在高考中数学表格题分类解析
- 格式:doc
- 大小:168.00 KB
- 文档页数:5
2012年高考文科数学解析分类汇编:导数一、选择题1 .(2012年高考(重庆文))设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是2 .(2012年高考(浙江文))设a>0,b>0,e 是自然对数的底数( )A .若e a +2a=e b+3b,则a>bB .若e a +2a=e b+3b,则a<bC .若e a -2a=e b-3b,则a>bD .若e a -2a=e b-3b,则a<b3 .(2012年高考(陕西文))设函数f(x)=2x+lnx 则 ( )A .x=12为f(x)的极大值点 B . x=12为f(x)的极小值点 C .x=2为 f(x)的极大值点D .x=2为 f(x)的极小值点4 .(2012年高考(山东文))设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 ( ) A .12120,0x x y y +>+> B .12120,0x x y y +>+< C .12120,0x x y y +<+>D .12120,0x x y y +<+<5 .(2012年高考(辽宁文))函数y=12x 2-㏑x 的单调递减区间为 ( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)6 .(2012年高考(湖北文))如图,在圆心角为直角的扇形OAB 中,分别以,OA OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .112π- B .1πC .21π-D .2π7 .(2012年高考(福建文))已知32()69,f x x x x abc a b c =-+-<<,且()()()0f a f b f c ===.现给出如下结论:①(0)(1)0f f >;②(0)(1)0f f <;③(0)(3)0f f >;④(0)(3)0f f <. 其中正确结论的序号是 ( )A .①③B .①④C .②③D .②④二、填空题8 .(2012年高考(上海文))已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,1),C (1,0). 函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为_______ .9 .(2012年高考(课标文))曲线(3ln 1)y x x =+在点(1,1)处的切线方程为________ 三、解答题10.(2012年高考(重庆文))已知函数3()f x ax bx c =++在2x =处取得极值为16c -(1)求a 、b 的值;(2)若()f x 有极大值28,求()f x 在[3,3]-上的最大值.11.(2012年高考(浙江文))已知a∈R,函数3()42f x x ax a =-+(1)求f(x)的单调区间(2)证明:当0≤x≤1时,f(x)+ 2a ->0.12.(2012年高考(天津文))已知函数3211()(0)32a f x x x ax a a -=+-->(I)求函数)(x f 的单调区间;(II)若函数)(x f 在区间(2,0)-内恰有两个零点,求a 的取值范围;(III)当1a =时,设函数)(x f 在区间]3,[+t t 上的最大值为()M t ,最小值为()m t ,记()()()g t M t m t =-,求函数()g t 在区间]1,3[--上的最小值.13.(2012年高考(陕西文))设函数()(,,)nn f x x bx cn N b c R +=++∈∈(1)设2n ≥,1,1b c ==-,证明:()n f x 在区间1,12⎛⎫⎪⎝⎭内存在唯一的零点;(2)设n 为偶数,(1)1f -≤,(1)1f ≤,求b+3c 的最小值和最大值;(3)设2n =,若对任意12,x x [1,1]∈-,有2122|()()|4f x f x -≤,求b 的取值范围;14.(2012年高考(山东文))已知函数ln ()(e xx kf x k +=为常数,e=2.71828是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.[15.(2012年高考(辽宁文))设()ln 1f x x x =+-,证明:(Ⅰ)当x ﹥1时,()f x ﹤32( 1x -) (Ⅱ)当13x <<时,9(1)()5x f x x -<+16.(2012年高考(课标文))设函数f (x )= e x-ax -2(Ⅰ)求f (x )的单调区间(Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f´(x )+x +1>0,求k 的最大值17.(2012年高考(江西文))已知函数2()()xf x ax bx c e =++在[]0,1上单调递减且满足(0)1,(0)0f f ==.(1)求a 的取值范围;(2)设()()()g x f x f x '=--,求()g x 在[]0,1上的最大值和最小值.18.(2012年高考(湖南文))已知函数f(x)=e x-ax,其中a>0.[@、中国^教育出版&网~](1)若对一切x∈R,f(x) ≥1恒成立,求a 的取值集合;[z(2)在函数f(x)的图像上去定点A(x 1, f(x 1)),B(x 2, f(x 2))(x 1<x 2),记直线AB 的斜率为k ,证明:存在x 0∈(x 1,x 2),使0()f x k '=恒成立.19.(2012年高考(湖北文))设函数()(1)(0)nf x ax x b x =-+>,n 为正整数,,a b 为常数,曲线()y f x =在(1,(1))f 处的切线方程为1x y +=.(1)求,a b 的值; (2)求函数()f x 的最大值; (3)证明:1()f x ne<. 20.(2012年高考(广东文))(不等式、导数)设1a <,集合{}0A x R x =∈>,(){}223160B x R x a x a =∈-++>,D A B = .(Ⅰ)求集合D (用区间表示);(Ⅱ)求函数()()322316f x x a x ax =-++在D 内的极值点.21.(2012年高考(福建文))已知函数3()sin (),2f x ax x a R =-∈且在]2,0[π上的最大值为32π-,(1)求函数()f x 的解析式;(2)判断函数()f x 在(0,)π内的零点个数,并加以证明.22.(2012年高考(大纲文))已知函数321()3f x x x ax =++.(Ⅰ)讨论()f x 的单调性;(Ⅱ)设()f x 有两个极值点12,x x ,若过两点11(,())x f x ,22(,())x f x 的直线l 与x 轴的交点在曲线()y f x =上,求a 的值.23.(2012年高考(北京文))已知函数2()1f x ax =+(0a >),3()g x x bx =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点(1,c )处具有公共切线,求,a b 的值;(2)当3,9a b ==-时,求函数()()f x g x +在区间[,2]k 上的最大值为28,求k 的取值范围.24.(2012年高考(安徽文))设定义在(0,+∞)上的函数1()(0)f x ax b a ax=++> (Ⅰ)求()f x 的最小值;(II)若曲线()y f x =在点(1,(1))f 处的切线方程为32y x =,求,a b 的值.2012年高考文科数学解析分类汇编:导数参考答案一、选择题 1. 【答案】:C【解析】:由函数()f x 在2x =-处取得极小值可知2x <-,()0f x '<,则()0xf x '>;2x >-,()0f x '>则20x -<<时()0xf x '<,0x >时()0xf x '>【考点定位】本题考查函数的图象,函数单调性与导数的关系,属于基础题. 2. 【答案】A【命题意图】本题主要考查了函数复合单调性的综合应用,通过构造法技巧性方法确定函数的单调性.【解析】若23a b e a e b +=+,必有22a b e a e b +>+.构造函数:()2x f x e x =+,则()20x f x e '=+>恒成立,故有函数()2x f x e x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除.3. 解析:22()x f x x -'=,令()0,f x '=得2x =,2x <时,()0f x '<,1()ln f x x x=+为减函数;2x >时,()0f x '>,1()ln f x x x=+为增函数,所以2x =为()f x 的极小值点,选D.4. 