初中数学--特殊三角形练习
- 格式:doc
- 大小:101.56 KB
- 文档页数:5
初中数学竞赛专题:三角形§9. 1全等三角形1. 1. 1★已知等腰直角三角形A8C,8C是斜边.々的角平分线交AC于。
,过C作CE与a)垂直且交8。
延长线于邑求证:BD = 2CE.解析如图,延长CE、B4,设交于b・则NF3E = NAb,A8 = AC,得△AB£>gA4b,CF = 8O.乂BE 1.CF, BE 平分/FBC,故BE 平分CF, E为CF 中点、,所以2CE = FC = BD .9. 1. 2★在△ABC中,已知乙4 = 60。
,£、F、G分别为/W、AC、8C的中点,P、Q为AABC形外两点,使总_14从尸£ = ¥,°尸_14。
,0尸=卓,若6尸=1,求尸0的长.解析如图,连结EG、FG ,则EG//AC , FG//AB,故/PEG = 150。
= NQFG . 又QF = -AC = EG , PE 4AB = FG , 故APEG 9AGFQ , 所以2 2PG = GQ , AEGP + ZFGQ = ZFQG + ZFGQ = 30°, 乂ZEGF = 60°,所以NPG0 = 9O。
,于是PQ = 0PG = y/2 .10.1. 3★在梯形A8C0的底边AD上有一点心若八钻石、ABCEx △(7£)七的周长相等,求竺L AD 解析作平行四边形EC8A,则△AB石口\。
£»,若H与A不重合,则H在£4 (或延长线)上,但由三角形不等式易知,A,在E4上时,AABE的周长〉/XAZE的周长;A,在E4延长线上时,AABE的周长<AA f BE周长,均与题设矛盾,故A与H重合,A£〃8C ,同理ED//BC ,£ = =.= = AD 2AA f E11.1.4★★△ABC 内,44。
= 60。
,/4(78 = 40。
第2章特殊三角形单元复习1.掌握图形的对称及轴对称图形的定义,会作一个图形关于直线的对称图形,理解轴对称的性质.2.了解等腰三角形的定义,掌握等腰三角形的性质与判定;了解直角三角形的定义,掌握直角三角形的性质与判定;理解中垂线、角平分线的性质与判定.3.理解等腰三角形和直角三角形这两个基本图形在几何中的地位和作用,能将复杂的几何问题转化为基本图形解决.考点一:轴对称与轴对称图形例1 (湖州市吴兴区)下列图形中,属于轴对称图形的是()A. B. C. D.例2 (宁波市北仑区)“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题:如图所示,将军在观望烽火之后从山脚上的点A出发,奔向小河旁边的点P饮马,饮马后再到点B宿营,若点A,B到水平直线l(l表示小河)的距离分别是3,1,A,B两点之间水平距离是3,则AP+PB的最小值为.如果两个图形关于某条直线对称,那么对称轴是任何一组对应点所连线段的垂直平分线.由轴对称的性质可以得到以下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形是轴对称图形,我们只要找到一组对应点,作出连结它们的线段的垂直平分线,就可以得到这两个图形的对称轴;③轴对称图形的对称轴是任何一组对应点所连线段的垂直平分线.1.(台州市椒江区)如图所示,P是直线l外一个定点,A为直线l上一个定点,点P关于直线l的对称点记为P1,将直线l绕点A顺时针旋转30°得到直线l′,此时点P2与点P关于直线l′对称,则∠P1AP2等于()A.30°B.45°C.60°D.75°2.(宁波市北仑区)如图所示为由5个边长为单位1的小正方形拼成的图形,请你在图上添加一个小正方形,使添加后的图形是一个轴对称图形,要求画出三种.考点二:等腰三角形的性质与判定例3 (杭州市江干区)一个等腰三角形的一个内角是另一个内角的2倍,则这个三角形底角为(A)A.72°或45°B.45°或36C.36°或90°D.72°或90°例4 (宁波市镇海区)如图所示,AB∠CD,CE平分∠ACD交AB于点E.(1)求证:∠ACE是等腰三角形.(2)若AC=13cm,CE=24cm,求∠ACE的面积.1.等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等(等边对等角);③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(三线合一).2.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).3.在①等腰、②底边上的高、③底边上的中线、④顶角平分线四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.3.(绍兴市柯桥区)在∠ABC中,与∠A相邻的外角是140°,要使∠ABC是等腰三角形,则∠B的度数是.4.(嘉兴市)如图所示,∠ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC=.(第4题)5.(杭州市江干区)证明命题“等腰三角形底边上的中点到两腰的距离相等”是真命题.考点三:直角三角形的性质与判定例5 (杭州市余杭区)如图所示,在∠ABC中,∠ACB=90°,∠A=26°,BC=BD,则∠ACD的度数是(C)A.64B.42°C.32°D.26°例6 (天台县)如图所示,在Rt∠ABC中,CM平分∠ACB交AB于点M,过点M作MN∠BC交AC于点N,且MN平分∠AMC,若AN=1.(1)求∠B的度数.(2)求CN的长.直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,还具有一些特殊的性质:①直角三角形两直角边的平方和等于斜边的平方(勾股定理);②在直角三角形中,两个锐角互余;③在直角三角形中,斜边上的中线等于斜边的一半;④直角三角形的两直角边的乘积等于斜边与斜边上高的乘积;⑤在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.6.(杭州市拱墅区)在Rt∠ABC中,∠C=90°,∠A-∠B=70°,则∠A的度数为()A.80°B.70°C.60°D.50°7.(绍兴市越城区)如图所示,在∠ABC中,∠ACB=90°,点D在BC上,E是AB的中点,AD,CE相交于点F,且AD=DB.若∠B=20°,则∠DFE等于()A.30°B.40°C.50°D.60°8.(嘉善县)如图所示,在∠ABC中,D是BC中点,E是AB上一点,F是AC上一点.若∠EDF=90°,且BE2+FC2=EF2,求证:∠BAC=90°.考点四:线段的中垂线与角平分线例7 (德清县)如图所示,已知∠AOE=∠BOE=15°,EF∠OB,EC∠OB于点C,EG∠OA于点G,若EC=√3,则OF的长度是()A.2√3B.√3C.3D.2例8 (杭州市西湖区)在∠ABC中,∠BAC=α,边AB的垂直平分线交边BC于点D,边AC的垂直平分线交边BC于点E,连结AD,AE,则∠DAE的度数为.(用含α的代数式表示)1.角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,不必证明全等.2.线段垂直平分线的性质:①垂直平分线垂直且平分其所在线段;②垂直平分线上任意一点,到线段两端点的距离相等;③三角形三条边的垂直平分线相交于一点,这一点到三个顶点的距离相等.9.(宁波市江北区)如图所示,在∠ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于点D,交AB于点E,CD=2,则AC=.(第9题)(第10题)10.(杭州市临安区)如图所示,AB∠CD,∠ABC和∠DCB的平分线BP,CP交于点P,过点P作PA∠AB于点A,交CD于点D.若AD=10,则点P到BC的距离是,∠BPC=.考点五:勾股定理例9 (嘉兴市)如图所示的图案由赵爽弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=27,S3=1,则S1的值是.例10 (慈溪市)如图所示,在Rt∠ABC中,∠ACB=90°,BC=6,AB的垂直平分线交AB于点D,交AC 于点E,若CD=5,则AE=.1.勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.2.勾股定理公式a2+b2=c2的变形有a=√c2−b2,b=√c2−a2及c=√a2+b2.3.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.11.(湖州市南浔区)如图1所示,以直角三角形ABC的各边为边分别向外作正方形,再把较小的两张正方形纸片按如图2所示的方式放置在最大的正方形内,三个阴影部分面积分别记为S1,S2,S3,若S1=1,S2=2,S3=3,则两个较小正方形纸片的重叠部分(四边形DEFG)的面积为()图1 图2A.5B.5.5C.5.8D.612.(临海市)如图所示,在∠ABC中,AB=4,BC=2,AC=2√3.(第12题)(1)求证:∠ABC是直角三角形.(2)D是AC上的中点,求BD的长.考点六:等边三角形与直角三角形例11 (杭州市临安区)在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作等边三角形,作得两个等边三角形的另一顶点分别为D,E.(1)如图1所示,连结CD,AE,求证:CD=AE.(2)如图2所示,若AB=1,BC=2,求DE的长.(3)如图3所示,将图2中的等边三角形BEC绕点B作适当的旋转,连结AE,若有DE2+BE2=AE2,试求∠DEB的度数.图1 图2 图31.等边三角形是特殊的等腰三角形;等边三角形的三条边都相等,三个内角都相等,且都等于60°;等边三角形是轴对称图形,它有三条对称轴;等边三角形的任意一角的平分线都垂直平分对边,三边的垂直平分线都是对称轴.2.等腰直角三角形是另一种特殊的三角形,具备等腰三角形和直角三角形的所有性质.即两个锐角相等且都是45°;斜边上的中线、斜边所对角的角平分线、斜边上的高三线合一.13.(余姚市)如图所示,∠BAC=90°,B是射线AM上的一个动点,C是射线AN上一个动点,且线段BC 的长度不变,点D是点A关于直线BC的对称点,连结AD.若2AD=BC,则∠ABD的度数是.(第13题)14.(杭州市余杭区)如图所示,∠ABC和∠DCE都是等腰直角三角形,∠ACB=∠DCE=90°.(第14题)(1)求证:BD=AE.(2)若∠ABD=∠DAE,AB=8,AD=6,求四边形ABED的面积.本章主要易错点1.注意轴对称与轴对称图形的区别,轴对称是指两个图形的关系,而轴对称图形是指一个图形本身的特征.2.“等边对等角”“等角对等边”指的是同一个三角形中边角之间的转化关系,不能与全等混淆.3.等腰三角形“三线合一”的“三线”是指底边的中线、高线和顶角平分线.4.勾股定理描述直角三角形边之间的关系,主要应用于线段长度的计算,注意其前提条件是在直角三角形中,因此构造直角三角形是应用勾股定理最重要的一个步骤.5.等腰三角形中按边分类、直角三角形中按直角分类是特殊三角形问题中常见的分类讨论,要注意合理分类. 练习1.(杭州市江干区)用反证法证明“三角形中必有一个内角不小于60°”时,应当假设这个三角形中( )A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°2.(湖州市吴兴区)如图所示,在∠ABC 中,AB =AC =5,BC =8,CD 是AB 边上的高,则线段AD 的长度为( )A. 125B. 245C. 135D. 75(第2题)(第3题)(第4题)(第5题)(第6题)3.(杭州市江干区)如图所示,在Rt∠ABC 中,∠C =90°,BC =6,DE 是斜边AB 的中垂线,交AC 于点E ,∠EBC 的周长为14,则AB = .4.(嘉兴市)如图所示,已知正方形ABCD 的边长是2cm ,E 是CD 边的中点,点F 在BC 边上移动,当AE 恰好平分∠FAD 时,CF = cm.5.(杭州市萧山区)如图所示,在∠ABC 中,AB =AC ,∠BAC =120°,S ∠ABC =8√3,M ,P ,N 分别是边AB ,BC ,AC 上任意一点. (1)AB 的长为 .(2)PM+PN 的最小值为 .6.(嵊州市)如图所示,∠ABC 是边长为12的等边三角形,点D ,E 分别在AB ,BC 上,且BE =BD =10,P 是线段DE 上的一个动点,分别作点P 关于AB ,AC ,BC 的对称点P 1,P 2,P 3,若连结P 1,P 2,P 3所得的三角形是等腰三角形,则DP = .。
经典《三角形》专题训练知识点梳理考点一、三角形1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2、三角形的分类. ⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形 ⎪⎪⎩⎪⎪⎨⎧)(等边三角形等腰三角形不等边三角形 3、三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.4、三角形的重要线段①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)5、三角形具有稳定性6、三角形的内角和定理及性质定理:三角形的内角和等于180°.推论1:直角三角形的两个锐角互补。
推论2:三角形的一个外角等于不相邻的两个内角的和。
推论3:三角形的一个外角大于与它不相邻的任何一个内角。
7、多边形的外角和恒为360°8、多边形及多边形的对角线①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。
③多边形的对角线的条数:A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。
B.n 边形共有2)3(-n n 条对角线。
9、边形的内角和公式及外角和①多边形的内角和等于(n-2)×180°(n ≥3)。
②多边形的外角和等于360°。
三角形 (按角分) 三角形 (按边分)10、平面镶嵌及平面镶嵌的条件。
①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。
②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。
《特殊三角形》全章复习与巩固(提高)【学习目标】1.认识轴对称图形的基本特征;掌握判断轴对称图形的方法,并能正确画出简单的轴对称图形;2. 了解等腰三角形、等边三角形的有关概念,并掌握它们的性质以及判定方法;3.理解命题与逆命题、定理与逆定理的意义,并能判断命题的真假;4.了解尺规作图的常用工具;理解并掌握线段垂直平分线定理的逆定理、角平分线性质的第二个定理,并能够熟练地应用它们;5.理解直角三角形的概念及性质的广泛应用,掌握直角三角形斜边上中线性质,并能灵活应用. 领会直角三角形中常规辅助线的添加方法.6.掌握勾股定理及其勾股定理的逆定理的内容及应用,学会用勾股定理解决简单的几何问题,应用勾股定理的逆定理来判断直角三角形.7.理解并能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法“斜边,直角边”(即“HL”)判定两个直角三角形全等;【知识网络】【要点梳理】要点一、图形的轴对称1.图形轴对称的定义及其性质如果把一个图形沿着一条直线折叠后,直线两侧的部分能够互相重合,那么这两个图形叫做轴对称图形.这条直线叫做对称轴.性质:对称轴垂直平分连结两个对称点的线段.图形的轴对称:一般的,由一个图形变为另一个图形,并使这两个图形沿某一条直线折叠后能够互相重合,这样的图形改变叫做图形的轴对称,这条直线叫做对称轴.成轴对称的两个图形是全等形.2.利用轴对称的性质求两点之间的最短距离已知点A,B(A,B)在直线的同侧,和直线a,在直线上求作一点C,使AC+BC的距离和最小.作法:1.作点A关于直线a的对称点A′;2.连接A′B,交直线a与点C;3.连接AC.点C就是所求作的点.下面给出证明:设P是直线a上任意一点,连结AP,A′P.由作图知,直线a垂直平分AA′,则AC=A′C,AP=A′P(线段垂直平分线上的点到线段两端的距离相等)....AP+BP=A′P+BP≥A′B,A′B=A ′C+BC=AC+BC,即AP十BP≥AC+BC,所以沿折线A-C-B的路线行走时路程最短.要点诠释:1.轴对称图形与图形的轴对称是两个不同的概念,轴对称图形是指一个图形的两个部分,也就是说,一条直线把一个图形(一个等腰三角形)分成两个部分,这两个部分之间的关系;而图形的轴对称是指两个图形之间的关系,比如两个全等的等腰直角三角形.2.对称轴的实质是一条直线,向两方无限延伸的.3.两点之间的最短距离要分情况讨论,看这两点是否在某一条直线的同侧还是异侧. 要点二、等腰三角形及等边三角形的性质与判定1.等腰三角形的定义及其对称性有相等两边的三角形叫做等腰三角形.三边相等的三角形叫做等边三角形.等腰三角形是轴对称图形,对称轴只有一条,就是顶角的平分线或是底边的高、中线.等边三角形也是轴对称图形,对称轴有三条,等边三角形是特殊的等腰三角形.2.等腰三角形的性质与判定定理性质1:等腰三角形的两个底角相等(简称“在同一三角形中,等边对等角”).推论:等边三角形的各个内角都等于60°;性质2:等腰三角形的顶角平分线、底边上的中线和高互相重合(简称“等腰三角形三线合一”).等腰三角形的判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角(简称“在同一三角形中,等角对等边”).等边三角形的判定定理:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.