2013年 北约自主招生数学试题
- 格式:doc
- 大小:515.00 KB
- 文档页数:8
2013年北约自主招生数学试题解析1、以2和321-为两根的有理系数多项式的次数最小是( )A .2B .3C .5D .62、在66⨯的棋盘中停放着3个红色車和3个黑色車,每一行、每一列都只有一个車,共有多少种停放方法 ( )A .720B .20C .518400D .144003、已知522+=y x ,522+=x y ,求32232y y x x +-的值.4、如图,ABC ∆中,AD 为BC 边上的中线,DN DM ,分别为ADC ADB ∠∠,的角平分线,试比较CN BM +与MN 的大小关系,并说明理由.5、设数列{}n a 满足11=a ,前n 项和为n S ,241+=+n n a S ,求2013a .6、模长为1的复数z y x ,,满足0≠++z y x ,求zy x zxyz xy ++++.ACN27、最多有多少个两两不等的正整数,满足其中任意三数之和都为素数.8、已知i a ,2013,,3,2,1 =i 为2013个实数,满足02013321=++++a a a a ,且212a a -322a a -==…120132a a -=,求证02013321=====a a a a .9、对于任意的θ,求θθθθ2cos 154cos 66cos cos 326---的值.10、已知有mn 个实数,排列成n m ⨯阶数阵,记作{}n m ij a ⨯使得数阵的每一行从左到右都是递增的,即对任意的m i ,,3,2,1 =,当21j j <时,有21ij ij a a <;现将{}nm ij a ⨯的每一列原有的各数按照从上到下递增的顺序排列,形成一个新的n m ⨯阶数阵,记作{}nm ija ⨯',即对任意的n j ,,3,2,1 =,当21i i <时,有j i j i a a 21''<,试判断{}n m ij a ⨯'中每一行的各数的大小关系,并加以证明.【参考答案】1、解析:显然)2)1)((2(32+--x x 为满足要求的多项式,其次数为5.若存在n 次有理系数多项式)(x f 以2和321-为两根,则)(x f 必含有因式)2)1)((2(32+--x x ,∴5≥n ,即最小次数为5.故选C .2、解析:先排3个红色車,从6行中任取3行,有2036=C 种取法;在选定的3行中第一行有6种停法,第一行选定后第二行有5种停法,第二行选定后第三行有4种停法;红車放定后,黑車只有6种停法. 故停放方法共14400645620=⨯⨯⨯⨯种.故选D .3、解析:∵32232y y x x +-)52()52)(52(2)52(++++-+=x y x y y x50)(154-+--=y x xy ,又由522+=y x ,522+=x y ,有)(222y x y x --=- ∴y x =或2-=+y x .当y x =时,有522+=x x ,61±=x ,50)(154-+--y x xy 503042---=x x 7038--=x 7038--=x 638108±-=;当2-=+y x 时,5)2(22++-=x x ,1)2(=+x x50)(154-+--y x xy 20)2(4----=x x 80)2(4-+=x x 16-=.4、解析:延长ND 至E ,使ED ND =,连结ME BE ,,则BED ∆≌CND ∆,MED ∆≌MND ,MN ME =,由EM BE BM >+,得MN CN BM >+.5、解析:∵11=a ,24121+=+a a a ,∴52=a ;由 241+=+n n a S ,有2≥n 时,241+=-n n a S ,于是1144-+-=n n n a a a ,特征方程442-=x x 有重根2,可设n n c c a 2)(21⨯+=,将11=a ,52=a 代入上式,得411-=c ,432=c ,于是22)13(2)4143(-⨯-=⨯-=n n n n n a ,∴2011201326038⨯=a . 6、解析:取1===z y x ,便能得到zy x zxyz xy ++++=1.ACN4下面给出证明,1===z z y y x x ,于是2z y x zx yz xy ++++⎪⎪⎭⎫ ⎝⎛++++++++=z y x zx yz xy z y x zx yz xy zy x zxyz xy z y x zx yz xy ++++⨯++++= 1111111=++++++++++++++++=xy x z x z x y z y z x x y x z x z x y z y z x . ∴z y x zxyz xy ++++=1. 7、解析:设满足条件的正整数为n 个.考虑模3的同余类,共三类,记为0,1,2.则这n 个正整数需同时满足①不能三类都有;②同一类中不能有3个和超过3个.否则都会出现三数之和为3的倍数.故4≤n .当4=n 时,取1,3,7,9,其任意三数之和为11,13,17,19均为素数,满足题意, 所以满足要求的正整数最多有4个.8、解析:设212a a -322a a -==…120132a a -=k =,若0=k ,则212a a =,322a a =,…,201320122a a =,120132a a =, 于是0222212011121112013321=+++++=++++a a a a a a a a a , ∴01=a ,进而02013321=====a a a a .若0>k ,则212a a -,322a a -,…,120132a a - 这2013个数去掉绝对值号后只能取k 和k -两值,又212a a -+-+322a a …201320122a a -+0212013=-+a a , 即这2013个数去掉绝对值号后取k 和k -两值的个数相同,这不可能. 9、解析:42cos 122cos 122cos 4)22cos 1(32cos 322336+++=+=θθθθθ, θθθ2cos 32cos 46cos 3+-=-,62cos 124cos 62+-=-θθ, θθ2cos 152cos 15-=-,各式相加,得102cos 154cos 66cos cos 326=---θθθθ.10、解析:数阵{}nm ija ⨯'中的中每一行的各数仍是递增的.下面用反证法给出证明.若在第p 行存在)1(''+>q p pqa a,令)1()1('++=q i q k k a a ,其中m k ,,3,2,1 =,{}{}m i i i i m ,,3,2,1,,,,321 =,则当p t ≤时,)1(+≤q i qi t ta a )1('+=q t a <≤+)1('q p a pq a '即在第q 列中至少有p 个数小于pq a ',也就是pq a '在数阵{}n m ij a ⨯'中的第q 列中至少排在第1+p 行,这与pq a'排在第p 行矛盾.所以数阵{}n m ij a ⨯'中的中每一行的各数仍是递增的.。
