密度泛函理论
- 格式:pdf
- 大小:206.66 KB
- 文档页数:14
密度泛函理论, Density functional theory (DFT)是一种研究多电子体系电子结构的量子力学方法。
密度泛函理论在物理和化学上都有广泛的应用,特别是用来研究分子和凝聚态的性质,是凝聚态物理和计算化学领域最常用的方法之一。
电子结构理论的经典方法,特别是Hartree-Fock方法和后Hartree-Fock方法,是基于复杂的多电子波函数的。
密度泛函理论的主要目标就是用电子密度取代波函数做为研究的基本量。
因为多电子波函数有 3N个变量(N为电子数,每个电子包含三个空间变量),而电子密度仅是三个变量的函数,无论在概念上还是实际上都更方便处理。
虽然密度泛函理论的概念起源于Thomas-Fermi模型,但直到Hohenberg-Kohn定理提出之后才有了坚实的理论依据。
Hohenberg-Kohn第一定理指出体系的基态能量仅仅是电子密度的泛函。
Hohenberg-Kohn第二定理证明了以基态密度为变量,将体系能量最小化之后就得到了基态能量。
最初的HK理论只适用于没有磁场存在的基态,虽然现在已经被推广了。
最初的Hohenberg-Kohn定理仅仅指出了一一对应关系的存在,但是没有提供任何这种精确的对应关系。
正是在这些精确的对应关系中存在着近似(这个理论可以被推广到时间相关领域,从而用来计算激发态的性质[6])。
密度泛函理论最普遍的应用是通过Kohn-Sham方法实现的。
在Kohn-Sham DFT的框架中,最难处理的多体问题(由于处在一个外部静电势中的电子相互作用而产生的)被简化成了一个没有相互作用的电子在有效势场中运动的问题。
这个有效势场包括了外部势场以及电子间库仑相互作用的影响,例如,交换和相关作用。
处理交换相关作用是KS DFT 中的难点。
目前并没有精确求解交换相关能E XC的方法。
最简单的近似求解方法为局域密度近似(LDA)。
LDA近似使用均匀电子气来计算体系的交换能(均匀电子气的交换能是可以精确求解的),而相关能部分则采用对自由电子气进行拟合的方法来处理。
密度泛函理论密度泛函理论(DFT)是20世纪60年代建立的并在局域密度近似(LDA)下导出了著名的Koho-Sham(KS)方程。
DFT一直是凝聚态物理领域计算电子结构及其特性的有力工具它是一种最常见最成功的研究多电子体系电子结构的量子力学方法。
近几年来DFT与分子动力学相结合,在材料设计,合成,模拟计算和评价诸多方面有明显进展,成为计算材料科学的重要基础和核心技术. 特别在量子化学计算领域,1987年以前主要用Hartree-Fock(HF)方法。
但近年来,用DFT的工作以指数增加,以致于HF方法应用已相当减少。
W.Kohn因提出DFT获得1998年诺贝尔化学奖,已经表明了DFT在计算化学领域的核心作用与应用的广泛性。
密度泛函理论的主要目标就是用电子密度取代波函数作为研究的基本量。
因为多电子波函数有3N个变量(N为电子数,每个电子包含三个空间变量),而电子密度仅是三个变量的函数,无论在概念上还是实际上都更方便处理。
虽然密度泛函理论的概念起源于Thomas-Fermi模型,但直到Hohenberg-Kohn定理提出之后才有了坚实的理论依据。
Hohenberg-Kohn第一定理指出体系的基态能量仅仅是电子密度的泛函。
Hohenberg-Kohn第二定理证明了以基态密度为变量,将体系能量最小化之后就得到了基态能量。
最初的HK理论只适用于没有磁场存在的基态,虽然现在已经被推广了。
最初的Hohenberg-Kohn定理仅仅指出了一一对应关系的存在,但是没有提供任何这种精确的对应关系。
正是在这些精确的对应关系中存在着近似(这个理论可以被推广到时间相关领域,从而用来计算激发态的性质。
密度泛函理论最普遍的应用是通过Kohn-Sham方法实现的。
在Kohn-Sham DFT的框架中,最难处理的多体问题(由于处在一个外部静电势中的电子相互作用而产生的)被简化成了一个没有相互作用的电子在有效势场中运动的问题。
这个有效势场包括了外部势场以及电子间库仑相互作用的影响,例如,交换和相关作用。
理论化学中的密度泛函理论密度泛函理论在现代理论化学中是一个重要的理论工具。
它被广泛应用于电子结构计算,尤其是在固态和表面物理领域。
密度泛函理论通过泛函理论的方法,将复杂的多体湮灭算符表示为电子密度的泛函,从而实现了准确计算电子能级和电子密度的目的。
密度泛函理论的发展历史可以追溯到20世纪50年代,当时人们开始发现传统的哈特里-福克方程求解电子结构的方法面临着严重的限制,尤其是在处理强关联体系时,很难得到准确的结果。
正是在这样的背景下,一些理论家开始思考是否有一种新的方法可以更好地描述多体问题,从而提高电子结构计算的准确性和效率。
最早的密度泛函理论是由托马斯和费米提出的,他们基于库仑相互作用在剖面空间的波函数导出了一个基于电子密度的能量泛函。
而最早的实现密度泛函理论的计算程序是由科恩和舒莱特提出的,他们设计了一个常用的数值计算方法,称为局部密度近似。
这个方法通过假设电荷密度是均匀分布的,实现了能量泛函的数值求解,从而实现准确计算电子态和电子密度的目的。
自此以后,密度泛函理论持续发展,并逐渐演变成了一种基于松原方程,以电荷密度为量子化变量的泛函方法,有了更精确的能量泛函,并得到广泛应用于电子结构计算中。
密度泛函理论的核心是能量泛函,这个泛函将电子密度作为变量,并将它们映射到能量平面上。
这个泛函的形式可以分为两个部分,一个是由电子间的库仑相互作用和交换相关效应导致的局部部分,另一个是非局部部分,这个部分涉及到长程电子间的相互作用。
在局部部分,我们通常使用交换-相关能泛函,这个泛函是针对电子之间交互作用导致的势能量进行描述。
这个能量泛函是密度泛函理论中最难处理的部分,因为它包括了一组复杂的电子态的组合系数,而这些系数难以精确求解。
为了解决这个问题,在局部密度近似或广义密度近似中,我们通常采用经验的能量泛函,这些泛函通过处理各种确定参数,帮我们处理交换相关能。
虽然这些参数难以确定,但也为我们计算电子结构提供了一种有效的方法。
知识创造未来
密度泛函理论
密度泛函理论(Density Functional Theory,简称DFT)是一种基于泛函理论的计算量子力学方法,用于研究原子、分子和固体的电子结构和性质。
在密度泛函理论中,系统的基态电子密度被认为是系统的
基本自由度,可以通过求解波函数的Kohn-Sham方程来
得到。
与传统的Hartree-Fock方法相比,DFT考虑了电子间的相互作用和交换相关效应,使得计算结果更加准确。
密度泛函理论的核心是密度泛函,即将电子密度作为整个
系统的一个函数来描述。
通过最小化系统的总能量泛函,
可以得到系统的基态电子密度和相应的能量。
密度泛函理论有很多应用,包括计算分子的结构、能量、
振动频率等性质,研究材料的结构、热力学性质以及催化
反应等。
它在材料科学、化学、物理等领域都有广泛的应用,并且在计算效率和准确性方面都取得了很大的进展。
1。