要点诠释:等腰三角形的性质与判定定理是三角形中边与角之间相互转化的重要依据,性质定理是由边的相等得出角的相等,判定定理是由角的相等得出边的相等..等腰三角形的性质定理和判定定理是互逆定理.要点三、尺规作图,命题、定理与逆命题、逆定理1.尺规作图的定义利用直尺(没有刻度)和圆规完成基本作图,称之为尺规作图.要点诠释:尺规作图时使用的直尺是不能用来进行测量长度的操作,它一般用来将两个点连在一起.圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度或一个任意的长度.2.命题与逆命题判断一件事件的句子叫命题.其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.要点诠释:(1)对于命题的定义要正确理解,也即是通过这句话可以确定一件事是发生了还是没发生,如果这句话不能对于结果给予肯定或者否定的回答,那它就不是命题;(2)每一个命题都可以写成“如果…,那么…”的形式,“如果”后面为题设部分,“那么”后面为结论部分;(3)所有的命题都有逆命题.原命题正确,它的逆命题不一定是正确的.3.定理与逆定理如果一个命题是真命题(正确的命题),那就可以称它为定理.如果一个定理的逆命题也是真命题,那就称它为原定理的逆定理.要点诠释:一个命题是真命题,但是它的逆命题不一定是真命题的,所以不是每个定理都有逆定理.4.角平分线性质的第二个定理角的内部,到角两边的距离相等的点,在这个角平分线上.要点诠释:性质定理的前提条件是已经有角平分线了,即角被平分了;第二个性质定理则是在结论中确定角被平分,一定要注意着两者的区别,在使用这两个定理时不要混淆了.5.线段垂直平分线(也称中垂线)的性质定理的逆定理逆定理:到线段两端点距离相等的点,在线段的垂直平分线上.要点诠释:性质定理的前提条件是线段已经有了中垂线,从而可以得到线段相等;逆定理则是在结论中确定线段被垂直平分,一定要注意着两者的区别,前者在题设中说明,后者则在最终的结论中得到,所以在使用这两个定理时不要混淆了.要点四、直角三角形性质及判定直角三角形的性质性质定理1:直角三角形的两个锐角互余.性质定理2:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.判定定理:有两个角互余的三角形是直角三角形.要点诠释:这个定理的前提条件是“在直角三角形中”,是证明直角三角形中一边等于另一边(斜边)的一半的重要方法之一,通常用于证明边的倍数关系.性质定理2的逆命题也同样正确,在一个三角形中,如果一边的中线等于这边的一半,那么这个三角形是直角三角形.要点五、勾股定理及其逆定理1.勾股定理直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系;(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:,,.2.勾股定理逆定理如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点六、判定直角三角形全等的一般方法和全等的特殊方法——斜边,直角边定理由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了。
主题:锐角三角函数解直角三角形例题【序言】直角三角形是我们初中数学学习中的一个重要内容,而锐角三角函数作为直角三角形中的一个重要概念,在解题中也扮演着重要的角色。
下面我们将通过一些例题来详细讲解锐角三角函数在直角三角形中的应用。
【例一】已知直角三角形中的一角为30°,对边长为3cm,求斜边长。
求sin30°、cos30°、tan30°的值。
1. 根据三角函数的定义,sin30°=对边/斜边=3/斜边,而cos30°=邻边/斜边,tan30°=对边/邻边2. 根据30-60-90三角形的性质,可知对边为3cm,邻边为3*sqrt(3)cm,斜边为2*3cm=6cm3. 所以sin30°=1/2,cos30°=sqrt(3)/2,tan30°=1/sqrt(3)【例二】已知直角三角形中的一角为45°,斜边长为5cm,求对边和邻边的长度。
求sin45°、cos45°、tan45°的值。
1. 根据三角函数的定义,sin45°=对边/斜边,cos45°=邻边/斜边,tan45°=对边/邻边2. 根据45-45-90三角形的性质,可知对边和邻边的长度相等,且均为斜边的1/sqrt(2)倍3. 所以对边和邻边的长度均为5/sqrt(2)cm,sin45°=1/sqrt(2),cos45°=1/sqrt(2),tan45°=1【例三】已知直角三角形中的一角为60°,对边长为4cm,求斜边和邻边的长度。
求sin60°、cos60°、tan60°的值。
1. 根据三角函数的定义,sin60°=对边/斜边,cos60°=邻边/斜边,tan60°=对边/邻边2. 根据30-60-90三角形的性质,可知对边为4cm,邻边为2*4cm=8cm,斜边为4*sqrt(3)cm3. 所以sin60°=sqrt(3)/2,cos60°=1/2,tan60°=sqrt(3)【总结】通过以上三个例题的讲解,我们可以得出在直角三角形中,根据已知角度和已知边长来求解斜边长、对边长、邻边长以及三角函数值的具体方法。
解直角三角形的基本类型及解法直角三角形是一种特殊的三角形,其中一个内角为直角(即90度)。
解直角三角形的基本类型及解法是初中数学中非常重要的一部分。
本文将详细介绍直角三角形的基本类型和解法,并给出一些例题。
一、基本类型直角三角形的基本类型包括三种情况:已知两条直角边,已知直角边和一条锐角边,已知一个直角边和一条直角边上的中线(中线一端是直角边,另一端平分对边)。
情况一:已知两条直角边此时可以直接用勾股定理进行计算。
勾股定理又称毕达哥拉斯定理,它指出:直角三角形两条直角边的平方和等于斜边的平方。
即a² + b² = c²,其中a、b分别为直角边,c为斜边。
情况二:已知直角边和一条锐角边此时需要利用正弦定理、余弦定理或解直角三角形的“特殊三角形”。
正弦定理指出,对于任意三角形ABC,有sinA/a=sinB/b=sinC/c。
对于直角三角形ABC,可以得到sinA/a=sinB/b=1/c,即c=b/sinB。
余弦定理指出,对于任意三角形ABC,有a²=b²+c²-2bc*cosA,b²=a²+c²-2ac*cosB,c²=a²+b²-2ab*cosC。
对于直角三角形ABC,可以得到a²=b²+c²,即代码中常见“a²+b²=c²” 的形式。
“特殊三角形”指的是30度-60度-90度和45度-45度-90度两种特殊情况。
这两种直角三角形的比例关系可以用解方程的方法求得。
30度-60度-90度三角形中,大边对应60度,小边对应30度,斜边对应90度。
而45度-45度-90度三角形中,两条直角边相等,斜边是直角边的根号二倍。
情况三:已知一个直角边和一条直角边上的中线因为中线是直角边的一半,此时可以利用勾股定理计算求出另一条直角边,然后按照情况一或情况二的方法来求解。
特殊三角形知识定位特殊三角形在初中几何或者竞赛中占据非常大的地位,不管三解形还是特殊三角形是平面几何中最重要的图形,它的有关知识是今后我们学习四边形、多边形乃至立体几何的重要基础。
特殊三角形的判定和性质是证明有关三角形问题的基础,必须熟练掌握。
本节我们通过一些实例的求解,旨在介绍数学竞赛中特殊三角形相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。
知识梳理三角形类型定义性质判定等腰三角形有两条边相等的三角形是等腰三角形,其中相等的两条边分别叫做腰,另一条边叫做底边,两腰的夹角叫顶角,腰和底边的夹角为底角1.等腰三角形是对称图形,顶角平分线所在直线为它的对称轴2.等腰三角形两底角相等,即在同一个等腰三角形中,等边对等角3.等腰三角形的顶角平分线,底边上的中线和高线互相重合,简称等腰三角形的三线合一1.(定义法)有两条边相等的三角形是等腰三角形2.如果一个三角形有两个角相等,那么这个三角形是等腰三角形,即,在同一个三角形中,等角对等边等边三角形三条边都相等的三角形是等边三角形,它是特殊的等腰三角形,也叫正三角形1.等边三角形的内角都相等,且为60°2.等边三角形是轴对称图形,且有三条对称轴3.等边三角形每条边上的中线,高线和所对角的角平分线三线合一,他们所在的直线都是等边三角形的对称轴1.三条边都相等的三角形是等边三角形2.三个内角都等于60°的三角形是等边三角形3.有一个角是60°的等腰三角形是等边三角形直角三角形有一个角是直角的三角形是直角三角形,即“R t△”1.直角三角形的两锐角互余2.直角三角形斜边上的中线等于斜边的一半3.直角三角形中30°角所对的直角边等于斜边的一半4.直角三角形中两条直角边的平方和等于斜边的平方(勾股定理)1.有一个角是直角的三角形是直角三角形2.有两个角互余的三角形是直角三角形3.如果一个三角形中两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形(勾股定理逆定理)2、等腰三角形(1)有两条边相等的三角形叫做等腰三角形;三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形。
(易错题精选)初中数学三角形基础测试题及解析(1)一、选择题1.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.23B.13C.4 D.32【答案】B【解析】【分析】如下图,作AD⊥BC,设半径为r,则在Rt△OBD中,OD=3-1,OB=r,BD=3,利用勾股定理可求得r.【详解】如图,过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD-OA=2;Rt△OBD中,根据勾股定理,得:22+BD OD13故答案为:B.【点睛】本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC判定点O在AD上.2.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()A.32B.5 C.4 D.31【答案】B【解析】【分析】【详解】由题意易知:∠CAB=45°,∠ACD=30°,若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=6,则AC=BC=32.同理可求得:AO=OC=3.在Rt△AOD1中,OA=3,OD1=CD1-OC=4,由勾股定理得:AD1=5.故选B.3.AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4 B.3 C.6 D.2【答案】B【解析】【分析】首先由角平分线的性质可知DF=DE=2,然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.【详解】解:AD是△ABC中∠BAC的平分线,∠EAD=∠FADDE⊥AB于点E,DF⊥AC交AC于点F ,∴DF=DE,又∵S △ABC =S △ABD +S △ACD ,DE=2,AB=4, 11742222AC ∴=⨯⨯+⨯⨯ ∴AC=3.故答案为:B【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键.4.如图,在△ABC 中,AC =BC ,D 、E 分别是AB 、AC 上一点,且AD =AE ,连接DE 并延长交BC 的延长线于点F ,若DF =BD ,则∠A 的度数为( )A .30B .36C .45D .72【答案】B【解析】【分析】 由CA=CB ,可以设∠A=∠B=x .想办法构建方程即可解决问题;【详解】解:∵CA=CB ,∴∠A=∠B ,设∠A=∠B=x .∵DF=DB ,∴∠B=∠F=x ,∵AD=AE ,∴∠ADE=∠AED=∠B+∠F=2x ,∴x+2x+2x=180°,∴x=36°,故选B .【点睛】本题考查等腰三角形的性质、三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处,已知BC=24,∠B=30°,则DE 的长是( )A .12B .10C .8D .6【答案】C【解析】【分析】 由折叠的性质可知;DC=DE ,∠DEA=∠C=90°,在Rt △BED 中,∠B=30°,故此BD=2ED ,从而得到BC=3BC ,于是可求得DE=8.【详解】解:由折叠的性质可知;DC=DE ,∠DEA=∠C=90°,∵∠BED+∠DEA=180°,∴∠BED=90°.又∵∠B=30°,∴BD=2DE .∴BC=3ED=24.∴DE=8.故答案为8.【点睛】本题考查的是翻折的性质、含30°锐角的直角三角形的性质,根据题意得出BC=3DE 是解题的关键.6.如图,在△ABC 中,∠C=90°,∠A=30°,以点B 为圆心,适当长为半径的画弧,分别交BA ,BC 于点M 、N ;再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D ,则下列说法中不正确的是()A .BP 是∠ABC 的平分线B .AD=BDC .:1:3CBD ABD S S V V D .CD=12BD【答案】C【解析】【分析】A 、由作法得BD 是∠ABC 的平分线,即可判定;B 、先根据三角形内角和定理求出∠ABC 的度数,再由BP 是∠ABC 的平分线得出∠ABD =30°=∠A,即可判定;C ,D 、根据含30°的直角三角形,30°所对直角边等于斜边的一半,即可判定.【详解】解:由作法得BD 平分∠ABC ,所以A 选项的结论正确;∵∠C =90°,∠A =30°,∴∠ABC =60°,∴∠ABD =30°=∠A ,∴AD =BD ,所以B 选项的结论正确;∵∠CBD =12∠ABC =30°, ∴BD =2CD ,所以D 选项的结论正确;∴AD =2CD ,∴S △ABD =2S △CBD ,所以C 选项的结论错误.故选:C .【点睛】此题考查含30°角的直角三角形的性质,尺规作图(作角平分线),解题关键在于利用三角形内角和进行计算.7.将一个边长为4的正方形ABCD 分割成如图所示的9部分,其中ABE △,BCF V ,CDG V ,DAH V 全等,AEH △,BEF V ,CFG △,DGH V 也全等,中间小正方形EFGH 的面积与ABE △面积相等,且ABE △是以AB 为底的等腰三角形,则AEH △的面积为( )A .2B .169C .32D .2【答案】C【解析】【分析】【详解】 解:如图,连结EG 并向两端延长分别交AB 、CD 于点M 、N ,连结HF ,∵四边形EFGH 为正方形,∴EG FH =,∵ABE △是以AB 为底的等腰三角形,∴AE BE =,则点E 在AB 的垂直平分线上,∵ABE △≌CDG V ,∴CDG V 为等腰三角形,∴CG DG =,则点G 在CD 的垂直平分线上,∵四边形ABCD 为正方形,∴AB 的垂直平分线与CD 的垂直平分线重合,∴MN 即为AB 或CD 的垂直平分线,则,EM AB GN CD ^^,EM GN =,∵正方形ABCD 的边长为4,即4AB CD AD BC ====,∴4MN =,设EM GN x ==,则42EG FH x ==-,∵正方形EFGH 的面积与ABE △面积相等,即2114(42)22x x ?-,解得:121,4x x ==,∵4x =不符合题意,故舍去,∴1x =,则S 正方形EFGH 14122==⨯⨯=V ABE S , ∵ABE △,BCF V ,CDG V ,DAH V 全等,∴2====V V V V ABE BCF CDG DAH S S S S ,∵正方形ABCD 的面积4416=⨯=,AEH △,BEF V ,CFG △,DGH V 也全等, ∴1(4=V AEH S S 正方形ABCD − S 正方形EFGH 134)(16242)42-=⨯--⨯=V ABE S , 故选:C .【点睛】本题考查了正方形的性质、全等三角形的性质和等腰三角形的性质,解题的关键是求得ABE △的面积.8.图中的三角形被木板遮住了一部分,这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .以上都有可能【答案】D【解析】 从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角,故选D .9.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A 13B 5C .22D .4【答案】A【解析】 试题分析:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt △ABC 中,AB=4,则AO=OC=2.在Rt △AOD 1中,OD 1=CD 1-OC=3,由勾股定理得:AD 1=13. 故选A.考点: 1.旋转;2.勾股定理.10.如图,在四边形ABCD 中,,90,5,10AD BC ABC AB BC ∠=︒==P ,连接,AC BD ,以BD 为直径的圆交AC 于点E .若3DE =,则AD 的长为( )A .55B .45C .35D .25【答案】D【解析】【分析】先判断出△ABC 与△DBE 相似,求出BD ,最后用勾股定理即可得出结论.【详解】如图1,在Rt △ABC 中,AB=5,BC=10,∴AC=55,连接BE ,∵BD 是圆的直径,∴∠BED=90°=∠CBA ,∵∠BAC=∠EDB ,∴△ABC ∽△DEB ,∴AB AC DE DB= , ∴5355DB= , ∴DB=35在Rt △ABD 中,AD=2225BD AB -= ,故选:D .【点睛】此题考查勾股定理,相似三角形的判定和性质,正确作出辅助线是解题的关键.11.