逻辑第五章推理、简化真值表和形式证明
- 格式:ppt
- 大小:371.50 KB
- 文档页数:49
第五章复合命题地描画——正确地或错误地——现实,必须与现实具有共同的东西,这种形式就是逻辑形式,即现实的形式。
像弗雷格和罗素一样,我把命题看作是其中所包含的式的函数。
——[奥]维特根斯坦《逻辑哲学论》236主要内容•联言命题•选言命题•假言命题•负命题•真值形式与真值函项•真值表237一. 概述1、定义复合命题(compound proposition)是古典命题逻辑的基本概念,指本身包含其他命题的命题,以联结词联结简单命题而成。
例1.人是生而自由的,但却无往不在枷锁之中。
——《社会契约论》例2.仓廪实而知礼节,衣食足而知荣辱。
——《管子》例3.并不是我特别聪明,我只是比较执着于解决问题。
——爱因斯坦2、复合命题的逻辑特征(1)复合命题的基本单位是命题。
在复合命题中,原子命题成为“逻辑变项”,它们被称为“支命题”。
(2)支命题由逻辑联结词(“逻辑常项”)联结,不同的逻辑联结词具有不同的逻辑性质。
(3)复合命题的真假取决于支命题的真假组合和联结词的逻辑性质。
3、复合命题的种类联言命题选言命题假言命题负命题二. 联言命题1、定义联言命题(conjunctive proposition)指关于几种事物情况同时存在的复合命题。
例4.朱门酒肉臭,路有冻死骨。
——杜甫:《自京赴奉先县咏怀五百字》例5.李白和杜甫是唐朝人。
例6.空洞的理论是没有用的,不正确的,应该抛弃的。
2、逻辑形式p并且q,读作“p并且q”。
p∧q,读作“p合取q”。
5、常用联结词…并且…;…和…缺一不可;尽管(虽然)…但是…;既…又…;不但…而且…;除了…还…。
6、需要注意的问题逻辑学中的“并且”与日常用语中的“并且”不完全相同,后者不仅是对“并且”前后两命题的肯定,而且前后两命题在内容方面有联系,或递进,或转折,或并列,而在逻辑学意义上,这一点被抽象掉了。
不论p和q在内容上是否有相关性,只要p、q都为真,那么“p并且q”就为真。
例7.“1+1=2,并且,雪是白的”;例8.“量力而行,尽力而为”和“尽力而为,量力而行”。
第五章复合命题及其推理一、分析下列语句各表达什么复合命题?请写出其逻辑式。
1.书山有路巧为径,学海无涯乐作舟。
答:这是一个二支联言命题,可表示为:p∧q2.只有发展外向型经济,才能打入国际市场。
答:这是一个必要条件假言命题,可表示为:p←q3.但凡家庭之事,不是东风压倒西风,就是西风压倒东风。
答:这是一个二支不相容选言命题,可表示为:p q4.并不是每一个科学家都是上过大学的。
答:这是个负A 命题,它等值一个O 命题:¬(SAP) ←→ SOP5.足球的进攻方式,主要是中路突破,此外或边线进攻,或长传短切,或单刀直入。
答:这是一个四支不相容选言命题:p q r s6.法律如果并且只有推开特权的大门,才能跨进人民的心。
答:这是一个充分必要条件假言命题:p←→ q二、下列语句是否表达选言命题?如表达,各表达什么选言命题?请写出逻辑式。
1.身体不好,或者是由于有病,或者是由于锻炼差,或者是由于营养不良。
答:表达一个三支相容选言命题:p∨q∨r2.这堂课是你上,还是我上?答:表达一个二支不相容选言命题:p q3.这次围棋名人赛,要么小林光一取得胜利,要么马晓春取得胜利。
答:表达一个二支不相容选言命题:p q4.雇用的女工大抵非馋即懒,或者馋而且懒。
答:表达一个二支相容选言命题,用p 表示“女工馋”,用q 表示“女工懒”,其逻辑式为:p∨q,也可理解为三支不相容选言命题:(¬p∧q)(p∧¬q) (p∧q),二者等值。
三、下列语句是否表达假言命题?如表达,各表达哪种假言命题?请写出它们的逻辑式。
1.一人抽烟,大家受害。
答:表达一个充分条件假言命题:如果一人抽烟,那么大家受害,p→q2.人们首先必须吃、喝、住、穿,然后才能从事政治、科学、艺术、宗教等等。
答:表达一个必要条件假言命题:p←q3.如果说幼年时期的无知是天真的表现的话,那么,成年以后还满足于自己的无知就是愚蠢的表现了。
命题逻辑的真值表和范式命题逻辑是研究命题(陈述句)之间的逻辑关系的一种逻辑学分支。
在命题逻辑中,我们使用真值表和范式来表示和分析命题的逻辑结构。
本文将介绍真值表和范式在命题逻辑中的重要性和应用。
一、真值表真值表是用来表示和计算命题的真假值情况的一种工具。
它列举了命题中每个命题变量的可能取值情况,并根据命题之间的逻辑运算规则计算出整个命题的真假值。
真值表通常由命题变量和逻辑运算符组成。
例如,对于两个命题变量P和Q,我们可以构建如下的真值表:P | Q | P∧Q | P∨Q | P→Q | P↔Q----------------------T | T | T | T | T | T----------------------T | F | F | T | F | F----------------------F | T | F | T | T | F----------------------F | F | F | F | T | T在真值表中,"T"代表命题的真值为真,"F"代表命题的真值为假。