2013年北约自主招生数学试题与答案2013-03-16(时间90分钟,满分120分)(1(7)(232(630g a b c d e a b c d a b c =-+----+++++702320a b c d e a b c d +---=⎧⇒⎨+++=⎩ 即方程组:420(1)20(2)70(3)2320(4)630(5)a c e b d a b c d e a b c d a b c ++=⎧⎪+=⎪⎪+---=⎨⎪+++=⎪++=⎪⎩,有非0有理数解.由(1)+(3)得:110a b c d ++-= (6) 由(6)+(2)得:1130a b c ++= (7) 由(6)+(4)得:13430a b c ++= (8) 由(7)-(5)得:0a =,代入(7)、(8)得:0b c ==,代入(1)、(2)知:0d e ==.于是知0a b c d e =====,与,,,,a b c d e 不全为0矛盾.所以不存在一个次数不超过4的有理系数多项式()g x和11为两根的有理系数多项式的次数最小为5.1. 在66⨯的表中停放3辆完全相同的红色车和3辆完全相同的黑色车,每一行每一列只有一辆车,每辆车占一格,共有几种停放方法? A. 720 B. 20 C. 518400 D. 14400解析:先从6行中选取3行停放红色车,有36C 种选择.最上面一行的红色车位置有6种选择;最上面一行的红色车位置选定后,中间一行的红色车位置有5种选择;上面两行的红色车位置选定后,最下面一行的红色车位置有4种选择。
三辆红色车的位置选定后,黑色车的位置有3!=6种选择。
所以共有36654614400C ⨯⨯⨯⨯=种停放汽车的方法. 2. 已知2225,25x y y x =+=+,求32232x x y y -+的值. A. 10 B. 12 C. 14 D. 16 解析:根据条件知:32232(25)2(25)(25)(25)x x y y x y y x y x -+=+-++++1515450x y xy =---由2225,25x y y x =+=+两式相减得()()22x y x y y x -+=-故y x =或2x y +=-①若x y =则225x x =+,解得1x =±于是知1x y ==1x y ==当1x y ==+3223222415()50430504(25)3870x x y y xy x y x x x x x -+=-++-=---=-----3870108x =--=--.当1x y ==-3223222415()50430504(25)3870x x y y xy x y x x x x -+=--+-=---=-+---22(25)(25)2()2x y y x y x x y +=+-+=-⇒+=-3870108x =--=-+.(2)若x y ≠,则根据条件知:22(25)(25)2()2x y y x y x x y +=+-+=-⇒+=-,于是22(25)(25)2()106x y y x x y +=+-+=++=,进而知222()()12x y x y xy +-+==-. 于是知:32232415()5016x x y y xy x y -+=-+-=-.综上所述知,32232x x y y -+的值为108-±或16-.3. 数列{}n a 满足11a =,前n 项和为1,42n n n S S a +=+,求2013a .A. 3019⨯2 2012B. 3019⨯22013C. 3018⨯22012D.无法确定解析:根据条件知:1221221424244n n n n n n n n n a S a S a a a a a ++++++++==+=++⇒=-.又根据条件知:1212121,425a S a a a a ==+=+⇒=.所以数列{}1221:1,5,44n n n n a a a a a a ++===-.又212114422(2)n n n n n n n a a a a a a a +++++=-⇔-=-.令12n n n b a a +=-, 则11212,23n n b b b a a +==-=,所以132n n b -=⋅.即11232n n n a a -+-=⋅.对11232n n n a a -+-=⋅,两边同除以12n +,有113224n n n n a a ++-=,即113224n n n n a a ++=+.令2n nn a c =,则134n n c c +=+,11122a c ==,于是知1331(1)244n n c n -=+-=.所以231,2(31)24nn n n a n --==-⋅.于是知:201120122013(320131)230192a =⨯-⋅=⋅.5.如图,ABC ∆中,AD 为BC 边上中线,,DM DN 分别,ADB ADC ∠∠的角平分线,试比较BM CN +与MN 的大小关系,并说明理由.A. BM+CN>MNB. MN +CN <MNC. BM+CN =MND.无法确定解析:如图,延长ND 到E ,使得DE DN =,连接BE ME 、.易知BDE CDN ∆≅∆,所以CN BE =.又因为,DM DN 分别为,ADB ADC ∠∠的角平分线,所以90MDN ∠=︒,知MD 为线段EN 的垂直平分线,所以MN ME =.所以BM CN BM BE ME MN +=+>=.6.模长为1的复数A B C 、、,满足0A B C ++≠,求AB BC CAA B C++++的模长.A. -1/2B. 1C. 2D.无法确定解析:根据公式z =1,1,1A A B B C C ⋅=⋅=⋅=.于是知:AB BC CAA B C ++=++=1==.所以AB BC CAA B C++++的模长为1.7.最多能取多少个两两不等的正整数,使得其中任意三个数之和都为素数. 解析:所有正整数按取模3可分为三类:3k 型、31k +型、32k +型.首先,我们可以证明,所取的数最多只能取到两类.否则,若三类数都有取到,设所取3k 型数为3a ,31k +型数为31b +,32k +型数为32c +,则3(31)(32)3(1)a b c a b c ++++=+++,不可能为素数.