解析:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b =.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得3322b =.不妨设12x x <,则32223x b ==.所以231()()(2)F x x x x =--,比较系数得3141x -=,故31122x =-.3121202x x +=>,由此知12121212110x x y y x x x x ++=+=<,故答案应选B. 另解:令)()(x g x f =可得b x x+-=21. 设b x y xy +-=''=',12不妨设21x x <,结合图形可知,21x x <, 即210x x <-<,此时021>+x x ,112211y x x y -=-<=,即021<+y y .答案应选B.5. 【答案】B【解析】b x y +-=''y x1x x211ln ,,00,02y x x y x y x x x x''=-∴=->∴< 由≤,解得-1≤≤1,又≤1,故选B 【点评】本题主要考查利导数公式以及用导数求函数的单调区间,属于中档题.6. C 【解析】如图,不妨设扇形的半径为2a,如图,记两块白色区域的面积分别为S 1,S 2,两块阴影部分的面积分别为S 3,S 4,则S 1+S 2+S 3+S 4=S 扇形OAB =221(2)4a a ππ=①,而S 1+S 3 与S 2+S 3的和恰好为一个半径为a 的圆,即S 1+S 3 +S 2+S 32a π=②. ①-②得S 3=S 4,由图可知S 3=221()2OEDC EOD S S S a a π+-=-正方形扇形扇形COD ,所以. 222S a a π=-阴影.由几何概型概率公式可得,此点取自阴影部分的概率 P=222221OABS a a S a πππ-==-阴影扇形.【点评】本题考查古典概型的应用以及观察推理的能力.本题难在如何求解阴影部分的面积,即如何巧妙地将不规则图形的面积化为规则图形的面积来求解.来年需注意几何概型在实际生活中的应用. 7. 【答案】C【解析】(0),(1)4,(3)275427(0)f abc f abc f abc abc f =-=-=-+-=-= , 又()3(1)(3)f x x x '=--,所以()f x 在(,1)-∞和(3,)+∞上单调增加,在(1,3)上单调递减,故13a b c <<<<,(0)(1)0,(0)(3)0f f f f ∴<>【考点定位】本题考查函数的零点,函数的单调性极值,考查分析判断能力、必然与或然的思想.二、填空题8. [解析] 如图1,⎩⎨⎧≤<-≤≤=1,220,2)(2121x x x x x f , 所以⎩⎨⎧≤<+-≤≤==1,220,2)(212212x x x x x x xf y ,易知,y =xf (x )的分段解析式中的两部分抛物线形状完全相同,只是开口方向及顶点位置不同,如图2,封闭图形MND 与OMP 全等,面积相等,故所求面积即为矩形ODMP 的面积S=412121=⨯.9. 【命题意图】本题主要考查导数的几何意义与直线方程,是简单题.xy A BC 1 1 图1(O )Nx y OD M 1 P 图2【解析】∵3ln 4y x '=+,∴切线斜率为4,则切线方程为:430x y --=.三、解答题 10. 【答案】:(Ⅰ)1327(Ⅱ)427【解析】::(Ⅰ)因3()f x ax bx c =++ 故2()3f x ax b '=+ 由于()f x 在点2x = 处取得极值 故有(2)0(2)16f f c '=⎧⎨=-⎩即1208216a b a b c c +=⎧⎨++=-⎩ ,化简得12048a b a b +=⎧⎨+=-⎩解得112a b =⎧⎨=-⎩(Ⅱ)由(Ⅰ)知 3()12f x x x c =-+,2()312f x x '=-令()0f x '= ,得122,2x x =-=当(,2)x ∈-∞-时,()0f x '>故()f x 在(,2)-∞-上为增函数;当(2,2)x ∈- 时,()0f x '< 故()f x 在(2,2)- 上为减函数 当(2,)x ∈+∞ 时()0f x '> ,故()f x 在(2,)+∞ 上为增函数.由此可知()f x 在12x =- 处取得极大值(2)16f c -=+,()f x 在22x = 处取得极小值(2)f c =-由题设条件知1628c += 得12c =此时(3)921,(3f c f c -=+==-+=,(2)164f c =-=-因此()f x 上[3,3]-的最小值为(2)4f =-【考点定位】本题主要考查函数的导数与极值,最值之间的关系,属于导数的应用.(1)先对函数()f x 进行求导,根据(2)0f '==0,(2)16f c =-,求出a,b 的值.(1)根据函数()f x =x3-3ax2+2bx 在x=1处有极小值-1先求出函数中的参数a,b 的值,再令导数等于0,求出极值点,判断极值点左右两侧导数的正负,当左正右负时有极大值,当左负右正时有极小值.再代入原函数求出极大值和极小值.(2)列表比较函数的极值与端点函数值的大小,端点函数值与极大值中最大的为函数的最大值,端点函数值与极小值中最小的为函数的最小值.11. 【命题意图】本题是导数中常规的考查类型主要利用三次函数的求导判定函数的单调区间,并综合绝对值不等式考查了学生的综合分析问题的能力.【解析】(1)由题意得2()122f x x a '=-,当0a ≤时,()0f x '≥恒成立,此时()f x 的单调递增区间为(),-∞+∞.当0a >时,()12()()66a a f x x x '=-+,此时函数()f x 的单调递增区间为,66a a ⎡⎤-⎢⎥⎣⎦.(2)由于01x ≤≤,当2a ≤时,33()2422442f x a x ax x x +-=-+≥-+. 当2a >时,333()242(1)244(1)2442f x a x a x x x x x +-=+--≥+--=-+.设3()221,01g x x x x =-+≤≤,则233()626()()33g x x x x '=-=-+. 则有 x30,3⎛⎫⎪ ⎪⎝⎭333,13⎛⎫ ⎪ ⎪⎝⎭1()g x ' - 0 + ()g x1减极小值增1所以min 343()()1039g x g ==->. 当01x ≤≤时,32210x x -+>. 故3()24420f x a x x +-≥-+>.12.解:(1)2()(1)(1)()f x x a x a x x a '=+--=+-,由()0f x '=,得121,0x x a =-=>13.14.解:(I)1ln ()e x x k x f x --'=,由已知,1(1)0ek f -'==,∴1k =. (II)由(I)知,1ln 1()e xx x f x --'=. 设1()ln 1k x x x =--,则211()0k x x x'=--<,即()k x 在(0,)+∞上是减函数, 由(1)0k =知,当01x <<时()0k x >,从而()0f x '>,当1x >时()0k x <,从而()0f x '<.综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞. (III)证明:由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立.当01x <<时,e x >1,且()0g x >,∴1ln ()1ln e xx x x g x x x x --=<--. 设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+, 当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<,所以当2e x -=时,()F x 取得最大值22()1e F e --=+.所以2()()1e g x F x -<≤+.综上,对任意0x >,2()1e g x -<+.另证:因为)0(),ln 1(1)()(>--='=x x x x e x f x x g x,设x x x x h ln 1)(--=,则2ln )(--='x x h ,令2,02ln )(-==--='e x x x h ,当),0(2-∈e x 时0)(>'x h ,)(x h 单调递增;当),(2+∞∈-e x 时0)(<'x h ,)(x h 单调递减.所以当0>x 时,221)()(--+=≤e e h x h ,而当0>x 时110<<x e ,所以当0>x 时21)ln 1(1)(-+<--=e x x x e x g x ,综上可知结论成立.15. 