经典-好--磁场问题分类训练--上传
- 格式:doc
- 大小:195.50 KB
- 文档页数:4
高中物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,xOy平面处于匀强磁场中,磁感应强度大小为B,方向垂直纸面向外.点3,0P L⎛⎫⎪⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q、质量为m的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x轴正向通过点Q(0,-L),求其速率v1;(2)若撤去第一象限的磁场,在其中加沿y轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v1沿x轴正向通过点Q,求匀强电场的电场强度E以及粒子2的发射速率v2;(3)若在xOy平面内加沿y轴正向的匀强电场E o,粒子3以速率v3沿y轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动.请尝试用该思路求解.【答案】(1)23BLqm(2221BLq32203BE EvB+⎛⎫⎪⎝⎭【解析】【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111vqv B mr=由几何憨可知:()222113r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:13L v t =,212qE h t m =在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。
高考物理带电粒子在磁场中的运动解题技巧及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。
y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。
现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。
求: (1)带电粒子的初速度;(2)粒子从P 点射出到再次回到P 点所用的时间。
【答案】(1)8qBLv m=;(2)41(1)45m t qB π=+ 【解析】 【详解】(1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得:5sin37o QC L =15sin37OOQO Q L ==在y 轴左侧磁场中做匀速圆周运动,半径为1R ,11R O Q QC =+21v qvB mR =解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oo t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。
高中物理磁场专题分类题型一、【磁场的描述 磁场对电流的作用】典型题1.如图所示,带负电的金属环绕轴OO ′以角速度ω匀速旋转,在环左侧轴线上的小磁针最后平衡时的位置是( )A .N 极竖直向上B .N 极竖直向下C .N 极沿轴线向左D .N 极沿轴线向右解析:选C .负电荷匀速转动,会产生与旋转方向反向的环形电流,由安培定则知,在磁针处磁场的方向沿轴OO ′向左.由于磁针N 极指向为磁场方向,可知选项C 正确.2.磁场中某区域的磁感线如图所示,则( )A .a 、b 两处的磁感应强度的大小不等,B a >B bB .a 、b 两处的磁感应强度的大小不等,B a <B bC .同一通电导线放在a 处受力一定比放在b 处受力大D .同一通电导线放在a 处受力一定比放在b 处受力小解析:选A .磁感线的疏密程度表示磁感应强度的大小,由a 、b 两处磁感线的疏密程度可判断出B a >B b ,所以A 正确,B 错误;安培力的大小跟该处的磁感应强度的大小B 、电流大小I 、导线长度L 和导线放置的方向与磁感应强度的方向的夹角有关,故C 、D 错误.3.将长为L 的导线弯成六分之一圆弧,固定于垂直纸面向外、大小为B 的匀强磁场中,两端点A 、C 连线竖直,如图所示.若给导线通以由A 到C 、大小为I 的恒定电流,则导线所受安培力的大小和方向是( )A .ILB ,水平向左B .ILB ,水平向右C .3ILB π,水平向右D .3ILB π,水平向左解析:选D .弧长为L ,圆心角为60°,则弦长AC =3L π,导线受到的安培力F =BIl =3ILB π,由左手定则可知,导线受到的安培力方向水平向左.4.如图所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 为半圆弧的圆心,∠MOP =60°,在M 、N 处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O 点的磁感应强度大小为B 1.若将M 处长直导线移至P 处,则O 点的磁感应强度大小为B 2,那么B 2与B 1之比为( )A .3∶1B .3∶2C .1∶1D .1∶2解析:选B .如图所示,当通有电流的长直导线在M 、N 两处时,根据安培定则可知:二者在圆心O 处产生的磁感应强度大小都为B 12;当将M 处长直导线移到P 处时,两直导线在圆心O 处产生的磁感应强度大小也为B 12,做平行四边形,由图中的几何关系,可得B 2B 1=B 22B 12=cos 30°=32,故选项B 正确.5.阿明有一个磁浮玩具,其原理是利用电磁铁产生磁性,让具有磁性的玩偶稳定地飘浮起来,其构造如图所示.若图中电源的电压固定,可变电阻为一可以随意改变电阻大小的装置,则下列叙述正确的是( )A .电路中的电源必须是交流电源B .电路中的a 端点须连接直流电源的负极C .若增加环绕软铁的线圈匝数,可增加玩偶飘浮的最大高度D .若将可变电阻的电阻值调大,可增加玩偶飘浮的最大高度解析:选C .电磁铁产生磁性,使玩偶稳定地飘浮起来,电路中的电源必须是直流电源,电路中的a 端点须连接直流电源的正极,选项A 、B 错误;若增加环绕软铁的线圈匝数,电磁铁产生的磁性更强,电磁铁对玩偶的磁力增强,可增加玩偶飘浮的最大高度,选项C 正确;若将可变电阻的电阻值调大,电磁铁中电流减小,产生的磁性变弱,则降低玩偶飘浮的最大高度,选项D 错误.6.一通电直导线与x 轴平行放置,匀强磁场的方向与xOy 坐标平面平行,导线受到的安培力为F .若将该导线做成34圆环,放置在xOy 坐标平面内,如图所示,并保持通电的电流不变,两端点ab 连线也与x 轴平行,则圆环受到的安培力大小为( )A .FB .23πFC .223πFD .32π3F 解析:选C .根据安培力公式,安培力F 与导线长度L 成正比;若将该导线做成34圆环,由L =34×2πR ,解得圆环的半径R =2L 3π,34圆环ab 两点之间的距离L ′=2R =22L 3π.由F L =F ′L ′解得:F ′=223πF ,选项C 正确. 7.在绝缘圆柱体上a 、b 两个位置固定有两个金属圆环,当两环通有如图所示电流时,b 处金属圆环受到的安培力为F 1;若将b 处金属圆环移动到位置c ,则通有电流为I 2的金属圆环受到的安培力为F 2.今保持b 处金属圆环原来位置不变,在位置c 再放置一个同样的金属圆环,并通有与a 处金属圆环同向、大小为I 2的电流,则在a 位置的金属圆环受到的安培力( )A .大小为|F 1-F 2|,方向向左B .大小为|F 1-F 2|,方向向右C .大小为|F 1+F 2|,方向向左D .大小为|F 1+F 2|,方向向右解析:选A .c 金属圆环对a 金属圆环的作用力大小为F 2,根据同方向的电流相互吸引,可知方向向右,b金属圆环对a金属圆环的作用力大小为F1,根据反方向的电流相互排斥,可知方向向左,所以a金属圆环所受的安培力大小|F1-F2|,由于a、b间的距离小于a、c 间距离,所以两合力的方向向左.8.如图,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流.a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等.关于以上几点处的磁场,下列说法正确的是()A.O点处的磁感应强度为零B.a、b两点处的磁感应强度大小相等,方向相反C.c、d两点处的磁感应强度大小相等,方向相同D.a、c两点处磁感应强度的方向不同解析:选C.由安培定则可知,两导线中的电流在O点产生的磁场均竖直向下,合磁感应强度一定不为零,选项A错;由安培定则知,两导线中的电流在a、b两点处产生的磁场的方向均竖直向下,由于对称性,M中电流在a处产生的磁场的磁感应强度等于N中电流在b处产生的磁场的磁感应强度,同时M中电流在b处产生的磁场的磁感应强度等于N 中电流在a处产生的磁场的磁感应强度,所以a、b两点处磁感应强度大小相等,方向相同,选项B错;根据安培定则,两导线中的电流在c、d两点处产生的磁场垂直c、d两点与导线的连线方向向下,且产生的磁场的磁感应强度大小相等,由平行四边形定则可知,c、d 两点处的磁感应强度大小相等,方向相同,选项C正确;a、c两点处磁感应强度的方向均竖直向下,选项D错.9. (多选)如图所示,金属细棒质量为m,用两根相同轻弹簧吊放在水平方向的匀强磁场中,弹簧的劲度系数为k,棒ab中通有恒定电流,棒处于平衡状态,并且弹簧的弹力恰好为零.若电流大小不变而方向反向,则()A .每根弹簧弹力的大小为mgB .每根弹簧弹力的大小为2mgC .弹簧形变量为mg kD .弹簧形变量为2mg k解析:选AC .电流方向改变前,对棒受力分析,根据平衡条件可知,棒受到的安培力竖直向上,大小等于mg ;电流方向改变后,棒受到的安培力竖直向下,大小等于mg ,对棒受力分析,根据平衡条件可知,每根弹簧弹力的大小为mg ,弹簧形变量为mg k,选项A 、C 正确.10.如图所示,两平行光滑金属导轨CD 、EF 间距为L ,与电动势为E 0的电源相连,质量为m 、电阻为R 的金属棒ab 垂直于导轨放置构成闭合回路,回路平面与水平面成θ角,回路其余电阻不计.为使ab 棒静止,需在空间施加的匀强磁场磁感应强度的最小值及其方向分别为( )A .mgR E 0L,水平向右 B .mgR cos θE 0L,垂直于回路平面向上 C .mgR tan θE 0L,竖直向下 D .mgR sin θE 0L,垂直于回路平面向下 解析:选D .