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是( )A .25°B .40°C .25°或40°D .50°【答案】C【解析】∵等腰三角形有一个是50°∴有两种可能①是三个角为50°、50°、80°;②是三个角为50°、65°、65°分情况说明如下: ①当三个角为50°、50°、80°时,根据图①,可得其一条腰上的高与底边的夹角∠DAB=40°;②当三个角为50°、65°、65°,根据图②,可得其一条腰上的高与底边的夹角∠DAB=25°故故选:C① ②点睛:本题主要考查三角形内角和定理:三角形内角和为180°.12.如图,在ABC V 中,90C ∠=︒,60CAB ∠=︒,按以下步骤作图:①分别以A ,B 为圆心,以大于12AB 的长为半径画弧,两弧分别相交于点P 和Q . ②作直线PQ 交AB 于点D ,交BC 于点E ,连接AE .若4CE =,则AE 的值为( ) A .6B .2C .43D .8 【答案】D【解析】【分析】根据垂直平分线的作法得出PQ是AB的垂直平分线,进而得出∠EAB=∠CAE=30°,即可得出AE的长.【详解】由题意可得出:PQ是AB的垂直平分线,∴AE=BE,∵在△ABC中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∴∠EAB=∠CAE=30°,∴CE=12AE=4,∴AE=8.故选D.【点睛】此题主要考查了垂直平分线的性质以及直角三角形中,30°所对直角边等于斜边的一半,根据已知得出∠EAB=∠CAE=30°是解题关键.13.如图,赵爽弦图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形两条直角边长分别为a和b.若8ab ,大正方形的边长为5,则小正方形的边长为()A.1 B.2 C.3 D.4【答案】C【解析】【分析】由题意可知:中间小正方形的边长为a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:12ab=12×8=4,∴根据4×12ab+(a﹣b)2=52=25,得4×4+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3(舍负),故选:C.【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.14.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE ,,正确. 故选B .【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.15.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标轴为()4,1, 点D 的坐标为()0,1, 则菱形ABCD 的周长等于( )A .5B .43C .45D .20【答案】C【解析】【分析】 如下图,先求得点A 的坐标,然后根据点A 、D 的坐标刻碟AD 的长,进而得出菱形ABCD 的周长.【详解】如下图,连接AC 、BD ,交于点E∵四边形ABCD 是菱形,∴DB ⊥AC ,且DE=EB又∵B ()4,1,D ()0,1∴E(2,1)∴A(2,0)∴AD=()()2220015-+-=∴菱形ABCD 的周长为:45故选:C【点睛】本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A 的坐标,从而求得菱形周长.16.如图,在菱形ABCD 中,60BCD ∠=︒,BC 的垂直平分线交对角线AC 于点F ,垂足为E ,连接BF 、DF ,则DFC ∠的度数是( )A .130︒B .120︒C .110︒D .100︒【答案】A【解析】【分析】 首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB 即可解决问题;【详解】∵四边形ABCD 是菱形,∴∠ACD =∠ACB =12∠BCD=25°, ∵EF 垂直平分线段BC ,∴FB=FC ,∴∠FBC=∠FCB=25°,∴∠CFB=180°-25°-25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故选:A .【点睛】此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.17.如图,在ABC ∆中,AB 的垂直平分线交AB 于点D ,交BC 于点E .ABC ∆的周长为19,ACE ∆的周长为13,则AB 的长为( )A.3B.6C.12D.16【答案】B【解析】【分析】根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【详解】∵AB的垂直平分线交AB于点D,∴AE=BE,∵△ACE的周长=AC+AE+CE=AC+BC=13,△ABC的周长=AC+BC+AB=19,∴AB=△ABC的周长-△ACE的周长=19-13=6,故答案为:B.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.18.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为(12,0),点P为斜边OB上的一个动点,则PA+PC的最小值为( )A.132B.312C.192D.7【答案】B【解析】如图,作点A关于OB的对称点点D,连接CD交OB于点P,此时PA+PC最小,作DN⊥x 轴交于点N,∵B (3,3),∴OA =3,AB =3,∴OB =23,∴∠BOA =30°,∵在Rt △AMO 中,∠MOA =30°,AO =3,∴AM =1.5,∠OAM =60°,∴∠ADN =30°, ∵在Rt △AND 中,∠ADN =30°,AD =2AM =3,∴AN =1.5,DN =332, ∴CN =3-12-1.5=1, ∴CD 2=CN 2+DN 2=12+(332)2=314,∴CD =31. 故选B. 点睛:本题关键在于先借助轴对称的性质确定出P 点的位置,然后结合特殊角30°以及勾股定理计算.19.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?( ).A .0根B .1根C .2根D .3根【答案】B【解析】三角形具有稳定性,连接一条对角线,即可得到两个三角形,故选B20.如图,直线a b ∥,点A 、B 分别在直线a 、b 上,145∠︒=,若点C 在直线b 上,105BAC ∠︒=,且直线a 和b 的距离为3,则线段AC 的长度为( )A .32B .33C .3D .6【答案】D【解析】【分析】 过C 作CD ⊥直线a ,根据30°角所对直角边等于斜边的一半即可得到结论.【详解】过C作CD⊥直线a,∴∠ADC=90°.∵∠1=45°,∠BAC=105°,∴∠DAC=30°.∵CD=3,∴AC=2CD=6.故选D.【点睛】本题考查了平行线间的距离,含30°角的直角三角形的性质,正确的理解题意是解题的关键.。
特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析1.(2020秋•喀什地区期末)下列说法错误的是()A.等腰三角形的两个底角相等B.等腰三角形的高、中线、角平分线互相重合C.三角形两边的垂直平分线的交点到三个顶点距离相等D.等腰三角形顶角的外角是其底角的2倍2.(2020秋•顺城区期末)已知等腰三角形的周长为17cm,一边长为4cm,则它的腰长为()A.4cm B.6.5cm C.6.5cm或9cm D.4cm或6.5cm 3.(2017•海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.6 4.(2019•白银)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.5.(2013•凉山州)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.6.(2020秋•五常市期末)如图,点D、E在△ABC的边BC上,AD=AE,BD=CE.(1)求证:AB=AC;(2)若∠BAC=108°,∠DAE=36°,直接写出图中除△ABC与△ADE外所有的等腰三角形.7.(2019秋•龙岩期末)如图,AB=AC,AE=EC=CD,∠A=60°,若EF=2,则DF=()A.3B.4C.5D.6 8.(2006•烟台)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°9.(2020秋•慈溪市期中)已知:如图,AB=BC,∠A=∠C.求证:AD=CD.10.(2014秋•青山区期中)已知:如图,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF.求证:△DEF是等边三角形.11.(2018秋•六合区期中)如图,△ABC为等边三角形,BD平分∠ABC交AC于点D,DE ∥BC交AB于点E.(1)求证:△ADE是等边三角形.(2)求证:AE=AB.12.(2017•裕华区校级模拟)已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.13.(2012秋•姜堰市校级期中)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC =α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)若AO=n2+1,AD=n2﹣1,OD=2n(n为大于1的整数),求α的度数;(3)当α为多少度时,△AOD是等腰三角形?14.(2000•内蒙古)如图,已知△ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE,DE.求证:EC=ED.15.(2020秋•连山区期末)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=60°,AD=2,则BD=()A.2B.4C.6D.816.(2020秋•肇州县期末)如图,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,AE=6cm,则AC=()A.6cm B.5cm C.4cm D.3cm 17.(2020秋•朝阳县期末)如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为()A.4.5B.5C.5.5D.618.(2020秋•抚顺县期末)右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,则DE长为.19.(2020秋•宽城区期中)如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AD等于()A.10B.8C.6D.420.(2020秋•无棣县期中)如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上一动点,连接AP,则AP的长度不可能是()A.4B.4.5C.5D.721.(2020秋•云县期中)如图,点D是AB的中点,DE⊥AC,AB=7.2,∠A=30°,则DE=()A.1.8B.2.4C.3.6D.4.822.(2020秋•北碚区校级期中)如图,已知∠AOB=60°,P在边OA上,OP=8,点M,N在边OB上,PM=PN,若MN=5,则ON的长度是()A.9B.6.5C.6D.5.523.(2020秋•天宁区校级期中)如图,△ABC中,∠ACB=90°,∠CAB=60°,动点P 在斜边AB所在的直线m上运动,连结PC,那点P在直线m上运动时,能使图中出现等腰三角形的点P的位置有()A.6个B.5个C.4个D.3个24.(2020秋•连江县期中)如图,等边△ABC中,AB=4,点P在边AB上,PD⊥BC,DE ⊥AC,垂足分别为D、E,设PA=x,若用含x的式子表示AE的长,正确的是()A.2﹣x B.3﹣x C.1D.2+x 25.(2020秋•赣榆区期中)如图,在△ABC中,AB=AC=6,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长是()A.5B.2C.4D.326.(2019秋•勃利县期末)如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D 作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④27.(2019春•秦淮区期末)如图,△ABC是等边三角形,P是三角形内任意一点,D、E、F分别是AC、AB、BC边上的三点,且PF∥AB,PD∥BC,PE∥AC.若PF+PD+PE=a,则△ABC的边长为()A.a B.a C.a D.a28.下列说法中,正确的个数是()①三条边都相等的三角形是等边三角形;②有一个角为60°的等腰三角形是等边三角形;③有两个角为60°的三角形是等边三角形;④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形A.1个B.2个C.3个D.4个29.(2020•和平区三模)如图,在边长为2的等边三角形ABC中,D为边BC上一点,且BD=CD.点E,F分别在边AB,AC上,且∠EDF=90°,M为边EF的中点,连接CM交DF于点N.若DF∥AB,则CM的长为()A.B.C.D.30.(2020秋•天心区期中)下列说法错误的是()A.有一个角是60°的等腰三角形是等边三角形B.如果一个三角形有两个角相等,那么这两个角所对的边相等C.等腰三角形的角平分线,中线,高相互重合D.三个角都相等的三角形是等边三角形.31.(2019春•杏花岭区校级期中)关于等边三角形,下列说法中错误的是()A.等边三角形中,各边都相等B.等腰三角形是特殊的等边三角形C.两个角都等于60°的三角形是等边三角形D.有一个角为60°的等腰三角形是等边三角形32.(2019•城步县模拟)一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13B.14C.15D.16 33.(2018•柳州一模)如图,在四边形ABCD中,∠A=∠B=60°,∠D=90°,AB=2,则CD长的取值范围是()A.<CD<B.CD>2C.1<CD<2D.0<CD<34.(2018秋•罗庄区期中)如图,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画出射线OB,则∠AOB=()A.30°B.45°C.60°D.90°参考答案与试题解析1.【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】线段、角、相交线与平行线;三角形;推理能力.【分析】根据等腰三角形的性质即可判断A;根据三角形的高、角平分线、中线的定义和等腰三角形的性质即可判断B;根据角平分线的性质即可判断C;根据三角形的外角性质和等腰三角形的性质即可判断D.【解答】解:A.等腰三角形的两底角相等,故本选项不符合题意;B.等腰三角形的两个底角的高、角平分线和中线不一定互相重合,故本选项符合题意;C.过O作OM⊥AB于M,OQ⊥AC于Q,ON⊥BC于N,∵O是∠ABC和∠ACB的角平分线的交点,∴OM=ON,ON=OQ,∴OM=ON=OQ,即三角形的两边的垂直平分线的交点到三个顶点的距离相等,故本选项不符合题意;D.∵AB=AC,∴∠B=∠C,∵∠EAC=∠B+∠C,∴∠EAC=2∠B,即等腰三角形顶角的外角是其底角的2倍,故本选项不符合题意;故选:B.【点评】本题考查了角平分线的性质,等腰三角形的性质,三角形的外角性质等知识点,能灵活运用知识点进行推理是解此题的关键.2.【考点】三角形三边关系;等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】分两种情况讨论:当4cm为腰长时,当4cm为底边时,分别判断是否符合三角形三边关系即可.【解答】解:①若4cm是腰长,则底边长为:20﹣4﹣4=12(cm),∵4+4<12,不能组成三角形,舍去;②若4cm是底边长,则腰长为:=6.5(cm).则腰长为6.5cm.故选:B.【点评】此题考查等腰三角形的性质与三角形的三边关系.此题难度不大,注意掌握分类讨论思想的应用是解此题的关键.3.【考点】等腰三角形的判定.【专题】三角形.【分析】根据等腰三角形的性质,利用4作为腰或底边长,得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形(AD,AE,AF,AG分别为分割线).故选:B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.4.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或【点评】本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的度数,要分∠A是顶角和底角两种情况,以免造成答案的遗漏.5.【考点】非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系;等腰三角形的性质.【专题】压轴题;分类讨论.【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【解答】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.