所以三类数中,最多能取到两类. 其次,我们容易知道,每类数最多只能取两个.否则,若某一类3(012)k r r +=、、型的数至少取到三个,设其中三个分别为333a r b r c r +++、、,则(3)(3)(3)3()a r b r c r a b c r +++++=+++,不可能为素数.所以每类数最多只能取两个.结合上述两条,我们知道最多只能取224⨯=个数,才有可能满足题设条件. 另一方面,设所取的四个数为1、7、5、11,即满足题设条件. 综上所述,若要满足题设条件,最多能取四个两两不同的正整数.8.已知1232013a a a a R ∈ 、、、、,满足12320130a a a a ++++= ,且122334201220132013122222a a a a a a a a a a -=-=-==-=- ,求证:12320130a a a a ===== .解析:根据条件知:122334************(2)(2)(2)(2)()0a a a a a a a a a a a a -+-+-++-=-++++= ,(1)另一方面,令12233421312222a a a a a a a a m -=-=-==-= ,则1223342222a a a a a a a a ---- 、、、、中每个数或为m ,或为m -.设其中有k 个m ,(2013)k -个m -,则:12233420131(2)(2)(2)(2)(2013)()(22013)a a a a a a a a k m k m k m-+-+-++-=⨯+-⨯-=- (2)由(1)、(2)知:(22013)0k m -= (3)而22013k -为奇数,不可能为0,所以0m =.于是知:12233420122013201312,2,2,,2,2a a a a a a a a a a ===== .从而知:2013112a a =⋅,即得10a =.同理可知:2320130a a a ==== .命题得证.9.对任意的θ,求632cos cos66cos 415cos 2θθθθ---的值. 解析:根据二倍角和三倍角公式知:632cos cos66cos 415cos 2θθθθ---622232cos (2cos 31)6(2cos 21)15(2cos 1)θθθθ=------63222232cos 2(4cos 3cos )162(2cos 1)115(2cos 1)θθθθθ⎡⎤⎡⎤=--------⎣⎦⎣⎦664242232cos (32cos 48cos 18cos 1)(48cos 48cos 6)(30cos 15)θθθθθθθ=--+---+--10=.10.已知有mn 个实数,排列成m n ⨯阶数阵,记作{}mxnija ,使得数阵中的每一行从左到右都是递增的,即对任意的123i m = 、、、、,当12j j <时,都有12ij ij a a ≤.现将{}mxnija 的每一列原有的各数按照从上到下递增的顺序排列,形成一个新的m n ⨯阶数阵,记作{}mxnija ',即对任意的123j n = 、、、、,当12i i <时,都有12i j i j a a ''≤.试判断{}mxnija '中每一行的n 个数的大小关系,并说明理由.解析:数阵{}mxnija '中每一行的n 个数从左到右都是递增的,理由如下:显然,我们要证数阵{}mxnija '中每一行的n 个数从左到右都是递增的,我们只需证明,对于任意123i m = 、、、、,都有(1)iji j a a +''≤,其中1231j n =- 、、、、. 若存在一组(1)pq p q a a +''>.令(1)(1)k k q i q a a ++'=,其中123k m = 、、、、,{}{}123,,,,1,2,3,,m i i i i m = .则当t p ≤时,都有(1)(1)(1)tti q i q t q p q pq a a a a a +++'''≤=≤<.也即在(123iq a i = 、、、、m)中,至少有p 个数小于pq a ',也即pq a '在数阵{}mxnij a '的第q 列中,至少排在第1p +行,与pq a '排在第p 行矛盾.所以对于任意123i m = 、、、、,都有(1)iji j a a +''≤,即数阵{}mxnij a '中每一行的n 个数从左到右都是递增的.。
“北约”“华约”2013年自主招生数学模拟试题(满分150分)5. 设P 是抛物线2440y y x --=上的动点,点A 的坐标为(0,1)-,点M 在直线PA 上, 且分PA uu u v 所成的比为2:1,则点M 的轨迹方程是 . 第二部分:解答题(共5小题 每题20分)1设集合()12log 32A x x ⎧⎫⎪⎪=-≥-⎨⎬⎪⎪⎩⎭,21a B x x a ⎧⎫=>⎨⎬-⎩⎭.若A B ≠∅I ,求实数a 的取值范围2. 为了搞好学校的工作,全校各班级一共提了P )(+∈N P 条建议.已知有些班级提出了相同的建议,且任何两个班级都至少有一条建议相同,但没有两个班提出全部相同的建议.求证该校的班级数不多于12-P 个3. 设平面向量3,1)a =-v ,13(,22b =v .若存在实数(0)m m ≠和角((,))22ππθθ∈-,使向量2(tan 3)c a b =+-v v v ,tan d ma b θ=-+u v v v ,且c d ⊥v u v .(I)求函数()m f θ=的关系式; (II)令tan t θ=,求函数()m g t =的极值.4. 已知双曲线的两个焦点分别为1F ,2F ,其中1F 又是抛物线24y x =的焦点,点A (1,2)-, B (3,2)在双曲线上.(I)求点2F 的轨迹方程; (II)是否存在直线y x m =+与点2F 的轨迹有且只 有两个公共点?若存在,求实数m 的值,若不存在,请说明理由.5. 已知a ,b 均为正整数,且,sin )(),20(2sin ,2222θπθθn b a A ba ab b a n n ⋅+=<<+=>其中求证:对一切*N ∈n ,n A 均为整数参考答案一、选择题1. 由tan 2α=,得sin 2cos αα=,有22sin 4cos αα=,即221cos 4cos αα-=. 则21cos 5α=,原式=222216cos 6cos 5cos 5cos 1αααα--==. 2. 