学意义(P<0.05)。
研究组麻醉科住院医生的术前方式、麻醉方案制定、术前准备、麻醉操作、术中管理、沟通技能、整体临床胜任能力等临床能力评分高于对照组,差异有统计学意义(P<0.05)。
研究组麻醉科住院医生对教学满意度为93.94%高于对照组的82.35%,差异有统计学意义(P<0.05)。
结论麻醉科住院医师规范化培训中采用微助教可提高理论成绩及临床能力、对教学满意度。
[关键词] 麻醉科;住院医师规范化培训;微助教;教学满意度[中图分类号] R614 [文献标识码] A [文章编号] 1672-5654(2023)08(b)-0189-04Research on the Application of Standardized Training for Anesthesiology Residents Based on Micro-teaching Assistants to Improve Teaching Satis⁃factionZHANG Hui, ZHANG Lin, YAO Bo, WANG YayaDepartment of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, 716000 China[Abstract]Objective To analyze the application effect of micro-teaching assistants' standardized training for anesthe⁃siology residents in improving teaching satisfaction. Methods From July 2017 to March 2022, 67 residents in the De⁃partment of Anesthesiology of Shaanxi Provincial People 's Hospital were selected as the research objects. They were divided into groups according to the serial number of the department, and the single number was the control group, a total of 34 residents in the Department of Anesthesiology implemented the conventional traditional teaching method; the double number was the research group, a total of 33 anesthesiologists, and the teaching mode of micro-teaching as⁃sistant was implemented. The theoretical scores, clinical ability tests and teaching satisfaction of the two groups of an⁃esthesiologists were compared. Results The basic theoretical knowledge, clinical case analysis and total score of anes⁃thesiologists in the study group were higher than those in the control group, and the differences were statistically sig⁃nificant (P<0.05). The scores of preoperative methods, anesthesia plan formulation, preoperative preparation, anesthe⁃sia operation, intraoperative management, communication skills and overall clinical competence of the anesthesiolo⁃gists in the study group were higher than those in the control group, and the differences were statistically significant (P< 0.05). The teaching satisfaction of anesthesiologists in the study group was 93.94% higher than that in the control group (82.35%), and the difference was statistically significant (P<0.05). Conclusion The use of micro-teaching assis⁃tants in the standardized training of anesthesiology residents can improve theoretical performance, clinical ability, and [作者简介]张慧(1989-),女,硕士,主治医师,研究方向为麻醉。
analysis is best.The chapter then moves into detailed, step-by-step instructions on how to run each analysis. The coverage of these procedures is,necessarily,a bit more detailed than the other sections because most users will not be familiar with the specific features of each test.Finally,Chapter15includes four different out-standing laboratory exercises that use JWatcher to teach students:(1)how to develop their own ethogram and score behavior,(2)the differences between time sampling and continuous recordings, (3)how to conduct sequential analysis,and(4)how to use both sequential analysis and basic analysis to refine research questions from initial pilot data.These exercises use video clips downloadable from the JWatcher website free of charge and would be excellent teaching tools in the classroom.This manual is a vast improvement over the Version0.9Manual available on the JWatcher website, which only covers some basic guidelines for running the software,explains what the individual file types do,and indicates how to analyze results.The online manual has no coverage of the complex sequential analysis functions of JWatcher1.0.In summary,this book is a necessity for users at all experience levels who wish to quantify behavior using an event recorder.JWatcher software is free of charge and this manual is affordable enough that several copies could be purchased for use in one’s research laboratory.The money from the sale of the manual is used to support further development of the software so that the future versions of the program can be offered free of charge.Theodore StankowichOrganismic&Evolutionary BiologyUniversity of Massachusetts Amherst Morrill Science Center South,611N.Pleasant Street,Amherst,MA01003E-mail:Advance Access publication February14,2008doi:10.1093/icb/icn005An Introduction to Nervous Systems. Ralph J.Greenspan,editor.Woodbury,NY:Cold Spring Harbor Laboratory Press,2007. 172pp.ISBN978-0-87969-0(hardcover)$65.00,ISBN 978-0-87969-821-8(paper)$45.00.Over the past30years,there have been several iterations of books aimed at capturing in brief the essence of the organization and function of the nervous system.Not uncommonly,they extract general princi-ples that would be more fully explored in a compre-hensive text but do not otherwise deviate significantly from the traditional form and content of presentation. This one does.Ralph Greenspan is an established neuroscientist who has pioneered novel research to explore basic and cognitive aspects of nervous system function using the fruit fly as a model system.As he states in the Preface of this book,the Neurocience Institute,of which he is a staff scientist,aims to be a provocative academy,to“push the envelope.”That philosophy is clearly conveyed in the creative,non-traditional style of presentation in this special book. The title of the book,“An Introduction to Nervous Systems,”is a bit misleading.A more accurate title, although cumbersome,would be something like “An Introduction to Nervous Systems through Exam-ination of Some Invertebrate Models.”The book uses select examples from invertebrate nervous systems to convey some fundamental principles that apply in some respects to the organization and function of thenervous system in general.In the final,short chapter—“Are All Brains Alike?Are All Brains Different?”—theauthor writes“Perhaps all nervous systems make useof common general strategies.Anatomical disparitiesmay mask underlying functional similarities in thetasks performed by various circuits.”At first glance,it is surprising that nowhere in thetext are there descriptions of what has been learnedabout ion channels and membrane potentials from classical studies of squid giant axons;of neuralnetwork properties from studies of the crustacean stomatogastric ganglion;of nervous system develop-ment from experiments on fruit fly nerve cord or nematode worms;of sensory signaling and receptionfrom the moth or cricket;or of insect social structure,for example.The author’s enthusiasm for Drosophila,which represents his main research subject,is reflectedin a substantial fraction of the book.Moreover,thereis little or no discussion of how the principles described are employed in mammals.Surveying thebreadth of the neurobiology landscape seems not to bethe primary purpose of this book.Rather,it describesselect examples that highlight what studies of“simple”invertebrate nervous systems have taught us.The taleslink organization of the nervous system to the organism’s behavior,for which invertebrates haveproven to be especially valuable.In a modern, molecular,mammalian research universe,the rich439 Downloaded from https:///icb/article/48/3/439/627027 by Guangxi University of Nationalities user on 18 September 2023history of fundamental contributions of invertebrates to neuroscience may too often be overlooked.It is especially in this respect that the book is a welcome contribution to the neurobiological literature.In the introduction to Chapter4—“Modulation,The Spice of Neural Life”—the author writes:“The capabilities of invertebrates have traditionally been underesti-mated.Perhaps this is because they are not warm and fuzzy...For whatever reason,it has taken us an inordinately long time to realize that even the simplest animals have the capacity for modifying their behavior by adjusting the activities of their nervous systems. Perhaps this is a fundamental,inseparable property of nervous systems.”Despite the fact that the book deviates from a traditional style,in its own way it follows a rather traditional sequence,e.g.,membrane potentials,then chemical signaling and sensing,then neural circuits,then neuromodulation,then biological clocks,then higher,or cognitive,function.There is a lot to like in this book,not only in its fascinating content but in the style of presentation. Ralph Greenspan weaves a tapestry about the molecular,cellular and network origins of function and behavior,and the implications for speciation, using a variety of invertebrate models.The images he creates are expressed as interesting,often humorous, readable stories about what some nervous systems do, how they do it,and how that has evolved using some basic principles in novel ways.Each chapter begins with a relevant quote or poem from a literary or scientific giant that sets the stage and tone for the often poetic introduction and description that follows. The stories themselves—about swimming in Paramecium and jellyfish,light detection by barnacles, decision making by marine snails,circadian rhythms, flying,and mating—are fascinating because they are set in a context of understanding the generation and modulation of behavior and,in some cases,the impact on ecology and evolution.Although the author states in the Preface that the book is intended for the neurobiology novice posses-sing a basic introductory knowledge of biology,this reviewer believes that it would be more appropriate for an individual with an introductory neurobiological background.For example,in the very first chapter, one quickly discovers that understanding“simple”systems can be quite complex.In particular,students new to neurobiology often struggle with concepts underlying the generation of membrane potentials and the relationship of voltage and current,yet the text and figures require some understanding of these topics.In this respect,the Glossary at the end of the book seems uneven,defining some very basic biological terms yet not defining“receptor potential,”for example,which is named but not explained in the caption of Figure3.10.Not to quibble,but this reviewer and two other neuroscientists who scanned the book question some statements or generalizations proposed,particularly in the Introduction(“What are Brains For”?).For example,on page1it states“When it comes to brains,size unquestionably matters.”While that is no doubt true,it may be the organization of cells,i.e.the way they interact,that is more relevant.If it is size that is so important,then one should note that about three quarters of cells in mammalian brain are glial cells, not neurons,some potentially capable of modulating chemical signaling at up to100,000synapses,yet their contributions are not mentioned(see below). Furthermore,spinal cords also possess much of the organization and cellular interactions,e.g.,integrating sensory input and generating motor output,yet we view their capabilities as somewhat lacking in comparison with brain.What might be the funda-mental differences between invertebrate and verte-brate nervous systems and between brain and spinal cord that yield unique aspects of functional compe-tence?Or,are they as different as we imagine them to be,particularly in comparing function in invertebrates versus vertebrates?These are some interesting questions—not found in a typical comprehensive text—that might be explored a bit further in the Introduction and perhaps elsewhere in the book.In addition,on page2,the author writes“Chemical sensing is almost certainly the original sense...,”yet mechanically gated ion channels that could sense changes in flow or pressure in the ambient environ-ment are universal and also have been identified in prokaryotic organisms.Also,on page4,the author writes“And because none of us wants to submit to being experimented upon...we study animals.”Yet, there is a substantial and rapidly growing literature that provides insights on the organization and function of human brain from studies of living persons—for example from functional MRI or stimulation/recording of brain of awake epileptic patients—or of postmortem tissue samples.There are several other aspects of the book in its current form that would benefit from revision in a second edition.First,the emphasis is on how invertebrate nervous systems inform on nervous systems in general,but it is not clear in many cases to what extent the general organization of the behaviors is similar in invertebrates and vertebrates or whether similar molecules or mechanisms are used for different purposes.Does evolution mix and match bits and pieces of behavioral components that moves behavior in new directions?One also wonders whether440Book ReviewsDownloaded from https:///icb/article/48/3/439/627027 by Guangxi University of Nationalities user on 18 September 2023there are good examples of invertebrate nervous systems and behaviors that do not translate well to a mammalian equivalent.Second,the book has a traditional neurocentric focus—and some inverte-brates indeed have few glial cells—yet in the past couple of decades it has become abundantly clear from studies of mammalian systems that interactions of neurons with glia play vital roles in regulation of neural function,development and blood flow.Third, some of the figures could benefit from greater clarity or correction of the illustration or of the explanation in the caption,including citing the source link that is listed in the Bibliography at the end of the book.In addition,the Preface could note the location of the relevant Bibliography,currently organized by chapters but separate from them.It should be noted that the author also recently co-edited a much more compre-hensive(800pages),related book(“Invertebrate Neurobiology”)with Geoffrey North.In summary,this is an excellent book for gaining an appreciation for the links between form-function and behavior in the nervous system from invertebrate model systems and one that is interesting and enjoyable to read.It should be particularly valuable in inspiring budding or established life scientists to read more on the subject or even to become engaged in the pursuit of elucidating fundamental principles of neurobiology and behavior.It should stimulate broad questions about nervous systems and behavior. From a pedagogical perspective,I could imagine it being assigned as a short text in a general course on neurobiology and behavior or in a specialized neurobiology course that focuses on invertebrates or as a supplement to a more comprehensive text.Robert M.GrossfeldDepartment of Zoology NC State University,Raleigh,NC27695E-mail:*************************Advance Access publication February15,2008doi:10.1093/icb/icn004Rodent Societies–An Ecological and Evolutionary Perspective.Jerry O.Wolff and Paul W.Sherman,editors. Chicago,IL:University of Chicago Press,2007.610pp. ISBN0-226-90536-5(cloth),$125.00and ISBN0-226-90537-3(paper),$49.00.As the editors point out in the first sentence of the first chapter,“The Rodentia is the largest order of mammals consisting of more than2000species and comprising44%of all mammals.”This breadth makes the task of compiling a definitive and comprehensive anthology on rodent societies a nearly impossible task,but the result is undoubtedly