对金属棒受力分析,受重力、支持力和安培力,如图所示;从图可以看出,当安培力沿斜面向上时,安培力最小,故安培力的最小值为:F A =mg sin θ,故磁感应强度的最小值为B =F A IL =mg sin θIL ,根据欧姆定律,有E 0=IR ,故B =mgR sin θE 0L,故D 正确.11.已知直线电流在其空间某点产生的磁场,其磁感应强度B 的大小与电流强度成正比,与点到通电导线的距离成反比.现有平行放置的三根长直通电导线,分别通过一个直角三角形△ABC的三个顶点且与三角形所在平面垂直,如图所示,∠ACB=60°,O为斜边的中点.已知I1=2I2=2I3,I2在O点产生的磁场磁感应强度大小为B,则关于O点的磁感应强度,下列说法正确的是()A.大小为2B,方向垂直AB向左B.大小为23B,方向垂直AB向左C.大小为2B,方向垂直AB向右D.大小为23B,方向垂直AB向右解析:选B.导线周围的磁场的磁感线,是围绕导线形成的同心圆,空间某点的磁场沿该点的切线方向,即与该点和导线的连线垂直,根据右手螺旋定则,可知三根导线在O点的磁感应强度的方向如图所示.已知直线电流在其空间某点产生的磁场,其磁感应强度B 的大小与电流强度成正比,与点到通电导线的距离成反比,已知I1=2I2=2I3,I2在O点产生的磁场磁感应强度大小为B,O点到三根导线的距离相等,可知B3=B2=B,B1=2B,由几何关系可知三根导线在平行于AB方向的合磁场为零,垂直于AB方向的合磁场为23B.综上可得,O点的磁感应强度大小为23B,方向垂直于AB向左.故B正确,A、C、D 错误.12.(多选)光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L的导体棒ab,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g=10 m/s2,则()A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J解析:选AB.导体棒向右沿圆弧摆动,说明受到向右的安培力,由左手定则知该磁场方向一定竖直向下,A项正确;导体棒摆动过程中只有安培力和重力做功,由动能定理知BIL·L sin θ-mgL(1-cos θ)=0,代入数值得导体棒中的电流为I=3 A,由E=IR得电源电动势E=3.0 V,B项正确;由F=BIL得导体棒在摆动过程中所受安培力F=0.3 N,C项错误;由能量守恒定律知电源提供的电能W等于电路中产生的焦耳热Q和导体棒重力势能的增加量ΔE的和,即W=Q+ΔE,而ΔE=mgL(1-cos θ)=0.048 J,D项错误.13.(多选)某同学自制的简易电动机示意图如图所示.矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴.将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方.为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将()A.左、右转轴下侧的绝缘漆都刮掉B.左、右转轴上下两侧的绝缘漆都刮掉C.左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉D.左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉解析:选AD.若将左、右转轴下侧的绝缘漆都刮掉,这样当线圈在图示位置时,线圈的上下边受到水平方向的安培力而转动,转过一周后再次受到同样的安培力而使其连续转动,选项A正确;若将左、右转轴上下两侧的绝缘漆都刮掉,则当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后再次受到相反方向的安培力而使其停止转动,选项B 错误;左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉,电路不能接通,故不能转起来,选项C 错误;若将左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉,这样当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后电路不导通,转过一周后再次受到同样的安培力而使其连续转动,选项D 正确.14.光滑的金属轨道分水平段和圆弧段两部分,O 点为圆弧的圆心.两金属轨道之间的宽度为0.5 m ,匀强磁场方向如图所示,大小为0.5 T .质量为0.05 kg 、长为0.5 m 的金属细杆置于金属水平轨道上的M 点.当在金属细杆内通以电流强度为2 A 的恒定电流时,金属细杆可以沿轨道由静止开始向右运动.已知MN =OP =1 m ,则下列说法中正确的是( )A .金属细杆开始运动时的加速度大小为5 m/s 2B .金属细杆运动到P 点时的速度大小为5 m/sC .金属细杆运动到P 点时的向心加速度大小为10 m/s 2D .金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N解析:选D .金属细杆在水平方向受到安培力作用,安培力大小F 安=BIL =0.5×2×0.5 N =0.5 N ,金属细杆开始运动时的加速度大小为a =F 安m=10 m/s 2,选项A 错误;对金属细杆从M 点到P 点的运动过程,安培力做功W 安=F 安·(MN +OP )=1 J ,重力做功W G =-mg ·ON =-0.5 J ,由动能定理得W 安+W G =12m v 2,解得金属细杆运动到P 点时的速度大小为v =20 m/s ,选项B 错误;金属细杆运动到P 点时的向心加速度大小为a ′=v 2r=20 m/s 2,选项C 错误;在P 点金属细杆受到轨道水平向左的作用力F 和水平向右的安培力F 安,由牛顿第二定律得F -F 安=m v 2r,解得F =1.5 N ,每一条轨道对金属细杆的作用力大小为0.75 N ,由牛顿第三定律可知金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N ,选项D 正确.二、【磁场对运动电荷的作用】典型题1.如图所示,a 、b 、c 、d 为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示.一带正电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是( )A .向上B .向下C .向左D .向右解析:选B .根据安培定则及磁感应强度的矢量叠加,可得O 点处的磁场方向水平向左,再根据左手定则判断可知,带电粒子受到的洛伦兹力方向向下,B 正确.2.如图,半径为R 的圆形区域内有垂直于纸面的匀强磁场,半径OC 与OB 夹角为60°.甲电子以速率v 从A 点沿直径AB 方向射入磁场,从C 点射出.乙电子以速率v 3从B 点沿BA 方向射入磁场,从D 点(图中未画出)射出,则( )A .C 、D 两点间的距离为2RB .C 、D 两点间的距离为3RC .甲在磁场中运动的时间是乙的2倍D .甲在磁场中运动的时间是乙的3倍解析:选B .洛伦兹力提供向心力,q v B =m v 2r 得r =m v qB,由几何关系求得r 1=R tan 60°=3R ,由于质子乙的速度是v 3,其轨道半径r 2=r 13=33R ,它们在磁场中的偏转角分别为60°和120°,根据几何知识可得BC =R ,BD =2r 2tan 60°=R ,所以CD =2R sin 60°=3R ,故A 错误,B 正确;粒子在磁场中运动的时间为t =θ2πT =θ2π·2πm qB,所以两粒子的运动时间之比等于偏转角之比,即为1∶2,即甲在磁场中运动的时间是乙的12倍,故C 、D 错误. 3. (多选)如图所示,一轨道由两等长的光滑斜面AB 和BC 组成,两斜面在B 处用一光滑小圆弧相连接,P 是BC 的中点,竖直线BD 右侧存在垂直纸面向里的匀强磁场,B 处可认为处在磁场中,一带电小球从A 点由静止释放后能沿轨道来回运动,C 点为小球在BD 右侧运动的最高点,则下列说法正确的是( )A .C 点与A 点在同一水平线上B .小球向右或向左滑过B 点时,对轨道压力相等C .小球向上或向下滑过P 点时,其所受洛伦兹力相同D .小球从A 到B 的时间是从C 到P 时间的2倍解析:选AD .小球在运动过程中受重力、洛伦兹力和轨道支持力作用,因洛伦兹力永不做功,支持力始终与小球运动方向垂直,也不做功,即只有重力做功,满足机械能守恒,因此C 点与A 点等高,在同一水平线上,选项A 正确;小球向右或向左滑过B 点时速度等大反向,即洛伦兹力等大反向,小球对轨道的压力不等,选项B 错误;同理小球向上或向下滑过P 点时,洛伦兹力也等大反向,选项C 错误;因洛伦兹力始终垂直BC ,小球在AB 段和BC 段(设斜面倾角均为θ)的加速度均由重力沿斜面的分力产生,大小为g sin θ,由x =12at 2得小球从A 到B 的时间是从C 到P 的时间的2倍,选项D 正确. 4.如图甲所示有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M 点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角;该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.已知磁场Ⅰ、Ⅱ的磁感应强度大小分别为B 1、B 2,则B 1与B 2的比值为( )A .2cos θB .sin θC .cos θD .tan θ解析:选C .设有界磁场Ⅰ宽度为d ,则粒子在磁场Ⅰ和磁场Ⅱ中的运动轨迹分别如图1、图2所示,由洛伦兹力提供向心力知Bq v =m v 2r ,得B =m v rq,由几何关系知d =r 1sin θ,d =r 2tan θ,联立得B 1B 2=cos θ,选项C 正确.5.如图所示,正方形区域内存在垂直纸面的匀强磁场.一带电粒子垂直磁场边界从a 点射入,从b 点射出.下列说法正确的是( )A .粒子带正电B .粒子在b 点速率大于在a 点速率C .