塔里木油田大尺寸深井干法固井技术研究
- 格式:pdf
- 大小:330.91 KB
- 文档页数:5
塔里木油田钻井推荐做法(中原塔里木)1、优化中完施工工序。
提速是钻井工程永恒的主题,实现钻井提速不能仅仅聚焦于容易节余的钻进施工,还要着眼于工序繁多、劳动量大的中完作业。
中完作业周期约占钻井周期25%-30%,个别井比达到40%。
随着施工工序更加标准化,公司通过倒排中完施工计划,提前组合超前谋划,通井、下套管、固井、装井口、试压、扫塞等每个工序设定目标周期,时间精确到小时,每天对比分析,分析节超原因,为后续优化做好准备。
2、升级配套装备。
装备必须从工程出发,满足工程提速提效技术需求。
针对钻井参数强化需要,从机泵条件、顶驱功率及钻具方面对钻井装备进行了一体化升级配套。
一是大功率泥浆泵。
8000米以上的超深井配备52MPa高压泵,90118配备2台2200马力和1台1600马力泥浆泵泵,90115队配备3台1600马力的52MPa高压泵。
二是高转速大扭矩顶驱系统。
配置了90型顶驱,能够提供120r/m的转速,48kN.m的连续扭矩,满足了深部定向段高转速清砂技术需要。
三大水眼钻具。
上部地层使用φ149.7mm和φ139.7mm大水眼钻杆,压耗降低16%~30%。
3、推行“钻头优选+工具配套+参数强化”的集成应用技术。
一是二叠系以上地层应用预弯曲防斜打直技术,配合 1.25°等壁厚大扭矩螺杆+高抗冲异型齿PDC钻头,山前备用垂钻。
同时配套使用大排量、高泵压强化参数钻进。
二是二叠系火成岩含量少的区域,使用抗冲蚀的双排齿PDC钻头+7头高扭低速螺杆钻进。
个别区块玄武岩含量多,配合使用混合钻头+7头高扭低速螺杆,快速钻穿二叠系。
三是二叠系以下古生界地层,压实程度高,研磨性强,采用抗研磨个性化钻头+7头1.25°大扭矩螺杆,应用预弯曲防斜打直技术,备用垂钻,配套使用大排量、高钻压、高泵压等强化钻井参数措施,提高机械钻速。
4、推行混合钻头定向钻进技术。
混合钻头定向钻进一趟钻,造斜率高,工具面稳定,机械钻速高。
318塔里木库车山前井Φ365.13mm套管串的下入,其主要有井段深、重量大、刚度大等技术难点。
本文通过现场实际操作,针对这些技术难点,山前井通过对二开Φ365.13mm套管下入技术措施总结。
1 下套管前相关工程计算1.1 双扶通井组合刚度17″PDC + 17″扶正器+9"钻铤×1根 +17″扶正器+9"钻铤1根+8"钻铤12根 +5 1/2"加重钻杆3根+5 1/2"钻杆。
刚度比:m =(3×9.27×0.0027+1.05×2×0.033)/ (0.27×3×0.0061+11×3×0.0005)=1.01下套管前通井组合刚度比1.01,满足下套管刚性要求。
1.2 三扶通井组合刚度17″PDC + 17″扶正器+9"钻铤×1根 +17″扶正器+9"钻铤1根+ 17″扶正器+9"钻铤×1根+8"钻铤12根 +5 1/2"加重钻杆3根+5 1/2"钻杆。
刚度比:m =(3×9.27×0.0027+1.05×3×0.033)/(0.27×3×0.0061+11×3×0.0005)=1.23下套管前通井组合刚度比1.23,完全满足下套管刚性要求。
1.3 套管强度校核套管强度校核数据见表1。
载荷计算方法:钻井液密度1.60,浮力系数:0.7961.4 下套管掏空计算为保证浮鞋、浮箍的回压凡尔安全,反向承压应小于10MPa;最大掏空深度为:10/0.00981/1.60=637m。
考虑掏空500m,负压为:500×1.60×9.81/1000=7.8MPa 掏空500m后,套管浮重为:382.72-9.81*0.785*0.337*0.337*500*1.60/10=312.82t2 下套管前井眼准备双扶通井:1)裸眼段匀速平稳下放钻具,200m以后控制下钻速度,钩速不得超过0.3m/s,防止激动压力过大压漏地层,出口返浆减小,及时接顶驱顶通循环。