【点评】本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.6.【考点】等腰三角形的判定.【专题】几何图形.【分析】(1)首先过点A作AF⊥BC于点F,由AD=AE,根据三线合一的性质,可得DF=EF,又由BD=CE,可得BF=CF,然后由线段垂直平分线的性质,可证得AB=AC.(2)根据等腰三角形的判定解答即可.【解答】证明:(1)过点A作AF⊥BC于点F,∵AD=AE,∴DF=EF,∵BD=CE,∴BF=CF,∴AB=AC.(2)∵∠B=∠BAD,∠C=∠EAC,∠BAE=∠BEA,∠ADC=∠DAC,∴除△ABC与△ADE外所有的等腰三角形为:△ABD、△AEC、△ABE、△ADC,【点评】此题考查了等腰三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.7.【考点】等边三角形的判定与性质.【专题】数形结合;三角形;等腰三角形与直角三角形;运算能力;推理能力.【分析】过点E作EG⊥BC,交BC于点G,先证明△ABC是等边三角形,再证明∠AFE =90°,然后利用等腰三角形的“三线合一”性质及角平分线的性质定理求得EG的长,随后利用含30度角的直角三角形的性质求得DE的长,最后将EF与DE相加即可.【解答】解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.【点评】本题考查了等边三角形的判定与性质、等腰三角形的“三线合一”性质及含30度角的直角三角形的性质,熟练掌握相关性质及定理是解题的关键.8.【考点】等边三角形的判定与性质.【分析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE=BE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【解答】解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选:B.【点评】考查直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力.9.【考点】等腰三角形的判定与性质.【专题】几何图形.【分析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.【解答】证明:连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.【点评】重点考查了等腰三角形的判定方法,即:如果一个三角形有两个角相等,那么这两个角所对的边也相等.10.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】由△ABC是等边三角形,AD=BE=CF,易证得△ADF≌△BED,即可得DF=DE,同理可得DF=EF,即可证得:△DEF是等边三角形.【解答】证明:∵△ABC是等边三角形,∴AB=BC=AC,∵AD=BE=CF,∴AF=BD,在△ADF和△BED中,,∴△ADF≌△BED(SAS),∴DF=DE,同理DE=EF,∴DE=DF=EF.∴△DEF是等边三角形.【点评】此题考查了等边三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11.【考点】平行线的性质;等腰三角形的判定与性质;等边三角形的判定与性质.【专题】几何图形.【分析】(1)根据等边三角形的性质和平行线的性质证明即可.(2)根据等边三角形的性质解答即可.【解答】证明:(1)∵△ABC为等边三角形,∴∠A=∠ABC=∠C=60°.∵DE∥BC,∴∠AED=∠ABC=60°,∠ADE=∠C=60°.∴△ADE是等边三角形.(2)∵△ABC为等边三角形,∴AB=BC=AC.∵BD平分∠ABC,∴AD=AC.∵△ADE是等边三角形,∴AE=AD.∴AE=AB.【点评】此题考查等边三角形的判定和性质,关键是根据等边三角形的性质和平行线的性质解答.12.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】根据等边△ABC中AD=BE=CF,证得△ADE≌△BEF≌△CFD即可得出△DEF 是等边三角形.【解答】解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DE=EF=FD,∴△DEF是等边三角形.【点评】本题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADE≌△BEF≌△CFD是解答此题的关键.13.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】分类讨论.【分析】(1)根据旋转的性质可得CO=CD,∠OCD=60°,根据有一个角是60°的等腰三角形是等边三角形解答;(2)利用勾股定理逆定理判定△AOD是直角三角形,并且∠ADO=90°,从而求出∠ADC=150°,再根据旋转变换只改变图形的位置不改变图形的形状与大小可得α=∠ADC;(3)根据周角为360°用α表示出∠AOD,再根据旋转的性质表示出∠ADO,然后利用三角形的内角和定理表示出∠DAO,再分∠AOD=∠ADO,∠AOD=∠DAO,∠ADO=∠DAO三种情况讨论求解.【解答】解:(1)△COD是等边三角形.理由如下:∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形;(2)∵AD2+OD2=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2=AO2,∴△AOD是直角三角形,且∠ADO=90°,∵△COD是等边三角形,∴∠CDO=60°,∴∠ADC=∠ADO+∠CDO=90°+60°=150°,根据旋转的性质,α=∠ADC=150;(3)∵α=∠ADC,∠CDO=60°,∴∠ADO=α﹣60°,又∵∠AOD=360°﹣110°﹣α﹣60°=190°﹣α,∴∠DAO=180°﹣(190°﹣α)﹣(α﹣60°)=180°﹣190°+α﹣α+60°=50°,∵△AOD是等腰三角形,∴①∠AOD=∠ADO时,190°﹣α=α﹣60°,解得α=125°,②∠AOD=∠DAO时,190°﹣α=50°,解得α=140°,③∠ADO=∠DAO时,α﹣60°=50°,解得α=110°,综上所述,α为125°或140°或110°时,△AOD是等腰三角形.【点评】本题考查了等边三角形的判定与性质,旋转变换只改变图形的位置不改变图形的形状与大小的性质,勾股定理逆定理,等腰三角形的性质,(3)用α表示出△AOD的各个内角是解题的关键,注意要分情况讨论.14.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题;压轴题.【分析】首先延长BD至F,使DF=BC,连接EF,得出△BEF为等边三角形,进而求出△ECB≌△EDF,从而得出EC=DE.【解答】证明:延长BD至F,使DF=BC,连接EF,∵AE=BD,△ABC为等边三角形,∴BE=BF,∠B=60°,∴△BEF为等边三角形,∴∠F=60°,在△ECB和△EDF中∴△ECB≌△EDF(SAS),∴EC=ED.【点评】此题主要考查了等边三角形的性质与判定以及全等三角形的判定等知识,作出辅助线是解决问题的关键.15.【考点】含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】根据同角的余角相等求出∠BCD=∠A=60°,再根据30°角所对的直角边等于斜边的一半求出AC、AB的长,然后根据BD=AB﹣AD计算即可得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,∴∠BCD=∠A=60°,∴∠ACD=∠B=30°,∵AD=2,∴AC=2AD=4,∴AB=2AC=8,∴BD=AB﹣AD=8﹣2=6.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,同角的余角相等的性质,熟记性质是解题的关键.16.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形.【分析】根据线段垂直平分线的性质得到EB=EA,根据等腰三角形的性质得到∠EAB=∠B=15°,根据三角形的外角的性质求出∠AEC=30°,根据直角三角形的性质计算.【解答】解:∵DE垂直平分AB,∴EB=EA,∴∠EAB=∠B=15°,∴∠AEC=30°,∴AC=AE=3(cm),故选:D.【点评】本题考查的是线段垂直平分线的性质,直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.17.【考点】等腰三角形的性质;含30度角的直角三角形.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°.∵DF∥AB,∴∠F=∠BAE=30°.∴∠DAF=∠F=30°,∴AD=DF.∵AB=11,∠B=30°,∴AD=5.5,∴DF=5.5故选:C.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.18.【考点】含30度角的直角三角形.【专题】推理填空题.【分析】根据直角三角形的性质求出BC,根据三角形中位线定理计算即可.【解答】解:∵∠A=30°,BC⊥AC,∴BC=AB=3.7,∵DE⊥AC,BC⊥AC,∴DE∥BC,∵点D是斜梁AB的中点,∴DE=BC=1.85m,故答案为:1.85m.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.19.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】先由直角三角形的性质求出∠ABC的度数,由AB的垂直平分线交AC于D,交AB于E,垂足为E,可得BD=AD,由∠A=30°可知∠ABD=30°,故可得出∠DBC =30°,根据CD=2可得出BD的长,进而得出AD的长.【解答】解:连接BD,∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=60°.∵AB的垂直平分线交AC于D,交AB于E,∴AD=BD,DE⊥AB,∴∠ABD=∠A=30°,∴∠DBC=30°,∵CD=2,∴BD=2CD=4,∴AD=4.故选:D.【点评】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.熟练掌握直角三角形的性质是解题的关键.20.【考点】垂线段最短;含30度角的直角三角形.【专题】解直角三角形及其应用;推理能力.【分析】在Rt△ABC中,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”可求出AB的长,由点P是BC边上一动点结合AC,AB的长,即可得出AP长的取值范围,再对照四个选项即可得出结论.【解答】解:在Rt△ABC中,∠C=90°,∠B=30°,AC=3,∴AB=2AC=6.∵点P是BC边上一动点,∴AC≤AP≤AB,即3≤AP≤6.故选:D.【点评】本题考查了含30度角的直角三角形以及垂线段最短,通过解含30度角的直角三角形,求出AB的长是解题的关键.21.【考点】含30度角的直角三角形.【专题】等腰三角形与直角三角形;运算能力.【分析】求出AD的长,再根据含30°角的直角三角形的性质得出DE=AD,即可求出答案.【解答】解:∵点D是AB的中点,AB=7.2,∴AD=AB=3.6,∵DE⊥AC,∴∠DEA=90°,∵∠A=30°,∴DE=AD=1.8,故选:A.【点评】本题考查了含30°角的直角三角形的性质,能根据含30°角的直角三角形的性质得出DE=AD是解此题的关键.22.【考点】等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】过P作PC⊥MN于C,先由等腰三角形的性质得CM=CN=2.5,再由含30°角的直角三角形的性质求出OC的长,然后由OC+CM求出ON的长即可.【解答】解:过P作PC⊥MN于C,如图所示:∵PM=PN,MN=5,∴CM=NC=MN=2.5,在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC=OP=4,则ON=OC+CM=4+2.5=6.5,故选:B.【点评】本题考查的是含30°角的直角三角形的性质、等腰三角形的性质等知识;熟练掌握含30°角的直角三角形的性质和等腰三角形的性质是解题的关键.23.【考点】三角形内角和定理;等腰三角形的判定;含30度角的直角三角形.【专题】等腰三角形与直角三角形;几何直观.【分析】根据等腰三角形的判定和含30°的直角三角形的性质解答即可.【解答】解:如图所示:以B为圆心,BC长为半径画弧,交直线m于点P4,P2,以A为圆心,AC长为半径画弧,交直线m于点P1,P3,边AC和BC的垂直平分线都交于点P3位置,因此出现等腰三角形的点P的位置有4个,故选:C.【点评】此题考查等腰三角形的判定,关键是根据等腰三角形的判定和含30°的直角三角形的性质解答.24.【考点】列代数式;等边三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】利用等边三角形的性质可得AB=BC=AC=4,∠B=∠C=60°,再利用含30度角的直角三角形的性质进行计算即可.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=4,∠B=∠C=60°,∵PD⊥BC,DE⊥AC,∴BD=PB,CE=CD,∵P A=x,∴BP=4﹣x,∴BD=PB=2﹣x,∴CD=4﹣(2﹣x)=2+x,∴CE=1+x,∴AE=4﹣(1+x)=3﹣x,故选:B.【点评】此题主要考查了等边三角形的性质和含30度角的直角三角形的性质,关键是掌握在直角三角形中,30°角所对的直角边等于斜边的一半.25.【考点】平行线的性质;等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAF=∠F=30°,∴AD=DF,∵AB=6,∠B=30°,∴AD=AB=3,∴DF=3,故选:D.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.26.【考点】等边三角形的判定与性质.【专题】等腰三角形与直角三角形.【分析】由在△ABC中,∠ACB=90°,DE⊥AB,易证得∠DCA=∠DAC,继而可得①∠DCB=∠B正确;由①可证得AD=BD=CD,即可得②CD=AB正确;易得③△ADC是等腰三角形,但不能证得△ADC是等边三角形;由若∠E=30°,易求得∠FDC=∠FCD=30°,则可证得DF=CF,继而证得DE=EF+CF.【解答】解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=CD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.【点评】此题考查了等腰三角形的性质与判定以及直角三角形的性质.注意证得D是AB 的中点是解此题的关键.27.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;多边形与平行四边形.【分析】延长EP交BC于点G,延长FP交AC于点H,证出四边形AEPH、四边形PDCG 均为平行四边形,得出PE=AH,PG=CD.证出△FGP和△HPD也是等边三角形,得出PF=PG=CD,PD=DH,得出PE+PD+PF=AH+DH+CD=AC即可.【解答】解:延长EP交BC于点G,延长FP交AC于点H,如图所示:∵PF∥AB,PD∥BC,PE∥AC,∴四边形AEPH、四边形PDCG均为平行四边形,∴PE=AH,PG=CD.又∵△ABC为等边三角形,∴△FGP和△HPD也是等边三角形,∴PF=PG=CD,PD=DH,∴PE+PD+PF=AH+DH+CD=AC,∴AC=a;故选:D.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.28.【考点】等腰三角形的判定与性质;等边三角形的判定与性质.【专题】三角形.【分析】根据等边三角形的判定、轴对称的性质即可判断;【解答】解:①三条边都相等的三角形是等边三角形;正确.②有一个角为60°的等腰三角形是等边三角形;正确.③有两个角为60°的三角形是等边三角形;正确.④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形;正确.故选:D.【点评】本题考查等边三角形的判定和性质、等腰三角形的判定和性质、轴对称等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.29.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等边三角形边长为2,在Rt△BDE中求得DE的长,再根据CM垂直平分DF,在Rt△CDN中求得CN,最后根据线段和可得CM的长.【解答】解:∵等边三角形边长为2,BD=CD,∴BD=,CD=,∵等边三角形ABC中,DF∥AB,∴∠FDC=∠B=60°,∵∠EDF=90°,∴∠BDE=30°,∴DE⊥BE,∴BE=BD=,DE=,如图,连接DM,则Rt△DEF中,DM=EF=FM,∵∠FDC=∠FCD=60°,∴△CDF是等边三角形,∴CD=CF=,∴CM垂直平分DF,∴∠DCN=30°,DN=FN,∴Rt△CDN中,DN=,CN=,∵M为EF的中点,∴MN=DE=,∴CM=CN+MN=+=,故选:C.【点评】本题主要考查了三角形的综合应用,解决问题的关键是掌握等边三角形的性质、平行线的性质、线段垂直平分线的判定等.熟练掌握这些性质是解题的关键.30.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形的性质和等边三角形的性质和判定逐个进行分析判断,即可得到答案.【解答】解:A.有一个角为60°的等腰三角形是等边三角形,故本选项不合题意;B.如果一个三角形有两个角相等,那么这两个角所对的边相等,故本选项不合题意;C.等腰三角形顶角的角平分线,底边的中线,高相互重合,说法错误,故本选项符合题意;D.三个角都相等的三角形是等边三角形,故本选项不合题意;故选:C.【点评】本题考查了等边三角形的判定和性质,等腰三角形的性质,熟练掌握等边三角形的判定和性质定理是解题的关键.31.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.。