the most exhaustive and progressive analysis of rodent social behavior to date.Deftly edited by Jerry Wolff and Paul Sherman,this well-organized book,consisting of41chapters from61contributors is,without doubt,a significant compendium of more than50years of research.That being said,only a true rodent lover is likely to love this book.Its creation was prompted by the success of the two volumes within this series that preceded it:Primate Societies and Cetacean Societies(published by University of Chicago Press).Thus,the scope and format of Rodent Societies is in many ways similar to that of the previous two volumes.The text is organized into nine sections,beginning with a succinct,but satisfying,overview of rodent evolutionary history and proceeding through sexual behavior,life histories and behavior,behavioral development,social behavior, antipredator behavior,comparative socioecology,con-servation and disease,and a final concluding sectionwritten by the editors on potential directions for future research.Each chapter concludes with a summary thatbriefly reviews the material,identifies caveats,and frequently suggests strategies for future research.The chapters are written by some of the most productiveand well-known scholars in the field but,as expected ina multi-authored work,the quality is uneven.Some chapters do a better job than others of achieving thestated goal to“synthesize and integrate the currentstate of knowledge about the social behavior of rodents”and to“provide ecological and evolutionary contexts for understanding rodent societies.”However,it generally succeeds in combining ideasand strategies from a wide range of disciplines to generate new theoretical and experimental paradigmsfor exploring rodent social behavior.Despite this,itfeels outdated in many places.Much of the work citedin the text is not new,with the majority of citationsdating before2000and a substantial number datingbefore1985.Even the photographs,all in black andwhite,are fairly old and some date back to the1950s.Some of the illustrations are even hand-drawn.Thismakes the book feel like historical retrospective rathera breakthrough collaborative of evolutionary and behavioral biology.441 Downloaded from https:///icb/article/48/3/439/627027 by Guangxi University of Nationalities user on 18 September 2023。
Rank ISSN Abbreviated JournalTitleFull Title1****-****APPL SCI-BASEL Applied Sciences-Basel2****-****CURR OSTEOPOROS REP Current Osteoporosis Reports3****-****JOHNSON MATTHEY TECH Johnson Matthey Technology Review40001-5644ACTA GASTRO-ENT BELG ACTA GASTRO-ENTEROLOGICA BELGICA50003-1348AM SURGEON AMERICAN SURGEON60004-0614ARCH ESP UROL ARCHIVOS ESPANOLES DE UROLOGIA70004-0622ARCH LATINOAM NUTR ARCHIVOS LATINOAMERICANOS DE NUTRICION 80010-9312CORROSION-US CORROSION90016-6731GENETICS GENETICS100017-467X GROUNDWATER Groundwater110018-7143HUM BIOL HUMAN BIOLOGY120019-4522J INDIAN CHEM SOC JOURNAL OF THE INDIAN CHEMICAL SOCIETY 130019-5022INDIAN J AGR SCI INDIAN JOURNAL OF AGRICULTURAL SCIENCES 140019-509X INDIAN J CANCER INDIAN JOURNAL OF CANCER150021-8596J AGR SCI-CAMBRIDGE JOURNAL OF AGRICULTURAL SCIENCE160022-2402J MAR RES JOURNAL OF MARINE RESEARCH170025-6153MAYDICA MAYDICA180025-6501MECH ENG MECHANICAL ENGINEERING200027-9684J NATL MED ASSOC JOURNAL OF THE NATIONAL MEDICAL ASSOCIATI 210028-1522NAVIGATION-US Navigation-Journal of the Institute of Na 220028-646X NEW PHYTOL NEW PHYTOLOGIST230031-9511PHYTOPROTECTION PHYTOPROTECTION240034-8376REV INVEST CLIN REVISTA DE INVESTIGACION CLINICA250035-1555REV MED VET-TOULOUSE REVUE DE MEDECINE VETERINAIRE260035-9149NOTES REC Notes and Records-The Royal Society Journ 270041-4301TURKISH J PEDIATR TURKISH JOURNAL OF PEDIATRICS280044-586X ACAROLOGIA ACAROLOGIA290048-0134NZ J FORESTRY SCI NEW ZEALAND JOURNAL OF FORESTRY SCIENCE 300065-2415ADV CHROMATOGR Advances in chromatography310065-2598ADV EXP MED BIOL Advances in Experimental Medicine and Bio 320069-3138CHEM PHYS CARBON CHEMISTRY AND PHYSICS OF CARBON330075-8434LECT NOTES MATH Lecture Notes in Mathematics340079-6263PROG TUMOR RES Progress in Tumor Research350079-6379PROG INORG CHEM PROGRESS IN INORGANIC CHEMISTRY360091-2700J CLIN PHARMACOL JOURNAL OF CLINICAL PHARMACOLOGY370097-7403J EXP PSYCHOL-ANIM L JOURNAL OF EXPERIMENTAL PSYCHOLOGY-ANIMAL 380101-8205COMPUT APPL MATH390104-1169REV LAT-AM ENFERM Revista Latino-Americana de Enfermagem 400167-6687INSUR MATH ECON INSURANCE MATHEMATICS & ECONOMICS410219-6336J THEOR COMPUT CHEM JOURNAL OF THEORETICAL & COMPUTATIONAL CH 420232-1300CRYST RES TECHNOL CRYSTAL RESEARCH AND TECHNOLOGY430233-1888STATISTICS-ABINGDON STATISTICS440236-2945LIGHT ENG LIGHT & ENGINEERING450253-1933REV SCI TECH OIE REVUE SCIENTIFIQUE ET TECHNIQUE DE L OFFI 460300-8630KLIN PADIATR KLINISCHE PADIATRIE470310-0049AUST MAMMAL AUSTRALIAN MAMMALOGY480325-2957ACTA BIOQUIM CLIN L Acta Bioquimica Clinica Latinoamericana 490326-3428REV NEFROL DIAL TRAS Revista de Nefrologia Dialisis y Trasplan 500365-0340ARCH AGRON SOIL SCI Archives of Agronomy and Soil Science 510367-5211 B GEOL SOC FINLAND Bulletin of the Geological Society of Fin 520367-8318INDIAN J ANIM SCI INDIAN JOURNAL OF ANIMAL SCIENCES530370-047X P LINN SOC N S W PROCEEDINGS OF THE LINNEAN SOCIETY OF NEW 540375-7633 B SOC PALEONTOL ITAL Bollettino della Societa Paleontologica I 550391-9714HIST PHIL LIFE SCI HISTORY AND PHILOSOPHY OF THE LIFE SCIENC 560393-6384ACTA MEDICA MEDITERR Acta Medica Mediterranea570399-0974CYBIUM CYBIUM580703-8992CAN J REMOTE SENS CANADIAN JOURNAL OF REMOTE SENSING 590730-9295INFORM TECHNOL LIBR INFORMATION TECHNOLOGY AND LIBRARIES 600734-0478SEMIN SPEECH LANG SEMINARS IN SPEECH AND LANGUAGE610746-1739NURS ECON NURSING ECONOMICS620792-1233SCI ENG COMPOS MATER SCIENCE AND ENGINEERING OF COMPOSITE MATE 630901-3393SCAND J LAB ANIM SCI SCANDINAVIAN JOURNAL OF LABORATORY ANIMAL 640925-5273INT J PROD ECON INTERNATIONAL JOURNAL OF PRODUCTION ECONO 650933-5846ARCH MATH LOGIC ARCHIVE FOR MATHEMATICAL LOGIC660947-0875NEUROFORUM670949-3026ECOTROPICA ECOTROPICA680962-4929ACTA NUMER ACTA NUMERICA690963-6935ADV COMPOS LETT ADVANCED COMPOSITES LETTERS700967-4845BRIT J BIOMED SCI BRITISH JOURNAL OF BIOMEDICAL SCIENCE 710970-258X NATL MED J INDIA NATIONAL MEDICAL JOURNAL OF INDIA720972-2963ANIM NUTR FEED TECHN Animal Nutrition and Feed Technology 730972-9062J VECTOR DIS Journal of Vector Borne Diseases740973-1458INDIAN J PHYS INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS 750990-0632INRA PROD ANIM Inra Productions Animales761000-0747PETROL EXPLOR DEV+Petroleum Exploration and Development 771000-467X CHIN J CANCER Chinese Journal of Cancer781010-660X MEDICINA-LITHUANIA Medicina-Lithuania791017-7833KLIN PSIKOFARMAKOL B KLINIK PSIKOFARMAKOLOJI BULTENI-BULLETIN 801019-9128J S AFR VET ASSOC Journal of the South African Veterinary A 811021-447X J ENERGY SOUTH AFR JOURNAL OF ENERGY IN SOUTHERN AFRICA 821021-6790ETHIOP J HEALTH DEV The Ethiopian Journal of Health Developme 831022-5536J ORTHOP SURG-HONG K Journal of Orthopaedic Surgery841024-2708HONG KONG MED J HONG KONG MEDICAL JOURNAL851028-6276IRAN J SCI TECHNOL A iranian journal of science and technology 861038-6807APPITA APPITA871053-4628J CLIN PEDIATR DENT The Journal of clinical pediatric dentist 881054-2523MED CHEM RES MEDICINAL CHEMISTRY RESEARCH891062-2551J HEALTHC QUAL Journal for Healthcare Quality901062-3701J IMAGING SCI TECHN JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY 911064-0266EAT DISORD Eating Disorders921070-0048HASELTONIA HASELTONIA931078-3903J AM PSYCHIAT NURSES Journal of the American Psychiatric Nurse 941089-5159ALTERN MED REV Alternative Medicine Review951095-5674J TORREY BOT SOC JOURNAL OF THE TORREY BOTANICAL SOCIETY 961109-2858OPER RES-GER Operational Research971110-0052 B PHARM SCI BULLETIN OF PHARMACEUTICAL SCIENCES 981110-662X INT J PHOTOENERGY INTERNATIONAL JOURNAL OF PHOTOENERGY 991120-5776IPPOLOGIA IPPOLOGIA1001126-3504PLANT BIOSYST PLANT BIOSYSTEMS1011178-1998CLIN INTERV AGING Clinical Interventions in Aging1021178-2005INT J CHRONIC OBSTR International Journal of Chronic Obstruct 1031178-2021NEUROPSYCH DIS TREAT Neuropsychiatric Disease and Treatment 1041178-203X THER CLIN RISK MANAG Therapeutics and Clinical Risk Management 1051195-2199PLAST SURG-CHIR PLAS Plastic Surgery1061212-2580PLANT PROTECT SCI PLANT PROTECTION SCIENCE1071226-3303KOREAN J INTERN MED KOREAN JOURNAL OF INTERNAL MEDICINE 1081230-0322POL J FOOD NUTR SCI POLISH JOURNAL OF FOOD AND NUTRITION SCIE 1091232-1966ANN AGR ENV MED ANNALS OF AGRICULTURAL AND ENVIRONMENTAL 1101233-1821FOUND SCI1111234-3099DISCUSS MATH GRAPH T Discussiones Mathematicae Graph Theory 1121308-5727J CLIN RES PEDIATR E Journal of Clinical Research in Pediatric 1131309-0291ARCH RHEUMATOL Archives of Rheumatology1141314-2011PHYTOKEYS PhytoKeys1151319-6103J SAUDI CHEM SOC Journal of Saudi Chemical Society 1161323-8930ALLERGOL INT ALLERGOLOGY INTERNATIONAL1171343-4934J ORAL SCI Journal of Oral Science1181346-213X INT J PHYS MODEL GEO International Journal of Physical Modelli 1191347-9032CANCER SCI CANCER SCIENCE1201355-6215ADDICT BIOL ADDICTION BIOLOGY1211359-1045CLIN CHILD PSYCHOL P Clinical Child Psychology and Psychiatry 1221365-7305AQUACULT ECON MANAG AQUACULTURE ECONOMICS & MANAGEMENT 1231369-6998J MED ECON JOURNAL OF MEDICAL ECONOMICS1241381-3455ARCH PHYSIOL BIOCHEM ARCHIVES OF PHYSIOLOGY AND BIOCHEMISTRY 1251386-4238FOUND CHEM Foundations of Chemistry1261389-6911ICGA J ICGA JOURNAL1271399-0047ACTA CRYSTALLOGR D ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGIC 1281405-3322 B SOC GEOL MEX Boletin de la Sociedad Geologica Mexicana 1291438-3608Z PSYCHOSOM MED PSYC ZEITSCHRIFT FUR PSYCHOSOMATISCHE MEDIZIN 1301451-3994NUCL TECHNOL RADIAT NUCLEAR TECHNOLOGY & RADIATION PROTECTION 1311471-2210BMC PHARMACOL TOXICO BMC Pharmacology & Toxicology1321472-6785BMC ECOL BMC ECOLOGY1331473-9542HUM GENOMICS Human Genomics1341479-8751INT J MARIT ENG INTERNATIONAL JOURNAL OF MARITIME ENGINEE 1351499-2671CAN J DIABETES Canadian Journal of Diabetes1361523-3782CURR CARDIOL REP Current Cardiology Reports1371523-3847CURR INFECT DIS REP Current Infectious Disease Reports 1381526-954X GENESIS GENESIS1391527-0904WEST N AM NATURALIST WESTERN NORTH AMERICAN NATURALIST 1401527-2737CURR UROL REP Current Urology Reports1411529-9074PETROPHYSICS Petrophysics1421533-2640J ETHN SUBST ABUSE JOURNAL OF ETHNICITY IN SUBSTANCE ABUSE1431536-0903ADV NEONAT CARE Advances in Neonatal Care1441538-8506J KNEE SURG Journal of Knee Surgery1451541-0161SOUND VIB SOUND AND VIBRATION1461548-3568CURR HIV-AIDS REP Current HIV/AIDS Reports1471549-4950J AUDIO ENG SOC JOURNAL OF THE AUDIO ENGINEERING SOCIETY 1481553-734X PLOS COMPUT BIOL PLoS Computational Biology1491553-7366PLOS PATHOG PLoS Pathogens1501553-7390PLOS GENET PLoS Genetics1511554-0669FOUND TRENDS INF RET Foundations and Trends in Information Ret 1521555-7960MEDICC REV MEDICC review1531559-8985PROG ELECTROMAGN RES Progress in Electromagnetics Research-PIE 1541561-8625ASIAN J CONTROL ASIAN JOURNAL OF CONTROL1551592-5986ASSIST INFERM RIC Assistenza Infermieristica e Ricerca 1561606-9749WATER SCI TECH-W SUP Water Science and Technology-Water Supply 1571608-9693S AFR J HIV MED SOUTHERN AFRICAN JOURNAL OF HIV MEDICINE 1581612-9199EUR POULTRY SCI European Poultry Science1591642-395X POSTEP DERM ALERGOL POSTEP DERM ALERGOL1601660-2110NEPHRON CLIN PRACT NEPHRON CLINICAL PRACTICE1611662-453X FRONT NEUROSCI-SWITZ Frontiers in Neuroscience1621662-5099FRONT MOL NEUROSCI Frontiers in Molecular Neuroscience 1631662-5196FRONT NEUROINFORM Frontiers in Neuroinformatics1641662-9981J PSEUDO-DIFFER OPER Journal of Pseudo-Differential Operators 1651663-9812FRONT PHARMACOL Frontiers in Pharmacology1661664-039X J SPECTR THEOR Journal of Spectral Theory1671664-042X FRONT PHYSIOL Frontiers in Physiology1681664-2368ANAL MATH PHYS Analysis and Mathematical Physics 1691664-3607 B MATH SCI Bulletin of Mathematical Sciences 1701678-4499BRAGANTIA BRAGANTIA1711687-5265COMPUT INTEL NEUROSC Computational Intelligence and Neuroscien 1721687-5966INT J AEROSPACE ENG International Journal of Aerospace Engine 1731687-725X J SENSORS Journal of Sensors1741689-832X J CONTEMP BRACHYTHER Journal of Contemporary Brachytherapy 1751710-1484ALLERGY ASTHMA CL IM Allergy Asthma and Clinical Immunology 1761720-8386J ENDOCRINOL INVEST JOURNAL OF ENDOCRINOLOGICAL INVESTIGATION 1771735-0654IRAN J FUZZY SYST Iranian Journal of Fuzzy Systems1781735-6865INT J ENVIRON RES International Journal of Environmental Re 1791738-5261OCEAN SCI J Ocean Science Journal1801738-5520KOREAN CIRC J Korean Circulation Journal1811742-7584INT J TROP INSECT SC INTERNATIONAL JOURNAL OF TROPICAL INSECT 1821745-1337IEICE T FUND ELECTR IEICE TRANSACTIONS ON FUNDAMENTALS OF ELE 1831745-1345IEICE T COMMUN IEICE TRANSACTIONS ON COMMUNICATIONS 1841745-1353IEICE T ELECTRON IEICE TRANSACTIONS ON ELECTRONICS 1851745-1361IEICE T INF SYST IEICE TRANSACTIONS ON INFORMATION AND SYS 1861748-1279INT J SENS NETW1871751-2433EXPERT REV CLIN PHAR Expert Review of Clinical Pharmacology 1881751-3758J BIOL DYNAM Journal of Biological Dynamics1891751-4223P I CIVIL ENG-ENERGY Proceedings of the Institution of Civil E 1901751-4258CURR OPIN SUPPORT PA Current Opinion in Supportive and Palliat1911753-4658THER ADV RESPIR DIS Therapeutic Advances in Respiratory Disea 1921754-1611J BIOL ENG Journal of Biological Engineering 1931756-283X THER ADV GASTROENTER Therapeutic Advances in Gastroenterology 1941756-2856THER ADV NEUROL DISO Therapeutic Advances in Neurological Diso 1951758-8340THER ADV MED ONCOL Therapeutic Advances in Medical Oncology 1961759-8478J NEUROINTERV SURG Journal of neurointerventional surgery 1971760-2734J VET CARDIOL Journal of Veterinary Cardiology1981773-2247J DRUG DELIV SCI TEC JOURNAL OF DRUG DELIVERY SCIENCE AND TECH 1991780-2393JBR-BTR JBR-BTR2001784-3286ACTA CLIN BELG ACTA CLINICA BELGICA2011806-9614ANIM REPROD Animal Reproduction2021809-4678MED VET-RECIFE Medicina Veterinaria-Recife2031844-4172MED ULTRASON Medical Ultrasonography2041861-2776INTEL SERV ROBOT Intelligent Service Robotics2051865-9284MEMET COMPUT Memetic Computing2061867-1616MAR BIODIVERS Marine Biodiversity2071868-8497HORM CANCER-US Hormones & Cancer2081871-4757NANOETHICS NanoEthics2091873-9652POLAR SCI Polar Science2101875-4791INT J SOC ROBOT International Journal of Social Robotics 2111876-1658WATER QUAL EXPOS HEA Water Quality Exposure and Health 2121877-2641WASTE BIOMASS VALORI Waste and Biomass Valorization2131879-4912EUR J PHILOS SCI European Journal for Philosophy of Scienc 2141879-7296EUR ANN OTORHINOLARY European Annals of Otorhinolaryngology-He 2151879-9817INT J PALEOPATHOL International Journal of Paleopathology 2161880-5981EARTH PLANETS SPACE EARTH PLANETS AND SPACE2171883-1958J PROSTHODONT RES Journal of Prosthodontic Research 2181888-9891REV PSIQUIATR SALUD Revista de Psiquiatria y Salud Mental 2191905-7415ASIAN BIOMED Asian Biomedicine2201916-0216J OTOLARYNGOL-HEAD N Journal of Otolaryngology-Head & Neck Sur 2211931-9401APPL PHYS REV Applied Physics Reviews2221935-9756TROP PLANT BIOL Tropical Plant Biology2231937-1632DISCRETE