深井超深井钻井技术第一节概述 (1)第二节地层孔隙压力评估技术 (2)第三节井身结构及套管柱优化设计 (4)第四节防斜打快理论和技术 (9)第五节地层抗钻特性评价与钻头选型技术 (14)第六节井壁稳定技术 (18)第七节钻井液技术 (23)第八节固井技术 (27)第九节深井测试和录井技术 (31)第一节概述对于油气井而言,深井是指完钻井深为4500~6000米的井;超深井是指完钻井深为6000米以上的井。
深井、超深井钻井技术,是勘探和开发深部油气等资源的必不可少的关键技术。
在我国,深井、超深井比较集中的陆上地区包括塔里木、准噶尔、四川等盆地。
实践证明,由于地质情况复杂(诸如山前构造、高陡构造、难钻地层、多压力系统及不稳定岩层等,有些地层也存在高温高压效应),我国在这些地区(或其它类似地区)的深井、超深井钻井工程遇到许多困难,表现为井下复杂与事故频繁,建井周期长,工程费用高,从而极大地阻碍了勘探开发的步伐,增加了勘探开发的直接成本。
在“八五”末期,虽然我国在3000m以内的油气井钻井方面已接近国际80年代末的技术水平,但当井深超过4000m时,我国的钻井技术与国外先进水平相比仍有较大差距。
美国5000m左右的油气井钻井周期约为90天,5500m左右约为110天,6000m左右约为140天,6500~7000m约为5~7月。
然而,我国深井平均钻井周期约为210天左右,特别是在对付复杂深井超深井工程方面的钻井能力和水平比较低,没有形成一整套与之相适应的深井超深井钻井技术。
为了尽快适应我国西部深层油气资源勘探开发工程的迫切需要,在“八五”初步研究的基础上,中国石油天然气集团公司将“复杂地层条件下深井超深井钻井技术研究”列为“九五”重大科技工程项目之一(项目编号:960024),调动全国的优势科研力量开展大规模攻关研究,试图使塔里木、准葛尔、四川等盆地的深井超深井钻井技术水平有较大提高,基本满足这些地区深部油气资源高效钻探与开采的技术需求。
塔里木油田山前克拉苏构造博孜段大北钻井技术研究随着我国石油工业的快速发展,塔里木油田逐渐成为国内油气领域的重要产油区之一。
山前克拉苏构造博兹段是塔里木油田富含高硫化物的复杂构造区,该区油层地质条件复杂,钻井难度大,安全问题也比较突出。
因此,研究塔里木油田山前克拉苏构造博兹段大北钻井技术,对提高油气勘探开发水平、改善油藏开发效果、提高提高企业经济效益和优化资源利用具有非常重要的意义。
1.大北钻井技术概述大北钻井技术是一种钻井关键技术,主要是针对具有较大斜角和水平井段的油井进行钻井工作。
在大北钻井技术中,钢丝绳可通过牵引钩利用内部拖缆机构(大北)拉扯钻杆进入井下,这样就可以不用下到井下了。
该技术施工过程所需的钻杆、作业人员和机械设备也较少,省去了钻井启动时的备料时间和费用,并减少了钻井现场作业日程,大大提高了钻井效率和作业效率。
克拉苏构造博兹段地层石灰岩及含石膏亚石膏岩呈现连续覆盖和断层剪切现象,效果钻井困难、容易垮塌,钻头因受到固壁破坏和环空不稳定以及石灰岩压裂液特殊性而经常需要挽救。
使用传统的人工接替钻杆的方式,点钻速度慢、安全风险高,容易造成外漏和失控。
但是大北钻井技术可以克服这些困难,适用于斜井和水平井段,尤其是在井深较大、地层较复杂的地区,因此被广泛应用于石油开发领域。
①降低钻具卡钻卡管等故障的发生率,增加钻井成功率;②减少了人员、设备和物资等的准备时间,便于快速开展钻井作业;③提高工人的钻井效率,提高井筒的平整度和整齐度,减少井径变化范围;④提高钻具使用寿命,减少钻具磨损和损失,从而使钻井成本降低;⑤大北钻井人员操作技能可以更快速、更直观地得到提高,提高了钻井的安全性和可靠性。
综上所述,大北钻井技术在塔里木油田山前克拉苏构造博兹段的应用是非常值得推广和研究的一种技术方法,能够有效提高生产效率和增加油气勘探开发的成功率,也具有较为显著的经济效益和社会效益。
未来,随着我国油气勘探开发技术的不断提高和创新,在大北钻井技术的基础上还将涌现出更多的技术手段,推动我国石油工业的更快发展。