若仅减小磁感应强度,则粒子可能从b 点右侧射出D .若仅减小入射速率,则粒子在磁场中运动时间变短解析:选C .由左手定则知,粒子带负电,A 错.由于洛伦兹力不做功,粒子速率不变,B 错.由R =m vqB , 若仅减小磁感应强度B ,R 变大,则粒子可能从b 点右侧射出,C 对.由R =m v qB ,若仅减小入射速率v, 则R 变小,粒子在磁场中的偏转角θ变大.由t =θ2πT ,T =2πm qB 知,运动时间变长,D 错.6.如图所示,两个同心圆,半径分别为r 和2r ,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B .圆心O 处有一放射源,放出粒子的质量为m 、带电量为q ,假设粒子速度方向都和纸面平行.(1)图中箭头表示某一粒子初速度的方向,OA 与初速度方向夹角为60°,要想使该粒子经过磁场后第一次通过A 点,则初速度的大小是多少?(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?解析:(1)如图甲所示,设粒子在磁场中的轨道半径为R 1,则由几何关系得R 1=3r3又q v 1B =m v 21R 1得v 1=3Bqr3m.(2)如图乙所示,设粒子轨迹与磁场外边界相切时,粒子在磁场中的轨道半径为R 2,则由几何关系有(2r -R 2)2=R 22+r 2可得R 2=3r 4,又q v 2B =m v 22R 2,可得v 2=3Bqr 4m故要使粒子不穿出环形区域,粒子的初速度不能超过3Bqr4m. 答案:(1)3Bqr 3m (2)3Bqr4m7. (多选)如图所示为一个质量为m 、带电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度大小为B 、方向垂直纸面向里的匀强磁场中.现给圆环向右初速度v 0,在以后的运动过程中,圆环运动的v -t 图象可能是下图中的( )解析:选BC .当q v B =mg 时,圆环做匀速直线运动,此时图象为B ,故B 正确;当q v B >mg 时,F N =q v B -mg ,此时:μF N =ma ,所以圆环做加速度逐渐减小的减速运动,直到q v B =mg 时,圆环开始做匀速运动,故C 正确;当q v B <mg 时,F N =mg -q v B ,此时:μF N =ma ,所以圆环做加速度逐渐增大的减速运动,直至停止,所以其v -t 图象的斜率应该逐渐增大,故A 、D 错误.8.如图所示,水平放置的平行板长度为L 、两板间距也为L ,两板之间存在垂直纸面向里、磁感应强度大小为B 的匀强磁场,在两板正中央P 点有一个不计重力的电子(质量为m 、电荷量为-e ),现在给电子一水平向右的瞬时初速度v 0,欲使电子不与平行板相碰撞,则( )A .v 0>eBL 2m 或v 0<eBL4mB .eBL 4m <v 0< eBL2mC .v 0>eBL2mD .v 0<eBL4m解析:选A .此题疑难点在于确定“不与平行板相碰撞”的临界条件.电子在磁场中做匀速圆周运动,半径为R =m v 0eB ,如图所示.当R 1=L 4时,电子恰好与下板相切;当R 2=L2时,电子恰好从下板边缘飞出两平行板(即飞出磁场).由R 1=m v 1eB ,解得v 1=eBL4m ,由R 2=m v 2eB ,解得v 2=eBL 2m ,所以欲使电子不与平行板相碰撞,电子初速度v 0应满足v 0>eBL 2m 或v 0<eBL4m ,故选项A 正确.9.如图所示,在x >0,y >0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy 平面向里,大小为B ,现有一质量为m 、电荷量为q 的带正电粒子,从x 轴上的某点P (不在原点)沿着与x 轴成30°角的方向射入磁场.不计重力的影响,则下列有关说法中正确的是( )A .只要粒子的速率合适,粒子就可能通过坐标原点B .粒子在磁场中运动所经历的时间一定为5 πm 3qBC .粒子在磁场中运动所经历的时间可能为πmqBD .粒子在磁场中运动所经历的时间可能为πm6qB解析:选C .利用“放缩圆法”:根据同一直线边界上粒子运动的对称性可知,粒子不可能通过坐标原点,A 项错误;粒子运动的情况有两种,一种是从y 轴边界射出,最短时间要大于2πm 3qB ,故D 项错误;对应轨迹①时,t 1=T 2=πm qB ,C 项正确,另一种是从x 轴边界飞出,如轨迹③,时间t 3=56T =5πm 3qB,此时粒子在磁场中运动时间最长,故B 项错误.10.如图所示,OM 的左侧存在范围足够大、磁感应强度大小为B 的匀强磁场,磁场方向垂直纸面向外,OM 左侧到OM 距离为L 的P 处有一个粒子源,可沿纸面向各个方向射出质量为m 、电荷量为q 的带正电粒子(重力不计),速率均为v =qBLm,则粒子在磁场中运动的最短时间为( )A .πm 2qBB .πm 3qBC .πm 4qBD .πm 6qB解析:选B .粒子进入磁场中做匀速圆周运动,洛伦兹力提供向心力,则有:q v B =m v 2r ,将题设的v 值代入得:r =L ,粒子在磁场中运动的时间最短,则粒子运动轨迹对应的弦最短,最短弦为L ,等于圆周运动的半径,根据几何关系,粒子转过的圆心角为60°,运动时间为T 6,故t min =T 6=16×2πm qB =πm 3qB,故B 正确,A 、C 、D 错误.11.(2019·高考全国卷Ⅲ)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )A .5πm 6qBB .7πm6qBC .11πm 6qBD .13πm6qB解析:选B .带电粒子在不同磁场中做圆周运动,其速度大小不变,由r =m vqB 知,第一象限内的圆半径是第二象限内圆半径的2倍,如图所示.粒子在第二象限内运动的时间:t 1=T 14=2πm 4qB =πm 2qB ;粒子在第一象限内运动的时间:t 2=T 26=2πm ×26qB =2πm 3qB ,则粒子在磁场中运动的时间t =t 1+t 2=7πm 6qB,选项B 正确.12.如图,在直角三角形OPN 区域内存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外.一带正电的粒子从静止开始经电压U 加速后,沿平行于x 轴的方向射入磁场;一段时间后,该粒子在OP 边上某点以垂直于x 轴的方向射出.已知O 点为坐标原点,N 点在y 轴上,OP 与x 轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d ,不计重力.求:(1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x 轴的时间.解析: (1)设带电粒子的质量为m ,电荷量为q ,加速后的速度大小为v .由动能定理有qU =12m v 2①设粒子在磁场中做匀速圆周运动的半径为r ,由洛伦兹力公式和牛顿第二定律有 q v B =m v 2r②由几何关系知d =2r ③ 联立①②③式得q m =4UB 2d2.④(2)由几何关系知,带电粒子射入磁场后运动到x 轴所经过的路程为 s =πr2+r tan 30°⑤带电粒子从射入磁场到运动至x 轴的时间为t =sv ⑥联立②④⑤⑥式得t =Bd 24U ⎝⎛⎭⎫π2+33.⑦ 答案:(1)4U B 2d 2 (2)Bd 24U ⎝⎛⎭⎫π2+33三、【带电粒子在组合场中的运动】典型题1.(多选)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A .增大匀强电场间的加速电压B .增大磁场的磁感应强度C .减小狭缝间的距离D .增大D 形金属盒的半径解析:选BD .回旋加速器利用电场加速和磁场偏转来加速粒子,粒子射出时的轨道半径恰好等于D 形盒的半径,根据q v B =m v 2R 可得,v =qBR m ,因此离开回旋加速器时的动能E k =12m v 2=q 2B 2R 22m 可知,与加速电压无关,与狭缝距离无关,A 、C 错误;磁感应强度越大,D 形盒的半径越大,动能越大,B 、D 正确.2.质谱仪是一种测定带电粒子质量和分析同位素的重要工具.图中的铅盒A 中的放射源放出大量的带正电粒子(可认为初速度为零),从狭缝S 1进入电压为U 的加速电场区加速后,再通过狭缝S 2从小孔G 垂直于MN 射入偏转磁场,该偏转磁场是以直线MN 为切线、磁感应强度为B ,方向垂直于纸面向外半径为R 的圆形匀强磁场.现在MN 上的F 点(图中未画出)接收到该粒子,且GF =3R .则该粒子的比荷为(粒子的重力忽略不计)( )。
高中物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.正、负电子从静止开始分别经过同一回旋加速器加速后,从回旋加速器D 型盒的边缘引出后注入到正负电子对撞机中.正、负电子对撞机置于真空中.在对撞机中正、负电子对撞后湮灭成为两个同频率的光子.回旋加速器D 型盒中的匀强磁场的磁感应强度为0B ,回旋加速器的半径为R ,加速电压为U ;D 型盒缝隙间的距离很小,带电粒子穿过的时间可以忽略不计.电子的质量为m 、电量为e ,重力不计.真空中的光速为c ,普朗克常量为h .(1)求正、负电子进入对撞机时分别具有的能量E 及正、负电子对撞湮灭后产生的光子频率v(2)求从开始经回旋加速器加速到获得最大能量的过程中,D 型盒间的电场对电子做功的平均功率P(3)图甲为正负电子对撞机的最后部分的简化示意图.位于水平面的粗实线所示的圆环真空管道是正、负电子做圆周运动的“容器”,正、负电子沿管道向相反的方向运动,在管道内控制它们转变的是一系列圆形电磁铁.即图中的A 1、A 2、A 4……A n 共有n 个,均匀分布在整个圆环上.每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下.磁场区域的直径为d .改变电磁铁内电流大小,就可以改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确调整,首先实现电子在环形管道中沿图甲中粗虚线所示的轨道运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的同一直径的两端,如图乙所示.