CONT DYN-S Discrete and Continuous Dynamical Systems 2241938-663X J PROF ASSOC CACTUS JOURNAL OF THE PROFESSIONAL ASSOCIATION F 2251939-1390IEEE INTEL TRANSP SY IEEE Intelligent Transportation Systems M 2261940-087X JOVE-J VIS EXP Jove-Journal of Visualized Experiments 2271940-3151J AEROSP INFORM SYST Journal of Aerospace Information Systems 2281941-1340ANNU REV RESOUR ECON Annual Review of Resource Economics 2291942-325X CIRC-CARDIOVASC GENE Circulation: Cardiovascular genetics 2301945-9645J COAT TECHNOL RES Journal of Coatings Technology and Resear 2311947-6035CARTILAGE Cartilage2321949-1034NUCLEUS-PHILA Nucleus2331949-1190J PIPELINE SYST ENG Journal of Pipeline Systems Engineering a 2341949-307X IEEE MAGN LETT IEEE Magnetics Letters2351976-0485INT J CONCR STRUCT M International Journal of Concrete Structu 2361976-4251CARBON LETT Carbon Letters2371983-2052TROP PLANT PATHOL Tropical Plant Pathology2381998-9539MACROHETEROCYCLES Macroheterocycles2391999-3110BOT STUD Botanical Studies2402008-1898J NONLINEAR SCI APPL Journal of Nonlinear Sciences and Applica 2412008-8752ANN FUNCT ANAL Annals of Functional Analysis2422041-1480J BIOMED SEMANT Journal of Biomedical Semantics2432041-8396WIRES ENERGY ENVIRON Wiley Interdisciplinary Reviews-Energy an 2442042-6305J COMP EFFECT RES Journal of Comparative Effectiveness Rese 2452042-6410BIOL SEX DIFFER Biology of Sex Differences2462045-7634CANCER MED-US Cancer Medicine2472045-8827MICROBIOLOGYOPEN MicrobiologyOpen2482045-9858BIOINSPIR BIOMIM NAN Bioinspired Biomimetic and Nanobiomateria 2492046-3758BONE JOINT RES Bone & Joint Research2502046-6390BIOL OPEN Biology Open2512047-4938IET BIOMETRICS IET Biometrics2522049-1891J ANIM SCI BIOTECHNO Journal of Animal Science and Biotechnolo 2532049-9957INFECT DIS POVERTY Infectious Diseases of Poverty2542050-3806ASLIB J INFORM MANAG Aslib Journal of Information Management 2552050-3911PROG THEOR EXP PHYS Progress of Theoretical and Experimental 2562050-6406UNITED EUR GASTROENT United European Gastroenterology Journal 2572051-6347MATER HORIZ Materials Horizons2582051-8153ENVIRON SCI-NANO Environmental Science-Nano2592052-1758AUSTRAL ENTOMOL Austral Entomology2602052-336X J ENVIRON HEALTH SCI Journal of Environmental Health Science a 2612055-1010NPJ PRIM CARE RESP M npj Primary Care Respiratory Medicine 2622062-5871J BEHAV ADDICT Journal of Behavioral Addictions2632072-1439J THORAC DIS Journal of Thoracic Disease2642073-4344CATALYSTS Catalysts2652073-4425GENES-BASEL Genes2662075-163X MINERALS-BASEL Minerals2672075-4701METALS-BASEL Metals2682079-4991NANOMATERIALS-BASEL Nanomaterials2692093-2278J PERIODONTAL IMPLAN Journal of Periodontal and Implant Scienc 2702093-274X INT J AERONAUT SPACE International Journal of Aeronautical and 2712093-4777INT NEUROUROL J International Neurourology Journal 2722093-8551J ELECTROCHEM SCI TE Journal of Electrochemical Science and Te 2732095-025X FRONT MATER SCI Frontiers of Materials Science2742095-4700BONE RES Bone Research2752095-6037J METEOROL RES-PRC Journal of Meteorological Research 2762095-6975CHIN J NAT MEDICINES Chinese Journal of Natural Medicines 2772110-5820ANN INTENSIVE CARE Annals of Intensive Care2782118-9773EUR J TAXON European Journal of Taxonomy2792151-8378FEMALE PELVIC MED RE Female Pelvic Medicine and Reconstructive 2802152-4947TISSUE ENG TISSUE ENGINEERING2812152-5080INT J UNCERTAIN QUAN International Journal for Uncertainty Qua 2822152-5250AGING DIS Aging and Disease2832153-2168CHILD OBES Childhood Obesity2842156-3357IEEE J EM SEL TOP C IEEE Journal on Emerging and Selected Top 2852156-907X J APPL ANAL COMPUT Journal of Applied Analysis and Computati 2862157-9024ONCOGENESIS Oncogenesis2872158-2866J SHIP PROD DES Journal of Ship Production and Design 2882162-2531MOL THER-NUCL ACIDS Molecular Therapy-Nucleic Acids2892162-2965APPL NEUROPSYCH-CHIL Applied Neuropsychology-Child2902162-3279BRAIN BEHAV Brain and Behavior2912163-2480EVOL EQU CONTROL THE Evolution Equations and Control Theory 2922167-8359PEERJ PeerJ2932167-8707EXPERT OPIN ORPHAN D Expert Opinion on Orphan Drugs2942168-023X BARIATR SURG PRACT P Bariatric Surgical Practice and Patient C 2952168-0450APPL PLANT SCI Applications in Plant Sciences2962190-9385J CERAM SCI TECHNOL Journal of Ceramic Science and Technology 2972191-9089NANOTECHNOL REV Nanotechnology Reviews2982191-9151MECH SCI Mechanical Sciences2992191-9496ADV NONLINEAR ANAL Advances in Nonlinear Analysis3002191-9542GREEN PROCESS SYNTH Green Processing and Synthesis3012192-8606NANOPHOTONICS-BERLIN Nanophotonics3022193-0066FOSS REC Fossil Record3032194-4288ENERGY TECHNOL-GER Energy Technology3042196-0216CHEMELECTROCHEM ChemElectroChem3052196-7350ADV MATER INTERFACES Advanced Materials Interfaces3062211-0348MULT SCLER RELAT DIS Multiple Sclerosis and Related Disorders 3072211-5463FEBS OPEN BIO FEBS Open Bio3082211-6753SPAT STAT-NETH Spatial Statistics3092212-1366J BONE ONCOL Journal of Bone Oncology3102212-6864PHYS DARK UNIVERSE Physics of the Dark Universe3112212-9820J CO2 UTIL Journal of CO2 Utilization3122213-1582NEUROIMAGE-CLIN NeuroImage-Clinical3132213-2600LANCET RESP MED Lancet Respiratory Medicine3142213-6711STEM CELL REP Stem Cell Reports3152213-7165J GLOB ANTIMICROB RE Journal of Global Antimicrobial Resistanc 3162213-8587LANCET DIABETES ENDO Lancet Diabetes & Endocrinology3172214-109X LANCET GLOB HEALTH Lancet Global Health3182214-9996ANN GLOB HEALTH Annals of Global Health3192215-0374LANCET PSYCHIAT Lancet Psychiatry3202220-1319J WATER REUSE DESAL Journal of Water Reuse and Desalination 3212222-1751EMERG MICROBES INFEC Emerging Microbes & Infections3222241-5793J BIOL RES-THESSALON Journal of Biological Research-Thessaloni 3232245-7070 B GEOL SOC DENMARK BULLETIN OF THE GEOLOGICAL SOCIETY OF DEN 3242271-3646METALL RES TECHNOL Metallurgical Research & Technology 3252288-6206INT J PR ENG MAN-GT International Journal of Precision Engine 3262288-6575ANN SURG TREAT RES Annals of Surgical Treatment and Research 3272296-5270ONCOL RES TREAT Oncology Research and Treatment3282300-8733ANN ANIM SCI Annals of Animal Science3292303-9027ENDOSC ULTRASOUND Endoscopic Ultrasound3302307-1877J ENG RES-KUWAIT Journal of Engineering Research3312307-4108KUWAIT J SCI Kuwait Journal of Science3322311-6706NANO-MICRO LETT Nano-Micro Letters3332314-8861J IMMUNOL RES Journal of Immunology Research3342321-3558J VIB ENG TECHNOL Journal of Vibration Engineering & Techno3352322-3243INT J RADIAT RES International Journal of Radiation Resear 3362325-8160OSLI RETINA Ophthalmic Surgery Lasers & Imaging Retin 3372326-5191ARTHRITIS RHEUMATOL Arthritis & Rheumatology3382326-6066CANCER IMMUNOL RES Cancer Immunology Research3392326-8298ANNU REV STAT APPL Annual Review of Statistics and Its Appli 3402327-3798LANG COGN NEUROSCI Language Cognition and Neuroscience 3412327-6886J AM ASSOC NURSE PRA Journal of the American Association of Nu 3422327-9095APPL NEUROPSYCH-ADUL Applied Neuropsychology-Adult3432329-9290IEEE-ACM T AUDIO SPE IEEE-ACM Transactions on Audio Speech and 3442330-1635J ASSOC INF SCI TECH Journal of the Association for Informatio 3452330-4022ACS PHOTONICS ACS Photonics3462330-8249REV FISH SCI AQUAC Reviews in Fisheries Science & Aquacultur 3472331-7019PHYS REV APPL Physical Review Applied3482333-0384J ORAL FACIAL PAIN H Journal of Oral & Facial Pain and Headach 3492352-2208J LOG ALGEBR METHODS Journal of Logical and Algebraic MethodsCategory Subcategory Country total Cites IF 2014-2015CHEMISTRY, MULTIDISCIPLINMATERIALS SCIENCE, M SWITZERLAND145 1.484 ENDOCRINOLOGY & METABOLISM UNITED STATES734 2.728 CHEMISTRY, PHYSICAL ENGLAND10.000医学胃肠肝病学BELGIUM4930.912医学外科UNITED STATES57650.818 UROLOGY & NEPHROLOGY SPAIN4630.309医学营养学VENEZUELA5580.230 MATERIALS SCIENCE, MULTIDMETALLURGY & METALLU UNITED STATES38890.925生物遗传学UNITED STATES44722 5.963 GEOSCIENCES, MULTIDISCIPLWATER RESOURCES UNITED STATES5318 2.307生物生物学UNITED STATES17940.853化学化学综合INDIA13700.173农林科学农业综合INDIA8980.141 ONCOLOGY INDIA5860.802 AGRICULTURE, MULTIDISCIPLINARY ENGLAND2670.653地学海洋学UNITED STATES2663 1.562农林科学农艺学ITALY5440.534工程技术工程:机械UNITED STATES7350.403医学医学:内科UNITED STATES24340.963 ENGINEERING, AEROSPACE REMOTE SENSING UNITED STATES1780.562生物植物科学ENGLAND339187.672生物植物科学CANADA1130.111医学医学:内科MEXICO3980.475农林科学兽医学FRANCE6310.323 HISTORY & PHILOSOPHY OF SCIENCE ENGLAND1880.295医学小儿科TURKEY7650.429 ENTOMOLOGY FRANCE832 1.000 FORESTRY NEW ZEALAND4390.450 CHEMISTRY, ANALYTICAL UNITED STATES1600.500医学医学:研究与实验UNITED STATES14136 1.958化学工程:化工UNITED STATES256 1.333 MATHEMATICS UNITED STATES95050.410 ONCOLOGY SWITZERLAND30.000化学无机化学与核化学UNITED STATES1266 1.556医学药学UNITED STATES5846 2.475 BEHAVIORAL SCIENCES PSYCHOLOGY UNITED STATES2532 1.949 MATHEMATICS, APPLIED BRAZIL2390.473医学护理BRAZIL8940.534管理科学数学跨学科应用NETHERLANDS2141 1.128化学化学综合SINGAPORE4490.638化学晶体学GERMANY27170.935 STATISTICS & PROBABILITY GERMANY2690.532 ENGINEERING, ELECTRICAL &OPTICS Russian Federation250.089农林科学兽医学FRANCE19540.910医学小儿科GERMANY770 1.059ZOOLOGY AUSTRALIA3380.831 MEDICAL LABORATORY TECHNOLOGY ARGENTINA970.133医学泌尿学与肾脏学ARGENTINA40.000 AGRONOMY SOIL SCIENCE ENGLAND4640.549 GEOLOGY FINLAND1580.833农林科学奶制品与动物科学INDIA8530.160ECOLOGY AUSTRALIA5640.172 BIODIVERSITY CONSERVATIONPALEONTOLOGY ITALY4210.953综合性期刊科学史与科学哲学ENGLAND1260.214医学医学:内科ITALY350.113生物动物学FRANCE7540.578 REMOTE SENSING CANADA1651 1.727管理科学计算机:信息系统UNITED STATES830.075REHABILITATION UNITED STATES4200.704 AUDIOLOGY & SPEECH-LANGUA医学护理UNITED STATES5950.797 MATERIALS SCIENCE, COMPOSITES ENGLAND1400.515生物兽医学DENMARK1070.250管理科学工程:工业NETHERLANDS11102 2.752 MATHEMATICS LOGIC GERMANY3040.320 NEUROSCIENCES GERMANY50.000 ECOLOGY GERMANY1810.500 MATHEMATICS UNITED STATES13087.364工程技术材料科学:复合ENGLAND1140.270医学医学实验技术ENGLAND472 1.300医学医学:内科INDIA5130.782农林科学奶制品与动物科学INDIA810.133 INFECTIOUS DISEASES PARASITOLOGY India4990.806物理物理:综合INDIA1199 1.377VETERINARY SCIENCES FRANCE1580.726 AGRICULTURE, DAIRY & ANIMENERGY & FUELS ENGINEERING, PETROLE PEOPLES R CHINA1007 1.592 ONCOLOGY PEOPLES R CHINA981 2.155 MEDICINE, GENERAL & INTERNAL LITHUANIA6930.494医学精神病学TURKEY2010.387 VETERINARY SCIENCES SOUTH AFRICA5860.349 ENERGY & FUELS SOUTH AFRICA750.222 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH ETHIOPIA4090.127 ORTHOPEDICS SURGERY PEOPLES R CHINA7620.701 MEDICINE, GENERAL & INTERNAL PEOPLES R CHINA9910.872 MULTIDISCIPLINARY SCIENCES IRAN1310.342 MATERIALS SCIENCE, PAPER & WOOD AUSTRALIA5110.609 DENTISTRY, ORAL SURGERY & MEDICINE UNITED STATES6100.354医学医药化学UNITED STATES2405 1.402 HEALTH CARE SCIENCES & SERVICES UNITED STATES338 1.397工程技术成像科学与照相技术UNITED STATES4910.349 PSYCHIATRY PSYCHOLOGY UNITED STATES673 1.484生物植物科学UNITED STATES550.346 NURSING PSYCHIATRY UNITED STATES2870.977医学全科医学与补充医学UNITED STATES1457 3.833生物植物科学UNITED STATES6110.518 OPERATIONS RESEARCH & MANAGEMENT SCIENCE GERMANY460.311 PHARMACOLOGY & PHARMACY EGYPT390.087工程技术光学EGYPT1743 1.563农林科学兽医学ITALY220.000生物植物科学ITALY1508 1.920 GERIATRICS & GERONTOLOGY NEW ZEALAND1381 2.077 RESPIRATORY SYSTEM NEW ZEALAND1454 3.141 CLINICAL NEUROLOGY PSYCHIATRY NEW ZEALAND1568 1.741 HEALTH CARE SCIENCES & SERVICES NEW ZEALAND1061 1.469 SURGERY CANADA10.000 AGRONOMY PLANT SCIENCES CZECH REPUBLIC1880.597 MEDICINE, GENERAL & INTERNAL SOUTH KOREA748 1.426 FOOD SCIENCE & TECHNOLOGY POLAND4110.643POLAND1235 1.126医学公共卫生、环境卫生与职HISTORY & PHILOSOPHY OF SCIENCE NETHERLANDS1540.653 MATHEMATICS POLAND2110.282PEDIATRICS TURKEY338 1.538 ENDOCRINOLOGY & METABOLISRHEUMATOLOGY TURKEY40.000 PLANT SCIENCES BULGARIA1040.686 CHEMISTRY, MULTIDISCIPLINARY SAUDI ARABIA597 2.523 ALLERGY IMMUNOLOGY JAPAN1121 2.457MATERIALS SCIENCE, B JAPAN8640.922 DENTISTRY, ORAL SURGERY &ENGINEERING, GEOLOGICAL ENGLAND1140.640医学肿瘤学JAPAN10217 3.523生物生化与分子生物学ENGLAND2830 5.359 PSYCHIATRY PSYCHOLOGY UNITED STATES738 1.025 FISHERIES ENGLAND275 1.762 HEALTH CARE SCIENCES & SEMEDICINE, GENERAL & UNITED STATES945 1.576PHYSIOLOGY ENGLAND768 1.763 ENDOCRINOLOGY & METABOLISHISTORY & PHILOSOPHY OF SCIENCE UNITED STATES143 1.361工程技术计算机:软件工程NETHERLANDS890.293BIOCHEMISTRY & MOLEC DENMARK15035 2.674 BIOCHEMICAL RESEARCH METHGEOLOGY MEXICO1720.432医学精神病学GERMANY2470.857 NUCLEAR SCIENCE & TECHNOLOGY Serbia1560.560 PHARMACOLOGY & PHARMACYTOXICOLOGY ENGLAND159 1.842 ECOLOGY ENGLAND657 2.360 GENETICS & HEREDITY ENGLAND666 2.146 ENGINEERING, MARINE ENGLAND490.361 ENDOCRINOLOGY & METABOLISM CANADA642 2.000 CARDIAC & CARDIOVASCULAR SYSTEMS UNITED STATES942 1.925 INFECTIOUS DISEASES UNITED STATES974 1.677生物发育生物学UNITED STATES3810 2.018环境科学生态学UNITED STATES4930.355 UROLOGY & NEPHROLOGY UNITED STATES808 1.513地学地球化学与地球物理UNITED STATES1650.322 SUBSTANCE ABUSE ENGLAND2380.651NURSING UNITED STATES449 1.122 ORTHOPEDICS UNITED STATES755 1.442物理工程:机械UNITED STATES2420.106 INFECTIOUS DISEASES UNITED STATES996 3.795工程技术工程:综合UNITED STATES938 1.123生物生化研究方法UNITED STATES16444 4.620生物病毒学UNITED STATES302297.562生物遗传学UNITED STATES336247.528 COMPUTER SCIENCE, INFORMATION SYSTEMS UNITED STATES250 1.857 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH United States1620.927物理电信学UNITED STATES3254 1.229工程技术自动化与控制系统TAIWAN1357 1.556医学护理ITALY650.315ENVIRONMENTAL SCIENC ENGLAND7020.394 ENGINEERING, ENVIRONMENTA医学病毒学SOUTH AFRICA1060.898 AGRICULTURE, DAIRY & ANIMAL SCIENCE GERMANY40.000 ALLERGY DERMATOLOGY POLAND1900.845医学泌尿学与肾脏学SWITZERLAND1752 1.402 NEUROSCIENCES SWITZERLAND3010 3.656 NEUROSCIENCES SWITZERLAND1206 4.084NEUROSCIENCES SWITZERLAND864 3.261 MATHEMATICAL & COMPUTATIOMATHEMATICS, APPLIED MATHEMATICS SWITZERLAND430.405 PHARMACOLOGY & PHARMACY SWITZERLAND1946 3.802 MATHEMATICS, APPLIED MATHEMATICS SWITZERLAND75 1.231 PHYSIOLOGY SWITZERLAND3574 3.534 MATHEMATICS, APPLIED MATHEMATICS SWITZERLAND330.475 MATHEMATICS SAUDI ARABIA460.586 AGRICULTURE, MULTIDISCIPLINARY BRAZIL8940.531NEUROSCIENCES UNITED STATES6210.481 MATHEMATICAL & COMPUTATIOENGINEERING, AEROSPACE UNITED STATES590.481INSTRUMENTS & INSTRU UNITED STATES364 1.182 ENGINEERING, ELECTRICAL &ONCOLOGY RADIOLOGY, NUCLEAR M POLAND142 1.284 ALLERGY IMMUNOLOGY ENGLAND464 2.032 ENDOCRINOLOGY & METABOLISM ITALY3944 1.448数学数学IRAN1680.534环境科学环境科学IRAN680 1.100OCEANOGRAPHY SOUTH KOREA272 1.605 MARINE & FRESHWATER BIOLOCARDIAC & CARDIOVASCULAR SYSTEMS SOUTH KOREA5440.753 ENTOMOLOGY ENGLAND2320.419COMPUTER SCIENCE, IN JAPAN11480.231 COMPUTER SCIENCE, HARDWARTELECOMMUNICATIONS JAPAN11070.227 ENGINEERING, ELECTRICAL &ENGINEERING, ELECTRICAL & ELECTRONIC JAPAN9160.281COMPUTER SCIENCE, SO JAPAN10610.213 COMPUTER SCIENCE, INFORMATELECOMMUNICATIONS SWITZERLAND3590.920 COMPUTER SCIENCE, INFORMAPHARMACOLOGY & PHARMACY ENGLAND596 2.180 ECOLOGY MATHEMATICAL & COMPU ENGLAND286 1.033 ENERGY & FUELS ENGLAND930.526 HEALTH CARE SCIENCES & SERVICES UNITED STATES550 1.656。