初中数学:几何中特殊三角形-等腰直角三角形应用技巧等腰直角三角形,是初中数学中重要的特殊三角形,性质非常丰富!常见常用的性质大都以“等腰三角形”、“直角三角形”、“对称”、“旋转拼接”、“勾股比1:1:√2”、“45°好角辅助线”、“半个正方形”等角度拓展延伸。
今天在解题探究学习中,碰到一道以等腰直角三角形为背景的几何题,有些难度,非常漂亮。
经过“见招拆招”+“破解分解”竟然可以“获得”一连串等腰直角三角形的“固定性质”,并且具有“思维连贯性”+“思路延展性”,结合常用条件,可以“伴生”解决好多等腰直角三角形的几何题!题目:如图,在△ABC中,AC=BC,∠ACB=90°,点D是AB中点,点E在AC上,点F在BC上,∠EDF=90°,边AF,若∠CAF=2∠BDF, AE=3,则DF=_________下面就如何“真实而自然”利用“基本图形”去“拆解破解”这道题!1.看到“AC=BC,∠ACB=90°,点D是AB中点”,马上想到连接CD,得到“直角三角形斜边中线等于斜边一半:CD=AD=BD”,CD三线合一垂直AB;再结合“∠EDF=90°”马上能得到“两组全等”,如图,同色三角形全等。
证明方法很多,也不太困难,若用“旋转思想”,则可以“秒证”!而且由DE=DF,可以得到直角三角形△DEF是等腰直角三角形!如图:2.连接EF,可以得到“8字型相似”:两个45°角相等+对顶角相等。
右图可得图上有三个α相等。
3.将直角三角形△FEC沿着CF向外“翻折”,可得:①第四个α角相等(如图);②CF=CE,且和AE“共线”(垂直邻补角)4.如上面第3点,∠GAF=∠EFG,并∠G=∠G,显然这又是“偏A型相似”,如图:染色两个三角形相似。
而三角形△FEG是等腰三角形,所以三角形△AGF也是等腰三角形!漂亮!“竟然”有如此漂亮的美丽结论在后面等着!5.“谋定后动”后面可以“定量计算”了!如图,设EC=CF=x,则等腰△AGF中AF=AG=AE+EF=3+2x,而“旋转全等”(△CDF≌△ADE)得CF=AE=3,又AC=AE+EC=3+x;显然在直角三角形△ACF中,勾股定理可以计算出:x=1.6.如上,x=1求出来后,就可以“发起最后的冲锋了”!在直角三角形△CEF中,EF=√(1+3^2)=√10,而直角三角形△DEF是等腰直角三角形!DF=EF/√2=√5,口算解决!。
初中数学:等腰三角形练习(含答案)一、选择题1、等腰三角形一底角为50°,则顶角的度数为()A、65B、70C、80D、40【答案】C【解析】试题分析:根据三角形的内角和定理求解.解:等腰三角形的顶角度数=180°-50°-50°=80°.故应选C考点:等腰三角形的性质2、如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,则图中等腰三角形共有()A. 5个B. 6个C.7个D.8个【答案】D【解析】试题分析:根据等腰三角形两底角相等和∠A=36°,求出∠ABC和∠ACB的度数,再根据角平分线的定义求出∠ABD、∠CBD、∠ACE、∠BCE的度数,利用三角形外角定理求出∠BOE、∠COD的度数,根据等角对等边进行判断.解:如下图所示,∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠C BD=∠ACE=∠BCE=∠A=36°,∴△ABD、△BCD、△ACE、△BCE、△OBC是等腰三角形;∴∠BEC=∠A+∠ACE=72°,∠BOE=∠BCE+∠CBD=72°,∴∠BEC=∠BOE,同理可得:∠CDO=∠COD,∴△BOE、△COD是等腰三角形;又△ABC是等腰三角形,∴共有8个等腰三角形.故应选D.考点:1.等腰三角形的性质;2.等腰三角形的判定3、下列条件中不能确定是等腰三角形的是()A.三条边都相等的三角形B.一条中线把面积分成相等的两部分的三角形C.有一个锐角是45°的直角三角形D.一个外角的平分线平行于三角形一边的三角形【答案】D【解析】试题分析:根据等腰三角形的定义和等腰三角形的判定定理进行判断.解:A选项、三条边都相等的三角形是特殊的等腰三角形,故A选项正确;B选项、三角形任何一条边上的中线都能把三角形分成面积相等的两个三角形,故B选项错误;C选项、有一个锐角是45°的直角三角形的另一个锐角也是45°,根据等角对等边可得这是一个等腰三角形,故C选项正确;D选项、如果一个外角的平分线平行于三角形一边,利用平行线的性质可证三角形的两个角相等,根据等角对等边可证这是一个等腰三角形,故D选项正确.故应选B考点:等腰三角形的判定4、下列能断定△ABC为等腰三角形的是()A.∠A=30°,∠B=60°B.∠A=50°,∠B=80°C. AB=AC=2,BC=4 D.AB=3,BC=7,周长为13【答案】B【解析】试题分析:根据等腰三角形的判定定理进行判断.解:A选项、若∠A=30°,∠B=60°,则∠C=90°,不能判定△ABC为等腰三角形;B选项、若∠A=50°,∠B=80°,则∠C=50°,根据等角对等边能判定△ABC为等腰三角形;C选项、若AB=AC=2,BC=4,因为2+2=4,所以不能构成三角形;D选项、若AB=3,BC=7,周长为13,则AC=3,因为3+3<7,所以不能构成三角形.故应选B.考点:等腰三角形的判定5、已知下列各组数据,可以构成等腰三角形的是()A. 1,2,1 B.2,2,1 C. 1,3,1 D.2,2,5【答案】B【解析】试题分析:根据三角形三边的关系进行判断.解:A选项、因为1+1=2,所以不能构成三角形;B选项、因为2+1>2,能构成三角形,所以可以构成等腰三角形;C选项、因为1+1<3,所以不能构成三角形;D选项、因为2+2<5,所以不能构成三角形.故应选B.考点:三角形三边关系6、小明将两个全等且有一个角为60°的直角三角形拼成如图所示的图形,其中两条较长直角边在同一直线上,则图中等腰三角形的个数是()A.4 B.3 C.2 D.1【答案】B【解析】试题分析:根据直角三角形的性质求出各角的度数,根据等角对等边进行判断. 解:∵∠B=∠E=60°,∴∠A=∠D=30°,∴△MAD是等腰三角形;∵∠EMG-∠A+∠D=60°,∴△EGM是等腰三角形;同理可证△BHM是等腰三角形.∴共有三个等腰三角形.故应选B考点:1.直角三角形的性质;2.等腰三角形的判定二、填空题7、一个等腰三角形的两边分别为3cm和4cm,则它的周长为_________;【答案】10cm或11cm【解析】试题分析:根据三角形的周长公式分情况进行计算.解:当三角形三边分别是3cm、3cm、4cm时,三角形的周长是3+3+4=10cm;当三角形三边分别是3cm、4cm、4cm时,三角形的周长是3+4+4=11cm.故答案是10cm或11cm.考点:等腰三角形的性质8、在方格纸上有一个△ABC,它的顶点位置如图所示,则这个三角形是三角形.【答案】等腰【解析】试题分析:根据点A在BC的垂直平分线上,可证AB=AC,所以这个三角形是等腰三角形.解:∵点A在BC的垂直平分线上,∴AB=AC,∴△ABC是等腰三角形.故答案是等腰.考点:1.线段垂直平分线的性质;2.等腰三角形的定义9、如果一个三角形有两个角分别为80°,50°,则这个三角形是_________三角形.【答案】等腰【解析】试题分析:根据三角形内角和求出三角形的另一个内角,根据等角对等边进行判断.解:∵第三个角=180°-50°-80°=50°.∴这个三角形是等腰三角形.故答案是等腰.考点:等腰三角形的判定10、用若干根火柴(不折断)紧接着摆成一个等腰三角形,一边用了10根火柴,则至少还要用_________根火柴.【答案】11【解析】试题分析:根据用10根火柴组成的边是等腰三角形的底边和腰,分两种情况进行讨论.解:当用10根火柴组成的边是等腰三角形的底边时,则每个腰上至少用6根火柴棍,∴共需要12根火柴棍;当用10根火柴组成的边是等腰三角形的腰时,则另一个腰上需要用10根火柴棍,底边至少用1根火柴,∴共需要11根火柴棍.∴至少还要用11根火柴.故答案是11.考点:1.等腰三角形的定义;2.三角形三边关系11、如图,△ABC是等腰三角形,且AB=AC,BM,CM分别平分∠ABC,∠ACB,DE 经过点M,且DE∥BC,则图中有_________个等腰三角形.【答案】5【解析】试题分析:根据等腰三角形的性质可得∠ABC=∠ACB,根据平行线的性质可证∠ADE=∠AED,根据角平分线的性质可证∠DBM=∠MBC=∠DMB=∠EMC=∠ECM=∠BCM,根据等角对等边进行证明.解:∵△ABC是等腰三角形,∴∠ABC=∠ACB,∵DE∥BC,∴∠ADE=∠AED,∴△ADE是等腰三角形;∵BM平分∠ABC,∴∠DBM=∠CBM,∵BC∥DE,∴∠DMB=∠CBM,∴∠DBM=∠DMB,∴△DBM是等腰三角形,同理可得△EMC是等腰三角形;又∵∠ABC=∠ACB,∴∠MBC=∠MCB,∴△MBC是等腰三角形.∵△ABC是等腰三角形.∴共有5个等腰三角形.故答案是5.考点:1.等腰三角形的性质;2.等腰三角形的判定三、解答题12、已知:如图,OA平分∠BAC,∠1=∠2.求证:△ABC是等腰三角形.【答案】证明见解析【解析】试题分析:首先过点O作OE⊥AB于E,OF⊥AC于F,根据角平分线的性质可证OE=OF,根据HL可证Rt△OBE≌Rt△OCF,利用全等三角形的性质可证∠5=∠6,所以可证∠ABC=∠ACB,根据等角对等边可证结论成立.证明:如下图所示,过点O作OE⊥AB于E,OF⊥AC于F,∵AO平分∠BAC,∴OE=OF(角平分线上的点到角两边的距离相等).∵∠1=∠2,∴OB=OC.∴Rt△OBE≌Rt△OCF(HL).∴∠5=∠6.∴∠1+∠5=∠2+∠6.即∠ABC=∠ACB.∴AB=AC.∴△ABC是等腰三角形.考点:1.角平分线的性质;2.等腰三角形的判定定理;3.全等三角形的判定和性质13、如图,△ABC中,∠A=36°,AB=AC,CD平分∠ACB,试说明△BCD是等腰三角形.【答案】证明见解析【解析】试题分析:根据等腰三角形的性质求出∠B=∠ACB=72°,根据角平分线的定义可以求出∠ACD=∠A=36°,根据三角形外角的性质可以求出∠ADB=72°,再根据等角对等边可证结论成立.证明:∵∠A=36°,AB=AC,∴∠B=∠ACB=72°,∵CD平分∠ACB,∴∠ACD=∠A=36°,∴∠BDC=∠A+∠ACD,∴∠BDC=∠B=72°,∴△BCD是等腰三角形.考点:1.等腰三角形的性质;2.等腰三角形的判定14、如图,ABC△中,∠ABC、∠ACB的平分线交于点F,过点F作DE∥BC分别交AB、AC于D、E,已知△ADE的周长为20cm,且BC=12cm,求△ABC的周长【答案】32cm.【解析】试题分析:首先根据角平分线的性质可证∠DBF=∠FBC,根据平行线的性质可证∠DFB=∠DBF,所以可证BD=DF,同理可证EC=EF,所以可证AD+AE+DF+EF=20cm,再根据BC的长度求出△ABC的周长.解:∵∠ABC、∠ACB的平分线交于点F,∴∠DBF=∠FBC,又∵DE∥BC,∴∠DFB=∠FBC,∴∠DFB=∠DBF,∴BD=DF,同理EC=EF,∵△ADE的周长为20cm,∴AD+AE+DF+EF=20cm,∴AD+AE+BD+EC=AB+AC=20cm又∵BC=12cm,∴AB+AC+BC=32cm即△ABC的周长为32cm.考点:1.等腰三角形的判定;2.等腰三角形的性质。
初中数学竞赛公益讲座:特殊三角形一、基础知识:1)等腰三角形:对称性;底边上的高、中线和角平分线三线合一。
2)正三角形:旋转中的不变性,60度和120度;重心、外心、内心、垂心四心合一;内部任何一点到三边的距离和为定值;……3)直角三角形:勾股定理;代数化与数形结合;射影定理;斜边中线;共圆;4)特殊的直角三角形:等腰直角三角形—对称性,旋转不变性;含30 度角的直角三角形—30度角所对直角边是斜边的一半,包含一个等边三角形和一个顶角为120度的等腰三角形。
二、例题分析例1、如下左图,在四边形ABCD中,∠B=135度,∠C=120度,AB=2,BC=4-2,CD=4,求AD的长度。
例2、如上右图,四边形ABCD,对角线AC、BD交于点E,I是△BEC的内心,BD⊥AC,且BD=AC=BC,M是BC的中点,求证:IM⊥AD,AD=2IM.例3、如下左图△ABC中,AB=AC,在AB边上有两点P和Q,在AC边上有两点R和S,且PQ=RS,M和N分别是PR和QS的中点,求证:MN⊥BC。
例4、如上右图,等腰△ABC中,AB=AC,BE=CD,BD=CF,作∠C的平分线交DF于点G,DG=3,BC=16,若∠BED=2∠D FC,求BE的长。
例5、如下左图,等边△ABC的边长为4,D是AC边上的动点,连接BD,以BD为斜边向上作等腰直角三角形BDE,连接AE,求AE长的最小值。
例6、如上右图,△ABC中,∠B AC=60度,∠AT C=∠B TC=∠CT A=120度,M 是BC的中点,求证:2AM=TA+TB+TC。
例7、如下图,△ABC中,AB=AC,AD⊥BC于点D,DF⊥AB于点F,A E⊥CF于点E且交DF于点M,求证,M是DF的中点。
三、练习题1、如下左图,在△ABC中,AD和BE是中线,且∠C AD=∠C BE=30度,求证:△ABC是正三角形。
2、如上右图,在△ABC中,AB≠AC,AD是角平分线,E、F分别在AB、AC上,且BE=CF,连接EF,分别取EF、BC的中点M、N,连接MN,求证:MN⫽AD3、如下左图,在△ABC中,∠BAC=90度,AB=AC=2,线段BC上一动点P从C点开始运动,到B点停止,以AP为边在AC的右侧作等边△APQ,求点Q的运动轨迹的长度。
(专题精选)初中数学三角形难题汇编含答案一、选择题1.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数()A.28°B.22°C.32°D.38°【答案】B【解析】【分析】延长AB交CF于E,求出∠ABC,根据三角形外角性质求出∠AEC,根据平行线性质得出∠2=∠AEC,代入求出即可.【详解】解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∠ABC=60°,∵∠1=38°,∴∠AEC=∠ABC-∠1=22°,∵GH∥EF,∴∠2=∠AEC=22°,故选B.【点睛】本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,主要考查学生的推理能力.2.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A .8cmB .10cmC .12cmD .14cm【答案】B【解析】【分析】 根据“AAS”证明 ΔABD ≌ΔEBD .得到AD =DE ,AB =BE ,根据等腰直角三角形的边的关系,求其周长.【详解】∵ BD 是∠ABC 的平分线,∴ ∠ABD =∠EBD .又∵ ∠A =∠DEB =90°,BD 是公共边,∴ △ABD ≌△EBD (AAS),∴ AD =ED ,AB =BE ,∴ △DEC 的周长是DE +EC +DC=AD +DC +EC=AC +EC =AB +EC=BE +EC =BC=10 cm.故选B.【点睛】本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.3.如图,ABCD 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )A .3B .3C 21D .6【答案】C【解析】【分析】 先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后根据勾股定理解Rt AOD △、平行四边形的性质即可求得OC OA ==【详解】解:∵AD BD ⊥∴90ADB ∠=︒∵在Rt ABD △中,30ABD ∠=︒,AD =∴2AB AD ==∴6BD ==∵四边形ABCD 是平行四边形 ∴132OB OD BD ===,12OA OC AC ==∴在Rt AOD △中,AD =3OD =∴OA =∴OC OA ==故选:C【点睛】本题考查了含30角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.4.下列长度的三条线段能组成三角形的是( )A .2, 2,5B .C .3,4,8D .4,5,6【答案】D【解析】【分析】三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立.【详解】根据三角形三边关系可知,三角形两边之和大于第三边.A 、2+2=4<5,此选项错误;B 、<3,此选项错误;C 、3+4<8,此选项错误;D 、4+5=9>6,能组成三角形,此选项正确.故选:D .【点睛】此题考查三角形三边关系,解题关键在于掌握三角形两边之和大于第三边.