设x a bi =+,,a b R ∈,代入原方程整理得22(2256)(45)0a b a b ab a b i --+-++-=有2222560450a b a b ab a b ⎧--+-=⎨+-=⎩,解得11a b =⎧⎨=⎩或3232a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以1x i =+或3322x i =-. 3. 直接求x 的个位数字很困难,需将与x 相关数联系,转化成研究其相关数. 【解】令])22015()22015[(,)22015()22015(82198219+++=+-+-=y x y 则 ])22015()22015[(8219-+-+,由二项式定理知,对任意正整数n.)2201515(2)22015()22015(22Λ+⋅⋅+=-++-n n n n n C 为整数,且个位数字为零.因此,x y +是个位数字为零的整数.再对y 估值, 因为2.0255220155220150=<+=-<, 且1988)22015()22015(-<-, 所以.4.02.02)22015(201919<⨯<-<<y 故x 的个位数字为9.【评述】转化的思想很重要,当研究的问题遇到困难时,将其转化为可研究的问题.4. 解:被7除余2的数可写为72k +. 由100≤72k +≤600.知14≤k ≤85.又若某个k 使72k +能被57整除,则可设72k +=57n . 即5722877n n k n --==+. 即2n -应为7的倍数. 设72n m =+代入,得5716k m =+. ∴14571685m ≤+≤. ∴m =0,1.于是所求的个数为70.5. 设点P 00(,)x y ,M (,)x y ,有0203x x +⨯=,02(1)3y y +⨯-=,得03x x =,032y y =+ 而2000440y y x --=,于是得点M 的轨迹方程是291240y x --=.二、解答题1. 解:{}13A x x =-≤<,()(){}30B x x a x a =--<. 当0a >时,{}03B x a x a =<<<,由A B ≠∅I 得03a <<; 当0a <时,{}30B x a x a =<<<,由A B ≠∅I 得1a >-;当0a =时,{}20B x x =<=∅,与A B ≠∅I 不符.综上所述,()()1,00,3a ∈-U2. 证明:假设该校共有m 个班级,他们的建议分别组成集合m A A A ,,,21Λ。
2013年综合性大学自主选拔录取联合考试(北约)数学试题一.选择题(每题8分,共48分)1.1为根的有理系数方程的最小次数为 . A . 2 B .3 C .5 D .62.在66⨯棋盘上放3个完全相同的红色的车和3个完全相同的黑色的车,若这6个车不在同一行也不在同一列上,则不同的放法有 种.A . 720B .518400C .20D .144003.在ABC △中,D 为BC 的中点,DM 平分ADB ∠交AB 于M ,DN 平分ADC ∠交AC 于N ,则B M C N +与MN 的大小关系是 .A .BM CN MN +>B .BM CN MN +=C .BM CN MN +<D .不能确定4.若222525x y y x ⎧=+⎪⎨=+⎪⎩,x y ≠,则32232x x y y -+的值为 .A .10-B .12-C .14-D .以上答案均不对5.n S 表示数列{}n a (1n ≥)的前n 项和.已知11a =,且1n ∀≥,142n n S a +=+,则2013a 等于 . 的模等于 .k a 与l a 的几何平的算术平均.求证:3.实数12201,,,a a a 满足1220130a a a +++=,122320131222a a a a a a -=-==-.求证:1220130a a a ====.4.对任意θ,求632cos cos66cos415cos2θθθθ---的值.5.(理科)设有mn 个实数排成一个m 行n 列的阵列{}ij m na ⨯,使得每一行上的n 个数从左到右都按递增的顺序排列,即对任意1i m ≤≤,当12j j <时有12ij ij a a ≤.下面把每列上的m 个数都从上到下都按递增的顺序重排得到阵列{}ij m na ⨯',即对任意的1j n ≤≤,当12i i <时有12i j i j a a ''≤,问这个新的阵列{}ij m na ⨯'每一行中的n 个数的大小顺序如何?给出结论并说明理由.2013年综合性大学自主选拔录取联合考试(北约)数学答案一、选择题(每题8分,共48分) 1.【解析】 C .可以构造方程()()322120x x ⎡⎤--+=⎣⎦,于是次数不超过5.假设有3次方((()10x x x m ⎡⎤--=⎣⎦满足要求,则1m,(1m ⋅均为有理数.设m p =p 为有理数,(1m -⋅5155111636622222222222p p ⎛⎫⎛⎫⎛⎫=--+=--+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭可能为有理数.因此次数不小于4. 2.【解析】 D .视6枚棋子均相同,记落在第i 行的的棋子在i a 列,则排列()126,,,a a a 与放法对应.于是633663A C C 14400⋅⋅=为所求. 3.【解析】 A .E 点平化为2226x y x y +=-⎧⎨+=⎩,即21x y xy +=-⎧⎨=-⎩.是()214n n n a a a ++=-,即此()311242n n a n =-+,解得AB AC BA BC C A CB+++++二、解答题(每题18分,共72分) 1.【解析】 根据题意有2m na a +,又2k l a a +,于是22k l m na a a a ++>.因此k l m a a a a +>+.设()11n a a n d =+-,则k l m n a a a a +>+⇒()()()()11111111a k d a l d a m d a n d +-++->+-++-⇒k l m n +>+22k l m n++⇒> E N M D C B A2.【解析】 至多可以找到4个,如1,3,7,9.下面证明不能找到5个符合题意的正整数.考虑它们模3的余数,设余数为0、1、2的分别有a 、b 、c 个,则1°若a 、b 、c 均不为零,则存在三个数,它们的和为3的倍数,一定不是质数;2°若a 、b 、c 中有零,则根据抽屉原理,至少存在三个数,它们的余数相同.此时它们的和为3的倍数,一定不是质数. 综上,不能找到5个符合题意的正整数. 3.