郝家琛,杨强,崔培昕,等.单原子铜改性氮化碳光芬顿降解水体中盐酸四环素及其机理研究[J].农业环境科学学报,2023,42(9):2027-2037.HAO J C,YANG Q,CUI P X,et al.Photocatalytic degradation of tetracycline hydrochloride in water by single-atom copper-modified carbon nitride[J].Journal of Agro-Environment Science ,2023,42(9):2027-2037.单原子铜改性氮化碳光芬顿降解水体中盐酸四环素及其机理研究郝家琛1,2,杨强2,崔培昕2,王卫轩2,罗小三1*,王玉军2*(1.南京信息工程大学应用气象学院农业资源与环境系,江苏省农业气象重点实验室,南京210044;2.中国科学院土壤环境与污染修复重点实验室(南京土壤研究所),南京210008)Photocatalytic degradation of tetracycline hydrochloride in water by single-atom copper-modified carbonnitrideHAO Jiachen 1,2,YANG Qiang 2,CUI Peixin 2,WANG Weixuan 2,LUO Xiaosan 1*,WANG Yujun 2*(1.Department of Agricultural Resources and Environment,School of Applied Meteorology,Jiangsu Key Laboratory of Agricultural Meteorology,Nanjing University of Information Sciences and Technology,Nanjing 210044,China ;2.Key Laboratory of Soil Environment and Pollution Remediation,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China )Abstract :This study focused on a single-atom,Cu-doped carbon nitride photocatalyst synthesized by a one-step pyrolysis method.The properties of the materials and mechanism of tetracycline hydrochloride (TC )degradation were investigated by synchrotron radiation-based X-ray absorption spectroscopy,scanning transmission electron microscopy,electron paramagnetic spectroscopy,and photoluminescencespectroscopy.Study findings showed that Cu-CN could degrade more than 90%TC within 30minutes.The reaction rate constant values reached 0.00993min −1,which is 7.76times higher than that of unmodified carbon nitride material.The single-atom Cu sites significantly improved the photocatalytic activity of carbon nitride.The results of synchrotron radiation X-ray absorption spectra showed that the formed Cu-N bond could rapidly transfer photogenerated electrons to Cu,promoting the separation of electrons and holes and enhancingphotocatalytic activity.Further,Cu (Ⅰ)and Cu (Ⅱ)cycling could rapidly activate hydrogen peroxide to produce ·OH radicals.Electrons,收稿日期:2023-05-06录用日期:2023-07-06作者简介:郝家琛(1998—),男,河南商丘人,硕士研究生,从事环境功能材料修复污染水体研究。
第40卷第3期Vol.40㊀No.3重庆工商大学学报(自然科学版)J Chongqing Technol &Business Univ(Nat Sci Ed)2023年6月Jun.2023C4旋转对称光子晶体平板中的对称保护连续谱束缚态张铭洋重庆工商大学数学与统计学院,重庆400067摘㊀要:在光子晶体平板中,连续谱束缚态关于C2和C6旋转对称的依赖性已经在数值上进行了广泛研究,但是缺少严格的理论分析过程,此外还缺少对C4旋转对称的研究,鉴于此,构建了系统分析连续谱束缚态关于所有旋转对称的依赖性的理论,并且重点研究了C4旋转对称的情况;首先,通过分析具有旋转对称的结构中麦克斯韦方程组特征解的性质,将连续谱束缚态的存在性问题转变为旋转矩阵的特征值是否与一个简单代数方程的解相同的问题;其次,给出了C4旋转对称的结构中连续谱束缚态存在时所对应的条件;然后,证明了破坏C4旋转对称保持C2旋转对称时,连续谱束缚态依然存在;最后,利用有限元软件FreeFEM 进行了大量的数值验证;上述理论可适用于所有旋转对称的情况,深入揭示了旋转对称对连续谱束缚态存在的重要性,深入揭示了高阶旋转对称性与低阶旋转对称性之间的依赖关系,为连续谱束缚态的实际应用提供了理论指导㊂关键词:光子晶体;旋转对称;连续谱束缚态中图分类号:O436㊀㊀文献标识码:A㊀㊀doi:10.16055/j.issn.1672-058X.2023.0003.09㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-05-13㊀修回日期:2022-06-20㊀文章编号:1672-058X(2023)03-0064-07基金项目:重庆市自然科学基金面上项目(CSTC2019JCYJ -MSXMX0717).作者简介:张铭洋(1997 ),女,重庆忠县人,硕士研究生,从事光子晶体㊁麦克斯韦方程组数值计算研究.引用格式:张铭洋.C4旋转对称光子晶体平板中的对称保护连续谱束缚态[J].重庆工商大学学报(自然科学版),2023,40(3):64 70.ZHANG Mingyang.Symmetry-protected bound states in the continuum in C4rotationally symmetric photonic crystal plates J .Journal of Chongqing Technology and Business University Natural Science Edition 2023 40 3 64 70.Symmetry-protected Bound States in the Continuum in C 4Rotationally Symmetric Photonic Crystal Plates ZHANG MingyangSchool of Mathematics and Statistics Chongqing Technology and Business University Chongqing 400067 ChinaAbstract The dependence of bound states in the continuum BICs on C2and C6rotational symmetry in photonic crystalplates has been extensively studied numerically.However a rigorous theoretical analysis process is lacking and there is alack of studies on C4rotational symmetries.In view of this a theory of systematic analysis of the dependence of BICs on all rotational symmetries was constructed and the case of C4rotational symmetry was mainly studied.Firstly by analyzingthe characteristic solutions of Maxwell s equations with rotationally symmetric structure the problem of the existence of BICs was transformed into the question of whether the eigenvalue of the rotation matrix was the same as the solution of asimple algebraic equation.Secondly the conditions for the existence of BICs in C4rotationally symmetric structures weregiven.Then it was proved that the BICs still existed when C4rotation symmetry was destroyed and C2rotatory symmetrywas maintained.Finally the finite element software FreeFEM was used to do a lot of numerical verifications.The abovetheory can be applied to all cases of rotational symmetries revealing the importance of rotational symmetry for the existenceof BICs.The dependence between high-order and low-order rotational symmetries was revealed providing theoretical guidance for applying BICs.Keywords photonic crystal rotational symmetry bound states in the continuum第3期张铭洋,等:C4旋转对称光子晶体平板中的对称保护连续谱束缚态1㊀引㊀言光学连续谱束缚态(bound states in the continuum, BIC)是指位于连续谱中的导模,其不能与辐射场耦合,没有能量辐射,被完美地束缚在结构中[1-3]㊂数学上,光学连续谱束缚态是指开结构中麦克斯韦方程组的一类频率位于连续谱内的平方可积特征解㊂通常,导模(即平方可积特征解)的特征频率位于连续谱外㊂1929年冯诺依曼等[4]从数学模型上发现在一些特殊的结构中存在特征频率位于连续谱内的导模㊂直到1985年文献[5]才构造出具有连续谱束缚态的真实物理系统㊂2008年,文献[3]研究了光子晶体结构中的连续谱束缚态㊂此后,连续谱束缚态受到广泛关注,与之有关的研究快速发展㊂目前,连续谱束缚态的概念和研究已推广到水波㊁声波等其他波动现象[1]㊂连续谱束缚态可看成为品质因子为无穷大的共振,只存在于若干离散的频率上㊂连续谱束缚态由共振模式所包围㊂通过扰动波矢,可在连续谱束缚态附近找到任意大小品质因子的共振模式[6]㊂此性质使得连续谱束缚态在光学㊁光子学等领域都拥有广阔的应用前景㊂目前,连续谱束缚态已在波导㊁光栅㊁光子晶体及超材料等结构中被广泛研究[7],光子晶体中的连续谱束缚态现在已经被用于传感器,激光器和滤波器的设计当中[8-10]㊂通常,共振模式的品质因子与波矢之差的平方成反比㊂文献[6]证明了存在特殊的连续谱束缚态使得附近共振模式的品质因子与波矢之差的四次方和六次方成反比,并给出了两类特殊连续谱束缚态的条件㊂从实际应用角度来讲,在这些特殊的连续谱束缚态附近更容易构造出高品质因子的共振模式㊂连续谱束缚态可以大致分为两类:对称保护的连续谱束缚态[11-15]和非对称保护的连续谱束缚态[2,16-19]㊂对称保护的连续谱束缚态(Symmetry Protected Bound states in the continuum,SPBIC)的机理是:在对称结构中,布洛赫模的对称性与结构中辐射场的对称性不相容,从而与辐射场不耦合,变成一个连续谱束缚态[3]㊂而非对称保护连续谱束缚态的存在机理是:共振模式的辐射场之间发生干涉相消现象,造成没有辐射,成为连续谱束缚态[3]㊂连续谱束缚态的存在性与结构的对称性具有密切联系㊂早期研究结果都是在对称结构中研究连续谱束缚态,学术界一度认为连续谱束缚态只存在于对称结构中㊂目前数学上还没有非对称保护连续谱束缚态的存在性理论㊂非对称保护连续谱束缚态关于结构对称性的依赖关系非常复杂㊂文献[20-23]从数值和实验上演示了破坏二维结构的C2旋转对称性后,连续谱束缚态演化为共振模式㊂这间接说明了结构的对称性对非对称保护连续谱束缚态的存在性具有重要影响㊂但是破坏对称性后连续谱束缚态是否一定会演化为共振模式并没有明确的结论㊂最近,文献[24-26]证明了只要引入足够多的结构扰动参数,连续谱束缚态可以连续存在于非对称的结构中,且对于不同类型的连续谱束缚态,所需要引入的最小参数的数量是不同的㊂上述结论表明,非对称保护连续束缚态可以存在于非对称结构中,只要结构的自由参数足够多㊂对称保护连续谱束缚态只存在于对称结构中㊂光子晶体平板可具有四类旋转对称性:C2㊁C3㊁C4和C6旋转对称性,即分别旋转180㊁120㊁90和60度后结构不变㊂文献[11-12]首先从数学理论上证明了在具有C2旋转对称的二维介质结构中对称保护连续谱束缚态的存在性,在非对称结构中一定不存在对称保护连续谱束缚态㊂研究对称保护连续谱束缚态对上述四种不同类型对称性的连续依赖性具有十分重要的意义㊂文献[21]研究了C6旋转对称性对具有拓扑电荷为q=-2的对称保护连续谱束缚态存在性的影响㊂通过数值计算发现破坏C6对称保持C2对称,对称保护连续谱束缚态依然存在,但是变成拓扑电荷q=-1;破坏C6对称保持C3对称,对称连续谱束缚态演化为共振模式,而且会产生两个非对称保护连续谱束缚态㊂上述研究结果给出了一种产生非对称保护连续谱束缚态的方法㊂目前,对于拓扑电荷为q=-1或q=1的对称保护连续谱束缚态关于结构对称性的依赖关系没有进行系统讨论,缺乏严格系统的依赖性理论㊂研究C4旋转对称结构中对称保护连续谱束缚态关于对称性的依赖关系㊂建立了严格数学理论证明破坏C4对称保持C2对称,对称保护连续谱依然存在㊂并利用有限元软件FreeFEM进行数值验证㊂相比于以前的研究,研究既有严格的数学理论,又有数值验证㊂研究成果具有一般性,可推广到分析对称保护连续谱束缚态关于C6对称性的依赖性,有利于深入理解连续谱束缚态关于对称性的依赖关系,为其实际应用提供理论指导㊂2㊀连续谱束缚态考虑一个在x与y方向为周期,在z方向上厚度有限的光子晶体平板㊂光子晶体平板通过在平板上构造正方形空气柱晶格所构成㊂设平板厚度为2D,晶格常数为L,平板的介电常数为ε1,空气的介电常数为ε0= 1㊂记整个结构的介电常数为ε(r),其中r=(x,y,z),则z>D时有ε(r)=1,且ε(r)满足ε(r)=ε(x+mL,y+nL,z)(1)其中,m与n为任意整数㊂设光子晶体平板是无磁性㊁各向同性的,由麦克斯56重庆工商大学学报(自然科学版)第40卷韦方程组可知,具有时间依赖e -iwt 的时谐波的电场E 满足如下的控制方程:∇ˑ∇ˑE -k 2εE =0∇㊃(εE )=0其中k =ωc为真空中的波速,ω为角频率,c 为真空中的光速㊂光子晶体平板中的布洛赫模(即麦克斯韦方程组的特征解)可写成:E (r )=Φ(r )e ik ㊃r其中,k =(α,β,0)为布洛赫波矢,实数α与β分别为x 与y 方向的布洛赫波速,Φ(r )满足周期条件式(1)㊂由于在z >D 时,结构是均匀的,由傅立叶展开式与分离变量法可知,满足向外辐射条件的布洛赫模可以展开为[18]E (r )=ð+ɕm ,n =-ɕd ʃm ,neik ʃm ,n㊃r ʃz >D (2)其中,常数向量d ʃm ,n满足d ʃm ,n ㊃k ʃm ,n =0,k ʃm ,n=(αm ,βn ,ʃγm ,n ),αm =α+2m πL ,βn =β+2n πL,γm ,n =k 2-α2m -β2n ㊂若结构是无耗散的,即ε(r )为非负实函数,则布洛赫模可以分为三类:导模㊁共振以及连续谱束缚态㊂(1)若k 为实数,则布洛赫模为导模㊂可以证明k 为实数等价于E (r )满足lim z ңɕE (r )=0,即没有能量辐射,没有能量损失㊂当波速和布洛赫波矢满足条件0<k <α2+β2时,导模关于α与β连续存在㊂在上述条件下,γm ,n 的虚部都大于0,所以展开式(2)中每一个平面波都在无穷远出衰退到0,即E (r )自动满足lim z ңɕE (r )=0,从而是一个导模㊂(2)若k 为复数,则布洛赫模为共振模式㊂共振模式的波速k 满足[Re(k )]2-[lm(k )]2>α2+β2㊂由于共振的波速k 为复数且满足向外辐射条件,共振满足条件lim z ңɕE (r )=ɕ,即在空间上是无限增大,但随时间指数衰退㊂共振波速k (或共振频率ω)的虚部小于零,即lm(k )<0,它表示共振随着时间衰退的速度㊂共振的品质因子Q 定义为Q =-12Re(k )lm(k ),表示共振模式的振幅衰退到原来的e -1时所需要的振荡周期㊂共振模式关于α与β也是连续存在的㊂(3)若k 为实数且满足k >α2+β2,则布洛赫模是一个连续谱束缚态㊂连续谱束缚态可以看成是一个Q 因子为无穷大的共振,只在离散的(α,β)点上存在,在连续谱束缚态的附近,通过调整α与β可以获得任意大小Q 因子的共振㊂由于k 为实数等价于条件limz ңɕE (r )=0,在展开式(2)中,若lm(γm ,n )ȡ0,则e ikm ,n㊃r可向z ңɕ辐射能量,(m ,n )是对应一个开放的辐射通道㊂若lm(γm ,n )<0,则eik ʃn ,m ㊃r在z ңɕ时衰退到零,对应一个关闭的辐射通道㊂若Re(k )>α2+β2,则至少有lm(γ0,0)ȡ0,即(0,0)处辐射通道是开放的㊂记Z 0表示所有开放的辐射通道,即Z 0=(m ,n )lm(γm ,n )ȡ0{},则条件lim z ңɕE (r )=0等价于d ʃm ,n=0,∀(m ,n )ɪZ 0(3)式(3)是布洛赫模的一个附加条件,在一般情况下,连续谱束缚态不容易存在㊂3 对称保护连续谱束缚态当光子晶体平板具有旋转对称性时,可能存在对称保护连续谱束缚态㊂下面给出具有C n 旋转对称的光子晶体平板中对称保护连续谱束缚态的定义,并分析其关于对称性的依赖关系㊂利用旋转对称性下布洛赫模的性质,将连续谱束缚态的存在性问题转变为旋转矩阵的特征值是否与一个简单代数方程的解相同的问题;其次,给出了C4旋转对称的结构中连续谱束缚态存在时所对应的条件;然后,证明了破坏C4旋转对称保持C2旋转对称时,连续谱束缚态依然存在;具有C n 旋转对称性结构的介电函数ε(r )满足条件ε(r )=ε(T -1r )其中,T =cos φ-sin φ0sin φcos φ0001éëêêêùûúúú表示旋转矩阵,φ=2πn ,只考虑n =2与n =4的情况㊂其理论可推广到n =3与n =6的情况㊂C n 旋转对称光子晶体平板中的布洛赫模具有以下性质[24]:若E (r )=Φ(r )e ik ㊃r 是一个对应于波矢k =(α,β,0)和波速k 的布洛赫模,则TE (T -1r )是一个对应于波矢Tk 和波速k 的布洛赫模㊂特别地,取α=β=0,即k =(0,0,0),有Tk =k ,此时E (r )与TE (T -1r )是对应同一个波矢与波速的两个布洛赫模㊂若特征值问题是非退化的,则E (r )与TE (T -1r )线性相关,即存在常数τ使得:TE (T -1r )=τE (r )(4)由于任何结构旋转n 次2πn角度(即2π)后都不变,有T n=I ,其中I 表示单位算子㊂所以有τn=1,即τ=e i 2πn j,j =0,1,2, ,n -1㊂更具体地,当n =2时,τ=ʃ1;当n =4时,τ=ʃ1,ʃi ㊂注意到τ的取值对应于C n 点群的不可约表示的特征㊂设布洛赫模的波矢为k =(0,0,0)且频率满足0<Re(k )ε0<2πL,即只有(0,0)处辐射通道是开放的,则当n =2时,对应于τ=1以及当n =4时,对66第3期张铭洋,等:C4旋转对称光子晶体平板中的对称保护连续谱束缚态应于τ=ʃ1的布洛赫模一定是连续谱束缚态,称为对称保护连续谱束缚态㊂在上述条件下,布洛赫模是一个连续谱束缚态的充要条件是d ʃ0,0=0㊂下面证明当n =2时,τ=1以及当n =4时,τ=ʃ1,有d ʃ0,0=0㊂将展开式(2)代入条件式(4)得:Td ʃ0,0=τd ʃ0,0(5)令,d ʃ0,0=d ʃx ,d ʃy ,d ʃz []T ,T ^=cos φ-sin φsin φcos φéëêêùûúú,d ʃʅ=d ʃx ,d ʃy []T 表示d ʃ0,0的x 与y 分量所构成的向量㊂由d ʃ0,0㊃k ʃ0,0=0且α=β=0,知d ʃz k =0,即d ʃz =0㊂所以d ʃ0,0=0等价于d ʃʅ=0㊂由式(5)得:T ^d ʃʅ=τd ʃʅ若τ不是T ^的特征值,则必有d ʃʅ=0㊂当n =2时,T ^=-100-1éëêêùûúú,T ^只有一个特征值-1㊂所以当τ=1时,有d ʃʅ=0㊂当n =4时,T ^=0-110éëêêùûúú,此时T ^的特征值为ʃi ㊂所以当τ=ʃ1时有d ʃʅ=0㊂由上面的证明过程可知,条件d ʃ0,0=0是由C n 对称性所保证的㊂在具有C4旋转对称的结构中,对称保护连续谱束缚态对应的τ=1或-1㊂注意到无论是τ=1还是-1,都有τ2=1,即这些连续谱束缚态也同时由C2旋转对称所保护㊂有以下结论:具有C4旋转对称结构中的对称保护连续谱束缚态都是由C2旋转对称所保护的,即破坏C4旋转对称,保持C2旋转对称,这些连续谱束缚态依然存在㊂4㊀拓扑电荷连续谱束缚态对应于动量空间中辐射场的漩涡,因此其存在性与拓扑性质有关㊂前面提到了布洛赫模是一个连续谱束缚态的充要条件是d ʃ0,0=0,通过d ʃ0,0的x 与y 分量可以计算得到辐射场的极化角㊂极化椭圆的长轴与y 轴的夹角称之为极化角度,记为θ㊂θ可以看成是α与β的函数,即θ=θ(α,β)㊂在αβ平面上,任意给定一条曲线Γ,让(α,β)沿着Γ绕一圈重新定义θ,使其为连续函数㊂拓扑电荷的定义为q =12πɥΓd θ=12πɥΓ∇θ㊃ n d s拓扑电荷q 表示αβ上的一点绕Γ走一圈后,极化角度旋转了q 圈,q 是一个整数㊂若Γ所围区域内无圆极化与连续谱束缚态,则q =0;若Γ所围区域内有且仅有一个连续谱束缚态则q =ʃ1,ʃ2,ʃ3, ;若Γ所围区域内只有一个圆极化,则q =ʃ12㊂需要注意的是圆极化和连续谱束缚态是αβ平面中的一个极化奇点㊂5㊀数值实验由于辐射边界条件下的特征值问题定义在无穷区间上,无法用数值方法来计算㊂所以在实际计算连续谱束缚态的时候,可以用完美匹配层的方法来将无穷区域截断为有限区域㊂用完美匹配层截断后的特征值问题是原特征值问题的一个近似,它们之间的误差关于完美匹配层的参数σ∗㊁H 2-H 1(即完美匹配层的厚度)指数衰退到零㊂所以只需要选择合适的σ∗与H 2-H 1,便可以得到足够精确的特征解,即可以计算得到连续谱束缚态的频率㊂相对于拟周期边界条件,在有限元方法中周期边界条件更容易实现㊂用有限元方法求解偏微分方程最重要的是弄清楚解空间和变分形式㊂在用有限元求解时,变分问题被近似为下列代数方程的特征值问题:A Φ=k 2B Φ其中,A 与B 为矩阵㊂考虑如图1所示的具有正方形晶格空气柱的光子晶体平板,其俯视图如图2所示㊂平板是由空气所包围的㊂平板的厚度为2D =0.5L ,介电常数为ε1=4,空气中的介电常数ε0=1㊂空气柱体横截面参数分别为w =0.2L ,a =w2㊂若h 1=h 2,则结构具有C4旋转对称性㊂若h 1ʂh 2,则结构只有C2旋转对称性㊂为了验证前面得到的理论,用完美匹配层[27]的方法将无穷区域上的特征值问题转化为有限区域上的特征值问题,并用有限元[28]的方法求解㊂数值计算时,需要用完美匹配层方法将z 方向截断为-H 2,H 2[],如图3所示㊂取完美匹配层的厚度为H 2-H 1=L ,σ∗=18ˑm +1β0(H 2-H 1)[29],β0=k 20ε0-α2-γ2,m =3㊂其中H 1-D 表示完美匹配层的远近㊂采用基于FreeFEM 软件的有限元方法来数值求解特征值问题,以计算对称保护连续谱束缚态的频率㊂计算时在平板的每个边界的离散点个数取N =10,PML 层的离散点个数也取N =10㊂考虑如此复杂结构的原因是为了避免其他对称性(例如镜面反射对称)对结果的影响㊂ε=ε0ε=ε0z =D z =-Dzxy图1㊀光子晶体平板结构图Fig.1㊀Structure diagram of photonic crystal plates76重庆工商大学学报(自然科学版)第40卷h 2h 1h 1h 2L Lαωωxy图2㊀光子晶体平板结构的俯视图Fig.2㊀Top view of the photonic crystal flat plate structurez=H2z=H1z=D z=-Dz=-H1z=-H2ε=εε=εzxy 图3㊀PML截断后的计算区域Fig.3㊀Computation region after PML truncation 若取h1=h2=0.15L,这时结构具有C4旋转对称性㊂通过数值计算,可以找到5个TM-Like模式下(即E z是z变量的奇函数)的对称保护连续谱束缚态,其频率如表1的第2列所示㊂图4(a) 图8(a)分别是SPBIC1-SPBIC5在具有C4旋转对称的结构中log10Q 关于α与β的值㊂可以通过观察得到当(α,β)ң(0, 0)时,Q的值趋近于无穷大㊂图4(c) 图8(c)分别是SPBIC1到SPBIC5在C4旋转对称结构中的磁场z分量H z在z=0时的场图㊂从下面的场图可以观察得到, SPBIC1与SPBIC5对应于τ=1,其他3个对称保护连续谱束缚态对应于τ=-1㊂表1的最后一列表示为对称保护连续谱束缚态的拓扑电荷㊂若保持h1=0.15L,令h2=0.1L,参数扰动后结构的C4旋转对称性被破坏,但保持了C2旋转对称性㊂通过数值计算表明,SPBIC1-SPBIC5在扰动后的结构中依然存在,其频率如表1的第三列所示,可以发现两种结构下连续谱束缚态的频率近乎相等㊂图4(b) 图8(b)分别是SPBIC1到SPBIC5在具有C2旋转对称的结构中log10Q关于α与β的值㊂可以通过观察得到当(α,β)ң(0,0)时,Q的值趋近于无穷大,并且可以发现两种结构下,log10Q关于α与β的值很相近㊂图4(d) 图8(d)分别代表的是扰动后SPBIC1-SPBIC5在C2旋转对称结构中的磁场z分量H z在z=0时的场图㊂从下面的场图可以观察得到,SPBIC1与SPBIC5仍然对应于τ=1,其他3个对称保护连续谱束缚态也依旧对应于τ=-1㊂通过对比,可以发现两种结构下的场图几乎一模一样,并且可以发现结构扰动不改变对称保护连续谱束缚态的拓扑电荷㊂表1㊀C4与C2旋转对称结构中对称保护连续谱束缚态的频率ωL2πc的值Table1㊀Value ofωL2πc the frequency of symmetrically protected bound states in the continuum in the rotationallysymmetric structure of C4and C2C4C2q SPBIC10.61590.6101+1 SPBIC20.63670.6282-1 SPBIC30.85690.8485-1 SPBIC40.93830.9338-1 SPBIC50.95140.9492+10.05-0.05-0.0500.05βL/(2π)Q f a c t o rαL/(2π)8640.05-0.05-0.0500.05αL/(2π)864βL/(2π)Q f a c t o r㊀㊀(a)(b )0.5-0.5-0.500.5y/LR e/H zx/L0.5-0.5-0.500.5R e/H zx/L㊀㊀(c)(d)图4㊀SPBIC1的Q因子图和场图Fig.4㊀Q factor diagram and field diagram of SPBIC10.05-0.05-0.0500.05βL/(2π)Q f a c t o rαL/(2π)8765430.05-0.05-0.0500.05αL/(2π)βL/(2π)Q f a c t o r876543㊀㊀(a)(b)86第3期张铭洋,等:C4旋转对称光子晶体平板中的对称保护连续谱束缚态0.50-0.5-0.50.5y /LR e /H zx /L0.5-0.5-0.50.5y /LR e /H zx /L㊀㊀(c )(d )图5㊀SPBIC2的Q 因子图和场图Fig.5㊀Q factor diagram and field diagram of SPBIC20.010-0.01-0.010.01βL /(2π)Q f a c t o rαL /(2π)8765430.010-0.01-0.0100.01αL /(2π)βL /(2π)Q f a c t o r76543㊀㊀(a )(b )0.5-0.5-0.50.5y /LR e /H zx /L0.5-0.5-0.50.5y /LR e /H zx /L㊀㊀(c )(d )图6㊀SPBIC3的Q 因子图和场图Fig.6㊀Q factor diagram and field diagram of SPBIC30.010-0.01-0.010.01βL /(2π)Q f a c t o rαL /(2π)76540.010-0.01-0.0100.01αL /(2π)βL /(2π)Q f a c t o r7654㊀㊀(a )(b )0.5-0.5-0.50.5y /LR e /H zx /L0.5-0.5-0.50.5y /LR e /H zx /L㊀㊀(c )(d )图7㊀SPBIC4的Q 因子图和场图Fig.7㊀Q factor diagram and field diagram of SPBIC40.020-0.02-0.0200.02βL /(2π)Q f a c t o rαL /(2π)8640.020-0.02-0.0200.02αL /(2π)βL /(2π)Q f a c t o r6543㊀㊀(a )(b )0.5-0.5-0.50.5y /LR e /H zx /L0.5-0.5-0.500.5y /LR e /H zx /L㊀㊀(c )(d )图8㊀SPBIC5的Q 因子图和场图Fig.8㊀Q factor diagram and field diagram of SPBIC5经过数值计算,从扰动前后不同结构下对称保护连续谱束缚态的频率以及对比分析它们的Q 因子图和场图可以观察得到具有C4旋转对称结构的光子晶体平板中的对称保护连续谱束缚态都是由C2旋转对称性所保护的㊂即若破坏C4旋转对称但保持C2旋转对称,原有的对称保护连续谱束缚态依然存在㊂进一步反映了C4旋转对称与C2旋转对称之间的依赖关系㊂6㊀结束语构建了系统分析连续谱束缚态关于旋转对称性的依赖理论,并且重点研究了C4旋转对称的情况,分别从理论和数值两个方面证明了具有C4旋转对称光子晶体平板中的对称保护连续谱束缚态都是由C2旋转对称性所保护的㊂即破坏C4旋转对称但是保持C2旋转对称性,原对称保护连续谱束缚态依然存在㊂虽然只考虑了C4旋转对称光子晶体平板中的对称保护连续谱束缚态,但提出的理论和数值分析方法都可以用于研究具有C6旋转对称的光子晶体平板,不过由于此结构同时具有C2与C3旋转对称性,对称保护连续谱束缚态与对称性的依赖关系可能会更加复杂㊂提出的理论分析方法也可以适用于所有旋转对称的情况㊂由于是从麦克斯韦方程组出发,没有引入模型近似,并且分析过程根据严格㊂研究结果有利于深入理解对称保护连续谱束缚态的性质,为其理论分析和实际应用提供指导㊂96重庆工商大学学报(自然科学版)第40卷参考文献References1 ㊀HSU C W ZHEN B STONE A D et al.Bound states in thecontinuum J .Nature Reviews Materials 2016 1 9 1 13.2 ㊀HSU C W ZHEN B LEE J et al.Observation of trappedlight within the radiation continuum J .Nature 2013 4997457 188 191.3 ㊀MARINICA D C BORISOV A G SHABANOV S V.Boundstates in the continuum in photonics J .Physical Review Letters 2008 100 18 1 4.4 ㊀NEUMANN J WIGNER E P.