这就为进一步实现正、负电子的对撞做好了准备.求电磁铁内匀强磁场的磁感应强度B 大小【答案】(1) 222202e B R mc v mh h =+,22202e B R E m = ;(2) 20e B U mπ ;(3)02sin B R n dπ【解析】 【详解】解:(1)正、负电子在回旋加速器中磁场里则有:200mv evB R= 解得正、负电子离开回旋加速器时的速度为:00eB Rv m=正、负电子进入对撞机时分别具有的能量:222200122e B R E mv m==正、负电子对撞湮灭时动量守恒,能量守恒,则有:222E mc hv +=正、负电子对撞湮灭后产生的光子频率:222202e B R mc v mh h=+(2) 从开始经回旋加速器加速到获得最大能量的过程,设在电场中加速n 次,则有:2012neU mv =解得:2202eB R n mU=正、负电子在磁场中运动的周期为:02mT eB π=正、负电子在磁场中运动的时间为:2022B R nt T Uπ==D 型盒间的电场对电子做功的平均功率:20e B UW E P t t mπ===(3)设电子在匀强磁场中做圆周运动的半径为r ,由几何关系可得sin2dr nπ=解得:2sind r nπ=根据洛伦磁力提供向心力可得:200mv ev B r=电磁铁内匀强磁场的磁感应强度B 大小:02sinB R n B dπ=2.如图所示,坐标原点O 左侧2m 处有一粒子源,粒子源中,有带正电的粒子(比荷为qm=1.0×1010C/kg)由静止进人电压U= 800V 的加速电场,经加速后沿x 轴正方向运动,O 点右侧有以O 1点为圆心、r=0.20m 为半径的圆形区域,内部存在方向垂直纸面向里,磁感应强度大小为B=1.0×10-3T 的匀强磁场(图中未画出)圆的左端跟y 轴相切于直角坐标系原点O ,右端与一个足够大的荧光屏MN 相切于x 轴上的A 点,粒子重力不计。
高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)及解析一、带电粒子在磁场中的运动专项训练1.核聚变是能源的圣杯,但需要在极高温度下才能实现,最大难题是没有任何容器能够承受如此高温。
托卡马克采用磁约束的方式,把高温条件下高速运动的离子约束在小范围内巧妙实现核聚变。
相当于给反应物制作一个无形的容器。
2018年11月12日我国宣布“东方超环”(我国设计的全世界唯一一个全超导托卡马克)首次实现一亿度运行,令世界震惊,使我国成为可控核聚变研究的领军者。
(1)2018年11月16日,国际计量大会利用玻尔兹曼常量将热力学温度重新定义。
玻尔兹曼常量k 可以将微观粒子的平均动能与温度定量联系起来,其关系式为32k E kT =,其中k=1.380649×10-23J/K 。
请你估算温度为一亿度时微观粒子的平均动能(保留一位有效数字)。
(2)假设质量为m 、电量为q 的微观粒子,在温度为T 0时垂直进入磁感应强度为B 的匀强磁场,求粒子运动的轨道半径。
(3)东方超环的磁约束原理可简化如图。
在两个同心圆环之间有很强的匀强磁场,两圆半径分别为r 1、r 2,环状匀强磁场围成中空区域,中空区域内的带电粒子只要速度不是很大都不会穿出磁场的外边缘,而被约束在该区域内。
已知带电粒子质量为m 、电量为q 、速度为v ,速度方向如图所示。
要使粒子不从大圆中射出,求环中磁场的磁感应强度最小值。
【答案】(1)15210J k E -≈⨯ (2)03kmT(3)()222212 r mvq r r - 【解析】 【详解】(1)微观粒子的平均动能:1532102k E kT -=≈⨯J (2)2031kT mv 22= 解得: 03kT v m=由2v Bqv m R=3kmTRBq=(3)磁场最小时粒子轨迹恰好与大圆相切,如图所示设粒子轨迹半径为r,由几何关系得:()22221r r r r-=+解得22212:r2r rr-=由牛顿第二定律2qvB mvr=解得:()222212Br mvq r r=-2.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m电荷量为q的粒子(不计重力)以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O点),已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C垂直于MN进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D进入MN上方的一个三角形匀强磁场,从A点射出磁场,则三角形磁场区域最小面积为多少?MN上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A点出发后,第一次回到A点所经过的总时间为多少?【答案】(1EqRm(2)212R;11n+;(3)2πmREq【解析】【分析】【详解】(1)由题可知,粒子进入静电分析器做圆周运动,则有:2mv EqR=解得:EqRvm=(2)粒子从D到A匀速圆周运动,轨迹如图所示:由图示三角形区域面积最小值为:22RS=在磁场中洛伦兹力提供向心力,则有:2mvBqvR=得:mvRBq=设MN下方的磁感应强度为B1,上方的磁感应强度为B2,如图所示:若只碰撞一次,则有:112R mvRB q==22mvR RB q==故211 2BB=若碰撞n次,则有:111R mvRn B q==+22mvR RB q==故2111BB n=+(3)粒子在电场中运动时间:1242R mRtv Eqππ==在MN下方的磁场中运动时间:211122n m mRt R Rv EqR Eqπππ+=⨯⨯==在MN上方的磁场中运动时间:232142R mRtv Eqππ=⨯=总时间:1232mRt t t tEqπ=++=3.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B和B(B的大小未知),第二象限和第三象限内存在沿﹣y方向的匀强电场,x轴上有一点P,其坐标为(L,0)。
高中物理题型分类汇总含详细答案--磁场共:15题时间:50分钟一、单选题1.如图所示,A、B、C是等边三角形的三个顶点,O是A、B连线的中点。
以O为坐标原点,A、B连线为x轴,O、C连线为y轴,建立坐标系。
过A、B、C、O四个点各有一条长直导线垂直穿过纸面,导线中通有大小相等、方向向里的电流,则过O点的通电直导线所受安培力的方向为()A.沿y轴正方向B.沿y轴负方向C.沿x轴正方向D.沿x轴负方向2.如图所示,有一通电直导线放在蹄形电磁铁的正上方,导线可以自由移动,当电磁铁线圈与直导线中通以图示的电流时,有关直导线运动情况的说法中正确的是(从上往下看)()A.顺时针方向转动,同时下降B.时针方向转动,同时上升C.逆时针方向转动,同时下降D.逆时针方向转动,同时上升3.关于磁感应强度,下列说法中正确的是()A.由B=知,B与F成正比,与IL成反比B.若长为L、通有电流为I的导体在某处受到的磁场力为F,则该处的磁感应强度必为C.由B=知,若一小段通电导体在某处不受磁场力,则说明该处一定无磁场D.磁感应强度的方向就是小磁针北极所受磁场力的方向4.1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示。
这台加速器由两个铜质D形盒D1、D2构成,其间留有空隙,下列说法正确的是()A.离子在回旋加速器中做圆周运动的周期随半径的增大而增大B.离子从磁场中获得能量C.增大加速电场的电压,其余条件不变,离子离开磁场的动能将增大D.增大加速电场的电压,其余条件不变,离子在D型盒中运动的时间变短5.如图,一段导线abcd位于磁感应强度大小为B的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直.线段ab、bc和cd的长度均为L,且∠abc=∠bcd=135º.流经导线的电流为I,方向如图中箭头所示.导线段abcd所受到的磁场的作用力的合力()A.方向沿纸面向上,大小为( +1)ILBB.方向沿纸面向上,大小为( -1)ILBC.方向沿纸面向下,大小为( +1)ILBD.方向沿纸面向下,大小为( -1)ILB6.下列各图中,通电直导线或带电粒子所受磁场力方向正确的是()A. B. C. D.7.如图所示,用电阻率为ρ、横截面积为S、粗细均匀的电阻丝折成平面梯形框架,ab、cd 边均与ad边成60°角,。
高中物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。
挡板PQ 垂直MN 放置,挡板的中点置于N 点。
在挡板的右侧区域存在垂直纸面向外的匀强磁场。
在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。
已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。
(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。
若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。
【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。
高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。
高中物理磁场经典习题(题型分类)含答案题组一1.在xOy平面内,y≥0的区域有垂直于平面向里的匀强磁场,磁感应强度为B。
一质量为m、带电量大小为q的粒子从原点O沿与x轴正方向成60°角方向以速度v射入。
粒子的重力不计。
求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。
2.如图所示,abcd是一个正方形的盒子,在cd边的中点有一小孔e。
盒子中存有沿ad方向的匀强电场,场强大小为E。
一粒子源不断地从a处的小孔沿ab方向向盒内发射相同的带电粒子,粒子的初速度为v,经电场作用后恰好从e处的小孔射出。
现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B。
粒子仍恰好从e孔射出。
不考虑带电粒子的重力和粒子之间的相互作用。