【解析】 令1122b a a =-,2232b a a =-,…,2013201312b a a =-,则122013b b b ===,1220130b b b +++=.设122013b b b ===m =,则122013,,,b b b 或者为m 或者为m -,设其中有x 个m ,2013x -个m -,则()()()122013201322013b b b mx m x m x +++=+--=-.由于220130x -≠,因此0m =.于是1220130b b b ====,进而易得1220130a a a ====. 4.【解析】 632cos cos66cos415cos2θθθθ---()()3321cos 2324cos 23cos 262cos 2115cos 22θθθθθ+⎛⎫=⋅----- ⎪⎝⎭10=5..【解析】 新的阵列{}ij m na ⨯'中,每一行上的n 个数从左到右还是按递增的顺序排列.反证如下,若有某一行不是这样,不妨设第i 行上存在j k <且ij ik a a ''>.由新阵列的排法知()121k k ik ij mj i j a a a a a a +''''''≤≤≤≤≤≤≤.返回到原阵列{}ijm na ⨯讨论,i 个数1k a ',2k a ',…,ik a '都在原阵列的第k 列上,而剩余的()1m i -+个数ij a ',()1i j a +',…,mj a '都在原阵列的第j 列上,由于这些数共有1m +个而总共有m 行,所以一定有1k a ',2k a ',…,ik a '中的某个数与ij a ',()1i j a +',…,mj a '中的某个数在原阵列的同一行.故在原阵列的此行上,第j 列上的数大于第k 列上的数,与原阵列的排法矛盾.。
2013年自主招生数学仿真试题--北约( 考试时间:90分钟,总分100分)一、解答题1.(12分)设()=11=+1-nn k a k n k ∑,求证:当正整数2n ≥时+1<n n a a2.(13分)在平行四边形ABCD 中,AB=x ,BC=1,对角线AC 与BD 的夹角=45BOC ∠ ,记直线AB 与CD 的距离为()h x ,求()h x 的表达式,并写出x 的取值范围。
3.(15分)已知函数()=sin f x x 的图像与直线()=>0y kx k 有且仅有三个交点,交点的横坐标的最大值为α,求证:2cos 1+=sin +sin 34ααααα4.(15分)如图所示,AB 是⊙O 的直径,G 为AB 延长线上的一点,GCD 是⊙O 的割线,过点G 作AB 的垂线,交AC 的延长线于点E ,交AD 的延长线于点F ,过G 作⊙O 的切线,切点为H .求证:(1)C ,D ,F ,E 四点共圆;(2)GH 2=CE ·GF .5.(15分)已知点(),E m n 为抛物线()2=2>0y px p 内一定点,过E 作斜率分别为12,k k 的两条直线交抛物线于A ,B ,C ,D ,且M ,N 分别是线段AB ,CD 的中点;(1)当=0n 且12=-1k k ⋅时,求EMN 的面积的最小值(2)若()12+=0,k k λλλ≠为常数证明:直线MN 过定点。
6.(15分)一项“过关游戏”规则规定:在第n关要抛掷一颗骰子n次,如果这n次抛掷所出现的点数之和大于2n,则算过关。
问:(Ⅰ)某人在这项游戏中最多能过几关?(Ⅱ)他连过前三关的概率是多少?(注:骰子是一个在各面上分别有1,2,3,4,5,6点数的均匀正方体。
抛掷骰子落地静止后,向上一面的点数为出现点数。
)7.(15分)某校数学兴趣小组由m位同学组成,学校专门安排n为老师作为指导教师,在该小组的一次活动中,每位同学之间相互为对方提出一个问题,每位同学又向每位指导老师各提一个问题,以上所有问题各不相同,共有51个问题,试求m,n的值。
2013年北约自主招生数学试题2013-03-16(时间90分钟,满分120分)1.以2和312-为两根的有理系数多项式的次数最小是多少?A .2B .3C .5D .6解析:显然,多项式f (x )=(x 2-2)[(1-x )3-2]的系数均为有理数,且有两根分别为2和312-,于是知,以2和312-为两根的有理系数多项式的次数的最小可能值不大于5.若存在一个次数不超过4的有理系数多项式g (x )=ax 4+bx 3+cx 2+dx+e ,其两根分别为2和312-,其中a ,b ,c ,d ,e 不全为0,则:()33312(7)(232)2(63)40g a b c d e a b c d a b c -=-+----++++++=702320a b c d e a b c d +---=⎧⇒⎨+++=⎩即方程组:420(1)20(2)70(3)2320(4)630(5)ac e bd a b c de a b c d ab c ++=⎧⎪+=⎪⎪+---=⎨⎪+++=⎪++=⎪⎩,有非0有理数解。
由(1)+(3)得:110a b c d ++-= (6) 由(6)+(2)得:1130a b c ++= (7) 由(6)+(4)得:13430a b c ++= (8) 由(7)-(5)得:0a = 代入(7)、(8)得:0b c == 代入(1)、(2)知:0d e ==于是知0a b c d e =====,与,,,,a b c d e 不全为0矛盾。
所以不存在一个次数不超过4的有理系数多项式()g x ,其两根分别为2和312-.综上所述知,以2和312-为两根的有理系数多项式的次数最小为5.2.在66⨯的表中停放3辆完全相同的红色车和3辆完全相同的黑色车,每一行每一列只有一辆车,每辆车占一格,共有几种停放方法?A .720B .20C .518400D .14400解析:先从6行中选取3行停放红色车,有36C 种选择.最上面一行的红色车位置有6种选择;最上面一行的红色车位置选定后,中间一行的红色车位置有5种选择;上面两行的红色车位置选定后,最下面一行的红色车位置有4种选择。