Über merkwürdige diskreteEigenwerte M .Berlin Heidelberg Springer 1993.5 ㊀FRIEDRICH H WINTGEN D.Interfering resonances andbound states in the continuum J .Physical Review A 198532 6 3231 3239.6 ㊀YUAN L LU Y Y.Bound states in the continuum on periodicstructures surrounded by strong resonances J .Physical Review A 2018 97 4 1 8.7 ㊀AZZAM S I KILDISHEV A V.Photonic bound states in thecontinuum from basics to applications J .Advanced Optical Materials 2020 9 1 1469 1477.8 ㊀KODIGALA A LEPETIT T GU Q et sing action fromphotonic bound states in continuum J .Nature 2017 5417636 196 199.9 ㊀JIN J YIN X NI L et al.Topologically enabled ultrahigh-Qguided resonances robust to out-of-plane scattering J .Nature 2019 574 7779 501 504.10 HAN S CONG L SRIVASTAVA Y K et al.All-dielectricactive terahertz photonics driven by bound states in the continuum J .Advanced Materials 2019 31 37 1 28.11 BONNET-BENDHIA A S STARLING F.Guided waves byelectromagnetic gratings and non-uniqueness examples for the diffraction problem J .Mathematical Methods in the Applied Sciences 1994 17 5 305 338.12 VENAKIDES S SHIPMAN S P.Resonance and bound statesin photonic crystal slabs J .SIAM Journal on Applied Mathematics 2003 64 1 322 342.13 SHIPMAN S VOLKOV D.Guided modes in periodic slabsexistence and nonexistence J .SIAM Journal on Applied Mathematics 2007 67 3 687 713.14 LEE J ZHEN B CHUA S L et al.Observation anddifferentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs J .Physical Review Letters 2012 109 6 1 5.15 HU Z LU Y Y.Standing waves on two-dimensional periodicdielectric waveguides J .Journal of Optics 2015 176065601 065608.16 YANG Y PENG C LIANG Y et al.Analytical perspective for bound states in the continuum in photonic crystal slabs J . Physical Review Letters 2014 113 3 1 5.17 YUAN L LU Y Y.Propagating bloch modes above the lightline on a periodic array of cylinders J .Journal of Physics B Atomic Molecular and Optical Physics 2017 505 1 5.18 KANG M ZHANG S XIAO M et al.Merging bound states in the continuum at off-high symmetry points J .Physical Review Letters 2021 126 11 1 7.19 YUAN L LU Y Y.Conditional robustness of propagating bound states in the continuum in structures with two-dimensional periodicity J .Physical Review A 2021 1034 1 10.20 OVERVIG A C MALEK S C CARTER M J et al.Selection rules for quasibound states in the continuum J .Physical Review B 2020 102 3 1 30.21 YODA T NOTOMI M.Generation and annihilation of topologically protected bound states in the continuum and circularly polarized states by symmetry breaking J .Physical Review Letters 2020 125 5 1 12.22 LI S ZHOU C LIU T et al.Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces J . Physical Review A 2019 100 6 1 6.23 LI L LI Y ZHU Y et al.Rotational symmetry of photonic bound states in the continuum J .Scientific Reports 2020 101 1 8.24 SAKODA K.Optical properties of photonic crystals M . Berlin Springer Science&Business Media 2004.25 YUAN L LU Y Y.Parametric dependence of bound states in the continuum on periodic structures J .Physical Review A 2020 102 3 1 9.26 YUAN L LUO X LU Y Y.Parametric dependence of bound states in the continuum in periodic structures vectorial cases J .Physical Review A 2021 104 2 1 11.27 LU Y Y.Minimizing the discrete reflectivity of perfectly matched layers J .IEEE Photonics Technology Letters 2006 18 3 487 489.28 LI Y J JIN J M.Fast full-wave analysis of large-scale three-dimensional photonic crystal devices J .JOSA B 2007 249 2406 2415.29 ZHEN B HSU C W LU L et al.Topological nature of optical bound states in the continuum J .Physical Review Letters 2014 113 25 1 20.责任编辑:田㊀静07。
※生物工程食品科学2010, Vol. 31, No. 11147产细菌素苏云金芽孢杆菌的鉴定及其所产 抗菌物质性质李 云,杨胜远 * ,林晓东,钟瑜红,苏 婷,刘湘嘉(韩山师范学院生物系食品与发酵工程研究所,广东 潮州 摘 521041)要:从腌制蔬菜表面分离到一株产细菌素的菌株 K2,其中和后的无细胞发酵液主要抑制革兰氏阳性细菌,特别是对芽孢杆菌有强烈的抑制作用。
发酵上清液经硫酸铵盐析和透析后,仍然有很强的抗菌活性,并对多种蛋白 酶敏感,表明抗菌活性物质为蛋白类物质。
通过形态培养特征、生理生化特征、16S rDNA 序列比对及系统发育 分析,鉴定菌株 K2 是苏云金芽孢杆菌(Bacillus thuringiensis)。
菌株 K2 产生的抗菌物质在 pH6~9 条件下 80℃处理 30min 仍保持稳定的抗菌活性,其对敏感菌的作用主要是杀菌,而且对芽孢萌发有很好的抑制作用。
该抗菌物质 在菌体生长对数中期产生,在稳定期中期抗菌活性达到最大。
关键词:苏 云 金 芽 孢 杆 菌;细菌素;鉴定;抗 菌 物 质Identification of Bacteriocin-producing Bacillus thuringiensis and Properties of Its Antibacterial SubstancesLI Yun,YANG Sheng-yuan*,LIN Xiao-dong,ZHONG Yu-hong,SU Ting,LIU Xiang-jia (Food and Fermentation Engineering Institute, Department of Biology, Hanshan Normal University, Chaozhou 521041, China)Abstract: Strain K2 having the ability to produce bacteriocin was isolated from the surface of picked vegetables. The neutralized cell-free fermentation supernatant exhibited an inhibition effect against Gram-positive bacteria, especially strong inhibition effect against Bacillus strains. The inhibition activity of the fermentation supernatant still kept high after ammonium sulphate precipitation and dialysis, and the activity of the dialysis retentate was sensitive to a variety of proteases. These results indicated the protein nature of antibacterial substances contained in the dialysis retentate. Base on morphological, physiological and biochemical characteristics, 16S rDNA sequence and phylogenic analysis, the strain K2 was classified as Bacillus thuringiensis. The antibacterial substance from strain K2 remained strong antibacterial activity after heating treatment at 80 ℃ and pH 6 - 9 for 30 min, suggesting its excellent thermostable property and pH resistance. The antibacterial activity was generated from midlogarithmic growth phase and reached the maximum activity at mid-stationary phase. Key words:Bacillus thuringiensis;bacteriocin;identification;antibacterial substance 中图分类号:Q939.9 文献标识码:A 文章编号:1002-6630(2010)11-0147-06细菌素是某些细菌在代谢过程中通过核糖体合成机 制产生的一类具有生物活性的蛋白质或多肽,主要抑制 其他相近种类的细菌,一般产生菌自身对其细菌素具有 免疫性[ 1 ] 。
专利名称:Method and apparatus for computermodeling of the interaction between andamong cortical and subcortical areas in thehuman brain for the purpose of predictingthe effect of drugs in psychiatric andcognitive diseases发明人:Hugo Geerts,Athan Spiros申请号:US13412626申请日:20120306公开号:US08332158B2公开日:20121211专利内容由知识产权出版社提供专利附图:摘要:A computer model of a diseased human brain includes inputs representing a drug and outputs representing the clinical effect of that drug on psychiatric and cognitive diseases. Diseases that can be modeled include psychiatric disorders, such as schizophrenia, bipolar disorder, major depression, ADHD, autism, obsessive-compulsive disorder, substance abuse and cognitive deficits therein and neurological disorders such as Alzheimer's disease, Mild Cognitive impairment, Parkinson's disease, stroke, vascular dementia, Huntington's disease, epilepsy and Down syndrome. The computer model preferably uses the biological state of interactions between and among cortico and subcortical areas of the human brain, to define the biological processes related to the biological state of the generic synapse model, the striatum, Locus Coeruleus, Dorsal raphe, hippocampus, amygdala and cortex, as well as certain mathematical relationships related to interactions among biological variables associated with the biological processes and to correlations between the biological variables and clinical effects on a clinical scale.申请人:Hugo Geerts,Athan Spiros地址:Berwyn PA US,Portland OR US 国籍:US,US代理机构:Berliner & Associates更多信息请下载全文后查看。
同期两篇《Science》堪⽐“核弹”的超⾼能全氮阴离⼦盐再起风云,引发科学争论导读此前,化学加相继报道过南京理⼯⼤学化⼯学院的胡炳成、陆明团队含能材料基础研究的⼀些进展。
近⽇,顶级学术期刊Science 同期刊登两篇中国⾼校关于这⽅⾯研究的⽂章。
安庆师范⼤学化学化⼯学院黄荣谊教授与徐衡教授等⼈在Science 上发表评论性研究,对胡教授等⼈此前的研究结果提出了不同的看法(DOI:10.1126 / science.aao3672),胡教授等⼈随后在Science做出了回应(DOI: 10.1126/science.aas8953)。
Scheme 1. (N5)6(H3O)3(NH4)4Cl的晶体结构2017年1⽉,南京理⼯⼤学化⼯学院的胡炳成、陆明团队在国际顶级期刊Science上发表⾼⽔平⽂章,报道了⾸例全氮阴离⼦盐的合成(Scheme 1,⽂章链接:南京理⼯⼤学Science,报道⾸例五氮唑阴离⼦盐的合成)。
该⽂章是我国在Science上发表的第⼀篇含能材料领域研究论⽂,具有很⾼的学术价值。
全氮阴离⼦盐更是充满着诱⼈的应⽤前景,它的威⼒是TNT炸药的10~100倍,有望⽤于制造不需核裂变起爆的“⼲净”氢弹。
2017年8⽉南京理⼯⼤学化⼯学院陆明课题相继⼜在《Nature》上发表⽂章报道了系列⽔合五唑⾦属盐含能化合物的合成及表征。
(⽂章链接:南京理⼯⼤学 Nature 报道系列⽔合五唑⾦属盐含能化合物的合成)全氮阴离⼦盐的成功制备,是全氮类物质研究领域的⼀个历史性突破,具有划时代的意义。
同时,由于该领域的重要性,⾸例五氮唑阴离⼦盐的合成也引起了很多学者和专家的讨论,争议也是层出不穷。
最近,安庆师范⼤学化学化⼯学院黄荣谊教授与徐衡教授等⼈在Science上发表评论性研究,对胡教授等⼈的研究结果提出了不同的看法。
黄教授等⼈通过理论计算,发现(N5)6(H3O)3(NH4)4Cl中形成的更有可能是通过质⼦转移形成的HN5,⽽⾮全氮阴离⼦。
修正剑桥模型在DPC桩—土结构层中的应用分析胡贺松;廖湘英;陈晓斌【摘要】针对DPC桩—土结构层开展大型直剪试验,基于试验分析,在考虑DPC桩—土结构层注浆影响上引入临界应力比,构建了可描述应变软化的修正剑桥模型应力应变方程.直剪试验表明DPC桩—土结构层剪切特性表现为剪切软化,具有明显的峰值强度和残余强度,呈现出明显的结构性,其特征与超固结的黏土的剪切应力应变曲线特性类似.推导出的修正剑桥模型能较好的解释实验结果,所得出的结论对DPC桩的设计有一定的指导意义.【期刊名称】《地质力学学报》【年(卷),期】2018(024)006【总页数】6页(P849-854)【关键词】随钻跟管桩;桩侧注浆;桩—土结构层;直剪试验;剑桥模型【作者】胡贺松;廖湘英;陈晓斌【作者单位】广州市建筑科学研究院有限公司, 广东广州510440;中南大学土木工程学院, 湖南长沙410083;中南大学土木工程学院, 湖南长沙410083【正文语种】中文【中图分类】U430 引言建立合理的桩—土接触面本构模型是研究桩基承载力的前提,特别是摩擦型基桩。
在桩—土接触面本构模型开发、改进和应用方面,常用的接触面模型有理想弹塑性模型、指数函数模型、双曲线模型、线性模型、损伤模型等。
主要成果有Clough和Duncan[1]提出的双曲线本构模型,后来蒲诃夫[2]、曹卫平[3]等对双曲线模型进行了改进。
Brandt[4]通过直剪试验提出了刚塑性模型。
Desai[5]等将损伤力学的原理引入接触面,并提出了修正的R-O模型。
胡黎明[6]等则基于损伤力学原理,提出了损伤本构模型。
王伟[7]从能量的角度考虑,基于试验研究提出了3参数模型,为桩土界面的计算提供了参考。
李赛等[8]考虑桩—土界面初始剪切刚度的深度效应,提出基于统计损伤本构模型的无厚度接触面本构模型。
张嘎[9]基于粗粒土与结构接触面弹塑性损伤静动力统一模型建立了可用于有限元分析的弹塑性损伤接触面单元。
专利名称:DNA METHYLATION BIOMARKERS FOR EARLY DETECTION OF CERVICAL CANCER 发明人:SZYF, Moshe,CHEISHVILI, David,FRANCO, Eduardo,EL-ZEIN, Mariam申请号:EP20730546.7申请日:20200204公开号:EP3891296A2公开日:20211013专利内容由知识产权出版社提供摘要:The present invention discloses an in vitro method for obtaining DNA methylation biomarkers as exquisite DNA methylation positions in the human genome (i.e., CGIDs) that predict cervical cancer especially at as yet inaccessible early stages by examining progression of "categorical" DNA methylation alterations in three stages of premalignant lesions (cervical intraepithelial neoplasia (CIN)), progressing from CIN1 to CIN3. The present invention discloses combinations of CGIDs for detecting with high specificity and sensitivity cervical cancer by measuring their DNA methylation status and deriving a "methylation score", which is useful as a biomarker for cervical cancer. Also disclosed are kits for predicting cervical cancer using such CGIDs using multiplexed next generation sequencing methylation assays, pyrosequencing assays and methylation specific PCR. The DNA methylation markers (CGIDs) described in the present invention are useful for cervical screening and early detection of cervical cancer by any person skilled in the art to detect cervical cancer.申请人:HKG Epitherapeutics Limited地址:812 Silvercord, Tower 1 30 Canton Road Tsimshatsui, Kowloon HK国籍:HK代理机构:EDP Patent Attorneys B.V.更多信息请下载全文后查看。
第42卷第4期2023年4月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.4April,2023纳米硅粉改良碱渣-矿渣固化淤泥的抗硫酸镁侵蚀性能何㊀俊,管家贤,吕晓龙,张㊀驰(湖北工业大学土木建筑与环境学院,武汉㊀430068)摘要:利用纳米硅粉对碱渣-矿渣固化淤泥抗硫酸镁侵蚀性能进行改良,对MgSO 4溶液浸泡后的固化淤泥试样开展无侧限抗压强度㊁核磁共振和X 射线衍射试验,研究硅粉掺量㊁养护龄期㊁浸泡时间对固化淤泥强度的影响规律及其微观机理㊂研究表明:在标准养护条件下,当硅粉掺量为3%(质量分数)时固化淤泥试样的孔隙体积最小,无侧限抗压强度最大,生成水化铝酸钙等产物㊂在MgSO 4侵蚀环境下,标准养护7d 试样具有很好的抗侵蚀能力,当硅粉掺量为3%(质量分数)时固化淤泥抗MgSO 4侵蚀能力最好,无侧限抗压强度随浸泡时间的增加而增大;标准养护28和60d 时,固化淤泥抗MgSO 4侵蚀能力减弱㊂建立了固化淤泥无侧限抗压强度与硅粉掺量及浸泡时间的关系式,预测了最危险条件和最低强度㊂适量的纳米硅粉可增加固化淤泥中水化速度和程度,减少钙矾石的生成量及其不利影响,达到提高碱渣固化淤泥抗MgSO 4侵蚀性能的目的㊂关键词:纳米硅粉;碱渣;海相淤泥;MgSO 4侵蚀;无侧限抗压强度;微观结构中图分类号:TU411.3㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)04-1344-09Anti-MgSO 4Erosion Performance of Soda Residue-Ground Granulated Blast Furnace Slag Solidified Soil Modified by Nano-SilicaHE Jun ,GUAN Jiaxian ,LYU Xiaolong ,ZHANG Chi(School of Civil Engineering,Architectural and Environment,Hubei University of Technology,Wuhan 430068,China)Abstract :Nano-silica was used to improve the anti-MgSO 4erosion performance of solidified soil with soda residue and ground granulated blast furnace slag.The unconfined compressive strength (UCS),nuclear magnetic resonance and X-ray diffraction tests were carried out on solidified soil soaked in MgSO 4solution.The influences of nano-silica content,curing time and soaking time on strength and microstructure of solidified soil were studied.The results show that the sample with 3%(mass fraction)nano-silica content shows the smallest pore volume and highest UCS,and the products such as calcium aluminate hydrate are generated under standard maintenance conditions.In MgSO 4erosion environment,the samples cured for 7d have good erosion resistance.When the silica powder content is 3%(mass fraction),the solidified soil has the best anti-MgSO 4erosion performance,and the unconfined compressive strength increases with the increase of soaking time.For the samples cured for 28and 60d,the anti-MgSO 4erosion performance is weaker.The functional relationship between UCS of solidified soil and nano-silica content and soaking time is given,and the minimum UCS is predicted.Appropriate nano-silica promotes the hydration rate and degree for solidified soil and reduces the generation of ettringite and its adverse effects,which improves anti-MgSO 4erosion performance for solidified soil with soda residue.Key words :nano-silica;soda residue;marine soft soil;MgSO 4erosion;unconfined compressive strength;microstructure 收稿日期:2022-11-04;修订日期:2023-01-15基金项目:国家自然科学基金面上项目(41772332)作者简介:何㊀俊(1977 ),女,博士,教授㊂主要从事环境岩土工程方面的研究㊂E-mail:hjunas@ 0㊀引㊀言在滨海城市,围海造陆是解决土地资源紧张问题的重要手段[1]㊂近年来,滨海地区常将海相沉积淤泥作为围海造陆的主要原料㊂海相沉积淤泥以细颗粒为主,具有含水率高㊁孔隙比大和固结性能差等特点[2],㊀第4期何㊀俊等:纳米硅粉改良碱渣-矿渣固化淤泥的抗硫酸镁侵蚀性能1345采用无机固化剂固化处理是改善其性质的有效方法㊂其中,水泥是固化处理常使用的固化剂,但在生产过程中存在高能耗和高排放问题,而且水泥固化土的耐腐蚀性较差㊂Mg2+和SO2-4浓度是腐蚀评价的主要指标,韩鹏举等[3]研究不同浓度MgSO4溶液中水泥固化土表观形貌和强度的变化规律,发现其强度随着MgSO4浓度的增加而减小㊂刘泉声等[4]对侵蚀环境下水泥固化土耐久性的研究发现,Mg2+㊁Cl-和Na+降低了水泥固化土的强度,浸泡时间超过90d使强度产生明显衰减㊂闫楠等[5]发现海水环境下水泥固化土的劣化深度随时间的增长而增大,海水中侵蚀性离子对水泥水化产物的生成有抑制和消耗作用㊂为改善侵蚀环境中水泥固化土性质,许多学者尝试研究高效和环保的固化剂,以提高软土的强度和抗侵蚀性㊂吴燕开等[6]钢渣替代部分水泥用于固化海相软土可提高固化土的抗海水侵蚀能力㊂王子帅和王东星[7]将高炉矿渣㊁粉煤灰㊁硅灰和电石渣等工业废渣协同水泥固化滨海地基土,发现固化土在MgSO4侵蚀环境中受SO2-4侵蚀和Mg2+胶结弱化双重作用,导致固化土孔隙增大,强度在7d内有一定增长后持续降低㊂碱渣是氨碱法生产纯碱时产生的废弃物,其治理和再利用成为近年来研究的热点㊂杨爱武等[8]利用滨海软土㊁碱渣㊁水泥㊁生石灰㊁粉煤灰和发泡剂等制成碱渣固化轻质土,为碱渣的有效处理提供了参考㊂He等[9]以碱渣-矿渣作为淤泥固化剂,发现固化淤泥抗氯盐侵蚀能力强,但侵蚀作用形成的微观裂缝及疏松结构导致其抗MgSO4侵蚀能力较弱,如何提高碱渣-矿渣固化淤泥的抗MgSO4侵蚀能力还有待于深入研究㊂纳米SiO2(硅粉)是一种高活性无定形物质[10],可提高早期水化反应的速度和程度[11],从而有效提高水泥基材料的抗侵蚀性,因此一般选择纳米硅粉作为外掺剂来提高砂浆㊁混凝土和水泥土的抗侵蚀能力㊂Wu 等[12]研究发现纳米硅粉可降低砂浆的吸水率和渗透孔隙体积,使Ca(OH)2减少,C-S-H增加,从而增强试样在H2SO4侵蚀环境中的强度稳定性㊂Kunther等[13]发现纳米硅粉可降低水泥砂浆的钙硅比和膨胀率,从而提高砂浆的抗硫酸盐侵蚀能力㊂王文军等[10]将纳米硅粉作为外掺剂用于水泥土改性,发现纳米硅粉可显著提高水泥土强度,固化机理为水泥凝结硬化㊁火山灰反应㊁离子交换反应和填充效应㊂曾庆军等[14]在水泥土中加入0%㊁2%和4%(质量分数)的纳米硅粉,在Na2SO4溶液和纯水中养护后进行无侧限压缩试验,发现硫酸盐环境可加速纳米硅粉与水泥水化产物的二次反应,大幅增加水泥土的强度㊂通过以上研究可以发现,掺加纳米硅粉对于提高砂浆㊁混凝土和水泥土的强度和抗侵蚀性能是可行的㊂目前,纳米硅粉在提高碱渣-矿渣固化淤泥抗侵蚀性能的适用性相关研究尚未开展㊂本文在前期研究的基础上,开展纳米硅粉改良碱渣-矿渣固化海相淤泥的MgSO4溶液侵蚀试验,探讨纳米硅粉掺量㊁侵蚀溶液浓度㊁养护龄期和浸泡时间等对固化淤泥强度的影响规律和作用机理,以期为提高碱渣固化淤泥抗MgSO4侵蚀性能和耐久性提供技术支持㊂1㊀实㊀验试验用土取自天津南港滨海相沉积淤泥,其基本物理指标见表1㊂该淤泥呈流塑-软塑状态,属高压缩性㊁欠固结土及中灵敏淤泥质黏土,其矿物成分见图1,主要有石英㊁白云母㊁伊利石和方解石等㊂淤泥主要含有SO2-4㊁Cl-㊁Mg2+侵蚀性离子,含量分别为3200.4㊁10031.1和1143.0mg/kg,易溶盐含量大于1.0% (质量分数),属氯盐渍土;场区地下水矿物化度较高,受海水影响较大㊂表1㊀试验所用淤泥的基本物理指标Table1㊀Basic physical indexes of soil used in testWater content(mass fraction)/%ρ/(g㊃cm-3)Specific gravity Void ratio Liquid limit/%Plastic limit/%47.4 1.76 2.74 1.2741.523.8试验选用固化剂包括碱渣(soda residue,SR)㊁矿渣(ground granulated blast furnace slag,GGBS)和电石渣(carbide slag,CS),矿物组成见图1㊂碱渣主要化学成分及质量百分比为CaO(66.46%)㊁SO3(11.27%)㊁SiO2(8.6%)和Cl元素(6.72%),由碳酸钙㊁二水硫酸钙和氯化钠等组成;矿渣主要化学成分为CaO(38.60%)和SiO2(33.90%),由钙铝黄长石㊁硅酸二钙和铝酸三钙等组成;电石渣主要化学成分为CaO(89.71%),主要矿物成分为氢氧化钙,起激发矿渣活性的作用㊂硅粉购自中航中迈科技有限公司,平均粒径20nm,比表面积240m2/g,为白色球形颗粒㊂1346㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图1㊀试验用土和固化剂的XRD 谱Fig.1㊀XRD patterns of soil and solidified agents 试样制备时,首先将淤泥风干后研磨过2mm 筛,参考淤泥天然含水率加水搅拌至淤泥初始含水率为50%;为防止碱渣中二水硫酸钙失水变为半水硫酸钙,碱渣采用60ħ烘干,其他固化剂也都采用60ħ烘干至恒重;将淤泥与烘干的碱渣㊁矿渣㊁电石渣和硅粉混合均匀,密封静置24h 使水分分布均匀㊂开展的试验包括无侧限抗压强度(unconfined compressive strength,UCS)试验㊁X 射线衍射(X-ray diffraction,XRD)和核磁共振(nuclear magnetic resonance,NMR)测试㊂UCS 试验:采用分层击实法制样,将混合土分3层装入内径3.91cm㊁高8.0cm 的钢模中击实㊂在温度为(20ʃ2)ħ㊁湿度大于95%的标准养护箱养护至设定龄期后,将试样浸泡在溶液中,定期轻轻搅拌溶液使溶液均匀并避免触碰到试样㊂浸泡至设定时间后取出试样测试无侧限抗压强度㊂XRD 测试:为检测侵蚀性离子对固化淤泥矿物成分的影响,在UCS 试验结束后,收取断裂面试块,干燥后研磨过75μm 筛进行XRD 测试㊂采用Cu K α辐射为0.154nm 的BrukerD8Advance 系统(BrukerAXS,Madison,WI,USA),扫描速度为5(ʎ)/min,扫描范围5ʎ~75ʎ,通过Jade 软件分析矿物成分㊂NMR 测试:为检测硅粉对固化淤泥孔隙分布的影响,采用苏州纽迈股份有限公司生产的核磁共振岩心分析仪(MicroM12-025VR)进行NMR 测试㊂将混合土分2层装入内径18mm㊁高30mm 的亚克力模具中击实,在标准养护箱内养护至设定龄期后,真空抽气饱和试样;然后将试样装入核磁共振仪试样管中进行测试,反演得到弛豫时间T 2分布曲线㊂固化淤泥浸泡试验方案见表2㊂其中,固化剂掺量通过预试验确定,其比值为质量比;参考文献[10,12,14]中纳米硅粉掺量,选择硅粉与干土质量分数为0%~4%;养护龄期设为7~60d,浸泡时间设为7~60d㊂浸泡溶液为MgSO 4溶液,根据前期研究[9]和文献[3-4]选取离子浓度,浓度设定为15和30g /L㊂表2㊀固化淤泥浸泡试验方案Table 2㊀Soaking test scheme of solidified soilWater content /%m (dry soil)ʒm (SR)ʒm (GGBS)ʒm (CR)Nano-silica content ω/%Soaking