【答案与解析】【点评】本题主要考查导数公式,以及利用导数,通过函数的单调性与最值来证明不等式,考查转化思想、推理论证能力、运算能力、应用所学知识解决问题的能力,难度较大. 16. (Ⅰ) 解:()x f 的定义域为R ,()a e x f x -=';若0≤a ,则()0>'x f 恒成立,所以()x f 在R 总是增函数若0>a ,令()0>'x f ,求得a x ln >,所以()x f 的单增区间是()∞+,ln a ; 令()0<'x f , 求得 a x ln <,所以()x f 的单减区间是()a ln ,∞-(Ⅱ) 把()⎩⎨⎧-='=ae xf a x 1 代入()()01>++'-x x f k x 得:()()011>++--x e k x x ,因为0>x ,所以01>-x e ,所以:()()11-->--x e k x x ,11--->-x e x k x , 11-+<-x e x x k ,所以:(*))0(11 >+-+<x x e x k x令()x e x x g x +-+=11,则()()()212---='x x x e x e e x g ,由(Ⅰ)知:()()2--=x e x h x 在()∞+,0单调递增,而()()⎩⎨⎧><0201h h ,所以()x h 在()∞+,0上存在唯一零点α,且()2,1∈α; 故()x g '在()∞+,0上也存在唯一零点且为α,当()α,0∈x 时, ()0<'x g ,当()∞+∈,αx 时,()0>'x g ,所以在()∞+,0上,()()αg x g =m in ;由()0='αg 得:2+=ααe ,所以()1+=ααg ,所以()()3,2∈αg , 由于(*)式等价于()αg k <,所以整数的最大值为217. 【解析】(1)由(0)1f c ==,(1)0f =⇒1,1c a b =+=-,则2()[(1)1]x f x ax a x e =-++,2'()((1))x f x ax a x a e =+--,依题意须对于任意(0,1)x ∈,有()0f x '<,当0a >时,因为二次函数2(1)y ax a x a =---的图像开口向上,而(0)0f a '=-<,所以须(1)(1)0f a e '=-<,即01a <<,当1a =时,对任意(0,1)x ∈,有2()(1)0x f x x e '=-<,符合条件;当0a =时,对任意(0,1x ∈,()0x f x xe '=-<,()f x 符合要求,当0a <时,因(0)0f a '=>,()f x 不符合条件,故a 的取值范围为01a ≤≤.(2)因()(21),()(21)x xg x ax e g x ax a e '=-+=-+-当0a =时,()0x g x e '=>,()g x 在0x =上取得最小值(0)1g =,在1x =上取得最大值(1)g e =;当1a =时,对于任意(0,1)x ∈,有()20x g x xe '=-<,()g x 在0x =上取得最大值(0)2g =,在1x =上取得最小值(1)0g =;当01a <<时,由1()002a g x x a-'=⇒=>,18. 【解析】解:(),x f x e a '=-令()0ln f x x a '==得. [当ln x a <时()0,()f x f x '<单调递减;当ln x a >时()0,()f x f x '>单调递增,故当ln x a =时,()f x 取最小值(ln )ln .f a a a a =-于是对一切,()1x R f x ∈≥恒成立,当且仅当ln 1a a a -≥. ①令()ln ,g t t t t =-则()ln .g t t '=-当01t <<时,()0,()g t g t '>单调递增;当1t >时,()0,()g t g t '<单调递减.故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当1a =时,①式成立.综上所述,a 的取值集合为{}1.(Ⅱ)由题意知,21212121()().x x f x f x e e k a x x x x --==--- 令2121()(),x x xe e xf x k e x x ϕ-'=-=--则 12112121()()1,x x x e x e x x x x ϕ-⎡⎤=----⎣⎦- 21221221()()1.x x x e x e x x x x ϕ-⎡⎤=---⎣⎦- 令()1t F t e t =--,则()1t F t e '=-.当0t <时,()0,()F t F t '<单调递减;当0t >时,()0,()F t F t '>单调递增.故当0t =,()(0)0,F t F >=即10.t e t -->从而2121()10x x e x x ---->,1212()10,x x e x x ---->又1210,x e x x >-2210,x e x x >- 所以1()0,x ϕ<2()0.x ϕ>因为函数()y x ϕ=在区间[]12,x x 上的图像是连续不断的一条曲线,所以存在 012(,)x x x ∈使0()0,x ϕ=即0()f x k '=成立.【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出()f x 取最小值(ln )ln .f a a a a =-对一切x∈R,f(x) ≥1恒成立转化为min ()1f x ≥从而得出求a 的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.19. 【解析】(1)因为(1)f b =,由点(1,)b 在1x y +=上,可得110b b +=⇒=因为1()(1)n n f x ax a n x -'=-+,所以(1)f a '=-又因为切线1x y +=的斜率为1-,所以11a a -=-⇒=,所以1,0a b ==(2)由(1)可知,11()(1),()(1)()1n n n n n f x x x x x f x n x x n +-'=-=-=+-+ 令()01n f x x n '=⇒=+,即()f x '在(0,)+∞上有唯一的零点01n x n =+.在(0,)1n n +上,()0f x '>,故()f x 单调递增;而在(,)1n n +∞+上,()0f x '<,()f x 单调递减,故()f x 在(0,)+∞的最大值为1()()(1)111(1)nn n n n n n f n n n n +=-=++++. (3)令1()ln 1(0)t t t t ϕ=-+>,则22111()(0)t t t t t t ϕ-'=-> 在(0,1)上,()0t ϕ'<,故()t ϕ单调递减,而在(1,)+∞上,()0t ϕ'>,()t ϕ单调递增, 故()t ϕ在(0,)+∞上的最小值为(1)0ϕ=,所以()0(1)t t ϕ>> 即1ln 1(1)t t t >->,令11t n =+,得11ln 1n n n +>+,即11ln()ln n n e n++> 所以11()n n e n++>,即11(1)n n n n ne +<+ 由(2)知,11()(1)n n n f x n ne+≤<+,故所证不等式成立. 【点评】本题考查多项式函数的求导,导数的几何意义,导数判断函数的单调性,求解函数的最值以及证明不等式等的综合应用.考查转化与划归,分类讨论的数学思想以及运算求解的能力. 导数的几何意义一般用来求曲线的切线方程,导数的应用一般用来求解函数的极值,最值,证明不等式等. 来年需注意应用导数判断函数的极值以及求解极值,最值等;另外,要注意含有,ln xe x 等的函数求导的运算及其应用考查.20.解析:(Ⅰ)考虑不等式()223160x a x a -++>的解. 因为()()()2314263331a a a a ∆=⎡-+⎤-⨯⨯=--⎣⎦,且1a <,所以可分以下三种情况: ①当113a <<时,0∆<,此时B =R ,()0,D A ==+∞. ②当13a =时,0∆=,此时{}1B x x =≠,()()0,11,D =+∞ . ③当13a <时,0∆>,此时()223160x a x a -++=有两根,设为1x 、2x ,且12x x <,则()()()13133314a a a x +---=,()()()23133314a a a x ++--=,于是{}12B x x x x x =<>或. 当103a <<时,()123102x x a +=+>,1230x x a =>,所以210x x >>,此时()()120,,D x x =+∞ ;当0a ≤时,1230x x a =≤,所以10x ≤,20x >,此时()2,D x =+∞.综上所述,当113a <<时,()0,D A ==+∞;当13a =时,()()0,11,D =+∞ ;当103a <<时,()()120,,D x x =+∞ ;当0a ≤时,()2,D x =+∞.