2013年自主招生数学试题一.选择题:(本大题共12个小题,每个4分,共48分,将所选答案填涂在机读卡上) 1、下列因式分解中,结果正确的是( )A.2322()x y y y x y -=-B.424(2)(x x x x -=+C.211(1)x x x x x--=--D.21(2)(1)(3)a a a --=--2、“已知二次函数2y ax bx c =++的图像如图所示,试判断a b c ++与 0的大小.”一同学是这样回答的:“由图像可知:当1x =时0y <, 所以0a b c ++<.”他这种说明问题的方式体现的数学思想方法叫 做( )A.换元法B.配方法C.数形结合法D.分类讨论法 3、已知实数x 满足22114x x x x ++-=,则1x x-的值是( )A.-2B.1C.-1或2D.-2或14、若直线21y x =-与反比例函数k y x =的图像交于点(2,)P a ,则反比例函数ky x=的图像还必过点( )A. (-1,6)B.(1,-6)C.(-2,-3)D.(2,12)5、现规定一种新的运算:“*”:*()m nm n m n -=+,那么51*22=( )A.54B.5C.3D.96、一副三角板,如图所示叠放在一起,则AOB COD ∠+∠=( )A.180°B.150°C.160°D.170°7、某中学对2005年、2006年、2007年该校住校人数统计时发现,2006年比2005年增加20%,2007年比2006年减少20%,那么2007年比2005年( )A.不增不减B.增加4%C.减少4%D.减少2%8、一半径为8的圆中,圆心角θ为锐角,且θ=,则角θ所对的弦长等于( )A.8B.10C. D.169、一支长为13cm 的金属筷子(粗细忽略不计),放入一个长、宽、高分别是4cm 、3cm 、16cm 的长方体水槽中,那么水槽至少要放进( )深的水才能完全淹没筷子。
华约自主招生试题(数学)1.设},10|{Z x x x A ∈≥=,A B ⊆,且B 中元素满足:任意一个元素各数位的数字互不相同;任意一个元素的任意两个数字之和不等于9.(1)求B 中的两位数和三位数的个数;(2)是否存在五位数,六位数?(3)将B 中的元素从小到大排列,求第1081个元素.2.已知31s in s in =+y x ,51cos cos =-y x ,求)c o s (y x +,)sin(y x -. 3.点A 在kx y =上,点B 在kx y -=上,其中0>k ,12+=k OB OA ,且A ,B 在y 轴同侧.(1)求AB 中点M 的轨迹C 的方程;(2)曲线C 与抛物线)0(22>=p py x 相切,求证:切点分别在两定直线上,并求切线方 程.4.7个红球,8个黑球,任取4个.(1)求恰有1个红球的概率;(2)记取黑球个数为x ,求其分布列和期望;(3)取出4球同色,求全为黑球的概率.5.已知21++=n n n ca a a , ,3,2,1=n ,0>1a ,0>c .(1)证明对任意的0>M ,存在正整数N ,使得对于N n >,M a n >(2)设1+1=n n ca b ,记n s 为n b 前项和,证明n s 有界,且0>d 时,存在正整数k ,k n >时d ca s n <1<01-. 6.设z y x ,,是两两不等且大于1的正整数,求所有使得xyz 整除)1)(1z (1)(---zx y xy 的z y x ,,.7.设1e )1(=)(--x x x f . (1)证明当0>x 时,0<)(x f ;(2)令1e =1+-n n x x n e x ,1=1x ,证明n x 递减且n n x 21>. 华约自主招生试题(物理)一、 (15分)(1)质量约1T 的汽车在10s 内由静止加速到60km/h 。
2013年“华约”自主招生数学试题1. 已知集合{}10A x Z x =∈≥,B 是A 的子集,且B 中元素满足下列条件: (a )数字两两不等;(b)任意两个数字之和不等于9;试求: (1)B 中有多少个两位数?多少个三位数? (2)B 中是否有五位数?是否有六位数?(3)将B 中元素从小到大排列,第1081个元素是多少? 2. 已知实数,x y 满足sin x +sin y =13, cos cos x y - =15,求sin()x y -,cos().x y +3. 已知0k >,从直线y kx =和y kx =-上分别选取点(,),(,)A A B B A x y B x y ,0A B x x >,满足21OA OB k =+,其中O 为坐标原点,AB 中点M 的轨迹为曲线C . (1)求曲线C 的方程;(2)抛物线22(0)x py p =>与曲线C 相切于两点,求证:两点在两条定直线上,并求出两条切线方程.4. 有7个红球8个黑球,从中任取四个. ⑴求恰有一个红球的概率;⑵设四个球中黑球个数为X ,求X 的分布列及数学期望Ex ; ⑶求当四个球均为一种颜色时,这种颜色为黑色的概率. 5. 已知数列{}n a 满足10a >,21n n n a a ca +=+,1,2...n =,,其中0c >, ⑴证明:对任意的0M >,存在正整数N ,使得对于n N >,n a M >;⑵设11n n b ca =+,n S 为n b 前n 项和,证明:{}n S 有界,且对0d >,存在正整数k ,当n k >时,110.n S d ca <-< 6. 已知,,x y z 是三个大于1的正整数,且xyz 整除(1)(1)(1),xy yz xz ---求,,x y z 的所有可能值.7. 已知()(1)1xf x x e =--, ⑴证明:当0x >时,()0f x <; ⑵若数列{}n x 满足11x =,11n n x x n x ee +=-.证明:数列{}n x 递减,且12nn x ⎛⎫> ⎪⎝⎭.2013年“华约”自主招生数学试题解析1.【试题分析】本题是集合元素的计数问题,需要用到排列组合的知识,对分步思维的理解要求较高。
2010年“北约”自主招生数学试题1.(仅文科做)02απ<<,求证:sin tan ααα<<.2.AB 为边长为1的正五边形边上的点.证明:AB (25分)3.AB 为21y x =-上在y 轴两侧的点,求过AB 的切线与x 轴围成面积的最小值.(25分)4.向量OA 与OB 已知夹角,1OA =,2OB =,(1)OP t OA =-,OQ tOB =,01t ≤≤.PQ 在0t 时取得最小值,问当0105t <<时,夹角的取值范围.(25分)5.(仅理科做)存不存在02x π<<,使得sin ,cos ,tan ,cot x x x x 为等差数列.(25分)2011北约自主招生数学试题∎1、已知平行四边形的其中两条边长分别是3和5,一条对角线长是6,求另一条对角线的长。
∎2求过抛物线2,交点的直线方程。
∎3、等差数列满足=,,这个数列的前n项和为,数列中哪一项最小,并求出这个最小值。
∎4、∆ABC的三边a,b,c满足a+b≥2c,A,B,C为∆ABC的内角,求证:C≤。
∎ 5、是否存在四个正实数,它们的两两乘积分别是2,3,5,6,10,16?∎6、和是平面上两个不重合的固定圆,C是该平面上的一个动圆,C和都相切,则C的圆心的轨迹是何种曲线?说明理由。