1)所加的磁场的方向是什么?2)电场强度E与磁感应强度B的比值是多少?题组二4.如图所示的坐标平面内,在y轴的左侧存在垂直纸面向外、磁感应强度大小为B1 = 0.20 T的匀强磁场,在y轴的右侧存在垂直纸面向里、宽度d=0.125 m的匀强磁场B2.某时刻一质量为m=2.0×10^-8 kg、电量为q=+4.0×10^-4 C的带电微粒(重力可忽略不计),从x轴上坐标为(-0.25 m,0)的P点以速度v=2.0×10^3 m/s沿y轴正方向运动。
试求:1)微粒在y轴的左侧磁场中运动的轨道半径;2)微粒第一次经过y轴时速度方向与y轴正方向的夹角;3)要使微粒不能从右侧磁场边界飞出,B2应满足的条件。
5.图中左边有一对平行金属板,两板相距为d,电压为U;两板之间有匀强磁场,磁场应强度大小为B,方向平行于板面并垂直于纸面朝里。
图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。
假设一系列电荷量为q的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域。
WORD格式整理一、选择题1.如图所示,一电荷量为q的负电荷以速度v射入匀强磁场中.其中电荷不受洛仑兹力的是( )A. B. C. D.【答案】C【解析】由图可知,ABD图中带电粒子运动的方向都与粗糙度方向垂直,所以受到的洛伦兹力都等于qvB,而图C中,带电粒子运动的方向与磁场的方向平行,所以带电粒子不受洛伦兹力的作用.故C正确,ABD错误.故选C.2.如图所示为电流产生磁场的分布图,其中正确的是( )A. B. C. D.【答案】D【解析】A中电流方向向上,由右手螺旋定则可得磁场为逆时针(从上向下看),故A错误;B图电流方向向下,由右手螺旋定则可得磁场为顺时针(从上向下看),故B错误;C图中电流为环形电流,由由右手螺旋定则可知,内部磁场应向右,故C错误;D图根据图示电流方向,由右手螺旋定则可知,内部磁感线方向向右,故D正确;故选D.点睛:因磁场一般为立体分布,故在判断时要注意区分是立体图还是平面图,并且要能根据立体图画出平面图,由平面图还原到立体图.3.下列图中分别标出了一根放置在匀强磁场中的通电直导线的电流I、磁场的磁感应强度B和所受磁场力F的方向,其中图示正确的是( )A. B. C. D.【答案】C【解析】根据左手定则的内容:伸开左手,使大拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向,可得:A、电流与磁场方向平行,没有安培力,故A错误;B、安培力的方向是垂直导体棒向下的,故B错误;C、安培力的方向是垂直导体棒向上的,故C正确;D、电流方向与磁场方向在同一直线上,不受安培力作用,故D错误.故选C.点睛:根据左手定则直接判断即可,凡是判断力的方向都是用左手,要熟练掌握,是一道考查基础的好题目.4.如图所示,水平地面上固定着光滑平行导轨,导轨与电阻R连接,放在竖直向上的匀强磁场中,杆的初速度为v0,不计导轨及杆的电阻,则下列关于杆的速度与其运动位移之间的关系图像正确的是()A. B. C. D.【答案】C【解析】导体棒受重力、支持力和向后的安培力;感应电动势为:E=BLv感应电流为:I=II安培力为:I=III=I 2I2II=II=I△I△I故:I 2I2II△I=I△I求和,有:I 2I2I∑I△I=I∑△I故:I 2I2II=I(I0−I)故v与x是线性关系;故C正确,ABD错误;故选:C.5.如图所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,粒子仅受磁场力作用,分别从AC边上的P、Q两点射出,则( )A. 从P射出的粒子速度大B. 从Q射出的粒子速度大C. 从P射出的粒子,在磁场中运动的时间长D. 两粒子在磁场中运动的时间一样长【答案】BD【解析】试题分析:粒子在磁场中做圆周运动,根据题设条件作出粒子在磁场中运动的轨迹,根据轨迹分析粒子运动半径和周期的关系,从而分析得出结论.WORD 格式整理粒子在磁场中做匀速圆周运动,根据几何关系(图示弦切角相等),粒子在磁场中偏转的圆心角相等,根据粒子在磁场中运动的时间:I =I 2II ,又因为粒子在磁场中圆周运动的周期I =2II II ,可知粒子在磁场中运动的时间相等,故D 正确,C 错误;如图,粒子在磁场中做圆周运动,分别从P 点和Q 点射出,由图知,粒子运动的半径I I <I I ,又粒子在磁场中做圆周运动的半径I =II II知粒子运动速度I I <I I ,故A 错误B 正确;【点睛】带电粒子在匀强磁场中运动时,洛伦兹力充当向心力,从而得出半径公式I =II II ,周期公式I =2II II ,运动时间公式I =I 2I I ,知道粒子在磁场中运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题,6.在等边三角形的三个顶点a 、b 、c 处,各有一条长直导线垂直纸面放置,导线中通有大小相等的恒定电流,方向如图所示.过c 点的导线所受安培力的方向( )A. 与ab 边平行,竖直向上B. 与ab 边垂直,指向右边C. 与ab 边平行,竖直向下D. 与ab 边垂直,指向左边【答案】D【解析】试题分析:先根据右手定则判断各个导线在c 点的磁场方向,然后根据平行四边形定则,判断和磁场方向,最后根据左手定则判断安培力方向导线a 在c 处的磁场方向垂直ac 斜向下,b 在c 处的磁场方向垂直bc 斜向上,两者的和磁场方向为竖直向下,根据左手定则可得c 点所受安培力方向为与ab 边垂直,指向左边,D 正确;7.下列说法中正确的是( )A. 电场线和磁感线都是一系列闭合曲线B. 在医疗手术中,为防止麻醉剂乙醚爆炸,医生和护士要穿由导电材料制成的鞋子和外套,这样做是为了消除静电C. 奥斯特提出了分子电流假说D. 首先发现通电导线周围存在磁场的科学家是安培【答案】B【解析】电场线是从正电荷开始,终止于负电荷,不是封闭曲线,A 错误;麻醉剂为易挥发性物品,遇到火花或热源便会爆炸,良好接地,目的是为了消除静电,这些要求与消毒无关,B 正确;安培发现了分子电流假说,奥斯特发现了电流的磁效应,CD 错误;8.在如图所示的平行板电容器中,电场强度E 和磁感应强度B 相互垂直,一带正电的粒子q 以速度v 沿着图中所示的虚线穿过两板间的空间而不偏转(忽略重力影响)。
高考物理带电粒子在磁场中的运动解题技巧讲解及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 2v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则00tan y x qE x v m v v v θ⋅===有H =(3a -x )·tan θ=当=y =98a 时,H 有最大值 由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为y =98a -2a =-78a2.如图所示,在xOy 平面内,以O ′(0,R )为圆心,R 为半径的圆内有垂直平面向外的匀强磁场,x 轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等.第四象限有一与x 轴成45°角倾斜放置的挡板PQ ,P ,Q 两点在坐标轴上,且O ,P 两点间的距离大于2R ,在圆形磁场的左侧0<y <2R 的区间内,均匀分布着质量为m ,电荷量为+q 的一簇带电粒子,当所有粒子均沿x 轴正向以速度v 射入圆形磁场区域时,粒子偏转后都从O 点进入x 轴下方磁场,结果有一半粒子能打在挡板上.不计粒子重力,不考虑粒子间相互作用力.求:(1)磁场的磁感应强度B 的大小; (2)挡板端点P 的坐标;(3)挡板上被粒子打中的区域长度. 【答案】(1)mvqR (2)(21),0R ⎡⎤+⎣⎦ (3)21042R +- 【解析】 【分析】 【详解】(1)设一粒子自磁场边界A 点进入磁场,该粒子由O 点射出圆形磁场,轨迹如图甲所示,过A 点做速度的垂线长度为r ,C 为该轨迹圆的圆心.连接AO ˊ、CO ,可证得ACOO ˊ为菱形,根据图中几何关系可知:粒子在圆形磁场中的轨道半径r =R ,由2v qvB m r=得:mv B qR=(2)有一半粒子打到挡板上需满足从O 点射出的沿x 轴负方向的粒子、沿y 轴负方向的粒子轨迹刚好与挡板相切,如图乙所示,过圆心D 做挡板的垂线交于E 点2DP R =(21)OP R =P 点的坐标为((21)R +,0 )(3)设打到挡板最左侧的粒子打在挡板上的F 点,如图丙所示,OF =2R ①过O 点做挡板的垂线交于G 点,22(21)(1)OG R R =+⋅=+② 225-22=2FG OF OG R=-③22EG R =④ 挡板上被粒子打中的区域长度l =FE =22R +5-222R =2+10-42R ⑤3.如图所示,一匀强磁场磁感应强度为B ;方向向里,其边界是半径为R 的圆,AB 为圆的一直径.在A 点有一粒子源向圆平面内的各个方向发射质量m 、电量-q 的粒子,粒子重力不计.(1)有一带电粒子以的速度垂直磁场进入圆形区域,恰从B 点射出.求此粒子在磁场中运动的时间.(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子沿半径方向射入磁场,经过2次碰撞后回到A 点,则该粒子的速度为多大?(3)若R =3cm 、B =0.2T ,在A 点的粒子源向圆平面内的各个方向发射速度均为3×105m /s 、比荷为108C/kg的粒子.试用阴影图画出粒子在磁场中能到达的区域,并求出该区域的面积(结果保留2位有效数字).【答案】(1)(2)(3)【解析】【分析】(1)根据洛伦兹力提供向心力,求出粒子的半径,通过几何关系得出圆弧所对应的圆心角,根据周期公式,结合t=T求出粒子在磁场中运动的时间.(2)粒子径向射入磁场,必定径向反弹,作出粒子的轨迹图,通过几何关系求出粒子的半径,从而通过半径公式求出粒子的速度.(3)根据粒子的半径公式求出粒子的轨道半径,作出粒子轨迹所能到达的部分,根据几何关系求出面积.【详解】(1)由得r1=2R粒子的运动轨迹如图所示,则α=因为周期.运动时间.(2)粒子运动情况如图所示,β=.r2=R tanβ=R由得(3)粒子的轨道半径r3==1.5cm粒子到达的区域为图中的阴影部分区域面积为S=πr 32+2×π(2r 3)2−r 32=9.0×10-4m 2【点睛】本题考查了带电粒子在磁场中的运动问题,需掌握粒子的半径公式和周期公式,并能画出粒子运动的轨迹图,结合几何关系求解.该题对数学几何能力要求较高,需加强这方面的训练.4.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222Nv F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d r r α-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒5.(18分)如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔1S 、2S ,两极板间电压的变化规律如图乙所示,正反向电压的大小均为0U,周期为0T 。