其中()()()13133314a a a x +---=,()()()23133314a a a x ++--=.(Ⅱ)()()26616f x x a x a '=-++,令()0f x '=可得()()10x a x --=.因为1a <,所以()0f x '=有两根1m a =和21m =,且12m m <.①当113a <<时,()0,D A ==+∞,此时()0f x '=在D 内有两根1m a =和21m =,列表可得x ()0,aa(),1a1 ()1,+∞()f x '+ 0 - 0 + ()f x递增极小值递减极大值递增所以()f x 在D 内有极大值点1,极小值点a . ②当13a =时,()()0,11,D =+∞ ,此时()0f x '=在D 内只有一根113m a ==,列表可得 x10,3⎛⎫⎪⎝⎭131,13⎛⎫ ⎪⎝⎭()1,+∞()f x '+ 0 - + ()f x递增极小值递减递增所以()f x 在D 内只有极小值点a ,没有极大值点. ③当103a <<时,()()120,,D x x =+∞ ,此时1201a x x <<<<(可用分析法证明),于是()0f x '=在D 内只有一根1m a =,列表可得x ()0,aa()1,a x()2,x +∞()f x '+-+()f x递增 极小值 递减 递增所以()f x 在D 内只有极小值点a ,没有极大值点.④当0a ≤时,()2,D x =+∞,此时21x >,于是()f x '在D 内恒大于0,()f x 在D 内没有极值点.综上所述,当113a <<时,()f x 在D 内有极大值点1,极小值点a ;当103a <≤时,()f x 在D 内只有极小值点a ,没有极大值点.当0a ≤时,()f x 在D 内没有极值点.21. 【考点定位】本题主要考查函数的最值、零点、单调性等基础知识,考查推理论证能力、运算求解能力、考查函数与方程思想、数形结合思想、分类讨论思想、转化化归思想. 解:()(sin cos ),(0,),sin cos 02f x a x x x x x x x π'=+∈∴+>当0a =时,3()2f x =-不合题意; 当0a <时,()0f x '<,()f x 单调递减,max 3[()](0)2f x f ==-,不合题意; 当0a >时,()0f x '>,()f x 单调递增,max33[()]()2222f x f a πππ-==-=1a ∴=,所以综上3()sin 2f x x x =-(2)()f x 在(0,)π上有两个零点.证明如下: 由(1)知3()sin 2f x x x =-,33(0)0,()0222f f ππ-=-<=> ∴()f x 在[0,]2π上至少有一个零点,又由(1)知()f x 在[0,]2π上单调递增,故在[0,]2π上只有一个零点,当x 2ππ⎡⎤∈⎢⎥⎣⎦,时,令()()sin cos g x f x x x x '==+, 10)02g g πππ=>=-<(),(,()g x 在2ππ⎡⎤⎢⎥⎣⎦,上连续,∴2m ππ⎡⎤∈⎢⎥⎣⎦,,()0g m =')2cos -sin 0g x x x x =<(,∴()g x 在2ππ⎡⎤⎢⎥⎣⎦,上递减,当2x m π⎡⎤∈⎢⎥⎣⎦,时,()()0g x g m >=,')0f x >(,()f x 递增,∴当(,)2m m π∈时,3()()022f x f ππ-≥=>∴()f x 在(,)m π上递增,∵()0,()0f m f π><∴()f x 在(,)m π上只有一个零点,综上()f x 在(0,)π上有两个零点.22. 【命题意图】本试题考查了导数在研究函数中的运用.第一问就是三次函数,通过求解导数求解单调区间.另外就是运用极值概念,求解参数值的运用.解:(1)依题意可得2()2f x x x a '=++当440a ∆=-≤即1a ≥时,220x x a ++≥恒成立,故()0f x '≥,所以函数()f x 在R 上单调递增;当440a ∆=->即1a <时,2()20f x x x a '=++=有两个相异实根1224411,112ax a x a ---==---=-+-且12x x <故由2()20f x x x a '=++>⇒(,11)x a ∈-∞---或(11,)x a ∈-+-+∞,此时()f x 单调递增由2()201111f x x x a a x a '=++<⇒---<<-+-,此时此时()f x 单调递增递减综上可知当1a ≥时,()f x 在R 上单调递增;当1a <时,()f x 在(,11)x a ∈-∞---上单调递增,在(11,)x a ∈-+-+∞单调递增,在(11,11)a a ----+-单调递减. (2)由题设知,12,x x 为方程()0f x '=的两个根,故有2211221,2,2a x x a x x a <=--=--因此321111()33a f x =+同理222()(1)33a f x a x =-- 因此直线l 的方程为2(1)33ay a x =--设l 与x 轴的交点为0(,0)x ,得02(1)ax a =-而22322031()()()(12176)32(1)2(1)2(1)24(1)a a a a f x a a a a a a =++=-+---- 由题设知,点0(,0)x 在曲线()y f x =的上,故0()0f x =,解得0a =或23a =或34a = 所以所求a 的值为0a =或23a =或34a =. 【点评】试题分为两问,题面比较简单,给出的函数比较常规,这一点对于同学们来说没有难度,但是解决的关键还是要看导数的符号对函数单调性的影响,求解函数的单调区间.第二问中,运用极值的问题,和直线方程的知识求解交点,得到参数的值.23. 【考点定位】此题应该说是导数题目中较为常规的类型题目,考醒的切线、单调性、极值以及最值问题都是果本中要求的重点内容.也是学生掌握比较好的知识点,在题目占能够发现(3)28F -=和分析出区间[,2]k 包含极大值点13x =-,比较重要.解:(1)()2f x ax '=,2()=3g x x b '+.因为曲线()y f x =与曲线()y g x =在它们的交点()1c ,处具有公共切线,所以(1)(1)f g =,(1)(1)f g ''=.即11a b +=+且23a b =+.解得3,3a b ==(2)记()()()h x f x g x =+当3,9a b ==-时,32()391h x x x x =+-+,2()369h x x x '=+- 令()0h x '=,解得:13x =-,21x =;()h x 与()h x '在(,2]-∞上的情况如下:x (,3)-∞- 3-(3,1)-1 (1,2)2 ()h x + 0 —0 +()h x '↑ 28↓ -4↑3由此可知:当3k ≤-时,函数()h x 在区间[,2]k 上的最大值为(3)28h -=; 当32k -<<时,函数()h x 在区间[,2]k 上的最大值小于28. 因此,k 的取值范围是(,3]-∞-24. 【解析】(I)11()22f x ax b ax b b ax ax=++≥+=+ 当且仅当11()ax x a ==时,()f x 的最小值为2b + (II)由题意得:313(1)22f a b a =⇔++= ①2113()(1)2f x a f a ax a ''=-⇒=-= ②由①②得:2,1a b ==-。
2024高考复习·真题分类系列2024高考试题分类集萃·三角函数、解三角形
微专题总述:三角函数的图像与性质
【扎马步】2023高考三角函数的图像与性质方面主要考察“卡根法”的运用,是最为基础的表现
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,加强图像考察与其他知识点如几何、函数的结合,对称思想的隐含
微专题总述:正弦定理与余弦定理的应用
【扎马步】2023高考解三角形小题部分紧抓“教考衔接”基础不放,充分考察正余弦定理的运用
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,在考察正余弦定理时与角平分线定理结合(初中未涉及此定理)
微专题总述:解三角形综合问题
【扎马步】2023高考解三角形大题部分仍然与前几年保持一直模式,结构不良题型日益增多,但方向不变,均是化为“一角一函数”模式是达到的最终目的,考察考生基本计算与化简能力
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,如新高考卷中出现的数形结合可加快解题速度,利用初中平面几何方法快速求出对应参量在近几年高考题中频繁出现,可见初高中结合的紧密 2023年新课标全国Ⅰ卷数学
16.已知在ABC 中,
()3,2sin sin A B C A C B +=−=. (1)求sin A ;
(2)设5AB =,求AB 边上的高.