∎7、求f(x)=的最小值。
2012年“北约”自主招生数学试题1、求x 的取值范围使得12)(-+++=x x x x f 是增函数;2、求1210272611=+-+++-+x x x x 的实数根的个数;3、已知0)2)(2(22=+-+-n x x m x x 的4个根组成首项为41的等差数列,求n m -;4、如果锐角ABC ∆的外接圆的圆心为O ,求O 到三角形三边的距离之比;5、已知点)0,2(),0,2(B A -,若点C 是圆0222=+-y x x 上的动点,求ABC ∆面积的最小值。
2013年“北约”自主招生训练题二1、函数sin cos y x x =+(x ∈R )的单调减区间是 .2、设函数()f x 的定义域为R ,若()1f x +与()1f x -都是关于x 的奇函数,则函数()y f x =在区间[]0,100上至少有 个零点.3、圆环形手镯上等距地镶嵌着4颗小珍珠,每颗珍珠镀金、银两色中的一种.其中镀2金2银的概率是 .4、在三棱锥A B C D -中,已知A C B C B A ∠=∠,A C D A D C B C D B D C ∠=∠=∠=∠θ=,且cos 10θ=.已知棱A B的长为,则此棱锥的体积为 .5、设复数列{}n x 满足1n x a ≠-,0,且11n n n a x x x +=+.若对任意n ∈N * 都有3n n x x +=,则a 的值是 .6、已知平面上两定点A (-3,0),B (0,-4),P 为曲线12(0)y x x=>上任意一点,过点P作PC ⊥x 轴,PD ⊥y 轴,垂足分别为C,D ,则四边形ABCD 面积S 的最小值为 7、函数()2f x x =-__________________________.8、函数22*()sincos()kkf x x x k N =+∈的最小值为9、设O 是平面上一个定点,A ,B ,C 是平面上不共线的三个点,动点P 满足||||A C A BO P O A A C A B λλ-=+,其中[0,)λ∈+∞,则点P 的轨迹为_________________. 10、函数21)(2+-=x x x f 的值域是__________________。
11、若ABC ∆为锐角三角形,满足)cos(sin sin B A BA +=,则A tan 的最大值是___________。
12、将9,,2,1 随机填入右图正方形ABCD 的九个格子中,则其每行三数,每列三数自上而下、自左至右顺次成等差数列的概率P=__________。
2013年北约自主招生数学试题2013年北约自主招生数学试题与答案2013-03-16(时间90分钟,满分120分)(1(7)(232(630g a b c d e a b c d a b c =-+----+++++=702320a b c d e a b c d +---=⎧⇒⎨+++=⎩即方程组:420(1)20(2)70(3)2320(4)630(5)a c eb d a bcde a b c d a b c ++=⎧⎪+=⎪⎪+---=⎨⎪+++=⎪++=⎪⎩,有非0有理数解. 由(1)+(3)得:110a b c d ++-= (6) 由(6)+(2)得:1130a b c ++= (7) 由(6)+(4)得:13430a b c ++= (8) 由(7)-(5)得:0a =,代入(7)、(8)得:0b c ==,代入(1)、(2)知:0d e ==.于是知0a b c d e =====,与,,,,a b c d e 不全为0矛盾.所以不存在一个次数不超过4的有理系数多项式()g x11 5.1. 在66⨯的表中停放3辆完全相同的红色车和3辆完全相同的黑色车,每一行每一列只有一辆车,每辆车占一格,共有几种停放方法? A. 720 B. 20 C. 518400 D. 14400解析:先从6行中选取3行停放红色车,有36C 种选择.最上面一行的红色车位置有6种选择;最上面一行的红色车位置选定后,中间一行的红色车位置有5种选择;上面两行的红色车位置选定后,最下面一行的红色车位置有4种选择。
三辆红色车的位置选定后,黑色车的位置有3!=6种选择。
所以共有36654614400C ⨯⨯⨯⨯=种停放汽车的方法.2. 已知2225,25x y y x =+=+,求32232x x y y -+的值. A. 10 B. 12 C. 14 D. 16 解析:根据条件知:32232(25)2(25)(25)(25)x x y y x y y x y x -+=+-++++1515450x y xy =---由2225,25x y y x =+=+两式相减得()()22x y x y y x -+=-故y x =或2x y +=-①若x y =则225x x =+,解得1x =于是知1x y ==1x y ==当1x y ==3223222415()50430504(25)3870x x y y xy x y x x x x x -+=-++-=---=-----3870108x =--=--.当1x y ==3223222415()50430504(25)3870x x y y xy x y x x x x -+=--+-=---=-+---22(25)(25)2()2x y y x y x x y +=+-+=-⇒+=-3870108x =--=-+.(2)若x y ≠,则根据条件知:22(25)(25)2()2x y y x y x x y +=+-+=-⇒+=-,于是22(25)(25)2()106x y y x x y +=+-+=++=,进而知222()()12x y x y xy +-+==-. 于是知:32232415()5016x x y y xy x y -+=-+-=-.综上所述知,32232x x y y -+的值为108-±或16-.3. 数列{}n a 满足11a =,前n 项和为1,42n n n S S a +=+,求2013a .A. 3019⨯2 2012B. 3019⨯22013C. 3018⨯22012D.无法确定解析:根据条件知:1221221424244n n n n n n n n n a S a S a a a a a ++++++++==+=++⇒=-.又根据条件知:1212121,425a S a a a a ==+=+⇒=.所以数列{}1221:1,5,44n n n n a a a a a a ++===-.又212114422(2)n n n n n n n a a a a a a a +++++=-⇔-=-.