构造:塔里木盆地塔北隆起哈拉哈塘油田跃满区块井别:开发井井型:直井YueM3-2井200.03mm套管正注反挤固井施工设计塔里木第四勘探公司固井分公司2015年4月10日概况:YueM3-2井位于新疆维吾尔自治区阿克苏地区沙雅县境内,是部署在塔北隆起轮南低凸起西斜坡哈拉哈塘鼻状构造南翼跃满 3 井区的一口开发井,设计井型为直井,该井井口南偏西方向距YueM3-2 井 1.37km,井区地表为沙丘地,井口 1km 范围内暂无居民。
本井设计完钻井深7300米。
二开中完设计井深7172米,实际中完井深7188米,准备下入Ф200.03mm套管正注反挤固井。
依据《YueM3-2井钻井工程设计》及该井实钻情况进行《固井施工设计》的编写。
具体施工,根据现场电测实际情况对施工量、扶正器等进行修正。
本设计一经审批,望各相关单位提前做好相关准备工作,具体落实到每一个环节。
现场措施如有变动应另行提前提出书面通知,妥善协商解决。
1、钻井资料:排量:30l/s 泵压:18MPa2、地质资料:2.1 地质分层(实测)注:预测深度按地面海拔960m计算,不含补心高,“▽”表示未穿。
2.2后效情况(保留最后一次后效数据)2015.4.7【后效】6407-6410m,层位:O3tr,钻头位置:6887.7m,钻井液静止时间:55.9h,后效开始时间:10:34,后效高峰时间:10:54,开泵时间:8:22,迟到时间:151分钟,TG:0.17↗0.51%,C1:0.0972↗0.35%,C2:0.0062↗0.0229%,C3:0.0025↗0.0051%,iC 4:0.0015%,nC4:0.0016%,钻井液参数:相对密度1.27,粘度106s,氯根15000mg/l,出口温度48℃,出口电导 2.49s/m,槽面无显示,池体积无变化,VMS分析:VMS分析:C1: 0.5243%,C2: 0.0375%,C3: 0.0072%,iC4: 0.0027%,nC4: 0.0051%,iC5: 0.0024%,nC5: 0.0046%。
探究深井超深井和复杂结构井垂直钻井技术【摘要】深井、超深井和复杂结构井钻井技术是石油工程领域的重要研究课题。
本文旨在探究这些钻井技术的发展现状、工艺特点、设备创新以及工程实践案例。
通过对深井和超深井的钻井技术进行分析,可以了解到其在油气勘探中的重要性和应用价值;而对复杂结构井的垂直钻井技术研究则有助于解决在地质复杂地区开采难题。
结合工程实践案例分析,可以总结出钻井技术的发展趋势和应用前景展望。
通过本文的研究,可以为深井、超深井和复杂结构井钻井技术的进一步发展提供一定的参考和借鉴。
【关键词】深井、超深井、复杂结构井、垂直钻井、技术探究、研究目的、研究意义、钻井工艺、钻井设备、工程实践、案例分析、技术发展趋势、应用前景、总结。
1. 引言1.1 探究深井超深井和复杂结构井垂直钻井技术研究目的:深井、超深井和复杂结构井是当今石油工业开发中面临的重要挑战,钻井技术的发展将直接影响到钻井效率和成本控制。
本研究的目的在于探究深井、超深井和复杂结构井垂直钻井技术,提高钻井效率,降低钻井成本,减少钻井事故风险,促进石油工业的可持续发展。
研究意义:1.2 研究目的研究目的是为了深入探究深井、超深井和复杂结构井垂直钻井技术的原理和方法,提高钻井的效率和安全性。
通过对这些技术的研究,可以更好地了解地下岩层情况,准确预测油气资源分布,优化钻井设计方案,降低钻井风险,提高钻井成功率。
通过深入研究钻井工艺和设备创新,可以不断提升钻井技术水平,推动钻井行业的发展。
研究的目的是为了实现钻井领域的技术创新和进步,为油气勘探开发提供更可靠的技术支持和保障。
1.3 研究意义深井超深井和复杂结构井垂直钻井技术的研究意义主要体现在以下几个方面:深井和超深井钻井技术的研究可以帮助我们更好地开发地下资源,满足能源需求。
随着地表资源的逐渐枯竭,地下资源的开采将成为未来发展的重要方向,而深井和超深井钻井技术的提升可以有效增加勘探开发成功率,提高资源利用率。