即:两条较短的边的和小于最长的边,只要满足这一条就是满足三边关系.5.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A .65°B .70°C .75°D .80°【答案】D【解析】【分析】 由平行线的性质可求得∠C ,在△CDE 中利用三角形外的性质可求得∠3.【详解】解:∵AB ∥CD ,∴∠C =∠1=45°,∵∠3是△CDE 的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D .【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a ∥b ,b ∥c ⇒a ∥c .6.将一个边长为4的正方形ABCD 分割成如图所示的9部分,其中ABE △,BCF ,CDG ,DAH 全等,AEH △,BEF ,CFG △,DGH 也全等,中间小正方形EFGH 的面积与ABE △面积相等,且ABE △是以AB 为底的等腰三角形,则AEH △的面积为( )A .2B .169C .32D 2【答案】C【解析】【分析】【详解】 解:如图,连结EG 并向两端延长分别交AB 、CD 于点M 、N ,连结HF ,∵四边形EFGH 为正方形,∴EG FH =,∵ABE △是以AB 为底的等腰三角形,∴AE BE =,则点E 在AB 的垂直平分线上,∵ABE △≌CDG ,∴CDG 为等腰三角形,∴CG DG =,则点G 在CD 的垂直平分线上,∵四边形ABCD 为正方形,∴AB 的垂直平分线与CD 的垂直平分线重合,∴MN 即为AB 或CD 的垂直平分线,则,EM AB GN CD ,EM GN ,∵正方形ABCD 的边长为4,即4AB CDAD BC , ∴4MN =, 设EM GN x ,则42EG FH x , ∵正方形EFGH 的面积与ABE △面积相等, 即2114(42)22x x ,解得:121,4x x ==,∵4x =不符合题意,故舍去,∴1x =,则S 正方形EFGH 14122==⨯⨯=ABE S , ∵ABE △,BCF ,CDG ,DAH 全等, ∴2====ABE BCF CDG DAHS S S S , ∵正方形ABCD 的面积4416=⨯=,AEH △,BEF ,CFG △,DGH 也全等, ∴1(4=AEH S S 正方形ABCD − S 正方形EFGH 134)(16242)42-=⨯--⨯=ABE S , 故选:C .【点睛】本题考查了正方形的性质、全等三角形的性质和等腰三角形的性质,解题的关键是求得ABE △的面积.7.图中的三角形被木板遮住了一部分,这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .以上都有可能【答案】D【解析】 从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角,故选D .8.如图,直线a b ∥,点A 、B 分别在直线a 、b 上,145∠︒=,若点C 在直线b 上,105BAC ∠︒=,且直线a 和b 的距离为3,则线段AC 的长度为( )A .32B .33C .3D .6【答案】D【解析】【分析】 过C 作CD ⊥直线a ,根据30°角所对直角边等于斜边的一半即可得到结论.【详解】过C 作CD ⊥直线a ,∴∠ADC =90°.∵∠1=45°,∠BAC =105°,∴∠DAC =30°.∵CD =3,∴AC =2CD =6.故选D .【点睛】本题考查了平行线间的距离,含30°角的直角三角形的性质,正确的理解题意是解题的关键.9.如图,在菱形ABCD 中,对角线AC =8,BD =6,点E ,F 分别是边AB ,BC 的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3 B.4 C.5 D.6【答案】C【解析】【分析】先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF 的最小值,再根据菱形的性质求出E′F的长度即可.【详解】解:如图∵四边形ABCD是菱形,对角线AC=6,BD=8,∴22,34作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,∵AC是∠DAB的平分线,E是AB的中点,∴E′在AD上,且E′是AD的中点,∵AD=AB,∴AE=AE′,∵F是BC的中点,∴E′F=AB=5.故选C.10.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.故选B.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.11.如图,△ABC ≌△A E D ,∠C =40°,∠E AC =30°,∠B =30°,则∠E AD =( );A .30°B .70°C .40°D .110°【答案】D【解析】【分析】【详解】∵△ABC ≌△AED , ∴∠D=∠C=40°,∠C=∠B=30°,∴∠E AD=180°-∠D -∠E =110°,故选D.12.如图,在菱形ABCD 中,60BCD ∠=︒,BC 的垂直平分线交对角线AC 于点F ,垂足为E ,连接BF 、DF ,则DFC ∠的度数是( )A .130︒B .120︒C .110︒D .100︒【答案】A【解析】【分析】 首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB 即可解决问题;【详解】∵四边形ABCD 是菱形,∴∠ACD =∠ACB =12∠BCD=25°, ∵EF 垂直平分线段BC ,∴FB=FC ,∴∠FBC=∠FCB=25°,∴∠CFB=180°-25°-25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故选:A .【点睛】此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,在平面直角坐标系中,已知点A (﹣2,0),B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的正半轴于点C ,则点C 的横坐标介于( )A .0和1之间B .1和2之间C .2和3之间D .3和4之间【答案】B【解析】【分析】 先根据点A ,B 的坐标求出OA ,OB 的长度,再根据勾股定理求出AB 的长,即可得出OC 的长,再比较无理数的大小确定点C 的横坐标介于哪个区间.【详解】∵点A ,B 的坐标分别为(﹣2,0),(0,3),∴OA =2,OB =3,在Rt △AOB 中,由勾股定理得:AB 222+313=∴AC =AB 13,∴OC 132,∴点C 132,0), ∵3134<< , ∴11322<< ,即点C 的横坐标介于1和2之间,故选:B .【点睛】本题考查了弧与x 轴的交点问题,掌握勾股定理、无理数大小比较的方法是解题的关键.14.满足下列条件的是直角三角形的是( )A .4BC =,5AC =,6AB =B .13BC =,14AC =,15AB = C .::3:4:5BC AC AB =D .::3:4:5A B C ∠∠∠= 【答案】C【解析】【分析】要判断一个角是不是直角,先要知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【详解】A.若BC=4,AC=5,AB=6,则BC2+AC2≠AB2,故△ABC不是直角三角形;B.若13BC=,14AC=,15AB=,则AC2+AB2≠CB2,故△ABC不是直角三角形;C.若BC:AC:AB=3:4:5,则BC2+AC2=AB2,故△ABC是直角三角形;D.若∠A:∠B:∠C=3:4:5,则∠C<90°,故△ABC不是直角三角形;故答案为:C.【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.15.等腰三角形的一个角比另一个角的2倍少20度,则等腰三角形顶角的度数是()A.140B.20或80C.44或80D.140或44或80【答案】D【解析】【分析】设另一个角是x,表示出一个角是2x-20°,然后分①x是顶角,2x-20°是底角,②x是底角,2x-20°是顶角,③x与2x-20°都是底角根据三角形的内角和等于180°与等腰三角形两底角相等列出方程求解即可.【详解】设另一个角是x,表示出一个角是2x-20°,①x是顶角,2x-20°是底角时,x+2(2x-20°)=180°,解得x=44°,∴顶角是44°;②x是底角,2x-20°是顶角时,2x+(2x-20°)=180°,解得x=50°,∴顶角是2×50°-20°=80°;③x与2x-20°都是底角时,x=2x-20°,解得x=20°,∴顶角是180°-20°×2=140°;综上所述,这个等腰三角形的顶角度数是44°或80°或140°.故答案为:D.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,难点在于分情况讨论,特别是这两个角都是底角的情况容易漏掉而导致出错.16.如图,90ACB ∠=︒,AC CD =,过D 作AB 的垂线,交AB 的延长线于E ,若2AB DE =,则BAC ∠的度数为( )A .45°B .30°C .22.5°D .15°【答案】C【解析】【分析】 连接AD ,延长AC 、DE 交于M ,求出∠CAB=∠CDM ,根据全等三角形的判定得出△ACB ≌△DCM ,求出AB=DM ,求出AD=AM ,根据等腰三角形的性质得出即可.【详解】解:连接AD ,延长AC 、DE 交于M ,∵∠ACB=90°,AC=CD ,∴∠DAC=∠ADC=45°,∵∠ACB=90°,DE ⊥AB ,∴∠DEB=90°=∠ACB=∠DCM ,∵∠ABC=∠DBE ,∴∠CAB=∠CDM ,在△ACB 和△DCM 中CAB CDM AC CDACB DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACB ≌△DCM (ASA ),∴AB=DM ,∵AB=2DE ,∴DM=2DE ,∴DE=EM ,∵DE ⊥AB ,∴AD=AM ,114522.522BAC DAE DAC ︒︒∴∠=∠=∠=⨯= 故选:C .【点睛】 本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM 是解此题的关键.17.如图为一个66⨯的网格,在ABC ∆,A B C '''∆和A B C ''''''∆中,直角三角形有( )个A .0B .1C .2D .3【答案】C【解析】【分析】 根据题中的网格,先运用勾股定理计算出各个三角形的边长,再根据勾股定理的逆定理判断是否为直角三角形即可.【详解】设网格的小正方形的边长是1,由勾股定理(两直角边的平方等于斜边的平方)可知,ABC ∆的三边分别是:10,5,5; 由于2225510+=, 根据勾股定理的逆定理得:ABC ∆是直角三角形; '''A B C ∆的三边分别是:''A B 10, ''B C 5 ,''AC 13 由于22210513,根据勾股定理的逆定理得:'''A B C ∆不是直角三角形;A B C ''''''∆的三边分别是:A B ''''18B C ''''8 ,A C ''''26;由于22218826, 根据勾股定理的逆定理得:A B C ''''''∆是直角三角形;因此有两个直角等三角形;故选C .【点睛】本题主要考查了勾股定理和勾股定理的逆定理,能灵活运用所学知识是解题的关键.18.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为(12,0),点P为斜边OB上的一个动点,则PA+PC的最小值为( )A.132B.312C.3+192D.2 7【答案】B【解析】如图,作点A关于OB的对称点点D,连接CD交OB于点P,此时PA+PC最小,作DN⊥x 轴交于点N,∵B(33OA=3,AB3OB3BOA=30°,∵在Rt△AMO中,∠MOA=30°,AO=3,∴AM=1.5,∠OAM=60°,∴∠ADN=30°,∵在Rt△AND中,∠ADN=30°,AD=2AM=3,∴AN=1.5,DN 33 2∴CN=3-12-1.5=1,∴CD2=CN2+DN2=12+3322=314,∴CD=312.故选B.点睛:本题关键在于先借助轴对称的性质确定出P点的位置,然后结合特殊角30°以及勾股定理计算.19.如图,Rt△ABC中,∠C =90°,∠ABC的平分线BD交AC于D,若AD =5cm,CD=3cm,则点D到AB的距离DE是()A .5cmB .4cmC .3cmD .2cm【答案】C【解析】 ∵点D 到AB 的距离是DE ,∴DE ⊥AB ,∵BD 平分∠ABC ,∠C =90°,∴把Rt △BDC 沿BD 翻折后,点C 在线段AB 上的点E 处,∴DE=CD ,∵CD =3cm ,∴DE=3cm.故选:C.20.如图,在ABC 中,90C ∠=︒,60CAB ∠=︒,按以下步骤作图:①分别以A ,B 为圆心,以大于12AB 的长为半径画弧,两弧分别相交于点P 和Q . ②作直线PQ 交AB 于点D ,交BC 于点E ,连接AE .若4CE =,则AE 的值为( ) A .6B .2C .43D .8 【答案】D【解析】【分析】根据垂直平分线的作法得出PQ 是AB 的垂直平分线,进而得出∠EAB =∠CAE =30°,即可得出AE 的长.【详解】由题意可得出:PQ 是AB 的垂直平分线,∴AE =BE ,∵在△ABC中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∴∠EAB=∠CAE=30°,∴CE=12AE=4,∴AE=8.故选D.【点睛】此题主要考查了垂直平分线的性质以及直角三角形中,30°所对直角边等于斜边的一半,根据已知得出∠EAB=∠CAE=30°是解题关键.。
11.1 与三角形有关的线段1.三角形(1)定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)构成:如图所示,三角形ABC 有三条边,三个内角,三个顶点.①边:组成三角形的线段叫做三角形的边.②角:相邻两边所组成的角叫做三角形的内角,简称三角形的角.③顶点:相邻两边的公共端点是三角形的顶点.(3)表示:三角形用符号“△”表示,三角形ABC 用符号表示为△ABC .注:顶点A 所对的边BC 用a 表示,顶点B 所对的边AC 用b 表示,顶点C 所对的边AB 用c 表示.(4)分类:①三角形按角分类如下:三角形⎩⎪⎨⎪⎧ 直角三角形锐角三角形钝角三角形②三角形按边的相等关系分类如下:破疑点 等边三角形和等腰三角形的关系 等边三角形是特殊的等腰三角形,即等边三角形是底边和腰相等的等腰三角形.【例1】 如图所示,图中有几个三角形,分别表示出来,并写出它们的边和角.分析:根据三角形的定义及构成得出结论.解:图中有三个三角形,分别是:△ABC ,△ABD ,△ADC .△ABC 的三边是:AB ,BC ,AC ,三个内角分别是:∠BAC ,∠B ,∠C ; △ABD 的三边是:AB ,BD ,AD ,三个内角分别是:∠BAD ,∠B ,∠ADB ; △ADC 的三边是:AD ,DC ,AC ,三个内角分别是:∠ADC ,∠DAC ,∠C .2.三角形的三边关系(1)三边关系:三角形两边的和大于第三边,用字母表示:a +b >c ,c +b >a ,a +c >b .三角形两边的差小于第三边,用字母表示为:c -b <a ,b -a <c ,c -a <b .(2)作用:①利用三角形的三边关系,在已知两边的三角形中可以确定第三边的取值范围;②根据所给三条线段长度判断这三条线段能否构成三角形.“两点之间线段最短”是三边关系得出的理论依据.破疑点 三角形三边关系的理解 三角形两边之和大于第三边指的是三角形中任意两边之和都大于第三边,即a+b>c,c+b>a,a+c>b三个不等式同时成立.【例2】下列长度的三条线段(单位:厘米)能组成三角形的是().A.1,2,3.5 B.4,5,9C.5,8,15 D.6,8,9解析:选择最短的两条线段,计算它们的和是否大于最长的线段,若大于,则能构成三角形,否则构不成三角形,只有6+8=14>9,所以D能构成三角形.答案:D3.三角形的高(1)定义:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高.(2)描述方法:高的描述方法有三种,这三种方法都能得出AD是BC边上的高.如图所示.①AD是△ABC的高;②AD⊥BC,垂足为D;③D在BC上,且∠ADB=∠ADC=90°.(3)性质特点:①因为高是通过作垂线得出的,因而有高一定有垂直和直角.常用关系式为:因为AD是BC边上的高,所以∠ADB=∠ADC=90°.②“三角形的三条高(所在直线)交于一点”,当是锐角三角形时,这点在三角形内部;当是直角三角形时,这点在三角形直角顶点上;当是钝角三角形时,这点在三角形外部.如图所示.破疑点三角形的高线的理解三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.【例3】三角形的三条高在().A.三角形的内部B.三角形的外部C.三角形的边上D.三角形的内部、外部或边上解析:三角形的三条高交于一点,但有三种情况:当是锐角三角形时,这点在三角形内部;当是直角三角形时,这点在三角形直角顶点上;当是钝角三角形时,这点在三角形外部,所以只有D正确.答案:D4.三角形的中线(1)定义:三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.(2)描述方法:三角形中线的描述方法有两种方式,如图.①直接描述:AD 是BC 边上的中线;②间接描述:D 是BC 边上的中点.