2023高考试题分类集萃·三角函数、解三角形参考答案
2。
专题26 计数原理与概率统计第一部分 真题分类1.(2021·天津高考真题)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,15,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________.4253=;则在3次活动中,甲至少获胜22.(2021·江苏高考真题)下图是某项工程的网络图(单位:天),则从开始节点①到终止节点⑧的路径共有( )A.14条B.12条C.9条D.7条【答案】B3条路径,由④→⑥有22条路径,根据分步乘法.故选:B3.(2021·40A.5B.6C.7D.8【答案】A【解析】()()222221nC x n n x-=-,所以()21405n n n-=⇒=.故选:A.4.(2021·个评分数据分为8组:[)66,70、[)70,74、 、A B C D .80【答案】D故选:D.5.(2020·天津高考真题)从一批零件中抽取809组:A .10B .18C .20D .36【答案】B【解析】根据直方图,直径落在区间[)5.43,5.47之间的零件频率为:()6.25 5.000.020.225+⨯=,故选:B.6.(2020·A B .5C D .10【答案】C展开式的通项公式为:()()515522rrrr r r T CC -+=-=-1r =故选:C.7.(2020·海南高考真题)我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是A .这11天复工指数和复产指数均逐日增加;B .这11天期间,复产指数增量大于复工指数的增量;C .第3天至第11天复工复产指数均超过80%;D .第9天至第11天复产指数增量大于复工指数的增量;【答案】CD【解析】由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A 错误;由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B 错误;由图可知,第3天至第11天复工复产指数均超过80%,故C 正确;由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D 正确;8.(2021·的二次函数()24f x ax bx a =-+.(1}的概率;(2[]0,2b ∈.【答案】(12【解析】(1)根据题意有:0a >,且对称轴21bx a =….(2,1)5个,A(2)方程240ax bx a-+=无实根,则22(4)40ab a≠⎧⎨--<⎩,又[1a∈,2],[0b∈,2],如图,11(1)1322()28B+⨯==.9.(2021·全国高考真题)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1(1)已知01230.4,0.3,0.2,0.1p p p p====,求()E X;(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的一个最小正实根,求证:(3)根据你的理解说明(2)问结论的实际含义.【答案】(1)1;(2)见解析;(3)见解析.【解析】(1(2)设()()3232101f x p x p x p x p=++-+,因若()1E X≤,则123231p p p++≤,故2302p p p+≤.因,()230120f p p p '=+-≤,1201x x <<≤,且()()12,,x x x ∈-∞⋃+∞时,()0f x '>;()12,x x x ∈时,()0f x '<;()12,x x 上为减函数,若21x =,因为()f x 在()2,x +∞为增函数且()10f =,,因()12,x x因1为230123p p x p x p x x +++=的一个最小正实根,综上,若()1E X ≤此时()()20300f p p p '=-++<,()230120f p p p '=+->,34,x x ,且3401x x <<<,上为增函数,在()34,x x 上为减函数,而()10f =,故()40f x <,故当()1E X >时(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.10.(2020·海南高考真题)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽空气(1)估计事件“该市一天空气不超过75,且不超过150”的概率;(2)根据所给数据,完成联表:(3)根据(2)中的列联表,判把握认为该市一天空气有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【答案】(12)答案见解析;(3)有.【解析】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过1500.64=;(2)由所给联表为:22()()()()()n ad bc K a b c d a c b d -==++++36007.4844 6.635481≈>,因为根据临界值把握认为该市一天空气中 2.5PM 浓度有关.第二部分 模拟训练1.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用+(股-勾实+黄实=弦实,化简,得股2=勾股中勾股比向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在红(朱)色图形内的图钉数大约为( )(参 1.732≈≈)A .866B .500C .300D .134【答案】A【解析】不妨设则朱色面积大正方形的边长积为224=,所以落在红(朱)色图形内的图钉数大约故选:A2.琵琶、二胡、编钟、箫、笛、瑟、琴、埙、笙和鼓这十种民族乐器被称为“中国古代十大乐器”.为弘扬中国传统文化,某校以这十种乐器为题材,在周末学生兴趣活动中开展了“中国古代乐器”知识讲座,共连续安排四节课,一节课只讲一种乐器,一种乐器最多安排一节课,则琵琶、二胡一定安排,且这两种乐器互不相邻的概率为( )ABCD .715【答案】C【解析】由题意得:10种乐器种任选4种,故总的可能性有410A 种,琵琶、二胡一定安排且不相邻的可能性有2283A A 种,所以两种乐器互不相邻故选:C3.造纸术、印刷术、指南针、火药被称为中国古代四大发明,这四种发明对中国古代的政治、经济、文化的发展产生了巨大的推动作用;2017年5月,来自“一带一路”沿线的20国青年评选出了“中国的新四大发明”:高铁、扫码支付、共享单车和网购.若从这8个发明中任取两个发明,则两个都是新四大发明的概率为( )ABCD .14【答案】C【解析】从8个发明中任取两个发明两个都是新四大发明的有24C 6=种,∴故选:C4.蟋蟀鸣叫可以说是大自然优美、和谐的音乐,殊不知蟋蟀鸣叫的频率x (每分钟鸣叫的次数)与气温y (单位:℃)存在着较强的线性相关关系.某地观测人员根据下表的观测数据,建立了y 关于x 的线性回归方程ˆ0.25yx k =+x (次数/分钟)2030405060y (℃)2527.52932.536则当蟋蟀每分钟鸣叫60次时,该地当时的气温预报值为( )A .33℃B .34℃C .35℃D .35.5℃【答案】C40=,30y =,则0.25300.254020k y x =-=-⨯=;,35y =.