solution Curing time N /d Soaking time M /d50100ʒ20ʒ10ʒ40,1,2,3,4MgSO 4(15and 30g /L)7,28,600,7,14,28,60㊀㊀注:后文用N7+M28表示标准养护7d 后在溶液中浸泡28d 的试样,以此类推;表中的%均指质量分数㊂2㊀结果与讨论2.1㊀标准养护条件下硅粉掺量的影响标准养护条件下固化淤泥无侧限抗压强度与硅粉掺量的关系见图2㊂1)硅粉掺量对固化淤泥的无侧限抗压强度有一定的影响:当ω<3%时,ω对UCS 的影响不大,在一定的范围内波动;当ω=3%时,不同养护龄期时UCS 均达到最大,3%为最优硅粉掺量;当ω=4%时UCS 有所降低,其原因在于当硅粉掺量较大时,未参与反应的纳米硅粉不仅没有凝胶作用,还可能起到分散作用[10]㊂2)当养护龄期(7d)较短时,不加硅粉试样的UCS 为485.90kPa,ω=3%对固化淤泥强度的提高效果明显,UCS 为855.55kPa,后者是前者的1.76倍㊂当养护龄期较长时,ω=3%对固化淤泥强度有一定提高效果,例如养护28d 时不加硅粉试样和ω=3%试样的UCS 分别为1160.82kPa 和1346.57kPa,后者是前者的1.16倍㊂这表明纳米硅粉的掺入可能有助于提高固化淤泥中水化速度,对提高固化淤泥早期强度效果好,与水泥土的规律一致[10]㊂3)随着养护龄期的增加,固化淤泥的无侧限抗压强度增大,从7d 增至28d 时UCS 有明显提高;28d 时水化反应已较为充分,当养护龄期从28d 增至60d 时UCS 增大不明显,甚至有的试样UCS 还有所减少㊂这第4期何㊀俊等:纳米硅粉改良碱渣-矿渣固化淤泥的抗硫酸镁侵蚀性能1347㊀图2㊀标准养护条件下不同硅粉掺量固化淤泥的无侧限抗压强度Fig.2㊀Unconfined compressive strength of solidified soil with different nano-silica content under standard curing conditions 可能与淤泥中易溶盐含量较高㊁且碱渣中也含有Cl -和SO 2-4有关,即在没有侵蚀性溶液浸泡的情况下,混合土中存在一些侵蚀性离子,内部侵蚀可能造成固化淤泥强度劣化[4]㊂标准养护7d 时不同硅粉掺量试样的NMR 测试结果见图3㊂其中:弛豫时间T 2可反映孔隙大小,其值与孔径成正比,信号强度可反映不同孔径对应的孔隙数量[15];试样孔隙率n 是通过核磁共振测试过程中校准样n 和T 2面积之间的关系反算得到[15]㊂可以看出,固化淤泥T 2分布呈双峰形态,从左到右分别为主峰和次峰,对应小孔隙和大孔隙的分布㊂当硅粉掺量从0%增至4%时,主峰对应信号强度最大值分别为745.61㊁783.01㊁855.04㊁760.67和811.76,表明在硅粉掺量较小(ω=1%和2%)和较大(ω=4%)时,小孔隙数量较多㊁体积较大,不加硅粉和ω=3%时小孔隙体积相对较小㊂从次峰来看,随着硅粉掺量的增加,大孔隙峰值对应信号强度先减小后增大,在ω=3%时大孔隙峰值对应信号强度(59.58)最小,不到ω=0%时信号强度(124.32)的1/2,表明适当掺量的硅粉对于减少固化淤泥中大孔隙体积有明显效果㊂当ω=3%时试样小孔隙和大孔隙体积小,试样的孔隙率(8.60%)也最小,孔隙结构密实,其无侧限抗压强度最大㊂当ω=4%时,未反应硅粉的分散作用导致结构疏松㊁孔隙增大,因此次峰峰值对应信号强度变大,孔隙率也较大㊂图3㊀标准养护7d 时硅粉掺量对固化淤泥T 2分布和孔隙率的影响Fig.3㊀Effect of nano-silica content on T 2distribution and porosity of solidified soil after being cured for 7d 图4㊀标准养护条件下固化淤泥的XRD 谱Fig.4㊀XRD patterns of solidified soil under standard curing conditions标准养护条件下固化淤泥的XRD 试验结果见图4㊂1)除来自原材料的石英㊁白云母㊁碳酸钙(CaCO 3)和氯化钠(NaCl)等矿物外,固化淤泥中还检测出水化铝酸钙(C-A-H )㊁水化硅酸钙(C-S-H )㊁钙矾石(Ca 6Al 2(SO 4)3(OH )12㊃26H 2O )㊁水化氯铝酸钙(Ca 4Al 2O 6Cl 2㊃10H 2O)和水化亚氯酸钙(Ca 3Cl 2O 4㊃2H 2O)等水化产物,这些物质的生成是提高固化淤泥强度的主要原因[16]㊂在碱渣和电石渣提供的碱性环境下,淤泥和碱渣中活性Al 2O 3和SiO 2与电石渣中Ca(OH)2发生水化反应生成C-A-H 和C-S-H [17];碱渣中CaSO 4㊃2H 2O 与矿渣中铝酸钙㊁电石渣中Ca (OH)21348㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷等反应生成具有膨胀填孔作用的钙矾石[18];碱渣和淤泥中的氯盐与Ca(OH)2等反应产生水化氯铝酸钙和水化亚氯酸钙[19]㊂2)养护龄期为7d 时,与不加硅粉试样相比,当ω=3%时试样中钙矾石㊁水化氯铝酸钙和C-A-H 衍射峰增强,NaCl 衍射峰减弱㊂加入适量硅粉可促进水泥水化反应的进行[10,19],在碱渣固化淤泥中同样如此,液相中浓度较大的Ca 2+会抑制硅酸钙㊁铝酸钙水化反应,而掺入纳米硅粉可吸附并消耗Ca 2+,加速铝酸钙水化生成C-A-H,从而使固化淤泥的结构更为密实,与NMR 测试结果一致㊂另外,由于C-S-H 一般呈胶体状,结晶度较低,其衍射峰普遍偏低,但可以看出当ω=3%时C-S-H 衍射峰有所增强㊂3)随着养护龄期的增加,ω=3%固化淤泥中C-A-H 衍射峰明显增多㊁增强,钙矾石衍射峰有所增强,使固化淤泥的强度明显增大㊂另外,当ω=3%时养护7d 试样中NaCl 衍射峰很弱,但养护28d 时试样中NaCl 衍射峰较强,而水化氯铝酸钙衍射峰较弱,表明长期养护过程中淤泥与碱渣中Cl -对固化淤泥起到一定的劣化作用[5],水化氯铝酸钙发生分解,又以NaCl 晶体存在于试样中㊂2.2㊀侵蚀环境和时间的影响不同标准养护龄期时,15g /L 的MgSO 4溶液侵蚀作用下试样UCS 与硅粉掺量及浸泡时间的关系见图5㊂可以看出:1)当养护龄期为7d 时,不同硅粉掺量条件下浸泡时间对试样强度影响规律性不强,ω=0%和4%时UCS 随浸泡时间的增加略有减小,而ω=3%时UCS 随浸泡时间的增加而明显增大㊂当ω=3%时MgSO 4溶液中浸泡28d 试样UCS 达到1261.31kPa,比浸泡前UCS(855.35kPa)增大近1/3㊂这表明短期养护后,3%硅粉对固化淤泥的抗MgSO 4侵蚀能力有明显提高㊂2)当养护龄期为28d 时,不同硅粉掺量条件下强度随浸泡时间的增加而减小㊂其中,ω=1%时试样浸泡时间超过28d 后出现明显破坏,无法测试强度,故试样N28+M60的UCS 为0kPa㊂当浸泡7d 时试样UCS 在ω=3%仍最大,浸泡28d 或60d 时硅粉掺量对强度影响较小;浸泡时间从28d 增至60d 时,试样UCS 变化很小㊂3)当养护龄期为60d 时,强度随浸泡时间的增加而下降的趋势同养护28d 试样相同;但当ω=3%时,固化淤泥浸泡60d 强度大于浸泡28d 强度,试样N60+M60的UCS 为879.30kPa,高于其他硅粉掺量试样;ω=4%时试样强度也较高㊂因此长期养护后3%的硅粉可以使固化淤泥抗MgSO 4侵蚀能力提高㊂4)当浸泡时间一定㊁纳米硅粉掺量增加时,试样UCS 不是单调变化的,其主要原因是土样㊁固化剂㊁纳米硅粉㊁侵蚀环境的共同作用比较复杂㊂如前所述,土样和固化剂中含有侵蚀性离子,在养护和浸泡过程中存在内部侵蚀和外部侵蚀问题;纳米硅粉对早期水化反应起到加速作用,而掺量过大时又有分散作用㊂这些因素的共同作用导致UCS 随ω有一定波动,但当ω=3%时试样强度较高㊂图5㊀MgSO 4溶液浸泡时间对固化淤泥无侧限抗压强度的影响Fig.5㊀Effect of soaking time of MgSO 4solution on unconfined compressive strength of solidified soil 综合来看,加入适量纳米硅粉可以提高碱渣固化淤泥的抗MgSO 4侵蚀性能,最优掺量为3%㊂MgSO 4溶液浸泡试样XRD 谱见图6㊂第4期何㊀俊等:纳米硅粉改良碱渣-矿渣固化淤泥的抗硫酸镁侵蚀性能1349㊀1)海相淤泥在形成过程中受海水的影响,土中含有Cl -㊁Na +㊁SO 2-4和Mg 2+等侵蚀性离子,且碱渣中也含有CaSO 4㊃2H 2O 和NaCl,因此经过浸泡后固化淤泥的主要成分没有发生变化,与图4中检测出主要物质相同㊂2)对于不加硅粉㊁标准养护7d 的试样(图6(a)),在MgSO 4溶液浸泡28d 后钙矾石衍射峰明显增强,表明MgSO 4侵蚀环境使固化淤泥生成大量钙矾石㊂钙矾石具有膨胀性,大量钙矾石将使固化淤泥出现微观裂缝㊁形成疏松结构[9],从而使固化淤泥的强度降低㊂对于ω=3%㊁标准养护7d 试样,浸泡28d 后钙矾石衍射峰相比于浸泡前没有明显变化,且钙矾石衍射峰低于不加硅粉试样,其原因在于铝酸钙水化生成钙矾石的速度较快,当CaSO 4㊃2H 2O 耗尽且硅粉掺量适量时,部分钙矾石可能转化为单硫型水化铝酸钙[10],其膨胀性低于钙矾石,使固化淤泥的结构较为密实,强度相应增大㊂3)对于ω=3%㊁标准养护28d 试样(图6(b)),随着浸泡时间的增加,C-A-H 衍射峰有所减弱而钙矾石衍射峰有所增强,其原因是在MgSO 4溶液中,C-A-H 与SO 2-4反应生成钙矾石[20]㊂与养护7d 试样不同,养护28d 后水化反应已较充分,孔隙结构已较致密,侵蚀性环境下再生成的钙矾石则会对结构产生不利影响㊂同时,C-A-H 作为填充土体孔隙的重要水化产物,其含量减低使得试样强度降低,由此导致固化淤泥长期养护后抗MgSO 4溶液侵蚀的能力下降㊂图6㊀MgSO 4溶液浸泡后固化淤泥的XRD 谱Fig.6㊀XRD patterns of solidified soil after being soaked in MgSO 4solution 2.3㊀高浓度MgSO 4溶液对固化淤泥强度的影响试验初步计划还对30g /L 的MgSO 4溶液侵蚀作用开展研究,但长期浸泡时高浓度MgSO 4溶液侵蚀性很强,一些试样在溶液中发生崩解破坏,仅有少量数据,30g /L 的MgSO 4溶液对固化淤泥无侧限抗压强度的影响见图7㊂可以看出,将固化淤泥短期养护后浸泡在高浓度MgSO 4侵蚀环境中,纳米硅粉对提高碱渣固化淤泥的抗侵蚀性能效果并不明显,ω=1%时强度很低,当ω=4%时强度略高于不加硅粉试样㊂标准养护7d 试样在高浓度MgSO 4溶液中继续浸泡至10d 左右时即发生崩解破坏㊂当试样养护60d 后,适当掺量的纳米硅粉对于提高固化淤泥抗高浓度MgSO 4侵蚀性能起到一定的作用,在ω=3%时浸泡14d 后试样UCS 为898.71kPa,在ω=4%时强度也较高,为732.32kPa,高于ω=0%~2%试样㊂初步研究表明,对于高浓度MgSO 4侵蚀环境,增加养护龄期和适量的硅粉掺量可增强固化淤泥的抗侵蚀能力,但还有待于后续继续研究㊂2.4㊀多元非线性回归分析选取数据较全面的养护28和60d 试样,对15g /L 的MgSO 4侵蚀作用下试样的UCS 进行多元非线性回归分析㊂以硅粉掺量ω和浸泡时间t 为自变量,无侧限抗压强度为因变量,二次回归模型为UC ^S =a +bω2+cωt +dt 2+et (1)式中:UC^S 为无侧限抗压强度计算值,a ㊁b ㊁c ㊁d ㊁e 为回归系数㊂初步分析发现,ω一次项的影响不明显,因此在回归模型中未设置㊂可以得到养护28和60d 试样无侧限抗压强度与ω及t 的关系式分别为1350㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷UC ^S 28=1089.12+10.30ω2-0.40ωt +0.41t 2-38.30t (2)UC ^S 60=1072.70+3.70ω2+0.60ωt +0.30t 2-27.80t (3)回归模型的方差分析结果见表3㊂可以看出,模型F 值均远大于F 0.05(2,17)=3.59,表明回归方程与试验数据拟合较好,根据上述关系式可以预测MgSO 4侵蚀环境下固化淤泥的无侧限抗压强度㊂图7㊀30g /L 的MgSO 4溶液对固化淤泥无侧限抗压强度的影响Fig.7㊀Effect of 30g /L MgSO 4solution on unconfined compressive strength of solidified soil表3㊀方差分析Table 3㊀Analysis of varianceCuring time /dSource of variance SS T d f SD F Statistical significance R 2Regression 2479051.5721239525.8028Difference 116223.09176836.35181.31High 0.96Summation2595274.6819 Regression 896374.482448187.2460Difference 92608.75175447.5782.27High 0.91Summation 988983.2219 ㊀㊀注:SS T 为偏差平方和,d f 为自由度,SD 为标准差,F 为检验统计值,R 2为相关系数㊂根据式(2)和(3)得到UC^S 与ω和t 的关系见图8㊂可以看出,养护龄期为28和60d 时在15g /L 的MgSO 4侵蚀作用下,适当增加硅粉掺量对于提高固化淤泥的抗侵蚀性能具有积极作用;固化淤泥的强度随硅粉掺量的增加而增大,随浸泡时间的增加呈现明显减小后小幅增大的趋势㊂当养护龄期为28d 时,UC ^S 在ω=0.98%㊁t =47.22d 处达到最小值186.04kPa;当养护龄期为60d 时,UC ^S 在ω=0%㊁t =50.68d 处达到最小值434.33kPa㊂总体来看,浸泡时间为40~60d 时固化淤泥的UC ^S 处于较低水平㊂图8㊀无侧限抗压强度与硅粉掺量和浸泡时间的关系Fig.8㊀Relationship between unconfined compressive strength of solidified soil and nano-silica content and soaking time㊀第4期何㊀俊等:纳米硅粉改良碱渣-矿渣固化淤泥的抗硫酸镁侵蚀性能1351 3㊀结㊀论1)标准养护7d时,掺量为3%试样强度为855.55kPa,为ω=0%试样强度的1.76倍㊂适量掺量纳米硅粉对碱渣-矿渣固化淤泥的无侧限抗压强度有较好的提升效果,其原因在于生成钙矾石㊁水化氯铝酸钙和C-A-H等物质使试样结构更为密实㊂2)在15g/L的MgSO4的侵蚀环境中,ω=3%时,养护7d试样强度随浸泡时间的增加而增大,短期养护后固化淤泥具有很好的抗MgSO4侵蚀能力;养护28和60d试样强度随浸泡时间的增加而减小,但增大硅粉掺量可提升固化淤泥的抗MgSO4侵蚀能力㊂3)标准养护7d试样在MgSO4侵蚀环境下,ω=0%时生成大量膨胀性钙矾石,而ω=3%时钙矾石没有明显变化,这是硅粉改良固化淤泥具有良好抗MgSO4侵蚀能力的原因㊂对于标准养护28d试样,随着浸泡时间的增加,ω=3%时C-A-H有所减少而钙矾石有所增多,养护28d后水化反应已较充分㊁孔隙结构已较致密,新生成的钙矾石会对结构产生不利影响,导致长期养护后抗MgSO4侵蚀能力有所下降㊂4)对标准养护28和60d试样强度进行多元非线性回归分析,得到15g/L的MgSO4溶液侵蚀作用下固化淤泥无侧限抗压强度与硅粉掺量和浸泡时间的关系式㊂固化淤泥强度随硅粉掺量的增加而增大,随浸泡时间的增加先明显减小后小幅增大㊂参考文献[1]㊀尚金瑞,杨俊杰,孟庆洲,等.围海造陆填土技术及其应用研究[J].中国海洋大学学报(自然科学版),2015,45(6):100-107.SHANG J R,YANG J J,MENG Q Z,et al.Filling technology and application of reclamation project[J].Periodical of Ocean University of China,2015,45(6):100-107(in Chinese).[2]㊀杨爱武,闫澍旺,杜东菊,等.碱性环境对固化天津海积软土强度影响的试验研究[J].岩土力学,2010,31(9):2930-2934.YANG A W,YAN S W,DU D J,et al.Experimental study of alkaline environment effects on the strength of cement soil of Tianjin marine soft soil[J].Rock and Soil Mechanics,2010,31(9):2930-2934(in Chinese).[3]㊀韩鹏举,白晓红,赵永强,等.Mg2+和SO2-4相互影响对水泥土强度影响的试验研究[J].岩土工程学报,2009,31(1):72-76.HAN P J,BAI X H,ZHAO Y Q,et al.Experimental study on strength of cement soil under Mg2+and SO2-4interaction influence[J].Chinese Journal of Geotechnical Engineering,2009,31(1):72-76(in Chinese).[4]㊀刘泉声,柳志平,程㊀勇,等.水泥土在侵蚀环境中的试验研究和等效分析[J].岩土力学,2013,34(7):1854-1860.LIU Q S,LIU Z P,CHENG Y,et al.Experimental study and equivalent analysis of cemented soil under corrosion environment[J].Rock and Soil Mechanics,2013,34(7):1854-1860(in Chinese).[5]㊀闫㊀楠,杨俊杰,刘㊀强,等.海水环境下水泥土强度衰减过程室内试验研究[J].土木工程学报,2017,50(11):115-124.YAN N,YANG J J,LIU Q,et boratory test on strength deterioration process of soil cement in seawater environment[J].China Civil Engineering Journal,2017,50(11):115-124(in Chinese).[6]㊀吴燕开,史可健,胡晓士,等.海水侵蚀下钢渣粉+水泥固化土强度劣化试验研究[J].岩土工程学报,2019,41(6):1014-1022.WU Y K,SHI K J,HU X S,et al.Experimental study on strength degradation of steel slag+cement-solidified soil under seawater erosion[J].Chinese Journal of Geotechnical Engineering,2019,41(6):1014-1022(in Chinese).[7]㊀王子帅,王东星.工业废渣-水泥协同固化土抗硫酸盐侵蚀性能[J].岩土工程学报,2022,44(11):2035-2042.WANG Z S,WANG D X.Performances of industrial residue-cement solidified soils in resisting sulfate erosion[J].Chinese Journal of Geotechnical Engineering,2022,44(11):2035-2042(in Chinese).[8]㊀杨爱武,顾宇浩,张国军.碱渣轻质固化技术及大变形力学特性研究[J/OL].工程地质学报:1-12[2022-07-07].https:///10.13544/ki.jeg.2020-594.YANG A W,GU Y H,ZHANG G J.Study on mechanical properties of large deformation of solidified lightweight soil with soda residue[J/OL].Journal of Engineering Geology:1-12[2022-07-07].https:///10.13544/ki.jeg.2020-594(in Chinese).[9]㊀HE J,LI Z X,WANG X Q,et al.Durability of soft soil treated with soda residue and ground granulated blast furnace slag in a soakingenvironment[J].Journal of Materials in Civil Engineering,2020,32(3):06019018.[10]㊀王文军,朱向荣.纳米硅粉水泥土的强度特性及固化机理研究[J].岩土力学,2004,25(6):922-926.WANG W J,ZHU X R.Study on strength property of nanometer silica fume reinforced cemented soil and reinforcement mechanism[J].Rock and Soil Mechanics,2004,25(6):922-926(in Chinese).[11]㊀HOU P K,KAWASHIMA S,KONG D Y,et al.Modification effects of colloidal nano SiO2on cement hydration and its gel property[J].Composites Part B:Engineering,2013,45(1):440-448.。
㊃综述㊃作者单位:100078 北京中医药大学东方医院呼吸热病科[李阳(博士研究生)㊁焦扬],老年病科(牛洁)作者简介:李阳(1996-),2023级在读博士研究生㊂研究方向:肺系疑难病诊疗研究㊂E⁃mail:liyang050797@通信作者:牛洁(1988-),硕士,主治医师㊂研究方向:老年呼吸热病㊂E⁃mail:niujie_work@红花中的黄酮类化学成分及其药理作用研究进展李阳 焦扬 牛洁【摘要】 红花为菊科属植物红花Carthamus tinctorius L.的干燥花,黄酮类化学成分是红花特征性和主要的活性成分,依据结构类型主要分为四类,包括黄酮㊁黄酮醇㊁二氢黄酮㊁醌式查耳酮类㊂现代药理学研究表明,红花黄酮类化学成分药理作用广泛,如降低血液粘度㊁减轻血管内皮炎症损伤㊁抑制炎症因子释放㊁改善气道重塑㊁抑制心肌细胞凋亡㊁保护中枢神经㊁保肝等,对多系统疾病具有治疗作用㊂本文通过检索国内外文献,对红花黄酮类化学成分及其药理作用的研究进展进行综述,为红花的进一步研究提供参考㊂【关键词】 红花; 黄酮类化学成分; 药理作用; 研究进展; 抗血栓; 抗炎【中图分类号】 R285 【文献标识码】 A doi:10.3969/j.issn.1674⁃1749.2024.01.028Research progress on chemical constituents and pharmacological effects of flavonoids in Safflower LI Yang ,JIAO Yang ,NIU JieDepartment of Respiratory ,Dongfang Hospital Affiliated to Beijing University of Chinese Medicine ,Beijing 10078,ChinaCorrespondingauthor :NIU Jie ,E⁃mail :niujie_work@【Abstract 】 Safflower (Carthamus tinctorius L.)is a plant of the asteraceae family,and flavonoidsare the characteristic and main active components of it.According to the structure type,it can be divided into four categories,including flavonoids,flavonols,dihydroflavonoids and quinochalcones.Modern phar⁃macological studies have shown that safflower flavonoids have a wide range of pharmacological effects,such as lowering blood viscosity,reducing inflammatory damage to the vascular endothelium,inhibiting the release of inflammatory factors,improving airway remodelling,inhibiting apoptosis of cardiomyocytes,protecting the central nervous system,protecting the liver etc.,which have therapeutic effect on many kinds of multisystemic disease.In this paper,the chemical constituents and pharmacological effects of safflower flavonoids were reviewed by searching domestic and foreign literatures,so as to providereferences for further research of safflower.【Key words 】 Safflower; flavonoids; pharmacological effects; research progress; anti⁃thrombotic; anti⁃inflammatory 中药材红花为菊科属植物红花Carthamustinctorius L.的干燥花,于我国始载于‘开宝本草“,至今已有1800多年的用药历史[1],‘本草纲目“称其能: 活血润燥止痛散肿,通经㊂”中医认为本药味辛[2],性温,归心㊁肝经,具有活血通络㊁去瘀止痛之效,临床上广泛用于治疗各科多种血行不畅或瘀血阻滞之症,如痛经㊁血瘀经闭㊁产后瘀阻腹痛㊁跌打损伤㊁胸痹心痛等[3],疗效显著㊂红花因其多样的药用价值而逐渐受到重视,其化学成分及药理活性也一直是研究热点㊂目前,已从红花中分离出包括黄酮类㊁有机酸类㊁生物碱类㊁聚炔类等200多个化合物,黄酮类成分被认为是红花的特征性和主要的活性成分[4],依据结构类型主要将黄酮类成分分为四类,包括黄酮㊁黄酮醇㊁二氢黄酮㊁醌式查耳酮类,其中以醌式查耳酮类为代表,是仅存于红花中的一类黄酮类成分,‘中华人民共和国药典“将其中羟基红花黄色素A(hydroxysafflor yellow A,HSYA)作为红花含量测定的指标性成分[2]㊂药理研究亦表明,黄酮类成分在红花的多维药理作用中发挥着主要作用[5],包括抗血栓以缓解包括心脑血管及肺部在内的多种血栓性疾病,如急性心肌梗死㊁缺血性脑卒中㊁肺栓塞㊁抗炎,保护心肌细胞㊁保护中枢神经㊁抗癌㊁抗纤维化㊁抗氧化等㊂目前对红花的研究主要以黄酮类化学成分为研究对象,故本文对红花黄酮类化学成分及其药理作用的研究进展进行综述,为红花的进一步开发利用提供参考㊂1摇红花中的黄酮类化学成分研究概述国内外学者一直致力于对红花化学成分的研究,其中黄酮类成分研究最早,也最为全面㊂1982年Takahashi Y 等[6]自红花中首次分离出红花黄色素A(Safflor yellow A,SYA),后于1984年再次分离出红花黄色素B (Safflor yellow B,SYB)[7]㊂Meselhy MR 等[8]于1993年首次分离得到HSYA,HSYA 在红花中含量丰富,是主要的黄酮类成分[9],且生物活性强,一直受到广泛关注㊂国内学者李艳梅团队[10]共报道了6种自红花中提取的6⁃羟基山柰酚及其糖苷类化合物,赫军等[11]自红花水提液中首次分离得到(2S)4’,5,6,7⁃四羟基二氢黄酮⁃6⁃O⁃茁⁃D⁃葡萄糖苷,瞿城等[12]从红花乙醇提取物中首次分离得到野黄芩素㊂红花黄酮类化学成分的研究一直在不断完善,本文对此进行归纳,共总结了61个黄酮类化合物[4,13⁃16]㊂具体见表1,部分特征化合物的化学结构见图1㊂红花中的黄酮类化学成分包括黄酮㊁黄酮醇㊁二氢黄酮㊁醌式查耳酮类四种㊂醌式查耳酮类包含了红花中几乎所有的红色和黄色素,以HSYA㊁SYA㊁SYB㊁红花素(Carthamine)为代表,具有特殊的C⁃糖基化的环己酮二烯醇部分[4]㊂此基团仅存在于红花中,是红花具有治疗心脑血管疾病活性的结构基础㊂有别于醌式查耳酮的特殊性,黄酮㊁黄酮醇㊁二氢黄酮类三类成分存在于多种物种中,Xian B 等[17]将其归类为红花黄酮类化学成分的常见类型以共同讨论,以山柰酚㊁金丝桃苷和柚皮素为代表,黄酮糖基化产物属于O⁃糖苷㊂其中黄酮醇研究最为广泛,主要为山柰酚和槲皮素的衍生物㊂Lee JY 等[18]证明了黄酮醇糖苷的抗氧化活性,通过构效关系认为其抗氧化活性与糖部分的结构有关㊂糖取代位常位于C⁃3㊁C⁃6㊁C⁃7,单糖取代以葡萄糖㊁鼠李糖㊁葡萄糖醛酸为主,双糖取代以槐糖和芸香糖常见㊂图1 红花黄酮类部分特征化合物的化学结构图表1 红花中黄酮类化合物序号化合物名称类型1金合欢素黄酮类2金合欢素⁃7⁃O⁃β⁃D⁃葡萄糖醛酸苷(田蓟苷)黄酮类3金合欢素⁃7⁃O⁃α⁃L⁃鼠李糖苷黄酮类4金合欢素⁃7⁃O⁃β⁃D⁃芹菜呋喃糖基(1→6)⁃O⁃β⁃D⁃葡萄糖苷黄酮类5芹黄素黄酮类6芹菜素⁃6,8⁃二⁃C⁃β⁃D⁃吡喃葡萄糖苷黄酮类76⁃羟基芹菜素黄酮类8木樨草素黄酮类9木犀草素⁃7⁃O⁃β⁃D⁃吡喃葡萄糖苷(木犀草苷)黄酮类10木犀草素⁃7⁃O⁃(6″⁃O⁃乙酰基)⁃β⁃葡萄糖苷黄酮类11野黄芩苷黄酮类12柚皮素黄酮类13山柰酚黄酮醇14山柰酚⁃3⁃O⁃β⁃D⁃葡萄糖苷(黄芪甲苷)黄酮醇15山柰酚⁃3⁃O⁃β⁃D⁃芸香糖苷黄酮醇16山柰酚⁃3⁃O⁃β⁃D⁃葡萄糖基⁃7⁃O⁃β⁃D⁃葡萄糖硫苷黄酮醇17山奈酚⁃3⁃O⁃β⁃槐糖苷(苦参黄酮醇苷)黄酮醇186⁃羟基山柰酚黄酮醇196⁃羟基山柰酚⁃3⁃O⁃β⁃葡萄糖苷黄酮醇206⁃羟基山柰酚⁃7⁃O⁃β⁃葡萄糖苷黄酮醇216⁃羟基山柰酚⁃3,6⁃二⁃O⁃β⁃葡萄糖苷黄酮醇226⁃羟基山柰酚⁃3,7⁃二⁃O⁃β⁃葡萄糖苷黄酮醇236⁃羟基山柰酚⁃6,7⁃二⁃O⁃β⁃葡萄糖苷黄酮醇246⁃羟基山柰酚⁃3,6,7⁃三⁃O⁃β⁃葡萄糖苷黄酮醇256⁃羟基山柰酚⁃3,6⁃二⁃O⁃β⁃葡萄糖苷⁃7⁃O⁃β⁃葡萄糖醛酸苷黄酮醇266⁃羟基山柰酚⁃3⁃O⁃β⁃芸香糖苷⁃6⁃O⁃β⁃葡萄糖苷黄酮醇276⁃羟基山柰酚⁃3⁃O⁃β⁃芸香糖苷黄酮醇28槲皮苷黄酮醇29槲皮素⁃3⁃O⁃β⁃D⁃葡萄糖苷(异槲皮素)黄酮醇30槲皮素⁃3⁃O⁃β⁃D⁃半乳糖苷(金丝桃苷)黄酮醇31槲皮素⁃7⁃O⁃β⁃葡萄糖苷黄酮醇32槲皮素⁃3,7⁃二⁃O⁃β⁃葡萄糖苷黄酮醇33槲皮素⁃3⁃O⁃α⁃L⁃鼠李糖苷⁃7⁃O⁃β⁃葡萄糖醛酸苷黄酮醇34芸香苷黄酮醇35圣草酚二氢黄酮36(2S)4’,5,6,7⁃四羟基二氢黄酮⁃6⁃O⁃β⁃D⁃葡萄糖苷二氢黄酮37(2R)⁃4’,5⁃二羟基⁃6,7⁃二⁃O⁃β⁃D⁃葡萄糖基二氢黄酮二氢黄酮38(2S)⁃4’,5⁃二羟基⁃6,7⁃二⁃O⁃β⁃D⁃葡萄糖基二氢黄酮二氢黄酮39红花黄酮苷A二氢黄酮40红花黄酮苷B二氢黄酮41羟基红花黄色素A醌式查耳酮42羟基红花黄色素B醌式查耳酮43羟基红花黄色素C醌式查耳酮44甲基红花黄色素C醌式查耳酮45甲基异藏红花素C醌式查耳酮续表序号化合物名称类型46脱水红花黄色素B醌式查耳酮47红花黄色素A醌式查耳酮48红花黄色素B醌式查耳酮49Cartormin醌式查耳酮50Isocartormin醌式查耳酮51Tinctormine醌式查耳酮52Saffloquinoside A醌式查耳酮53Saffloquinoside B醌式查耳酮54Saffloquinoside C醌式查耳酮55Saffloquinoside D醌式查耳酮56Saffloquinoside E(or isosafflomin C)醌式查耳酮57红花素醌式查耳酮58羟乙基红花黄色素醌式查耳酮59前红花苷醌式查耳酮60新红花苷醌式查耳酮61醌式红花苷醌式查耳酮2 药理作用研究2.1 抗血栓根据红花活血化瘀的功效,临床上红花主要用于血瘀证,这是一种很具有中医特色的诊断㊂现如今临床重视宏观与微观诊断相结合,研究表明,血瘀与血流动力学异常关系密切[19]㊂因此,从血流动力学角度出发,药理研究发现,红花黄酮类成分可通过抗凝㊁抗血小板聚集㊁调节血管内皮功能以拮抗血栓形成,对诸多血栓性疾病如急性心肌梗死[20]㊁缺血性脑卒[21]㊁肺栓塞[22]等有重要的治疗或预防作用㊂2.1.1 降低血液粘度 Liao Y等[23]观察以SYA 为主要成分的红花提取物在小鼠血瘀证模型中的抗血栓作用,结果表明红花提取物可以剂量依赖性方式显著降低全血粘度,延长APTT,抑制血小板聚集,相关机制研究认为,这与红花黄色素拮抗血小板活化因子受体有关[24]㊂血液粘度的改变会对体内药物吸收以及毒素排泄产生影响㊂Wang LW 等[25]建立了苯肼诱导的血栓模型,结果显示, HSYA的保肝作用优于乙酰半胱氨酸,抗血栓作用比阿司匹林更稳健,认为其通过降低血液粘度,促进血液循环提高了毒素的排泄速度,保护机体免受外源性或疾病诱导的内源性毒素造成的损害㊂Tian Y等[26]研究发现,在血瘀证的动物模型中,红花提取物HSYA的吸收较高,消除较慢㊂分析认为,HSYA主要在小肠吸收,血液粘度的增加改变了药物代谢的速度和程度,HSYA滞留时间延长,吸收增加,这将进一步促进HSYA疗效的发挥㊂2.1.2 抑制核因子⁃κB(nuclear factorκB,NF⁃κB)信号通路减轻血管内皮炎症损伤 血管内皮功能丧失是动脉粥样硬化㊁血栓形成的重要原因,目前已从多个角度证明红花黄酮类化合物是一个很有前途的血管保护剂,包括调节血管舒张㊁抗炎㊁抗凋亡等,其中越来越多研究表明减轻血管内皮细胞炎症因子的表达是其主要的干预机制㊂Wang H等[27]研究发现,HSYA抑制了动脉血管内皮细胞中肿瘤坏死因子α(tumor necrosis factor⁃α,TNF⁃α)诱导的炎症反应以保护内皮细胞,并且进一步分析认为,这可能是通过抑制了TNFR1介导的经典NF⁃κB途径,以减轻下游炎症因子的释放,如白细胞介素⁃1β(interleukin1β,IL⁃1β)㊁IL⁃6等㊂同样Jin