令12n n n b a a +=-, 则11212,23n n b b b a a +==-=,所以132n n b -=⋅.即11232n n n a a -+-=⋅.对11232n n n a a -+-=⋅,两边同除以12n +,有113224n n n n a a ++-=,即113224n n n n a a ++=+.令2nnn a c =,则134n n c c +=+,11122a c ==,于是知1331(1)244n n c n -=+-=.所以231,2(31)24nn n n a n --==-⋅.于是知:201120122013(320131)230192a =⨯-⋅=⋅.5.如图,ABC ∆中,AD 为BC 边上中线,,DM DN 分别,ADB ADC ∠∠的角平分线,试比较BM CN +与MN 的大小关系,并说明理由.A. BM+CN>MNB. MN +CN <MNC. BM+CN =MND.无法确定解析:如图,延长ND 到E ,使得DE DN =,连接BE ME 、.易知BDE CDN ∆≅∆,所以CN BE =.又因为,DM DN 分别为,ADB ADC ∠∠的角平分线,所以90MDN ∠=︒,知MD 为线段EN 的垂直平分线,所以MN ME =.所以BM CN BM BE ME MN +=+>=.6.模长为1的复数A B C 、、,满足0A B C ++≠,求AB BC CAA B C++++的模长.A. -1/2B. 1C. 2D.无法确定解析:根据公式z =1,1,1A A B B C C ⋅=⋅=⋅=.于是知:AB BC CA A B C++=++=1==.所以AB BC CAA B C++++的模长为1.7.最多能取多少个两两不等的正整数,使得其中任意三个数之和都为素数. 解析:所有正整数按取模3可分为三类:3k 型、31k +型、32k +型.首先,我们可以证明,所取的数最多只能取到两类.否则,若三类数都有取到,设所取3k 型数为3a ,31k +型数为31b +,32k +型数为32c +,则3(31)(32)3(1)a b c a b c ++++=+++,不可能为素数.所以三类数中,最多能取到两类.其次,我们容易知道,每类数最多只能取两个.否则,若某一类3(012)k r r +=、、型的数至少取到三个,设其中三个分别为333a r b r c r +++、、, 则(3)(3)(3)3()a r b r c r a b c r +++++=+++,不可能为素数.所以每类数最多只能取两个.结合上述两条,我们知道最多只能取224⨯=个数,才有可能满足题设条件. 另一方面,设所取的四个数为1、7、5、11,即满足题设条件. 综上所述,若要满足题设条件,最多能取四个两两不同的正整数.8.已知1232013a a a a R ∈ 、、、、,满足12320130a a a a ++++= ,且122334201220132013122222a a a a a a a a a a -=-=-==-=- ,求证:12320130a a a a ===== .解析:根据条件知:122334************(2)(2)(2)(2)()0a a a a a a a a a a a a -+-+-++-=-++++= ,(1)另一方面,令12233421312222a a a a a a a a m -=-=-==-= ,则1223342222a a a a a a a a ---- 、、、、中每个数或为m ,或为m -.设其中有k 个m ,(2013)k -个m -,则:12233420131(2)(2)(2)(2)(2013)()(22013)a a a a a a a a k m k m k m-+-+-++-=⨯+-⨯-=- (2)由(1)、(2)知:(22013)0k m -= (3)而22013k -为奇数,不可能为0,所以0m =.于是知:12233420122013201312,2,2,,2,2a a a a a a a a a a ===== .从而知:2013112a a =⋅,即得10a =.同理可知:2320130a a a ==== .命题得证.9.对任意的θ,求632cos cos66cos 415cos 2θθθθ---的值. 解析:根据二倍角和三倍角公式知:632cos cos66cos 415cos 2θθθθ---622232cos (2cos 31)6(2cos 21)15(2cos 1)θθθθ=------63222232cos 2(4cos 3cos )162(2cos 1)115(2cos 1)θθθθθ⎡⎤⎡⎤=--------⎣⎦⎣⎦664242232cos (32cos 48cos 18cos 1)(48cos 48cos 6)(30cos 15)θθθθθθθ=--+---+--10=.10.已知有mn 个实数,排列成m n ⨯阶数阵,记作{}mxnija ,使得数阵中的每一行从左到右都是递增的,即对任意的123i m = 、、、、,当12j j <时,都有12ij ij a a ≤.现将{}mxnij a 的每一列原有的各数按照从上到下递增的顺序排列,形成一个新的m n ⨯阶数阵,记作{}mxnija ',即对任意的123j n = 、、、、,当12i i <时,都有12i ji j a a ''≤.试判断{}mxnija '中每一行的n 个数的大小关系,并说明理由.解析:数阵{}mxnija '中每一行的n 个数从左到右都是递增的,理由如下:显然,我们要证数阵{}mxnija '中每一行的n 个数从左到右都是递增的,我们只需证明,对于任意123i m = 、、、、,都有(1)ij i j a a +''≤,其中1231j n =- 、、、、. 若存在一组(1)pq p q a a +''>.令(1)(1)k k q i q a a ++'=,其中123k m = 、、、、,{}{}123,,,,1,2,3,,m i i i i m = .则当t p ≤时,都有(1)(1)(1)tti q i q t q p q pq a a a a a +++'''≤=≤<.也即在(123iq a i = 、、、、m)中,至少有p 个数小于pq a ',也即pq a '在数阵{}mxnija '的第q 列中,至少排在第1p +行,与pq a '排在第p 行矛盾.所以对于任意123i m = 、、、、,都有(1)ij i j a a +''≤,即数阵{}mxnij a '中每一行的n 个数从左到右都是递增的.。