故选:C.5.将一线段AB 分为两线段AC ,CB ,使得其中较长的一段AC 是全长AB 与另一段CB 的比例中项,即≈0.618,后人把这个数称为黄金分割,把点C 称为线段AB 的黄金分割点.图中在ABC 中,若点P ,Q 为线段BC 的两个黄金分割点,在ABC 内任取一点M ,则点M落在AB2C.14D【答案】B【解析】由几何概型公式知,故选:B.6.在新冠疫情的持续影响下,全国各地电影院等密闭式文娱场所停业近半年,电影行业面临巨大损失.2011~2020年上半年的票房走势如下图所示,则下列说法正确的是( )A.自2011年以来,每年上半年的票房收入逐年增加B.自2011年以来,每年上半年的票房收入增速为负的有5年C.2018年上半年的票房收入增速最大D.2020年上半年的票房收入增速最小【答案】D【解析】由图易知自2011年以来,每年上半年的票房收入相比前一年有增有减,增速为负的有3年,故A,B错误;2017年上半年的票房收入增速最大,故C错误;2020年上半年的票房收入增速最小,故D正确.故选:D7.某士特产超市为预估2021年元旦期间游客购买土特产的情况,对2020年元且期间的90位游客购买情况进行统计,得到如下人数分布表.60元与性别有关.不小于60元小于60元合计男40女18合计90(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为P(每次抽奖互不影响,且P的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元若游客甲计划购买80元的土特产,请列出实际付款数X(元)的分布列并求其数学期望.参考公式及数据:附表:【答案】(1)列联表见解析,有95%的把握认为购买金额是否少于60元与性别有关;(2)分布列见解【解析】(1联表如下:不少于60元少于60元合计男124052女182038合计3060902290(12204018)1440 5.830 3.84130605238247K ⨯⨯-⨯==≈>⨯⨯⨯,因此有95%的把握认为购买金额是否少于60元与性别有关. (2)X 可能取值为65,70,75,80,且10201903p +==.由题意知:30328(80)327P X C ⎛⎫=== ⎪⎝⎭,所以X 的分布列为X657075808.一年一度的剁手狂欢节——“双十一”,使千万女性朋友们非常纠结.2020年双十一,淘宝点燃火炬瓜分2.5个亿,淘宝、京东、天猫等各大电商平台从10月20号就开始预订,进行了强大的销售攻势.天猫某知名服装经营店,在10月21号到10月27号一周内,每天销售预定服装(百件)与获得的纯利润y (单位:百元)之间的一组数据关系如下表:(1)若y (2)试性回归方程;(3)该服装经营店打算11月2号结束双十一预定活动,预计在结束活动之前,每天销售服装(百件)与获得的纯利润y (单位:百元)之间的关系仍然服从(1)中的线性关系,若结束当天能销售服装14百件,估计这一天获得的纯利润与前一周的平均利润相差多少百元?(有关计算精确到小数点后两位)参考公式与数据:【答案】(1)y 2)ˆ 4.7551.36yx =+;(3)结束当天获得的纯利润比前一周的平均利润多38.00百元.【解析】解:(1)由题目中的数据表格可以看出,y而增大,∴判断(2)由题设知,721280i i x==∑,6669738189909155977++++++==,∴线性回归直线方程为ˆ 4.7551.36yx =+;(3)由(1)知,, 4.751451.361ˆ17.86y=⨯+=(百元),∴11月2号这天估计可获得的纯利润大约为117.86百元;由(1)知,前一周的平均利润百元),故结束当天获得的纯利润比前一周的平均利润多38.00百元.。
2020高考全国二卷数学试题分析解析解读2020年1月,教育部发布《中国高考评价体系》,明确“一核”、“四层”、“四翼”的高考评价体系,即高考要体现“立德树人、服务选才、引导教学”的核心功能,考查“核心价值、学科素养、关键能力、必备知识”四层内容考查要求,考查“基础性、综合性、应用性、创新性”的四翼要求。
2020年全国Ⅱ卷高考文理科数学试题,依托高考评价体系,充分落实了“一核”“四层”“四翼”的要求,在试题整体结构稳定的基础上,有适度创新,突出数学学科特色,突出学科素养导向,有时代特色,注重能力考查,着重考查学生的思维能力,综合运用数学思维方法分析问题、解决问题的能力。
试题主要呈现以下特点:一、试题稳中有变,大题结构动态调整2020年的高考数学保持题型、考点、难度的相对稳定,但是为了对接新高考,以学科素养立意命题,增加了阅读量、信息量,学生明显表现出不适应,感觉难度增大。
尤其是在题的顺序上打破常规,文理科的第3、4题新颖试题过早出现,出乎学生意料,耽误了一定的答题时间,在感觉和信心上受挫。
若学生能及时调整答题策略,后面的选择填空题都很常规,多数学生都能轻松解决。
此试卷对学生和教师的提醒是,困难的试题可能会在试卷的任何地方出现,不能再坚持难题一定在后面的观念了。
全国Ⅱ卷的理科和文科试题,对主观题的结构布局及考查难度也都进行了动态调整,文理科的解答题顺序均为:17题解三角形、18题概率统计,19题圆锥曲线,20题立体几何,21题函数导数;22、23题为二选一。
其中第一道大题第17题考查解三角形的相关知识,替换了2019年的立体几何大题的位置;而立体几何大题后移至第20题,仍然考查平行、垂直关系,直线和平面所成的角及体积的计算,但灵活性加大;解析几何大题前移至第19题的位置,难度有所降低。
大题结构的调整主要考查学生灵活应变的能力和主动调整适应的能力。
对重点内容的考查,在整体符合考试大纲的前提下,各部分内容和难度进行动态设计,这种设计有助于学生全面学习和掌握重点知识和重点内容,同时破解应试教育,指导高中教学。
2024高考数学真题解析新课标Ⅰ卷一、选择题1.已知集合A={x|−5<x3<5},B={−3,−1,0,2,3},则A∩B=()A.{−1,0}B.{2,3}C.{−3,−1,0}D.{-1,0,2}=1+i,则z=()A.−1−iB.−1+iC.1−iD.1+i3.已知向量a=(0,1),b=(2,x),若b b丄(−4a),则x=()A.-2B.-1C.1D.24.已知cos(α+β)=m,tanαtanβ=2,则cos(α−β)=()A.−3mB.−C.D.3m5.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为,则圆锥的体积为()A.23πB.33πC.63πD.93π6.已知函数为在R上单调递增,则a的取值范围是()A.(−∞,0]B.[−1,0]C.[−1,1]D.[0,+∞)7.当x∈时,曲线y=sin x与y=2sin的交点个数为()A.3B.4C.6D.88.已知函数f(x)的定义域为R,f(x)>f(x−1)+f(x−2),且当x<3时,f(x)=x,则下列结论中一定正确的是()A.f(10)>100B.f(20)>1000C.f(10)<1000D.f(20)<10000二、多选题9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值x=2.1,样本方差S2=0.01,已知该种植区以往的亩收入X服从正态分布N(1.8,0.12),假设推动出口后的亩收入Y服从正态分布N(x,S2),则()(若随机变量Z服从正态分布N(μ,σ2),则P(Z<μ+σ)≈0.8413)A.P(X>2)>0.2B.P(X>2)<0.5C.P(Y>2)>0.5D.P(Y>2)<0.810.设函数f(x)=(x−1)2(x−4),则A.x=3是f(x)的极小值点B.当0<x<1时,f(x)<f(x2)C.当1<x<2时,−4<f(2x−1)<0D.当−1<x<10时,f(2−x)>f(x)11.造型可以看作图中曲线C的一部分,已知C过坐标原点O,且C上的点满足:横坐标大于-2;到点F(2,0)的距离与到定直线x=a(a<0)的距离之积为4,则()A.a=−2B.点(2,0)在C上C.C在第一象限的点的纵坐标的最大值为1D.当点在C上时,y≤三、填空题12.设双曲线的左右焦点分别为F1,F2,过F2作平行于y轴的直线交C于A,B两点,若F1A=13,AB=10,则C的离心率为13.若曲线y=e x+x在点(0,1)处的切线也是曲线y=ln(x+1)+a的切线,则a=14.甲乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用)。