高考物理电磁学知识点之磁场技巧及练习题附答案解析(2)一、选择题1.为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I引起的.在下列四个图中,正确表示安培假设中环形电流方向的是()A.B. C.D.2.如图所示,台秤上放一光滑平板,其左边固定一挡板,一轻质弹簧将挡板和一条形磁铁连接起来,此时台秤读数为N1,现在磁铁上方中心偏左位置固定一通电导线,电流方向如图,当加上电流后,台秤读数为N2,则以下说法正确的是()A.N1>N2,弹簧长度将变长B.N1>N2,弹簧长度将变短C.N1<N2,弹簧长度将变长D.N1<N2,弹簧长度将变短.其核心部分是分别与高频交流电源两极相连接的两3.回旋加速器是加速带电粒子的装置个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A.减小磁场的磁感应强度B.增大匀强电场间的加速电压C.增大D形金属盒的半径D.减小狭缝间的距离4.在探索微观世界中,同位素的发现与证明无疑具有里程碑式的意义。
质谱仪的发现对证明同位素的存在功不可没,1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖。
若速度相同的一束粒子由左端射入质谱仪后的运动轨迹如图所示,不计粒子重力,则下列说法中正确的是()A.该束粒子带负电B.速度选择器的P1极板带负电C.在B2磁场中运动半径越大的粒子,质量越大D.在B2磁场中运动半径越大的粒子,比荷qm越小5.为了降低潜艇噪音可用电磁推进器替代螺旋桨。
如图为直线通道推进器示意图。
推进器前后表面导电,上下表面绝缘,规格为:a×b×c=0.5m×0.4m×0.3m。
空间内存在由超导励磁线圈产生的匀强磁场,其磁感应强度B=10.0T,方向竖直向下,若在推进器前后方向通以电流I=1.0×103A,方向如图。
磁场能力训练一1如图所示,直导线AB 、螺线管C 、电磁铁D 三者相距较远,它们的磁场互不影响, 当开关S 闭合稳定后,则图中小磁针的北极N (黑色的一端)指示出磁场方向正确的是( )A .aB .bC .cD .d2.实验室里可以用图甲所示的小罗盘估测条形磁铁磁场的磁感应强度.方法如图乙所示,调整罗盘,使小磁针静止时N 极指向罗盘上的零刻度(即正北方向),将条形磁铁放在罗盘附近,使罗盘所在处条形磁铁的方向处于东西方向上,此时罗盘上的小磁针将转过一定角度.若已知地磁场的水平分量B x ,为计算罗盘所在处条形磁铁磁场的磁感应强度B ,则只需知道 ,磁感应强度的表达式为B = .3.如图所示,在a 、b 、c 三处垂直纸面放置三根长直通电导线,a 、b 、c 是等边三角形的三个 顶点,电流大小相等,a 处电流在三角形中心O 点的磁感应强度大小为B ,求O 处磁感应强度.4.如图所示,有两根长为L 、质量为m 的细导体棒a 、b ,a 被水平放置在倾角为45°的光滑斜面上, b 被水平固定在与a 在同一水平面的另一位置,且a 、b 平行,它们之间的距离为x .当两细棒中均通以电流强度为I 的同向电流时,a 恰能在斜面上保持静止,则b 的电流在a 处产生的磁场的磁感应强度的说法错误的是 ( )A .方向向上B .大小为ILmg 22 C .要使a 仍能保持静止,而减小b 在a 处的磁感应强度,可使b 上移D .若使b 下移,a 将不能保持静止5、如图所示,一段导线abcd 位于磁感应强度大小为B 的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直.线段ab 、bc 和cd 的长度均为L ,且∠abc =∠bcd =135°.流经导线的电流为I ,方向如图中箭头所示.导线段abcd 所受到的磁场的作用力的合力 ( )A.方向沿纸面向上,大小为(2+1)ILB B.方向沿纸面向上,大小为(2-1)ILB C.方向沿纸面向下,大小为(2+1)ILB D.方向沿纸面向下,大小为(2-1)ILB6、磁铁有N、S两极,跟正负电荷有很大的相似性,人们假定在一根磁棒的两极上有一种叫做“磁荷”的东西, N极上的叫做正磁荷,S极上的叫做负磁荷,同号磁荷相斥,异号磁荷相吸.当磁极本身的几何线度远比它们之间的距离小得多时,将其上的磁荷叫做点磁荷.磁的库仑定律是:两个点磁荷之间的相互作用力F沿着它们之间的连线,与它们之间的距离r的平方成反比,与它们磁荷的数量(或称磁极强度)q m1、q m2成正比,用公式表示为:F=221 r qkq mm.(1)上式中的比例系数k=10-7 Wb/(A·m),则磁极强度q m的国际单位(用基本单位表示)是 .(2)同一根磁铁上的两个点磁荷的磁极强度可视为相等,磁荷的位置可等效地放在图(a)中的c、d两点,其原因是 .(3)用两根相同的质量为M的圆柱形永久磁铁可以测出磁极强度q m,如图(b),将一根磁棒固定在光滑的斜面上,另一根与之平行放置的磁棒可以自由上下移动.调节斜面的角度为 时,活动磁铁刚好静止不动.由此可知磁极强度q m为多大?7、如图所示是一个可以用来测量磁感应强度的装置,一长方体绝缘容器内部高为L,厚为d,左右两边等高处装有两根完全相同的开口向上的管子a、b,上、下两侧装有电极C(正极)和D(负极),并经开关S与电源连接.容器中注满能导电的液体,液体的密度为ρ.将容器置于一匀强磁场中,磁场方向垂直纸面向里.当开关断开时,竖直管子a、b中的液面高度相同;开关S闭合后,a、b管中液面将出现高度差,若出现的高度差为h,电路中电流表的读数为I,求磁感应强度B的大小.8如图所示,电源电动势3 V ,内阻不计,导体棒质量60 g ,长1 m ,电阻1.5Ω.匀强磁场竖直向上,B =0.4 T .当开关闭合后,棒从固定光滑绝缘环的底端上滑至某一位置静止.试求在此位置上棒对每一只环的压力为多大?若已知绝缘环半径0.5 m ,此位置与环底高度差是多少?9.在倾角θ=30°的斜面上,固定一金属框,宽L =0.25 m ,接入电动势E =12 V ,内阻不计的电池,垂直框面放有一根质量m =0.2 kg 的金属棒ab ,它与框架的动摩擦因数μ=63,整个装 置放在磁感应强度B =0.8 T ,垂直框面向上的匀强磁场中,如图所示.当调节滑动变阻器R的阻值在什么范围内时,可使金属棒静止在框架上?框架与棒的电阻不计,g 取10 m/s 2.10.如图所示为一电流表的原理示意图.质量为m 的均质细金属棒MN 的中点处通过一挂钩与一竖直悬挂的弹簧相连,绝缘弹簧劲度系数为k .在矩形区域abcd 内有匀强磁场,磁感应强度大小为B ,方向垂直纸面向外.与MN 的右端N 连接的一绝缘轻指针可指示标尺上的读数,MN 的长度大于ab .当MN 中没有电流通过且处于平衡状态时,MN 与矩形区域的cd 边重合:当MN 中有电流通过时,指针示数可表示电流强度.⑴当电流表示数为零时,弹簧伸长多少?(重力加速度为g )⑵若要电流表正常工作,MN 的哪一端应与电源正极相接?⑶若k =2.0 N/m ,ab =0.20 m ,cb =0.050 m ,B =0.20 T ,此电流表的量程是多少?(不计通电时电流产生的磁场的作用)⑷若将量程扩大2倍,磁感应强度应变为多大?1答案 BD 2答案 罗盘上指针的偏转角 B x tan θ3答案 2B 方向平行ab 连线向右 6答案 (1)A ·m(2)通过实验可以描绘出外部磁感线,所有磁感线延长后会交于这两点.磁棒的外部磁感线相当于由c 点发出后又聚集到d 点.(3))cos 1(2sin 222d L d k mg +-αθ7解答:开关S 闭合后,导电液体中有电流由C 流向D ,根据左手定则可知导电液体要受到向右的安培力F 的作用,在液体中产生附加压强,这样a 、b 管中液面将出现高度差.设液体中产生附加压强为p ,则p =F S① p =ρgh ②F =BIL ③S =Ld ④所以磁感应强度的大小为B =ρghd I新题点拨:由于习惯于理想的物理模型,学生往往迷惑于新颖陌生的实际问题.解题的关键是利用原型启发、类比、联想等思维方法,通过对题给情境的分析来获知其原理,建立起熟悉的物理模型.这里可以看成“直导线”模型。