(3)性质特点:①由三角形中线定义可知,有中线就有相等的线段,如上图中,因为AD 是BC 边上的中线,所以BD =CD (或BD =12BC ,DC =12BC ). ②如下图所示,一个三角形有三条中线,每条边上各有一条,三角形的三条中线交于一点.不论是锐角三角形、直角三角形,还是钝角三角形,三角形的三条中线都交于三角形内部一点.三角形三条中线的交点叫做三角形的重心.破疑点 三角形的中线的理解 三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.【例4】 如图,AE 是△ABC 的中线,EC =6,DE =2,则BD 的长为( ).A .2B .3C .4D .6解析:因为AE 是△ABC 的中线,所以BE =EC =6.又因为DE =2,所以BD =BE -DE =6-2=4.答案:C5.三角形的角平分线(1)定义:三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.(2)描述方法:角平分线的描述有三种,如图.①直接描述:AD 是△ABC 的角平分线;②在△ABC 中,∠1=∠2,且D 在BC 上;③AD 平分∠BAC ,交BC 于点D.(3)性质特点:①由三角形角平分线的定义可知,有角平分线就有相等的角,如上图中,因为AD 是△ABC 的角平分线,所以∠1=∠2(或∠1=∠2= ∠BAC ,或∠BAC=2∠1=2∠2).②一个三角形有三条角平分线,三角形的三条角平分线交于一点,不论是锐角三角形、直角三角形,还是钝角三角形,这个交点都在三角形内部.解技巧 三角形的角平分线的理解 三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.【例5】 下列说法正确的是( ).①平分三角形内角的射线叫做三角形的角平分线;②三角形的中线、角平分线都是线段,而高是直线;③每个三角形都有三条中线、高和角平分线;④三角形的中线是经过顶点和对边中点的直线.A.③④B.③C.②③D.①④解析:任何一个三角形都有三条高、中线和角平分线,并且它们都是线段,不是射线或直线,因此只有③正确,故选B.答案:B6.三角形的稳定性(1)定义:三角形的三边确定后,这个三角形的大小、形状就确定不变了,三角形的这个性质叫做三角形的稳定性.(2)理解:三角形的稳定性指的是三角形的大小和形状不变,这说明一个三角形确定后它的附属性质也不变,这不同于四边形,因而在实际生活中,都是用三角形做支架的.【例6】在建筑工地我们常可看见如图所示,用木条EF固定矩形门框ABCD的情形.这种做法根据().A.两点之间线段最短B.两点确定一条直线C.三角形的稳定性D.矩形的四个角都是直角解析:这是三角形稳定性在日常生活中的应用,C正确.答案:C解技巧三角形的稳定性的理解三角形稳定性的问题都是以实际生活为原型,说明这样做的道理,一般较为简单.7.三角形三边关系的应用三角形中“两边之和大于第三边(两边之差小于第三边)”,这是三角形中最基本的三边关系.这里的“两边之和”指的是“任意两边的和”,满足这一关系是三条线段能否构成三角形的前提.三角形三边关系的运用主要有两方面,一是在已知两边的情况下确定第三边的取值范围;二是根据所给三条线段的长度判断这三条线段能否构成三角形.解技巧三角形三边关系的应用①当线段a,b,c满足最短的两条线段之和大于最长的线段时就可构成三角形;②已知两条线段,可根据第三条线段大于这两边之差,小于这两边之和,来确定第三条线段的取值范围.【例7-1】以下列长度的三条线段为边,能组成三角形吗?(1)6 cm,8 cm,10 cm;(2)三条线段长之比为4∶5∶6;(3)a+1,a+2,a+3(a>0).分析:根据三角形的三边关系来判断已知的三条线段能否组成三角形,选择较短的两条线段,看它们的和是否大于第三条线段,即可判断能否组成三角形.解:(1)因为6+8>10,所以长为6 cm,8 cm,10 cm的三条线段能组成三角形;(2)设这三条线段长分别为4x,5x,6x(x>0),因为4x+5x大于6x,所以三条线段长之比为4∶5∶6时,能组成三角形;(3)因为a+1+a+2=2a+3,当a>0时,2a+3>a+3,所以a+1,a+2,a+3(a>0)长的线段能组成三角形.【例7-2】已知三角形的两边长分别为5 cm和8 cm,则此三角形的第三边的长x的取值范围是__________.解析:根据三角形三边关系可知,第三条边的长x应大于已知两边之差且小于已知两边之和,所以3 cm<x<13 cm.答案:3 cm<x<13 cm8.三角形的高、中线、角平分线的画法三角形是最基本的图形,也是应用最多的图形,因此画出它们高、中线、角平分线经常用到,是必须掌握的基本技能.(1)高的画法:类似于垂线的画法,用三角板过某一顶点向对边或对边延长线画垂线,交对边于一点,所得到的垂线段就是这条边上的高.(2)中线的画法:取一边中点,连接这点和这边相对的顶点的线段,就是所求中线.(3)角平分线的画法:类似于画角平分线,作三角形一个角的平分线,交对边于一点,这点和角的顶点之间的线段就是所求的角平分线.9.三角形高的应用从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高.因为三角形的高是通过作垂线得到的,既有直角,又有垂线段,因此它的应用方向主要有两方面:一是求面积问题,高是垂线段,也是点到直线的距离,是求三角形的面积所必须知道的长度;二是直角,高是垂线段,因而一定有直角,根据所有直角都相等或互余关系进行解题是三角形的高应用的另一方向.解技巧巧证直角背景下两锐角相等图形中含有高时,经常用“同角(或等角)的余角相等”来证明角相等,这既是一种方法,也是一个规律.【例8】如图(1),已知△ABC,画出△ABC中,BC边上的高、中线和∠BAC的平分线.图(1) 图(2)分析:因为三角形的高、中线、角平分线都是描述性定义,它们的定义就蕴含了它们的画法,根据总结的画法画出图形即可,如图(2).解:画法如下:(1)过A作BC的垂线,垂足为D,AD即为BC边上的高;(2)取BC的中点E,连接AE,AE即为BC边上的中线;(3)作∠BAC的平分线,交BC于点F,连接AF,AF即为△ABC中∠BAC的平分线.【例9】如图,在△ABC中,AD,BE分别是边BC,AC上的高,试说明∠DAC与∠EBC 的关系.分析:因为有三角形中的高就有垂直、直角,所以∠ADC,∠BEC都是直角.根据小学所学三角形的内角和为180°,所以∠DAC+∠C=90°,∠EBC+∠C=90°,根据同角的余角相等,即可得出∠DAC=∠EBC.解:∠DAC=∠EBC.因为AD,BE分别是边BC,AC上的高,所以∠ADC=90°,∠BEC=90°.所以∠DAC+∠C=90°,∠EBC+∠C=90°.所以∠DAC=∠EBC.10.三角形中线应用拓展三角形的中线是三角形中的一条重要线段,它最大的特点是已知三角形的中线,图中一定含有相等线段,由此延伸出中线的应用:(1)面积问题:三角形的中线将三角形分成面积相等的两个三角形,如图,在△ABC中,AD是BC边上的中线,则S△ABD=S△ACD=12S△ABC.因为BD=CD,△ABD和△ADC等底同高,所以面积相等,因此通过作三角形的中线可将三角形分成面积相等的两部分.(2)周长问题:如图所示,AD是BC边上的中线,△ABD和△ACD的周长之差实质上就是AB与AC的差,这也是三角形中线中常出现的问题.【例10】有一块三角形优良品种试验基地,如图所示,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明).分析:根据三角形中线将三角形分为面积相等的两部分的特征,先把原三角形分为两个面积相等的三角形,然后再依次等分.解:答案不唯一,如方案1:如图(1),在BC上取点D,E,F,使BD=DE=EF=FC,连接AD,AE,AF.方案2:如图(2),分别取AB,BC,CA的中点D,E,F,连接DE,EF,DF.方案3:如图(3),分别取BC的中点D、CD的中点E、AB的中点F,连接AD,AE,DF.方案4:如图(4),分别取BC的中点D、AB的中点E、AC的中点F,连接AD,DE,DF.11.等腰三角形中的三边关系等腰三角形是特殊的三角形,它最大的特点是两条边相等,所以反映在三边关系中,就是底与腰的关系:①只要两腰之和大于底就一定能构成三角形;②在等腰三角形中,底的取值范围是大于0且小于两腰之和.因为等腰三角形的特殊性,所以在涉及等腰三角形问题时,只要不明确哪是底,哪是腰,就必须分情况讨论,并且要验证是否能构成三角形.如一个等腰三角形的两边长是2 cm 和5 cm,它的周长是多少?情况一:当腰是2 cm底是5 cm时,因为2+2<5,两边之和小于第三边,所以此等腰三角形不存在;情况二:当腰是5 cm底是2 cm时,5+2>5,所以此等腰三角形存在,此时周长为12 cm.解技巧利用三边关系求等腰三角形的边长根据两边之和大于第三边,结合底和腰的关系先判断等腰三角形是否存在是求解的前提.【例11-1】等腰三角形的两边长分别为6 cm和9 cm,则腰长为__________.解析:两种情况,一是腰长为6 cm时,底边就是9 cm,此时6+6>9,此三角形存在,所以腰长可以是6 cm;二是腰长为9 cm,此时9+6>9,此三角形也存在,所以腰长也可以是9 cm,故腰长为6 cm或9 cm.答案:9 cm或6 cm【例11-2】已知等腰三角形的周长是24 cm,(1)腰长是底边长的2倍,求腰长;(2)若其中一边长为6 cm,求其他两边长.分析:(1)可以通过设未知数,利用周长作为相等关系,列出方程,通过求方程的解从而求出答案;(2)因为题目中没有说明这条边究竟是腰还是底边,要分两种情况考虑,并且计算结果还要注意检查是否符合两边之和都大于第三边.解:(1)设底边长为x cm,则腰长为2x cm,根据题意,得x+2x+2x=24,解得x=4.8,所以腰长为2x=2×4.8=9.6(cm).(2)当长为6 cm的边为腰时,则底边为24-6×2=12(cm).因为6+6=12,两边之和等于第三边,所以6 cm长为腰不能组成三角形,故腰长不能为6 cm.当长为6 cm的边为底边时,则腰长为(24-6)÷2=9(cm),因为6 cm,9 cm,9 cm可以组成三角形,所以等腰三角形其他两边长均为9 cm.12.与三角形有关的线段易错点分析在本节内容中,易错点主要表现在以下三个方面:(1)三角形的高、中线、角平分线都是线段,它们都有长度,这与前面所学的垂线是直线、角平分线是射线容易混淆.(2)画钝角三角形的高时易出错,如下图三种画法都是错误的.三种情况错误的原因都是对三角形的高的定义理解不透彻.图1中BE不垂直于边AC,错因是受锐角三角形的影响,误认为高的垂足必落在对边上;图2错在没有过点B画AC 的垂线段;图3错在把三角形的高与AC边上的垂线混淆,把线段画成了射线.正确的作法是过点B向对边AC所在的直线画垂线,垂足为E.因为三角形是钝角三角形,所以垂足落在CA 的延长线上,如下图所示:(3)运用三角形三边关系时出错,只有两边之和大于第三边,才能构成三角形,才能进行其他运算,这是前提.特别是等腰三角形在没指明哪是底哪是腰时更易出错,一定要分类讨论,且必须考虑“不同情况下是否能构成三角形”.【例12-1】 下列说法正确的是( ).A .三角形的角平分线是射线B .三角形的高是一条垂线C .三角形的三条中线相交于一点D .三角形的中线、角平分线和高都在三角形内部解析:A ,B ,D 都是错误的,A 选项一个角的平分线与三角形的角平分线有本质区别:角的平分线是射线,三角形的角平分线是线段;三角形的高也是线段,是从三角形的一个顶点向它的对边所在的直线画垂线,顶点和垂足之间的线段;三角形的中线、角平分线以及锐角三角形的三条高都在三角形内部,但钝角三角形有两条高在三角形的外部,所以D 也是错误的.只有C 正确.答案:C【例12-2】 等腰三角形一腰上的中线把这个三角形的周长分成为12 cm 和15 cm 两部分,求三角形的底边长.分析:有两种可能,一种是锐角三角形,如图(1)所示,这时AB +AD =15 cm ,BC +CD =12 cm ;另一种是钝角三角形,如图(2),这时AB +AD =12 cm ,BC +CD =15 cm.图(1) 图(2) 解:(1)当三角形是锐角三角形时,因为D 是AC 的中点,所以AD =12AC =12AB ,所以AB +AD =AB +12AB =15,解得AB =10(cm).所以AC =10 cm ,所以底边BC =15+12-10×2=7(cm),此时能构成三角形,且底边长为7 cm.(2)当三角形是钝角三角形时,AB +AD =AB +12AB =12,解得AB =8(cm),所以AC =8 cm ,所以BC =15+12-8×2=11(cm).因为8+8>11,所以能构成三角形,此时底边为11 cm.答:底边的长为7 cm 或11 cm.。
2020-2021学年浙教版八年级上册等腰三角形专题培优姓名班级学号基础巩固1.如图,△ABC是等边三角形,AQ= PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的平分线上;②AS= AR;③QP∥AR;④△BRP ≌△QSP.其中正确的有().A.1个B.2个C.3个D.4个第1题第2题第3题2.如图,∠AOB= 120°,OP平分∠AOB,且OP= 2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有().A.2个B.3个C.4个D.无数个3.如图,已知△ABC和△CDE都是正三角形,且∠EBD= 62°,则∠AEB的度数是().A.124°B.122°C.120°D.118°第4题第5题4.如图,一个等边三角形、一个直角三角形以及一个等腰三角形按如图放置,已知等腰三角形的底角∠3 = 64°,则∠1 + ∠2 = _________ .5.如图,六边形ABCDEF的六个角都是120°,边长AB = 1 cm,BC = 3 cm,CD =3 cm,DE = 2 cm,则这个六边形的周长是 _________ .6.在Rt△ABC中,∠ACB= 90°,∠CAB= 30°.分别以AB,AC为边,向外作等边△ABD和邻边△ACE.(1)如图1,连结线段BE,CD.求证:BE = CD.(2)如图2,连结DE交AB于点F.求证:点F为DE中点.7.已知△ABC是等边三角形,D是直线BC上一动点,连结AD,在线段AD的右侧作射线DP且使∠ADP = 30°,作点A关于射线DP的对称点E,连结DE,CE.(1)当点D在线段BC上运动时.①依题意将图1补全.②请用等式表示线段AB,CE,CD之间的数量关系,并证明.(2)当点D在直线BC上运动时,请直接写出AB,CE,CD之间的数量关系,不需证明.拓展提优1.如图,在等边三角形ABC 中,AD ⊥BC ,垂足为点D ,点E 在线段AD 上,∠EBC = 45°,则∠ACE 等于( ).A .15°B .30°C .45°D .60°第1题2.如图,在边长为4的等边三角形ABC 中,D ,E 分别为AB ,AC 的中点,则△ADE 的面积是( ).A .3B .23 C .433D .323.如图,等腰直角三角形BDC 的顶点D 在等边三角形ABC 的内部,∠BDC = 90°,连结AD ,过点D 作一条直线将△ABD 分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角的度数分别是 _________ .4.如图,∠MON = 30°,点B 1在边OM 上,且OB = 2,过点B 1作B 1A 1⊥OM 交ON 于点A 1,以A 1B 1为边在A 1B 1右侧作等边三角形A 1B 1C 1;过点C 1作OM 的垂线分别交OM ,ON 于点B 2,A 2,以A 2B 2为边在A 2B 2的右侧作等边三角形A 2B 2C 2;过点C 2作OM 的垂线分别交OM ,ON 于点B 3,A 3,以A 3B 3为边在A 3B 3的右侧作等边三角形A 3B 3C 3…按此规律进行下去,则△A n A n +1C n 的面积为 _________ (用含正整数n 的代数式表示).5.如图,在等边三角形ABC中,D,E分别是BC,AC上的点,且AB= CD,AD与BE相交于点F,CF⊥BE.求证:(1)BE = AD.(2)BF = 2AF.6.已知△ABC,△EFG是边长相等的等边三角形,D是边BC,EF的中点.(1)如图1,连结AD,GD,则∠ADC= _________ 度;∠GDF= _________ 度;AD与GD的数量关系是 _________ ;DC与DF的数量关系是 _________ .(2)如图2,直线AG,FC相交于点M,求∠AMF的大小.冲刺重高1.如图,在等边三角形ABC中,在AC边上取两点M,N,使∠MBN= 30°.若AM = m,MN = x,CN = n,则以x,m,n为边长的三角形的形状为().A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定2.如图是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2 cm时,这个六边形的周长为().A.30 cmB.40 cmC.50 cmD.60 cm3.在等边三角形ABC所在的平面内求一点P,使△PAB,△PBC,△PAC都是等腰三角形,具有这样性质的点P有().A.1个B.4个C.7个D.10个4.如图,等边三角形RST的顶点R,S,T分别在等腰三角形ABC的边AB,BC,CA 上,设∠ART= x°,∠RSB= y°,∠STC= z°,用含y,z的代数式表示x是_________ .5.如图,点P是等边三角形ABC内部一点,且∠APC= 117°,∠BPC= 130°.求以AP,BP,CP为边的三角形的三内角的度数.参考答案2 3 4 567。