M等[28]使用LPS诱导Eahy926内皮细胞进行研究,结果表明HSYA可通过抑制p38MAPK/NF⁃κB信号通路减少炎性细胞因子和粘附分子以保护血管内皮细胞㊂Zhong X等[29]研究表明,山柰酚也是通过抑制炎症信号通路NF⁃κB以缓解氧化的低密度脂蛋白所诱导的内皮细胞凋亡㊂2.2 肺保护红花黄酮类成分因其多途径的抗炎作用而对全身的多种炎症性疾病具有明显的治疗作用,其中以呼吸系统疾病研究最为全面㊂并且,红花黄酮类成分可通过对TGF⁃β信号通路明确的抑制作用,改善气道重塑,以保护肺功能㊂2.2.1 多途径抑制炎症因子释放 Jin M等[30]基于脂多糖诱导的小鼠炎症性急性肺损伤进行研究,结果表明红花黄色素注射液可以明显改善小鼠的肺部症状,降低炎症因子TNF⁃α㊁IL⁃1β㊁IL⁃6的表达,并促进IL⁃10的表达,进一步机制研究发现,这可能与抑制p38MAPK磷酸化相关㊂Chen LS等[31]通过体外实验研究也发现,SYA可以提高经脂多糖诱导后的Beas⁃2B细胞的活力,但该研究结果显示,这一作用与激活Nrf⁃2,减轻促炎因子密切相关㊂一项随机临床试验观察了红花黄色素注射液在慢性阻塞性肺疾病急性加重中的疗效[32],结果表明,红花黄色素注射液可明显缓解患者临床症状,并缩短机械通气时间,这可能归因于其抑制了NF⁃κB炎症信号通路[33]㊂因炎症而诱发或加重的支气管哮喘, HSYA可显著减低气道阻力,缓解哮喘引起的肺充血㊁肿胀等形态变化,相关机制研究发现[34],这一作用与HSYA抑制了Th1/Th2细胞失衡有关㊂2.2.2 抑制TGF⁃β信号通路改善气道重塑 细胞因子TGF⁃β在肺部疾病中发挥着多效作用,上皮细胞损伤和炎症会促进其产生,在纤维细胞向肌成纤维细胞分化的过程中起到关键作用,引起气道重塑,导致肺弹性丧失和呼吸功能受损㊂一项关于HSYA对博来霉素诱导小鼠肺部炎症及纤维化改善作用的研究表明,HSYA可通过抑制TGF⁃β信号通路抑制肺部纤维化和胶原沉积,改善通气[35]㊂Wang Y等[36]在香烟烟雾和脂多糖诱导的慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)大鼠模型上同样发现,HSYA可能是通过抑制TGF⁃β1mRNA和蛋白表达以显著减轻COPD大鼠气道增厚和胶原沉积㊂体外研究也证实,HSYA 可显著抑制TGF⁃β1诱导的人胎儿肺成纤维细胞(MRC⁃5)增殖以及胶原蛋白的表达[37]㊂2.3 抑制心肌细胞凋亡自2005年,红花黄色素注射液被批准成为新型心血管药物并广泛应用于心脏病后,诸多临床研究表明,红花黄酮类成分对心血管疾病有着积极影响[38⁃39]㊂随着现代药理研究的深入,多项研究结果表明红花黄酮类成分可多机制抑制心肌细胞凋亡,以保护心肌功能㊂对于缺血㊁缺氧所引起的心肌功能受损,Zhou M X等[40]通过体内及体外实验研究发现,HSYA㊁SY可通过上调Bcl⁃2/Bax,促进抗凋亡蛋白HIF⁃1α的积累,明显减轻大鼠体内结扎冠状动脉前降支及再灌注以及体外缺氧/复氧H9c2心肌细胞所诱导的心肌细胞凋亡㊂Zhou D等[41]通过体外研究发现,HSYA可维持线粒体膜电位,减少ROS生成,增加心肌细胞抗氧化应激能力,以减少细胞凋亡,并且这一作用可被JAK2/STAT1抑制剂进一步增强㊂Ye J等[42]则从自噬角度评估HSYA对心肌细胞的影响,研究结果表明,HSYA可抑制mTOR途径激活AMPK信号通路来改善自噬,并抑制NLRP3炎症小体,以减少心肌细胞凋亡㊂此外,亦有许多研究证明黄酮类成分中山柰酚㊁金丝桃苷等也可通过抗氧化应激㊁抗炎等作用抑制心肌细胞凋亡[43⁃45]㊂2.4 抗氧化以保护中枢神经红花黄酮类成分抗血栓作用在脑缺血疾病的治疗中发挥着重要作用[46],但除此之外,研究发现,此类成分还主要通过抗氧化作用保护受损神经,对脑组织起到保护作用㊂赵红领等[47]成功构建了H2 O2诱导的星形胶质细胞HAs损伤模型以研究红花黄色素对中枢神经的保护作用,结果显示,红花黄色素可显著降低细胞中的LDH㊁MDA,升高抗氧化酶SOD㊁GSH⁃PX的活性,以减轻细胞的氧化损伤㊂同样在Aβ1⁃42诱导的小鼠模型中,研究人员发现,山柰酚可以预防Aβ1⁃42诱导的小鼠认知能力下,进一步机制研究结果表明这一作用主要是通过减轻氧化应激以保护受损神经原,并与BDNF/TrkB/CREB 途径关系密切[48]㊂Cao J等[49]研究了金丝桃苷在小鼠癫痫模型中治疗神经元损伤的潜在机制,结果表明,HYP主要通过影响PI3K/Akt和MAPK途径以提高抗氧化水平及减少自噬来保护癫痫诱导的神经元损伤㊂令人关注的是,红花黄酮类成分对中枢神经的保护作用使其具有了改善认知功能,治疗神经退行性疾病的潜力,值得进一步开发研究㊂2.5 促凋亡以发挥保肝作用有别于对心肌细胞的凋亡抑制作用,肝脏作为人体再生能力最强的脏器,现代药理研究发现,红花黄酮类成分主要通过促进凋亡以发挥保肝作用㊂肝纤维化主要是通过激活肝星状细胞(hepatic stellate cell,HSC)引起㊂Li CC等[50]通过体外研究发现,HSYA以剂量和时间依赖性方式显著诱导HSC凋亡,相关机制研究表明,这一作用是通过抑制ERK1/2的激活及其调节的基因表达来降低炎症水平,进而抑制了HSC的活化并诱导凋亡㊂此外,中医临床上多见用红花治疗肿瘤癥积的案例,促进肿瘤细胞凋亡是红花黄酮类成分治疗肝癌的一大重要机制㊂Wu N等[51]研究发现,在自噬晚期,HSYA可通过损害溶酶体酸化㊁下调LAMP1表达来阻断肝癌细胞中的自噬通量,以抑制肝癌细胞的增殖并刺激其凋亡㊂基于此种功能,HSYA也被认为是未来肝癌治疗的候选药物之一㊂3摇小结与展望作为红花的主要活性物质,红花中的黄酮类化学成分和药理作用具有广泛的研究前景㊂本文综述了其多种药理作用,其对抗血栓的作用验证了红花传统的活血化瘀功效,并且现代药理实验还显示了其更为广泛的生物活性,因而红花黄酮类成分可对多个系统的多种疾病具有治疗作用㊂除此之外,随着现代药理研究技术的发展,红花黄酮类成分显示出多机制多靶点的复杂干预机制,之后还有待进行更多的探索,以充分开发其药理潜力㊂值得注意的是,与古代中药记载的治疗用途相比,红花治疗闭经㊁痛经等妇科病症的传统用途尚未被充分认识,还有待进行更多的探索,以充分开发其药理潜力㊂并且,在红花黄酮类成分的药理学研究中,HSYA最受关注,其他化合物如SYA㊁红花素等大多被忽略,对其化学成分及药理作用的研究还有待深入,以提高红花黄酮类化学成分的生物利用度,扩大临床应用范围㊂参考文献[1] 洪菁.市售中药材红花的质量探讨[J].海峡药学,2006,18(5):106⁃107.[2] 国家药典委员会.中华人民共和国药典:一部[M].北京:中国医药科技出版社,2015.[3] 王建,张冰.临床中药学[M].北京:人民卫生出版社,2012:175.[4] ZHANG L L,TIAN K,TANG Z H,et al.Phytochemistry andPharmacology of Carthamus tinctorius L[J].American Journal ofChinese Medicine,2016,44(2):197⁃226.[5] 韩盟帝,马飞祥,汪亚楠,等.基于网络药理学探讨红花活性成分及药理作用机制[J].内蒙古医科大学学报,2019,41(2):126⁃130.[6] Takahashi Y,Miyasaka N,Tasaka S,et al.Constitution of twocoloring matters in the flower petals of Carthamus Tinctorius L[J].Tetrahedron Letters,1982,23:5163⁃5166. [7] Takahashi Y,Miyasaka N,Tasaka S,et al.Chemical constitutionof safflor yellow B,a quinochalcone c⁃glycoside from the flowerpetals of Carthamus tinctorius L[J].Tetrahedron Letters,1984,25:2471⁃2474.[8] Meselhy M R,Kadota S,Momose Y,et al.Two newquinochalcone yellow pigments from Carthamus tinctorius andCa2+antagonistic activity of tinctormine[J].Chemical&Phar⁃maceutical Bulletin,1993,41(10):1796⁃1802. [9] 徐红霞,吴沂芸,裴瑾,等.红花黄酮类成分与其色度值相关性研究[J].中药材,2018,41(1):49⁃54. [10] 李艳梅,车庆明.红花化学成分的研究[J].药学学报,1998,33(8):67⁃69.[11] 赫军,陈钟,杨桠楠,等.红花水提取物的化学成分研究[J].中国药学杂志,2014,49(6):455⁃458. [12] 瞿城,乐世俊,林航,等.红花化学成分研究[J].中草药,2015,46(13):1872⁃1877.[13] 李响,俱蓉,李硕.红花化学成分药理作用研究进展及质量标志物预测分析[J].中国现代中药,2021,23(5):928⁃939.[14] 刘世军,唐志书,崔春利,等.中药红花化学成分的研究进展[J].河南中医,2017,37(1):168⁃171. [15] 姜建双.红花化学成分及生物活性研究[D].北京:中国协和医科大学,2008.[16] 何蕾.红花提取物生物活性成分的研究[D].兰州:兰州理工大学[2023⁃10⁃18].DOI:CNKI:CDMD:2.1016.906497. [17] XIAN B,WANG R,JIANG H,et prehensive review oftwo groups of flavonoids in Carthamus tinctorius L[J].Biomedicine&Pharmacotherapy,2022,153:113462. [18] Lee J Y,Chang E J,Kim H J,et al.Antioxidative flavonoidsfrom leaves of Carthamus tinctorius[J].Archives of PharmacalResearch,2002,25(3):313⁃319.[19] CHEN K.Blood stasis syndrome and its treatment with activatingblood circulation to remove blood stasis therapy[J].ChineseJournal of Integrative Medicine,2012,18(12):891⁃896. [20] LIU J,ZHANG D,LI J,et al.Effects of Salvia miltiorrhiza andCarthamus tinctorius aqueous extracts and compatibility on ratmyocardial ischemic reperfusion injury[J].China Journal ofChinese Materia Medica,2011,36(2):189⁃194. [21] FAN S,LIN N,SHAN G,et al.Safflower yellow for acuteischemic stroke:A systematic review of randomized controlledtrials[J].Complementary Therapies in Medicine,2014,22(2):354⁃361.[22] LI Y,WANG N.Antithrombotic effects of Danggui,Honghuaand potential drug interaction with clopidogrel[J].Journal ofEthnopharmacology,2010,128(3):623⁃628. [23] LIAO Y,LIANG F,LIU H,et al.Safflower yellow extractinhibits thrombus formation in mouse brain arteriole and exertsprotective effects against hemorheology disorders in a rat model ofblood stasis syndrome[J].Biotechnology&Biotechnological E⁃quipment,2018,32(2):487⁃497.[24] CHEN Y,LI M,WEN J,et al.Pharmacological Activities ofSafflower Yellow and Its Clinical Applications[J].Evidence⁃Based Complementary and Alternative Medicine:eCAM,2022,2022:2108557.[25] WANG L W,CUI X Y,HE J F,et al.Hydroxysafflor yellowsalleviate thrombosis and acetaminophen⁃induced toxicity in vivoby enhancing blood circulation and poison excretion[J].Phyto⁃medicine,2021,87:153579.[26] TIAN Y,YANG Z F,LI Y,et al.Pharmacokinetic comparisonsof hydroxysafflower yellow A in normal and blood stasis syndromerats[J].Journal of Ethnopharmacology,2010,129(1):1⁃4.[27] WANG H,LIU J,YANG Y,et al.Hydroxy⁃Safflower Yellow Ainhibits the TNFR1⁃Mediated Classical NF⁃κB Pathway byInducing Shedding of TNFR1[J].Phytotherapy Research:PTR,2016,30(5):790⁃796.[28] JIN M,SUN C Y,ZANG B X.Hydroxysafflor yellow Aattenuate lipopolysaccharide⁃induced endothelium inflammatoryinjury[J].Chinese Journal of Integrative Medicine,2016,22(1):36⁃41.[29] ZHONG X,ZHANG L,LI Y,et al.Kaempferol alleviates ox⁃LDL⁃induced apoptosis by up⁃regulation of miR⁃26a⁃5p viainhibiting TLR4/NF⁃κB pathway in human endothelial cells[J].Biomed Pharmacother,2018,108:1783⁃1789. [30] JIN M,SUN C,PEI C,et al.Effect of safflor yellow injectionon inhibiting lipopolysaccharide⁃induced pulmonary inflammatoryinjury in mice[J].Chinese Journal of Integrative Medicine,2013,19(11):836⁃843.[31] CHEN L S,ZHENG D S.Safflor Yellow A Protects Beas⁃2BCells Against LPS⁃Induced Injury via Activating Nrf2[J].RevBras Farmacogn,2023:1⁃10.[32] LI X J,KANG Y,WANG R R,et al.The Effects of SafflowerYellow on Acute Exacerbation of Chronic Obstructive PulmonaryDisease:A Randomized,Controlled Clinical Trial[J].Evidence⁃Based Complementary and Alternative Medicine,2019,2019:5952742.[33] JIN M,XUE C J,WANG Y,et al.Protective Effect ofHydroxysafflor Yellow A on Inflammatory Injury in ChronicObstructive Pulmonary Disease Rats[J].Chinese Journal ofIntegrative Medicine,2019,25(10):750⁃756. [34] ZHENG M,GUO X,PAN R,et al.Hydroxysafflor Yellow AAlleviates Ovalbumin⁃Induced Asthma in a Guinea Pig Model byAttenuateing the Expression of Inflammatory Cytokines and SignalTransduction[J].Frontiers in Pharmacology,2019,10:328.[35] JIN M,WANG L,WU Y,et al.Protective effect ofhydroxysafflor yellow A on bleomycin⁃induced pulmonaryinflammation and fibrosis in rats[J].Chinese Journal ofIntegrative Medicine,2018,24(1):32⁃39.[36] WANG Y,XUE C,DONG F,et al.Hydroxysafflor yellow aattenuates small airway remodeling in a rat model of chronicobstructive pulmonary disease[J].Biological&PharmaceuticalBulletin,2014,37(10):1591⁃1598.[37] PAN R,ZHANG Y,ZANG B,et al.Hydroxysafflor yellow Ainhibits TGF⁃β1⁃induced activation of human fetal lungfibroblasts in vitro[J].The Journal of Pharmacy andPharmacology,2016,68(10):1320⁃1330.[38] 杨璇.红花黄色素对急性冠脉综合征患者心功能和基质金属蛋白酶的影响[J].湖南中医药大学学报,2011,31(2):14⁃16.[39] 褚永果,齐洪娜,刘晓婷,等.红花黄色素治疗严重脓毒症患者的心肌损伤[J].中成药,2017,39(4):706⁃710.[40] ZHOU M X,FU J H,ZHANG Q,et al.Effect of hydroxysafflower yellow A on myocardial apoptosis after acute myocardialinfarction in rats[J].Genetics and Molecular Research:GMR,2015,14(2):3133⁃3141.[41] ZHOU D,DING T,NI B,et al.Hydroxysafflor Yellow Amitigated myocardial ischemia/reperfusion injury by inhibitingthe activation of the JAK2/STAT1pathway[J].InternationalJournal of Molecular Medicine,2019,44(2):405⁃416. [42] YE J,LU S,WANG M,et al.Hydroxysafflor Yellow A ProtectsAgainst Myocardial Ischemia/Reperfusion Injury via SuppressingNLRP3Inflammasome and Activating Autophagy[J].Frontiersin Pharmacology,2020,11:1170.[43] Suchal K,Malik S,Gamad N,et al.Kaempferol Attenuates My⁃ocardial Ischemic Injury via Inhibition of MAPK SignalingPathway in Experimental Model of Myocardial Ischemia⁃Reperfusion Injury[J].Oxidative Medicine and CellularLongevity,2016,2016:7580731.[44] ZHOU M,REN H,HAN J,et al.Protective Effects ofKaempferol against Myocardial Ischemia/Reperfusion Injury inIsolated Rat Heart via Antioxidant Activity and Inhibition ofGlycogen Synthase Kinase⁃3β[J].Oxidative Medicine andCellular Longevity,2015,2015:481405.[45] LI Z,HU J,LI Y,et al.The effect of hyperoside on thefunctional recovery of the ischemic/reperfused isolated rat heart:potential involvement of the extracellular signal⁃regulated kinase1/2signaling pathway[J].Free Radical Biology&Medicine,2013,57:132⁃140.[46] FAN S,LIN N,SHAN G,et al.Safflower yellow for acuteischemic stroke:A systematic review of randomized controlledtrials[J].Complementary Therapies in Medicine,2014,22(2):354⁃361.[47] 赵红领,李磊,杨慧,等.红花黄色素调控p38MAPK对H2O2诱导的星形胶质细胞损伤的保护作用[J].免疫学杂志,2020,36(1):80⁃85.[48] YAN T,HE B,XU M,et al.Kaempferide prevents cognitivedecline via attenuation of oxidative stress and enhancement ofbrain⁃derived neurotrophic factor/tropomyosin receptor kinase B/cAMP response element⁃binding signaling pathway[J].Phytotherapy Research:PTR,2019,33(4):1065⁃1073. [49] CAO J,TANG C,GAO M,et al.Hyperoside alleviatesepilepsy⁃induced neuronal damage by enhancing antioxidantlevels and reducing autophagy[J].Journal of Ethnopharmacology,2020,257:112884.[50] LI C C,YANG C Z,LI X M,et al.Hydroxysafflor yellow Ainduces apoptosis in activated hepatic stellate cells throughERK1/2pathway in vitro[J].Eur J Pharm Sci,2012,46(5):397⁃404.[51] WU N,LI J,LUO H,et al.Hydroxysafflor yellow A promotesapoptosis via blocking autophagic flux in liver cancer[J].Biomed Pharmacother,2021,136:111227.(收稿日期:2023⁃08⁃15)(本文编辑:韩虹娟)。
岳娅,薛海清,冯茜,等.CO 2浓度增加和秸秆还田对黑土团聚体有机碳的影响[J].农业环境科学学报,2023,42(4):943-950.YUE Y,XUE H Q,FENG Q ,et al.Effects of atmospheric CO 2enrichment and straw return on aggregate organic carbon in black soil[J].Journal of Agro-Environment Science ,2023,42(4):943-950.CO 2浓度增加和秸秆还田对黑土团聚体有机碳的影响岳娅,薛海清,冯茜,苗欢,苗淑杰*,乔云发(南京信息工程大学应用气象学院,南京210044)Effects of atmospheric CO 2enrichment and straw return on aggregate organic carbon in black soilYUE Ya,XUE Haiqing,FENG Qian,MIAO Huan,MIAO Shujie *,QIAO Yunfa(School of Applied Meteorology,Nanjing University of Information Science &Technology,Nanjing 210044,China )Abstract :The responses of organic carbon distribution in soil aggregates to CO 2enrichment and straw return were studied to providetheoretical evidence for the carbon sequestration and mitigation of black soil.Based on the long-term CO 2enrichment experimentalplatform located in the black soil region of northeast China,four treatments were set.The treatments were the control (CK ),increasing CO 2concentration to 1259.72mg·m -3(EC ),straw returning (ST ),and increasing CO 2concentration combined with straw returning (EC+ST ).The results showed that the EC and ST treatments had no significant effect on the total soil organic carbon,whereas the EC+ST treatmentincreased total soil organic carbon by 3.09g∙kg -1(P <0.05).The EC treatment had no significant effect on the proportion of soil aggregates,收稿日期:2022-08-05录用日期:2022-10-31作者简介:岳娅(1998—),女,河南商丘人,硕士研究生,从事土壤有机碳与全球变化研究。
镁离子(Mg 2+)是植物细胞中含量十分丰富的二价阳离子,在植物生长发育中参与一系列重要生理生化过程,比如:它是叶绿素的组成成分,参与光合作用及碳水化合物代谢;是RNA 酶、ATP 酶等多种酶活反应的催化剂;参与活性氧代谢等过程[1~3]。
自然环境中各种镁胁迫因素的存在严重威胁植物生长发育,制约着农业可持续发展[4~6]。
因此,植物细胞中Mg 2+稳态平衡对于维持植物正常生长发育极其重要。
目前,植物Mg 2+的吸收和转运、植物响应Mg 2+胁迫的分子机制的研究取得了DOI:10.16605/ki.1007-7847.2021.08.0189植物镁离子转运及镁胁迫响应机制研究进展陈良碧*,蔡丹,张林安,宋绍文,罗璇,陈依君,李俊峰,许涛,毛丹丹(湖南师范大学生命科学学院作物不育资源创新与利用湖南省重点实验室,中国湖南长沙410081)摘要:镁离子是植物生长发育所必需的矿质元素,参与植物光合作用、碳水化合物代谢等一系列生理生化反应。
缺镁严重影响植物生长发育及作物产量和品质。
植物细胞中镁含量过高也会抑制植物生长,导致植株产生镁中毒症状。
因此,植物细胞中镁离子动态平衡对于维持植物正常生长发育极其重要。
植物细胞中镁离子动态平衡由定位于细胞膜及不同细胞器膜的镁离子转运蛋白介导。
迄今为止,有关植物镁离子吸收和转运以及植物响应镁胁迫的分子机制取得了一定进展。
本文从镁离子的生理功能、镁离子转运、信号转导等方面阐述植物镁离子转运以及应答镁营养胁迫的研究进展,以期推动植物镁离子转运及镁胁迫机制的研究。
关键词:镁离子;镁胁迫;镁离子转运;信号传递;分子机制中图分类号:Q946文献标识码:A文章编号:1007-7847(2021)05-0442-06Advances in Mechanisms of Magnesium Transport and Responseto Magnesium Stress in PlantsCHEN Liang-bi *,CAI Dan,ZHANG Lin-an,SONG Shao-wen,LUO Xuan,CHEN Yi-jun,LI Jun-feng,XU Tao,MAO Dan-dan (Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application,College of Life Sciences,Hunan Normal University,Changsha 410081,Hunan,China )Abstract:Magnesium (Mg)is abundant in plant cells and plays a critical role in many physiological processes such as enzyme activation and photosynthesis.Plant growth and development are susceptible to Mg deficiency and high Mg stress.Mg absorption by plant roots and Mg transport throughout the plant are mediated by transport proteins including Mg 2+channels and carriers.So far,the uptake and transport mechanisms of Mg as well as the plant response to stress (Mg lacking and poisoning)are made better progress.The present paper covers the recent research development on physiological functions and transport of Mg in plants,plant re-sponse to Mg stresses,and the interactions between Mg 2+and other ions,with the hope that the related re-search could be promoted a lot in the future.Key words:magnesium;magnesium stress;magnesium transport;signal transduction;molecular mechanism(Life Science Research ,2021,25(5):442~447)收稿日期:2021-08-09;修回日期:2021-09-16基金项目:国家自然科学基金资助项目(31500200);湖南省自然科学基金资助项目(2021JJ30013)作者简介:*通信作者:陈良碧(1955—),男,湖南沅陵人,湖南师范大学教授,博士生导师,主要从事植物发育与分子生物学研究,E-mail:*******************;蔡丹(1998—),女,湖南耒阳人,研究生,主要从事水稻离子转运研究,E-mail:*****************。