高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(3a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 2v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>,所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则00tan y x qE x v m v v v θ⋅===有H =(3a -x )·tan θ=当=y =98a 时,H 有最大值 由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为y =98a -2a =-78a3.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos x v v α=1cos 2α=060α∴=4.3L 、间距为L 、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m 、电荷量为q 的带正电粒子流从两板左端连线的中点O 以初速度v 0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t 的变化规律如图所示,则t=0时刻,从O 点射人的粒子P 经时间t 0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B .(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P 经过右侧磁场偏转后在电场变化的第一个周期内能够回到O 点,求右侧磁场的宽度d 应满足的条件和电场周期T 的最小值T min . 【答案】(1)0mv B qL = (2)223cos d R a R L ≥+= ;min 0(632)3L T v π+= 【解析】 【分析】 【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R 1,则0102qv B m v R =由几何关系:222113()()2L LR R =+- 解得0mv B qL=(2)粒子P 从O 003L v t =01122y L v t = 解得03y v =设合速度为v ,与竖直方向的夹角为α,则:0tan yv v α== 则=3πα00sin v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin L R α=,解得2R =右侧磁场沿初速度方向的宽度应该满足的条件为22cos d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t v πα--=解得()min23L T v π=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.5.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL =(2)04nmv B qL =n=1、2、3......(3)02L t v π=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2R ,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==6.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。
高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,在一直角坐标系xoy平面内有圆形区域,圆心在x轴负半轴上,P、Q是圆上的两点,坐标分别为P(-8L,0),Q(-3L,0)。
y轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy平面向外,磁感应强度的大小为B,y轴的右侧空间有一磁感应强度大小为2B的匀强磁场,方向垂直于xoy平面向外。
现从P点沿与x轴正方向成37°角射出一质量为m、电荷量为q的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。
求:(1)带电粒子的初速度;(2)粒子从P点射出到再次回到P点所用的时间。
【答案】(1)8qBLvm=;(2)41(1)45mtqBπ=+【解析】【详解】(1)带电粒子以初速度v沿与x轴正向成37o角方向射出,经过圆周C点进入磁场,做匀速圆周运动,经过y轴左侧磁场后,从y轴上D点垂直于y轴射入右侧磁场,如图所示,由几何关系得:5sin37oQC L=15 sin37O OQO Q L==在y轴左侧磁场中做匀速圆周运动,半径为1R,11R O Q QC =+21v qvB m R=解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oot T =带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。
磁力高级测试题及答案1. 磁力线的方向是怎样的?- A. 从S极指向N极- B. 从N极指向S极- C. 从S极指向S极- D. 从N极指向N极答案:B2. 地球的磁场是如何产生的?- A. 地球内部的电流- B. 地球表面的岩石- C. 地球大气层的摩擦- D. 太阳风的影响答案:A3. 磁铁的哪一端磁性最强?- A. 两端- B. 中间- C. 任意一点- D. 无法确定答案:A4. 磁力线在磁场中的分布情况是怎样的?- A. 均匀分布- B. 密集分布- C. 稀疏分布- D. 随机分布答案:B5. 磁铁的磁极是如何确定的?- A. 根据形状- B. 根据颜色- C. 根据磁性- D. 根据重量答案:C6. 磁力线在磁铁外部是闭合的吗?- A. 是的- B. 不是的- C. 有时是- D. 无法确定答案:A7. 磁力线在磁铁内部是如何分布的?- A. 从S极指向N极- B. 从N极指向S极- C. 从S极指向S极- D. 从N极指向N极答案:B8. 磁力线在磁场中的分布与磁场的强度有什么关系? - A. 无关- B. 强度越大,分布越均匀- C. 强度越大,分布越密集- D. 强度越大,分布越稀疏答案:C9. 磁力线可以被肉眼看到吗?- A. 可以- B. 不可以- C. 有时可以- D. 需要特殊设备答案:B10. 磁力线在磁场中的分布与磁场的方向有什么关系? - A. 无关- B. 相同- C. 相反- D. 垂直答案:D。
高中物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv lQ kq= (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α==由洛伦兹力提供向心力可得2011v qv Bm r =解得:0152mv B ql=(2)粒子从P 到A 的轨迹如图所示:粒子绕负点电荷Q 做匀速圆周运动,设半径为r 2 由几何关系得252cos 8l r l α==由库仑力提供向心力得20222v Qqk mr r = 解得:2058mv lQ kq=(3)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动 粒子在电场中的运动时间00sin 35l lt v v α== 根据题意得,粒子在磁场中运动时间也为t ,则2Tt = 又22mT qB π=解得0253mv B qlπ=设粒子在磁场中做圆周运动的半径为r ,则0v t r π= 解得:35l rπ=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.如图所示,在两块长为3L 、间距为L 、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m 、电荷量为q 的带正电粒子流从两板左端连线的中点O 以初速度v 0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t 的变化规律如图所示,则t=0时刻,从O 点射人的粒子P 经时间t 0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B .(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P 经过右侧磁场偏转后在电场变化的第一个周期内能够回到O 点,求右侧磁场的宽度d 应满足的条件和电场周期T 的最小值T min . 【答案】(1)0mv B qL = (2)223cos d R a R L ≥+= ;min 0(632)L T π+= 【解析】 【分析】 【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R 1,则0102qv B m v R =由几何关系:222113(()2L LR R =+- 解得0mv B qL=(2)粒子P 从O 003L v t =01122y L v t = 解得033y v v =设合速度为v ,与竖直方向的夹角为α,则:0tan 3yv v α== 则=3πα0023sin v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin L R α=, 解得23L R =右侧磁场沿初速度方向的宽度应该满足的条件为223cos d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t vπα--=解得()min 06323L T v π=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.3.如图所示,同轴圆形区域内、外半径分别为R 1=1 m 、R 23,半径为R 1的圆内分布着B1=2.0 T的匀强磁场,方向垂直于纸面向外;外面环形磁场区域分布着B2=0.5 T的匀强磁场,方向垂直于纸面向内.一对平行极板竖直放置,极板间距d=3cm,右极板与环形磁场外边界相切,一带正电的粒子从平行极板左板P点由静止释放,经加速后通过右板小孔Q,垂直进入环形磁场区域.已知点P、Q、O在同一水平线上,粒子比荷4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应.求:(1) 要使粒子不能进入中间的圆形磁场区域,粒子在磁场中的轨道半径满足什么条件?(2) 若改变加速电压大小,可使粒子进入圆形磁场区域,且能竖直通过圆心O,则加速电压为多大?(3) 从P点出发开始计时,在满足第(2)问的条件下,粒子到达O点的时刻.【答案】(1) r1<1m. (2) U=3×107V. (3) t=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…)【解析】【分析】(1)画出粒子恰好不进入中间磁场区的临界轨迹,先根据几何关系求出半径;(2)画出使粒子进入圆形磁场区域,且能竖直通过圆心O的轨迹,结合几何关系求解半径,然后根据洛伦兹力提供向心力列方程,再根据动能定理对直线加速过程列方程,最后联立方程组求解加速电压;(3)由几何关系,得到轨迹对应的圆心角,求解粒子从Q孔进入磁场到第一次到O点所用的时间,然后考虑周期性求解粒子到达O点的时刻.