章节测试题1.【答题】已知:如图所示,△ABC与△ABD中,∠C=∠D=90°,要使△ABC≌△ABD (HL)成立,还需要加的条件是()A. ∠BAC=∠BADB. BC=BD或AC=ADC. ∠ABC=∠ABDD. AB为公共边【答案】B【分析】由已知两三角形为直角三角形,且斜边为公共边,若利用HL证明两直角三角形全等,需要添加的条件为一对直角边相等,即BC=BD或AC=AD.【解答】解:需要添加的条件为BC=BD或AC=AD,理由为:若添加的条件为BC=BD,在Rt△ABC与Rt△ABD中,∵,∴Rt△ABC≌Rt△ABD(HL);若添加的条件为AC=AD,在Rt△ABC与Rt△ABD中,∵,∴Rt△ABC≌Rt△ABD(HL).故选B.2.【答题】如图,BC⊥AC,BD⊥AD,且BC=BD,则利用______可说明三角形全等.A. SASB. AASC. SSAD. HL【答案】D【分析】根据斜边、直角边定理解答.【解答】解:∵AB是△ABC、△ABD的公共斜边,BC、BD是对应的直角边,∴利用(HL)可说明三角形全等.选D.3.【答题】如图,点P是∠BAC内一点,且点P到AB、AC的距离相等.则△PEA≌△PFA 的理由是()A. HLB. AASC. SSSD. ASA【答案】A【分析】根据题意找出三角形全等的条件,然后根据条件确定全等的依据,解答即可.【解答】解:∵点P到AB、AC的距离相等,∴PE=PF,又∵PA是公共边,∴△PEA≌△PFA用的是PA=PA,PE=PF,符合斜边直角边定理,即HL.选A.4.【答题】如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的依据是()A. HLB. ASAC. AASD. SAS【答案】A【分析】已知∠A=∠D=90°,题中隐含BC=BC,根据HL即可推出△ABC≌△DCB.【解答】解:HL,理由是:∵∠A=∠D=90°,∴在Rt△ABC和Rt△DCB中,∴Rt△ABC≌Rt△DCB(HL),选A.5.【答题】如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充条件()A. ∠BAC=∠BADB. AC=AD或BC=BDC. AC=AD且BC=BDD. 以上都不正确【答案】B【分析】根据“HL”证明Rt△ABC≌Rt△ABD,因图中已经有AB为公共边,再补充一对直角边相等的条件即可.【解答】解:从图中可知AB为Rt△ABC和Rt△ABD的斜边,也是公共边.根据“HL”定理,证明Rt△ABC≌Rt△ABD,还需补充一对直角边相等,即AC=AD或BC=BD,选B.6.【答题】如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是()A. HLB. ASAC. SASD. AAS【答案】A【分析】由于∠BAD=∠BCD=90°,AB=CB.题中还隐含了公共边这个条件,由此就可以证明△BAD≌△BCD,全等容易看出.【解答】解:∵∠BAD=∠BCD=90°,AB=CB,DB=DB,∴△BAD≌△BCD(HL).选A.7.【答题】如图,∠C=∠D=90°,AC=AD,∠1=30°,则∠ABD的度数是()A. 15°B. 30°C. 60°D. 90°【答案】C【分析】首先根据直角三角形的性质求得∠ABC=60°,然后通过全等三角形Rt△ACB≌Rt△ADB的对应角相等求得∠ABD=∠ABC.【解答】解:如图,∵在△ABC中,∠C=90°,∠1=30°,∴∠ABC=60°.∵∠C=∠D=90°,∴在Rt△ACB与Rt△ADB中,,∴Rt△ACB≌Rt△ADB(HL),∴∠ABD=∠ABC=60°.选C.8.【答题】如图,在△ABC和△DCB中,∠A=∠D=90°,AB=CD,∠ACB=30°,则∠ACD 的度数为()A. 10°B. 2°C. 30°D. 40°【答案】C【分析】利用“HL”证明Rt△ABC和Rt△DCB全等,根据全等三角形对应角相等可得∠ACB=∠DBC,再根据直角三角形两锐角互余列式求出∠BCD,然后根据∠ACD=∠BCD-∠ACB计算即可得解.【解答】解:在Rt△ABC和Rt△DCB中,,∴Rt△ABC≌Rt△DCB(HL),∴∠ACB=∠DBC=30°,在Rt△BCD中,∠BCD=90°-∠DBC=90°-30°=60°,∴∠ACD=∠BCD-∠ACB,=60°-30°,=30°.选C.9.【答题】如图,AB⊥BC于B,AD⊥CD于D,若CB=CD,且∠BAC=30°,则∠BAD的度数是()A. 15°B. 30°C. 60°D. 90°【答案】C【分析】根据HL判定△ABC≌△ADC,得出∠BAC=∠DAC=30°,进而求出∠BAD=60°.【解答】解:∵AB⊥BC于B,AD⊥CD于D∴∠ABC=∠ADC=90°又∵CB=CD,AC=AC∴△ABC≌△ADC(HL)∴∠BAC=∠DAC=30 o∴∠BAD=∠BAC+∠DAC=60°选C.10.【答题】下列语句中不正确的是()A. 斜边和一锐角对应相等的两个直角三角形全等B. 有两边对应相等的两个直角三角形全等C. 有两个锐角相等的两个直角三角形全等D. 有一直角边和一锐角对应相等的两个直角三角形全等【答案】C【分析】根据直角三角形全等的判定定理进行解答即可.【解答】解:A、∵直角三角形的斜边和一锐角对应相等,所以另一锐角必然相等,∴符合ASA定理,故本选项正确;B、两边对应相等的两个直角三角形全等,若是两条直角边,可以根据SAS判定全等,若是直角边与斜边,可根据HL判定全等.故本选项正确;C、有两个锐角相等的两个直角三角形,可以一大一小但形状相同,故本选项错误;D、有一直角边和一锐角对应相等的两个直角三角形符合ASA定理,可判定相等,故本选项正确.选C.11.【答题】如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等的条件是()A. AC=A′C′,BC=B′C′B. ∠A=∠A′,AB=A′B′C. AC=A′C′,AB=A′B′D. ∠B=∠B′,BC=B′C′【答案】C【分析】根据直角三角形全等的判定方法(HL)即可直接得出答案.【解答】解:∵在Rt△ABC和Rt△A′B′C′中,如果AC=A′C′,AB=A′B′,那么BC一定等于B′C′,Rt△ABC和Rt△A′B′C′一定全等,选C.12.【答题】下列条件不可以判定两个直角三角形全等的是()A. 两条直角边对应相等B. 两个锐角对应相等C. 一条直角边和它所对的锐角对应相等D. 一个锐角和锐角所对的直角边对应相等【答案】B【分析】根据全等三角形的判定定理:AAS、SAS、ASA、SSS及直角三角形的判定定理HL 对4个选项逐个分析,然后即可得出答案.【解答】解:A、两条直角边对应相等,可利用全等三角形的判定定理SAS来判定两直角三角形全等,故本选项正确;B、两个锐角对应相等,再由两个直角三角形的两个直角相等,AAA没有边的参与,所以不能判定两个直角三角形全等;故本选项错误;C、一条直角边和它所对的锐角对应相等,可利用全等三角形的判定定理AAS来判定两个直角三角形全等;故本选项正确;D、一个锐角和锐角所对的直角边对应相等,可以利用全等三角形的判定定理AAS来判定两个直角三角形全等;故本选项正确;选B.13.【答题】下列说法正确的说法个数是()①两个锐角对应相等的两个直角三角形全等,②斜边及一锐角对应相等的两个直角三角形全等,③两条直角边对应相等的两个直角三角形全等,④一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等.A. 1B. 2C. 3D. 4【答案】C【分析】根据全等三角形的判定方法及“HL”定理,判断即可;【解答】解:A、三个角相等,不能判定全等,故本选项错误;B、斜边及一锐角对应相等的两个直角三角形,符合两三角形的判定定理“AAS”,故本选项正确;C、两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”,故本选项正确;D、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等,故本选项正确;所以,正确的说法个数是3个.选C.14.【答题】下列说法中,正确的个数是()①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的对应夹角相等的两个直角三角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A. 1个B. 2个C. 3个D. 4个【答案】C【分析】根据HL可得①正确;如果一直角边和一斜边对应相等,这两个直角三角形不全等;由AAS或ASA可得③正确;三个角相等的两个直角三角形不一定全等.【解答】解:①斜边和一直角边对应相等的两个直角三角形全等,正确;②有两边和它们的夹角对应相等的两个直角三角形全等,正确;③一锐角和斜边对应相等的两个直角三角形全等,正确;④两个锐角对应相等的两个直角三角形全等,错误;选C.15.【答题】如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A. 30°B. 40°C. 50°D. 60°【答案】D【分析】根据直角三角形两锐角互余求出∠3,再利用“HL”证明Rt△ABC和Rt△ADC全等,根据全等三角形对应角相等可得∠2=∠3.【解答】解:∵∠B=90°,∠1=30°,∴∠3=90°-∠1=90°-30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.选D.16.【答题】如图,在△ABC和△ADC中,∠B=∠D=90°,BC=DC,∠1=40°,则∠2的度数为()A. 40°B. 50°C. 60°D. 以上都不对【答案】B【分析】利用HL得到直角三角形ABC与直角三角形ADC全等,利用全等三角形对应角相等得到∠2=∠ACD,根据∠1与∠ACD互余即可求出∠2的度数.【解答】解:在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠ACD,∵∠1+∠ACD=90°,∴∠2+∠1=90°,∵∠1=40°,∴∠2=50°,选B.17.【答题】下列可使两个直角三角形全等的条件是()A. 一条边对应相等B. 两条直角边对应相等C. 一个锐角对应相等D. 两个锐角对应相等【答案】B【分析】判定两个直角三角形全等的方法有:SAS、SSS、AAS、ASA、HL五种.据此作答.【解答】解:两直角三角形隐含一个条件是两直角相等,要判定两直角三角形全等,起码还要两个条件,故可排除A、C;而D构成了AAA,不能判定全等;B构成了SAS,可以判定两个直角三角形全等.选B.18.【答题】下列条件中不能使两个直角三角形全等的是()A. 两条直角边对应相等B. 两个锐角对应相等C. 一条直角边和斜边对应相等D. 一个锐角和斜边对应相等【答案】B【分析】根据三角形全等的判定对各选项分析判断后利用排除法求解.【解答】解:A、可以利用边角边判定两三角形全等,故本选项不符合题意;B、全等三角形的判定必须有边的参与,三个角对应相等不能判定两三角形全等,故本选项符合题意;C、根据斜边直角边定理判定两三角形全等,故本选项不符合题意;D、可以利用角角边判定两三角形全等,故本选项不符合题意.选B.19.【答题】使两个直角三角形全等的条件是()A. 一个锐角对应相等B. 两个锐角对应相等C. 一条边对应相等D. 两条边对应相等【答案】D【分析】利用全等三角形的判定来确定.做题时,要结合已知条件与三角形全等的判定方法逐个验证.【解答】A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故选项错误;B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故选项错误;C、一条边对应相等,再加一组直角相等,不能得出两三角形全等,故选项错误;D、两条边对应相等,若是两条直角边相等,可利用SAS证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故选项正确.选D.20.【答题】命题"有一条边和一个锐角分别相等的两个直角三角形全等"是______命题.【答案】假【分析】根据直角三角形全等的判定方法判断即可.【解答】解:一条边和一个锐角分别相等的两个直角三角形,边与角不一定是对应边和对应角,例如:两个直角三角形中相等的∠α的邻边与对边相等,两个三角形不全等,所以,这两个直角三角形不一定全等,所以,"有一条边和一个锐角分别相等的两个直角三角形全等"是假命题.。
初中数学--特殊三角形练习
一、选择题
1.若等腰三角形的顶角为40°,则它的底角度数为()
A.40°B.50°C.60°D.70°
2.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()
A.35°B.45°C.55°D.60°
3.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()
A.35°B.40°C.45°D.50°
4.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()
A.15°B.17.5°C.20°D.22.5°
5.若一个等腰三角形的两边长分别是2和5,则它的周长为()
A.12 B.9 C.12或9 D.9或7
6.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()
A.9 B.12 C.7或9 D.9或12
7.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()
A.8或10 B.8 C.10 D.6或12
8.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()
A.80°B.90°C.100°D.105°
9.如图,△ABC、△ADE中,C、D两点分别在AE、AB上,BC与DE相交于F点.若BD=CD=CE,∠ADC+∠ACD=114°,则∠DFC的度数为何?()
A.114 B.123 C.132 D.147
10.已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为()
A.7 B.8 C.6或8 D.7或8
11.一个等腰三角形的两边长分别是3和7,则它的周长为()
A.17 B.15 C.13 D.13或17
12.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()
A.30°B.40°C.45°D.60°
13.已知等腰三角形△ABC中,腰AB=8,底BC=5,则这个三角形的周长为()
A.21 B.20 C.19 D.18
14.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=()
A.30°B.45°C.60°D.90°
15.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()
A.40°B.45°C.60°D.70°
16.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()
A.11 B.16 C.17 D.16或17
17.如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=()
A.36°B.54°C.18°D.64°
18.如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()
A.36°B.60°C.72°D.108°
19.如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()
A.150°B.160°C.130°D.60°
20.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为()
A.B.C.D.
二、填空题
21.等腰三角形的一个外角是60°,则它的顶角的度数是______.
22.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=______度.23.如图,a∥b,∠ABC=50°,若△ABC是等腰三角形,则∠α=______°(填一个即可)
24.一个等腰三角形的两边长分别是2cm、5cm,则它的周长为______cm.
25.若等腰三角形的两条边长分别为7cm和14cm,则它的周长为______cm.
26.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是______.27.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:
以A为圆心,1为半径向右画弧交OC于点A
1,得第1条线段AA
1
;
再以A
1为圆心,1为半径向右画弧交OB于点A
2
,得第2条线段A
1
A
2
;
再以A
2为圆心,1为半径向右画弧交OC于点A
3
,得第3条线段A
2
A
3
;…
这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=______.
特殊三角形
参考答案
一、选择题
1.D;2.C;3.A;4.A;5.A;6.B;7.C;8.B;9.B;10.D;11.A;12.B;13.A;14.B;15.A;16.D;17.B;18.C;19.A;20.A;
二、填空题
21.120°;22.52;23.130;24.12;25.35;26.110°或70°;27.9;。