2023高考数学分类解析汇总2023集合运算与逻辑术语 1 2023复数 3 2023算法与程序框图 4 2023平面向量 5 2023数列 6 2023排列与组合 8 2023概率与统计 9 2023三角函数 14 2023解三角形 16 2023解析几何初步(直线与圆) 18 2023圆锥曲线 19 2023函数 22 2023线性规划 24 2023立体几何 25 2023导数 30 2023参数方程 32 2023不等式 332023集合运算与逻辑术语1.【2023甲卷理科T1】设集合A={x∣x=3k+1,k∈Z},B={x∣x=3k+2,k∈Z},U为整数集,则∁U(A∪B)=()A.{x∣x=3k,k∈z}B.{x∣x=3k-1,k∈z}C.{x∣x=3k-2,k∈Z}D.ϕ2.【2023甲卷文科T1】设全集U={1,2,3,4,5},集合M={1,4},N={2,5},则N∪(C∪M)=()A.{2,3,5}B.{1,3,4}C.{1,2,4,5}D.{2,3,4,5}3.【2023乙卷理科T2】设集合U=R, 集合M={x x<1},N={x|-1<x<2},则{x|x≥2}=()A.C U(M∪N)B.N∪C U MC.C U(M∩N)D.M∪C U N4.【2023乙卷文科T2】设全集U={0,1,2,4,6,8}, 集合M={0,4,6},N={0,1,6}, 则M∪C U N=()A.{0,2,4,6,8}B.{0,1,4,6,8}C.{1,2,4,6,8}D.U5.【2023新一卷T1】已知集合M={-2,-1,0,1,2},A={x|x2-x-6≥0},则M∩N=()A.{-2,-1,0,1}B.0,1,2C.{-2}D.{2}6.【2023新一卷T7】记S n为数列a n的前n项和,设甲:a n为等差数列;乙:S n n为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件7.【2023新二卷T2】设集合A=0,-a,B=1,a-2,2a-2,若A⊆B,则a=()A.2B.1C.23D.-18.【2023上海卷T13】已知P={1,2},Q={2,3},若M={x|x∈P且x∉Q},则M=()A.{1}B.{2}C.{1,2}D.{1,2,3}9.【2023天津卷T1】已知集合U={1,2,3,4,5},A={1,3},B={1,2,4},则C U(B∪A)=()A.{1,3,5}B.{1,3}C.{1,2,4}D.{1,2,4,5}10.【2023天津卷T2】“a2=b2”是“a2+b2=2ab”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件2023复数1.【2023甲卷理科T2】若复数(a+i)1-a i,则a=()A.-1B.0C.1D.22.【2023甲卷文科T2】51+i32+i2-i=()A.-1B.1C.1-iD.1+i3.【2023乙卷理科T1】设z=2+i1+i2+i5, 则z=()A.1-2iB.1+2iC.2-iD.2+i4.【2023乙卷文科T1】2+i2+2i3=()A.1B.2C.5D.55.【2023新一卷T2】已知z=1-i2+2i,则z-z=()A.-iB.iC.0D.16.【2023新二卷T1】在复平面内,(1+3i)(3-i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限7.【2023上海卷T6】已知当z=1+i,则|1-i·z|=8.【2023天津卷T10】已知i是虚数单位,化简5+14i2+3i的结果为2023算法与程序框图1.【2023甲卷理科T3】执行下面的程序框圈,输出的B=()A.21B.34C.55D.89开始n=1,A=1,B=2n≤3?A=A+BB=A+Bn=n+1输出结束2.【2023甲卷文科T6】执行右边的程序框图,输出的B=()A.21B.34C.55D.89开始n=3,A=1,B=2,k=1k≤n?A=A+BB=A+Bk=k+1输出B结束2023平面向量1.【2023甲卷理科T4】向量|a |=|b |=b ,|c |=2,且a +b +c =0 ,则cos ‹a -c ,b-c ›=()A.-15B.-25. C.25D.452.【2023甲卷文科T3】已知向量a =(3,1),b =(2,2),则cos ‹a +b,a -b ›=()A.117B.1717. C.55D.2553.【2023乙卷理科T12】已知⊙O 的半径为1, 直线PA 与⊙O 相切于点A , 直线PB 与⊙O 交于B ,C 两点, D 为BC 的中点,若|PO |=2, 则PA ⋅PD的最大值为()A.1+22B.1+222C.1+2D.2+24.【2023乙卷文科T6】正方形ABCD 的边长是2,E 是AB 的中点, 则EC ⋅ED=()A.5B.3C.25D.55.【2023新一卷T3】已知向量a =(1,1),b =(1,-1). 若(a +λb )⊥(a+μb ),则()A.λ+μ=1B.λ+μ=-1C.λμ=1D.λμ=-16.【2023新二卷T13】已知向量a ,b 满足a -b =3,a +b =2a -b,则b =.7.【2023上海卷T2】已知a =-2,3 ,b =1,2 , 求a ⋅b =.8.【2023天津卷T14】在△ABC 中.∠A =60°,点D 为AB 的中点,点E 为CD 的中点,若设AB =a ,AC =b , 则AE 可用a、b表示为.若BF =13BC ,则AE ⋅AF 的最大值为.2023数列1.【2023甲卷理科T5】已知数到a n中,a1=1,S n为a n前n项和,S5=5S3-4,则S4=()A.7B.9C.15D.302.【2023甲卷文科T5】记S n为等差数列{a n}的前n项和.若a2+a6=10,a4a8=45,则S5=()A.25B.22C.20D.153.【2023甲卷文科T13】记S n为等比数列{a n}的前n项和.若8S6=7S3,则{a n}的公比为.4.【2023乙卷理科T10】已知等差数列a n的公差为2π3, 集合S=cos a n∣n∈N∗, 若S={a,b}, 则ab=()A.-1B.-12C.0D.125.【2023乙卷理科T15】已知a n为等比数列, a2a4a5=a3a6,a9a10=-8, 则a7=6.