乳酸菌LA4还原亚硒酸钠形成红色单质硒刘红芳;邓泽元;徐靓;陈华蓉;刘文群【摘要】Selenium (Se) is one of the important and essential trace elements in human body,but the range between biological activity and toxicity of Se is extremely narrow,so it's easy to show itstoxicity.However,Se(0)nanoparticles have an advantage of high security and strong efficiency.In this experiment,LA4 strain with higher tolerance to sodium selenite was selected from lactic acid bacterias in our laboratory.We found that 46.79% of 4 mmol/ L Na2SeO3 was reduced by spectrophotometry.We also found LA4 strain could reduce sodium selenite into red elemental selenium by transmission electron microscope (TEM) and X-ray photoelectron spectrometer (XPS) test.We could see a large number of particles from transmission electron microscope pictures ofNa2SeO3,some of the particles sticked to the cell surface,but some of the particles were free in the culture medium,their diameters were mainly in the range from 50nm to 200nm.%通过从实验室保藏的乳酸菌中筛选出1株对亚硒酸钠耐受性较高的菌株LA4,经分光光度法测定得知在69.28 mg(4 mmol/L)亚硒酸钠浓度下,亚硒酸钠的还原量为32.42 mg(1.87 mmol/L),还原效率为46.79%.并将其亚硒酸钠还原产物通过X射线光电子能谱仪(XPS)和透射电子显微镜(TEM)测试,发现乳酸菌LA4能将亚硒酸钠还原为红色单质硒,观察透射电镜(TEM)图发现,添加亚硒酸钠的发酵液中细胞表面以及培养基中出现大量纳米尺寸的球状颗粒,粒径基本在50~ 200 nm.【期刊名称】《食品与发酵工业》【年(卷),期】2013(039)007【总页数】5页(P69-73)【关键词】乳酸菌LA4;亚硒酸钠;纳米尺寸;红色单质硒【作者】刘红芳;邓泽元;徐靓;陈华蓉;刘文群【作者单位】南昌大学食品科学与技术国家重点实验室,江西南昌,330047;南昌大学食品科学与技术国家重点实验室,江西南昌,330047;江西省环境信息中心,江西南昌,330077;南昌大学食品科学与技术国家重点实验室,江西南昌,330047;南昌大学食品科学与技术国家重点实验室,江西南昌,330047【正文语种】中文硒(Selenium,Se)是人体必需的重要微量元素之一,低浓度时具有提高免疫、抗氧化、抗病毒、抗癌等生物活性,但在高浓度时反而对人和动物具有毒性,硒在生物活性和毒性之间范围极端狭窄,因此容易接近或进入了硒的毒性范围[1]。
8 AUGUST 2014 • VOL 345 ISSUE 6197 623SCIENCEOrigami is the art of intricately fold-ing a sheet of paper into elaborate three-dimensional (3D) sculptures and objects. In this issue, two reports focus on different aspects of the thriving field of origami engineering. On page 644, Felton et al . ( 1) report on ori-gami morphing structures, and on page 647, Silverberg et al . ( 2) report on origami-based metamaterials.The most intuitive and direct engineering application of folded-sheet geometries is to produce foldable structures or machines that use the well-understood folding motions of origami. The work of Felton et al . is a good example of the design principles used in this field. They developed self-folding machines (crawling robots) in which a type of self-fold-ing composite, activated by embedded elec-tronics, actuate a plate assembly set along a prearranged origami crease pattern. For such applications, a subset known as rigid origami is ideal for immediate engineering adoption. Rigid origami permits continuous motion be-tween folded states along the predetermined folding creases without the need for twist-ing or stretching of folded facets. It belongs to a family of mechanisms where bodies areconnected by revolute hinges (a common ex-ample is a door hinge).The creation of an origami machine starts with the synthesis of a crease pat-tern, then an analysis of its mobility andmotion sequences, and finally the synchro-nization of motions and identification of the actuation locations. To date, notice-able research progress has been made for single-vertex crease patterns or multiver-tex crease patterns with decoupled mo-tions. Y et, a major challenge still lies in determining the mobility of a crease pat-tern that includes multiple vertices, where motion around each vertex is coupled with those of its neighbors. For example, when only four folds meet at each vertex, the crease pattern becomes overconstrained. An overconstrained system has mobility only when motions around each vertex are compatible with those around its adjacent vertices, attained under specific patterngeometries. It is not a trivial issue to findthese geometries.To complete a self-folding machine, suit-able actuation materials and devices must be identified and then integrated into the folding patterns. Felton et al . used a typeof shape-memory polymer (one that, after a suitable stimulus, returns to a previousimprinted shape). Numerous other systems Folding structures out of flat materialsExploiting origami design principles. Intricate 3D structures, such as this core structure of a lightweight sandwich plate, can be formed by folding sheet materials. Curved creases are adopted in this example.By Zhong YouReconfigurable machines and internally structured materials can be created through foldingMATERIALS DESIGNDepartment of Engineering Science, University of Oxford,Parks Road, Oxford, OX3 0PL, UK. E-mail: zhong.you@eng.nin diffuses from cell to cell, a gradient of cytokinin is formed leading away from the auxin source cells. As the amount of auxin in these surrounding cells is low, the repres-sion on cytokinin activity is removed, and so stable neighboring domains of high auxin with low cytokinin activity, and low auxin with high cytokinin activity, are created.The beauty of these regulatory inter-actions is only observed when they are simulated in a multicellular geometry. The authors started with a set of virtual tem-plates composed of the four provascular ini-tial cells in various configurations together with surrounding tissues. In each case, two of the central cells were supplied with an elevated amount of auxin, representing in-put from the apical portion of the embryo. These virtual templates were then permit-ted to grow, with the rate of cell division driven by the level of cytokinin activity. Only simulations using templates where the two auxin source cells were in direct contact formed realistic-looking xylem axes, a prediction of the model borne out by closely examining the cellular geometry of real embryos.Throughout this study, the authors used an iterative cycle of experimentation and theoretical modeling to build and test their model. This approach has revealed a net-work that, when embedded within specific and highly realistic cellular geometries, is able to propagate subtle asymmetries in both hormone input and cellular ar-rangements into new patterns. The model outlines a small set of components and mechanisms that can set vascular pattern within embryos. Although the role of auxin in promoting cytokinin synthesis is clear, a future challenge will be to uncover the molecular basis underlying some of the re-maining mechanisms of cross talk between these hormones. Currently, this model pro-vides a clear framework explaining how vascular cell fates are specified within the embryonic root and will provide a baseline for future models exploring the formation of other patterning processes in embryonic roots. ■REFERENCES1. A. Bishopp et al ., Curr. Biol. 21, 917 (2011).2. B. De Rybel et al ., Science 345, 1255215 (2014).3. S. Vanneste, J. Friml, Cell 136, 1005 (2009).4. A. P . Mähönen et al ., Science 311, 94 (2006).5.C. Riou-Khamlichi, R. Huntley, A. Jacqmard, J. A. Murray, Science 283, 1541 (1999).6. B. De Rybel et al ., Dev. Cell 24, 426 (2013).7. K. van Berkel, R. J. de Boer, B. Scheres, K. ten T usscher, Development 140, 2253 (2013).8.D. Muraro et al ., Proc. Natl. Acad. Sci. U.S.A. 111, 857 (2014).9. L. Gälweiler et al ., Science 282, 2226 (1998). 10.J. Petrásek et al ., Science 312, 914 (2006).P H O T O : Z H O N G Y O U10.1126/science.1257843o n J u l y 6, 2015w w w .s c i e n c e m a g .o r g D o w n l o a d e d f r o mINSIGHTS | PERSPECTIVES624 8 AUGUST 2014 • VOL 345 ISSUE 6197 SCIENCEhave also been proposed, including that of Kuribayashi-Shigetomi et al . ( 3), in which a 3D microstructure was created purely by a cell’s traction force, and that of Pickett ( 4), who explored microscale origami with the intention of manufacturing microelectro-mechanical systems from self-folding ori-gami membranes. Such fundamental work opens the way to the creation of origami structures and machines that are modu-lar, self-assembled, self-reconfigurable, and capable of adapting to their environments ( 5, 6). These structures and machines aremost suitable for applications in which shape transformations from 2D surfaces to 3D objects, and vice versa, are essential, such as large-space antennas and morphing aircrafts.Another major engineering adoption of origami has been to use folded geometries to create metamaterials (ones with artificial internal structure) with a target mechani-cal property, such as strength, stiffness, or failure behavior, rather than a target fold-ing motion. Current origami metamaterial applications range from single tubes, to composite folded core (foldcore) sandwich structures (similar to “egg-crate” struc-tures, but the surface is achieved by fold-ing a sheet), to bistable spatial structures.Because most sheet materials used in engineering applications are relativelyrigid in comparison with paper, rigid ori-gami can again be used to parameterize the structures. This approach allows the patterns to be readily manufactured frommodern materials such as plastics, metals,or composite fiber-reinforced sheets that have distinctive material properties. For example, Nojima ( 7) explored a number ofpatterns that gave cylindrical tube shapes. These tubes could neatly collapse by rotat-ing one end of the tube against the other, making them suitable for applications as space masts. Another example is seen in Ma and You ( 8), where a highly efficient au-tomobile crash box with a prefolded rigidorigami pattern was created. The box ex-hibits a failure mode that consumes muchmore energy when subjected to axial crush-ing in a collision.By far the most popular engineering adaption, at least as measured in terms of research interest, is seen with foldcore sandwich panels, which gained recogni-tion because of the potential use of their open-channel design, continuous manu-facturing process, and abundant number of design parameters in comparison with honeycomb and foams ( 9). With suitably chosen geometrical parameters and selec-tive alteration of some of the geometrical designs, foldcores can potentially exhibit superior structural properties, e.g., better energy absorption, over traditional struc-tures made from honeycomb and foam.Most of the current research on fold-cores has focused on cores generated with a zigzag rigid origami pattern known as the Miura pattern. Silverberg et al . observed an interesting bistable feature in the Miura pattern, and they proposed that this prop-erty could be used to create functional materials whose compressive modulus can be actively altered. In fact, the bistable fea-ture also exists among many other origami patterns that are overconstrained mecha-nisms. A slight error in dimensions can lead to bistability. Bistability is also com-mon in origami structures consisting of curved creases (see the figure); such struc-tures can “pop” between 3D shapes ( 10).R esearch exploration of bistability is still in its infancy, with many interesting problems still to be solved. Silverberg et al . cleverly made use of this feature in thedesign of metamaterials. The combination of structural and morphing capabilitiesthat enhances or alters a particular mate-rial characteristic is likely where the most innovative applications of origami engi-neering lie. Such structures would be self-folding and single or multifunctional, withapplications for such capabilities as yet scarcely imagined.■REFERENCES1. S. Felton et al ., Science 345, 644 (2014).2. J. L. Silverberg et al., Scienc e 345, 647 (2014).3. K. Kuribayashi-Shigetomi, H. Onoe, S. Takeuchi, PLOS ONE7, e51085 (2012). 4. G. T. Pickett, Europhys. Lett. 78, 48003 (2007).5. G. M. Whitesides, B. Grzybowski, Science 295, 2418(2002).6. M. Yim, P . J. White, M, Park, J. Sastra, in Encyclopediaof Complexity and Systems Science , R. J. Myers, Ed. (Springer Reference, New York, 2009), pp. 5618–5631.7. T. Nojima, JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 45, 364 (2002).8. J. Ma, Z. You, J. Appl. Mech. 81, 011003 (2014).9. S. Heimbs, in Dynamic Failure of Composite and SandwichStructures, S. Abrate, B. Castanie, Y. D. S. Rajapakse, Eds.(Springer, Dordrecht, Netherlands, 2013), pp. 491–544. 10. J. Gattas, thesis, University of Oxford (2013).“The combination ofstructural and morphing capabilities that enhances or alters a particular material characteristic is likely where the most innovative applications of origami engineering lie.”10.1126/science.1257841At the turn of the 20th century, the German physician Paul Ehrlich championed the concept that chemi-cals with special affinities for partic-ular pathogens could serve as “magic bullets” to combat infections with no side effects on the host. In this vein, he went on to discover arsphenamine, an ef-fective antisyphilis drug ( 1). On page 688 of this issue, Naryshkin et al . ( 2) identify compounds that selectively modulate the splicing of a particular mRNA precursor, of-fering potential new treatments for spinal muscular atrophy (SMA), the most common genetic cause of infant death ( 3). Gene-spe-cific R NA-processing drugs could provide unique tools for studying gene function and present a new therapeutic approach for other diseases as well.SMA is caused by inactivating mutations in the sur vival of motor neur on 1 (SMN1) gene, which encodes SMN, a multifunctional protein important for proper assembly of small nuclear ribonucleoprotein (snR NP) particles ( 4). These RNA-protein complexes are essential for splicing precursor mRNAs (pre-mRNAs), the process by which noncod-ing sequences (introns) are removed from the primary transcripts of genes, and coding regions (exons) are joined together to gen-erate mature mRNA that can be translated into protein. Splicing occurs in the vast majority of human genes and in all tissues, but disrupting this process by mutations in SMN1 compromises mainly the function of spinal cord anterior horn α-motor neurons, resulting in progressive muscle wasting and the mobility and respiratory impairments characteristic of the disease. Limiting SMN activity has distinct effects on different pre-mR NAs in different cell types or develop-mental stages ( 5– 7). Therefore, SMA may be the consequence of a decrease in the amount of SMN that allows the organism to develop without compromising essential cellular functions, but limits the physiological ex-pression of certain genes in particular neu-A splicingmagic bulletDrugs that modulate RNA splicing are potential therapeutics for spinal muscular atrophyMOLECULAR BIOLOGYBy Luisa Vigevani 1 ,2 and Juan Valcárcel 1,2,3DOI: 10.1126/science.1257841, 623 (2014);345 Science Zhong YouFolding structures out of flat materialsThis copy is for your personal, non-commercial use only.clicking here.colleagues, clients, or customers by , you can order high-quality copies for your If you wish to distribute this article to othershere.following the guidelines can be obtained by Permission to republish or repurpose articles or portions of articles): July 6, 2015 (this information is current as of The following resources related to this article are available online at/content/345/6197/623.full.html version of this article at:including high-resolution figures, can be found in the online Updated information and services, /content/345/6197/623.full.html#related found at:can be related to this article A list of selected additional articles on the Science Web sites /content/345/6197/623.full.html#ref-list-1, 3 of which can be accessed free:cites 7 articles This article/cgi/collection/engineering Engineeringsubject collections:This article appears in the following (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the Science o n J u l y 6, 2015w w w .s c i e n c e m a g .o r g D o w n l o a d e d f r o m。