【详解】(1) 粒子刚好不进入中间磁场时轨迹如图所示,设此时粒子在磁场中运动的半径为r1,在Rt△QOO1中有r12+R22=(r1+R1)2代入数据解得r1=1m粒子不能进入中间磁场,所以轨道半径r1<1m.(2) 轨迹如图所示,由于O、O3、Q共线且水平,粒子在两磁场中的半径分别为r2、r3,洛伦兹力不做功,故粒子在内外磁场的速率不变,由qvB=m2 v r得r=mv qB易知r3=4r2且满足(r2+r3)2=(R2-r2)2+r32解得r2=3m,r3=3m又由动能定理有qU=12mv2代入数据解得U=3×107V.(3)带电粒子从P到Q的运动时间为t1,则t1满足12v t1=d得t1=10-9s令∠QO2O3=θ,所以cosθ=0.8,θ=37°(反三角函数表达亦可)圆周运动的周期T=2mqBπ故粒子从Q孔进入磁场到第一次到O点所用的时间为8221372180532610360360m mt sqB qBππ-⨯⨯⨯-=+=考虑到周期性运动,t总=t1+t2+k(2t1+2t2)=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…).4.如图:竖直面内固定的绝缘轨道abc,由半径R=3 m的光滑圆弧段bc与长l=1.5 m的粗糙水平段ab在b点相切而构成,O点是圆弧段的圆心,Oc与Ob的夹角θ=37°;过f点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C的匀强电场,Ocb的外侧有一长度足够长、宽度d =1.6 m的矩形区域efgh,ef与Oc交于c点,ecf与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3×10-3 kg、电荷量q=3×l0-3 C的带正电小物体Q静止在圆弧轨道上b点,质量m1=1.5×10-3 kg的不带电小物体P从轨道右端a以v0=8 m/s的水平速度向左运动,P、Q碰撞时间极短,碰后P以1 m/s的速度水平向右弹回.已知P与ab间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g=10m/s2.求:(1)碰后瞬间,圆弧轨道对物体Q的弹力大小F N;(2)当β=53°时,物体Q刚好不从gh边穿出磁场,求区域efgh内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B =(3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d r r α-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒5.(18分)如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔1S 、2S ,两极板间电压的变化规律如图乙所示,正反向电压的大小均为0U ,周期为0T 。
磁场问题分类训练
一,组合场问题
1在图示区域中,χ轴上方有一匀强磁场,磁感应强度的方向垂直纸面向里,大小为B,今有一质子以速度v0由Y轴上的A点沿Y轴正方向射人磁场,质子在磁场中运动一段时间以后从C点进入χ轴下方的匀强电场区域中,在C点速度方向与χ轴正方向夹角为450,该匀强电场的强度大小为E,方向与Y轴夹角为450且斜向左上方,已知质子的质量为m,电量为q,不计质子的重力,(磁场区域和电场区域足够大)求:
(1)C点的坐标。
(2)质子从A点出发到第三次穿越χ轴时的运动时间。
(3)质子第四次穿越χ轴时速度的大小及速度方向与电
场E方向的夹角。
(角度用反三角函数表示)
3如图所示,宽度为d的竖直狭长区域内(边界为L1、L2),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为E0,E>0表示电场方向竖直向上。
t=0时,一带正电、质量为m的微粒从左边界上的N1点以水平速度v射入该区域,沿直线运动到Q点后,做一次完整的
圆周运动,再沿直线运动到右边界上的N2
点。
Q为线段N1N2的中点,重力加速度为g。
上述d、E0、m、v、g为已知量。
(1)求微粒所带电荷量q和磁感应强度B的
大小;
(2)求电场变化的周期T;
(3)改变宽度d,使微粒仍能按上述运动过
程通过相应宽度的区域,求T的最小值。
二,磁场边界问题
4如图(a )所示,在以O 为圆心,内外半径分别为1R 和2R 的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U 为常量,1020,3R R R R ==,一电荷量为+q ,质量为m 的粒子从内圆上的A 点进入该区域,不计重力。
(1)已知粒子从外圆上以速度
1v 射出,求粒子在
A 点的初速度0v 的大小
(2)若撤去电场,如图19(b ),已知粒子从OA
延长线与外圆的交点C 以速度2v 射出,方向与
OA 延长线成45°角,求磁感应强度的大小及粒
子在磁场中运动的时间
(3)在图19(b )中,若粒子从A 点进入磁场,
速度大小为3v ,方向不确定,要使粒子一定能
够从外圆射出,磁感应强度应小于多少?
三,最小面积问题
5.如图所示,一质量为m 、带电量为q 的粒子以速度V 0经O 点沿y
轴正方向射向磁感应强度为B 的圆形匀强磁场区域,磁场方向垂直纸面
向外,粒子飞出磁场区域后,从b 处穿过x 轴,速度方向与x 轴正方向
夹角为30°,同时进入场强为E 、方向沿与x 轴负方向成60°角斜向
下的匀强电场中,通过了b 点正下方的c 点,粒子重力不计,试求:
(1)圆形匀强磁场区域的最小面积
(2)c 点到b 点的距离。
6图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B =2.0×10-3T,在y 轴上距坐标原点L =0.50m 的P 处为离子的入射口,在y 上安放接收器,现将一带正电荷的粒子以v =3.5×104m/s 的速率从
P 处射入磁场,若粒子在y 轴上距坐标原点L =0.50m 的M 处被观测
到,且运动轨迹半径恰好最小,设带电粒子的质量为m ,电量为q ,不
记其重力。
(1)求上述粒子的比荷q m
; (2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一
个匀强电场,就可以使其沿y 轴正方向做匀速直线运动,求该匀强电
场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间
加这个匀强电场;
(3)为了在M 处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形。
四,时间问题
7.如下图,在0x ≤≤区域内存在与xy 平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向的夹角分布在0~180°范围内。
已知沿y 轴正方向发射
的粒子在0t t =时刻刚好从磁场边界上,)P a 点离开磁场。
求:
(1)粒子在磁场中做圆周运动的半径R 及粒子的比荷q /m;
(2)此时刻仍在磁场中的粒子的初速度方向与y 轴正方向夹角
的取值范围;
(3)从粒子发射到全部粒子离开磁场所用的时间。
五。
综合问题
10,如左图所示,与纸面垂直的竖直面MN 的左侧空间中存在竖直向上场强大小为E=2.5×102N/C 的匀强电场(上、下及左侧无界)。
一个质量为m=0.5kg 、电量为q=2.0×10―2C 的可视为质点的带正电小球,在t=0时刻以大小为V 0的水平初速度向右通过电场中的一点P ,当t=t 1时刻在电场所在空间中加上一如右图所示随时间周期性变化的磁场,使得小球能竖直向下通过D 点,D 为电场中小球初速度方向上的一点,PD 间距为L ,D 到竖直面MN 的距离DQ 为L/π。
设磁感应强度垂直纸面向里为正。
(g=10m/s 2)
(1)如果磁感应强度B 0为已知量,试推出满足条件时t 1的表达式(用题中所给物理量的符号表示)。
(2)若小球能始终在电场所在空间做周期性运动。
则当小球运动的周期最大时,求出磁感应强度B 0及运动的最大周期T 的大小。
(3)当小球运动的周期最大时,在左图中画出小球运动一个周期的轨迹。
11.如图所示,真空有一个半径r=0.5m的圆形磁场,与坐标
原点相切,磁场的磁感应强度大小B=2×10-3T,方向垂直于
纸面向外,在x=r处的右侧有一个方向竖直向上的宽度为
L1=0.5m的匀强电场区域(电场区域的左右边界如图中虚线所
示),电场强度E=1.5×103N/C。
在x=2m处有一垂直x方向
的足够长的荧光屏,从O点处向不同方向发射出速率相同的
荷质比为1×109C/kg带正电的粒子,粒子的运动轨迹在纸面
内,一个速度方向沿y轴正方向射入磁场的粒子,恰能从磁
场与电场的相切处进入电场。
不计重力及阻力的作用。
求:
(1)该粒子进入电场时的速度和粒子在磁场中的运动时间。
(2)该粒子最后打到荧光屏上,该发光点的位置坐标。
(3)求荧光屏上出现发光点的范围
12.如图,真空室内竖直条形区域I存在垂直纸面向外的匀强磁场,条形区域Ⅱ(含I、Ⅱ区域分界面)存在水平向右的匀强电场,电场强度为E,磁场和电场宽度均为L且足够长,M、N为涂有荧光物质的竖直板。
现有一束质子从A处连续不断地射入磁场,入射方向与M
板成夹角且与纸面平行,质子束由两部分组成,一部分为速度大小为的低速质子,另一部分为速度大小为的高速质子,当I区中磁场较强时,M板出现两个亮斑,缓慢改变
磁场强弱,直至亮斑相继消失为止,此时观察到N板有两个亮斑。
已知质子质量为m,电量为e,不计质子重力和相互作用力,求:
(1)此时I区的磁感应强度;
(2)到达N板下方亮斑的质子在磁场中运动的时间;
(3)N板两个亮斑之间的距离.
13.如图所示,空间内存在水平向右的匀强电场,在虚线
MN的右侧有垂直纸面向里、磁感应强度为B的匀强磁场,
一质量为m、带电荷量为+q的小颗粒自A点由静止开始
运动,刚好沿直线运动至光滑绝缘的水平面C点,与水
平面碰撞的瞬间小颗粒的竖直分速度立即减为零,而水
平分速度不变,小颗粒运动至D处刚好离开水平面,然
后沿图示曲线DP轨迹运动,AC与水平面夹角α=30°,
重力加速度为g,求:
(1)匀强电场的场强E;
(2)AD之间的水平距离d;
(3)已知小颗粒在轨迹DP上某处的最大速度为v m,该处轨迹的曲率半径是距水平面高度的k倍,则该处的高度为多大?。