通过观察真值表,并根据命题之间的逻辑运算规则,我们可以推断出命题之间的逻辑关系。
例如,P∧Q表示P与Q的合取,只有当P和Q 都为真时,合取才为真。
类似地,P∨Q表示P与Q的析取,只要P和Q中至少有一个为真,析取就为真。
真值表为我们提供了一种清晰的逻辑分析工具,能够帮助我们理解和推理命题之间的逻辑关系。
二、范式范式是用来简化和表示复杂命题的一种方法。
它将命题表示为若干个简单命题之间的逻辑连接,并以逻辑运算符为界限构成。
在命题逻辑中,最常见的范式有析取范式(DNF)和合取范式(CNF)。
析取范式将命题表示为若干个合取式之间的析取,而合取范式将命题表示为若干个析取式之间的合取。
例如,对于命题P、Q和R,我们可以将它们表示为析取范式和合取范式。
析取范式(DNF):(P∧Q∧¬R)∨(¬P∧Q∧R)∨(¬P∧¬Q∧R)合取范式(CNF):(P∨¬Q∨¬R)∧(¬P∨Q∨¬R)∧(¬P∨Q∨R)范式的使用可以帮助我们简化和理解复杂的逻辑表达式。
简化命题逻辑中的真值表应用命题逻辑是数理逻辑的一个分支,研究命题之间的逻辑关系。
在命题逻辑中,真值表是一种常用的工具,用于确定命题的真值。
然而,当命题逻辑问题变得复杂时,真值表的应用变得繁琐且易错。
因此,简化命题逻辑中的真值表应用成为了一个重要的课题。
简化命题逻辑中的真值表应用可以通过引入真值表的规则和技巧来实现。
首先,我们可以利用真值表的对称性质来简化计算。
例如,当命题的真值表中有对称的命题时,我们可以利用对称性质将这些命题合并为一个命题,从而减少真值表的大小。
这种简化方法可以大大减少计算量,提高计算效率。
其次,我们可以利用真值表的重复性质来简化计算。
当命题的真值表中有重复的命题时,我们可以利用重复性质将这些命题合并为一个命题,从而减少真值表的大小。
这种简化方法可以减少计算步骤,提高计算速度。
另外,我们还可以利用真值表的规律性质来简化计算。
例如,当命题的真值表中存在某种规律时,我们可以利用这种规律来推导出其他命题的真值,从而减少计算步骤。
这种简化方法可以提高计算的准确性和可靠性。
除了利用真值表的规则和技巧来简化计算,我们还可以借助计算机技术来简化命题逻辑中的真值表应用。
计算机可以高效地处理大量的数据和复杂的计算,因此可以用来自动化地生成和简化真值表。
通过编写相应的程序,我们可以将命题逻辑问题转化为计算机程序,并利用计算机的计算能力来简化真值表的生成和计算过程。
简化命题逻辑中的真值表应用不仅可以提高计算效率和准确性,还可以帮助我们更好地理解和应用命题逻辑。
通过简化真值表的过程,我们可以深入理解命题之间的逻辑关系,发现其中的规律和特点。
这些规律和特点不仅可以帮助我们更好地解决命题逻辑问题,还可以为我们在其他领域中应用逻辑思维提供指导和启示。
总之,简化命题逻辑中的真值表应用是一个重要的课题。
通过引入真值表的规则和技巧,借助计算机技术,我们可以简化真值表的生成和计算过程,提高计算效率和准确性。
这不仅可以帮助我们更好地解决命题逻辑问题,还可以深入理解和应用命题逻辑的规律和特点。
第一讲引言一、课程内容·数理逻辑:是计算机科学的基础,应熟练掌握将现实生活中的条件化成逻辑公式,并能做适当的推理,这对程序设计等课程是极有用处的。
·集合论:数学的基础,对于学习程序设计、数据结构、编译原理等几乎所有计算机专业课程和数学课程都很有用处。
熟练掌握有关集合、函数、关系等基本概念。
·代数结构:对于抽象数据类型、形式语义的研究很有用处。
培养数学思维,将以前学过的知识系统化、形式化和抽象化。
熟练掌握有关代数系统的基本概念,以及群、环、域等代数结构的基本知识。
·图论:对于解决许多实际问题很有用处,对于学习数据结构、编译原理课程也很有帮助。
要求掌握有关图、树的基本概念,以及如何将图论用于实际问题的解决,并培养其使用数学工具建立模型的思维方式。
·讲课时间为两个学期,第一学期讲授数理逻辑与集合论,第二学期讲授代数结构和图论。
考试内容限于书中的内容和难度,但讲课内容不限于书中的内容和难度。
二、数理逻辑发展史1. 目的·了解有关的背景,加深对计算机学科的全面了解,特别是理论方面的了解,而不限于将计算机看成是一门技术或工程性的学科。
·通过重要的历史事件,了解计算机科学中的一些基本思维方式和一些基本问题。
2. 数理逻辑的发展前期·前史时期——古典形式逻辑时期:亚里斯多德的直言三段论理论·初创时期——逻辑代数时期(17世纪末)·资本主义生产力大发展,自然科学取得了长足的进步,数学在认识自然、发展技术方面起到了相当重要的作用。
·人们希望使用数学的方法来研究思维,把思维过程转换为数学的计算。
·莱布尼兹(Leibniz, 1646~1716)完善三段论,提出了建立数理逻辑或者说理性演算的思想:·提出将推理的正确性化归于计算,这种演算能使人们的推理不依赖于对推理过程中的命题的含义内容的思考,将推理的规则变为演算的规则。