【2023新二卷T8】记S n为等比数列{a n}的前n项和,若S4=-5,S6=21S2,则S8=()A.120B.85C.-85D.-1207.【2023上海卷T3】已知{a n}为等比数列,且a1=3,q=2,求S6=8.【2023天津卷T6】已知{a n}为等差数列, S n为数列{a n}的前n项和,a n+1=2S n+2, 则a4的值为()A.3B.18C.54D.1529.【2023甲卷理科T17】已知数列a n中,a2=1,设S n为{a n}前n项和,2S n=na n.(1)求a n的通项公式;(2)求数列a n+12n的前n项和Tn.10.【2023乙卷文科T18】记S n为等差数列a n的前n项和, 已知a2=11,S10=40.(1)求a n的通项公式;(2)求数列a n的前n项和T n.11.【2023新一卷T20】设等差数列a n的公差为d,且d>1. 令b n=n2+na n,记S n,T n分别为数列a n,b n的前n项和.(1)若3a2=3a1+a3,S3+T3=21,求a n的通项公式;(2)若b n为等差数列,且S99-T99=99,求d.12.【2023新二卷T18】若等差数列{a n},数列{b n}满足b n=a n-6,n为奇数,2a n,n为偶数,记Sn,T n分别为{a n},{b n}的前n项和,S4=32,T3=16.(1)求{a n}的通项公式;(2)证明:n>5时,T n>S n.13.【2023天津卷T19】已知{an}是等差数列,a2+a5=16, a5-a3=4.(1)求{an}的通项公式和n-1i=2n-1a i(2)已知{b n}为等比数列,对于任意k∈N*,若2k-1≤n≤2k-1, 则b k<a n<b k+1i.当k≥2时,求证:2k-1<b n<2k+1ii.求{b n}的通项公式及其前n项和.1.【2023甲卷理科T9】有五名志愿者参加社服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有1人连续参加两天服务的选择种数为()A.120B.60C.40D.302.【2023乙卷理科T7】甲乙两位同学从6种课外读物中各自选读2种, 则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种3.【2023新一卷T13】某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有种(用数字作答).4.【2023新二卷T3】某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同的抽样结果共有()A.C45400∙C15200种B.C20400∙C40200种C.C30400∙C30200种D.C40400∙C20200种5.【2023上海卷T10】已知1+2023x10+2023-x100=a0+a1x+a2x2+⋯+a100x100, 其中a0,a1,a2⋯a100∈R,若0≤k≤100且k∈N,当a k<0时,k的最大值是6.【2023上海卷T12】空间内存在三点A、B、C,满足AB=AC=BC=1,在空间内取不同两点(不计顺序),使得这两点与A、B、C可以组成正四棱锥,求方案数为7.【2023天津卷T11】在2x3-1 x6的展开式中,x2项的系数为1.【2023甲卷理科T6】有50人报名足球倶乐部,60人报名乒乓球倶乐部,人报名足球或与丘球倶乐部,若已知某人报足球倶乐部,则其报乒乓球倶乐部的概率为()A.0.8B.0.4C.0.2D.0.12.【2023甲卷文科T4】某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.233.【2023乙卷理科T5,文科T7】已知O是平面直角坐标系的原点, 在区域(x,y)∣1≤x2+y2≤4内随机取一点A, 则直线OA的倾斜角不大于π4的概率为()A.18B.16C.14D.124.【2023乙卷文科T9】某学校举办作文比赛, 共6个主题, 每位参赛同学从中随机抽取一个主题准备作文, 则甲、乙两位参赛同学抽到不同主题概率为()A.56B.23C.12D.135.【2023新一卷T9】有一组样本数据x1,x2,⋯,x6,其中x1是最小值,x6是最大值,则()A.x2,x3,x4,x5的平均数等于x1,x2,⋯,x6的平均数B.x2,x3,x4,x5的中位数等于x1,x2,⋯,x6的中位数C.x2,x3,x4,x5的标准差不小于x1,x2,⋯,x6的标准差D.x2,x3,x4,x5的极差不大于x1,x2,⋯,x6的极差6.【2023新二卷T12】在信道内传输0,1信号,信号的传输相互独立,发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β.考虑两种传输方案:单次传输和三次传输,单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次,收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如:若依次收到1,0,1,则译码为1)()A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1-α)(1-β)2B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1-β)2C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1-β)2D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率7.【2023上海卷T9】国内生产总值(GDP)是衡量地区经济状况的最佳指标,根据统计数据显示,某市在2020年间经济高质量增长,GDP稳步增长,第一季度和第四季度的GDP分别为231和242,且四个季度GDP的中位数与平均数相等,则2020年GDP总额为.8.【2023上海卷T14】根据身高和体重散点图,下列说法正确的是()A.身高越高,体重越重B.身高越高,体重越轻C.身高与体重成正相关D.身高与体重成负相关9.【2023天津卷T7】忘了。
高考数学试卷分类解析汇总
高考数学试卷分类解析汇总可以根据试题类型进行分类,以下是一些常见的分类:
1. 选择题解析:包括单选题和多选题的解析,解析重点在于选项的比较和解题思路的讲解。
2. 填空题解析:解析重点在于如何得到正确答案的求解过程,包括代入法、分析法等思路的讲解。
3. 解答题解析:包括解方程、证明、计算等类型的解析,解析重点在于步骤的讲解和解题思路的引导。
4. 应用题解析:包括几何问题、函数问题、概率问题等应用题的解析,解析重点在于模型的建立和求解过程的讲解。
5. 考点解析:从不同的数学知识点出发,解析常考的考点,包括函数、三角函数、数列、概率等知识点的解析。
6. 解题技巧解析:介绍一些解题的常用技巧,如凑微分法、换元法、构造法等,解析重点在于技巧的应用和实践。
通过对这些不同类型的试题进行分类解析和总结,可以帮助考生更好地理解数学知识,提高解题能力,为应对高考数学备考提供有效的帮助。
上海市高考数学题型分布一、概述上海市高考是全国知名的高考之一,其数学考试题型分布一直备受关注。
为了帮助考生更好地了解上海市高考数学题型分布情况,本文将分析上海市高考数学试卷的题型分布,并提供相关数据和分析。
二、上海市高考数学试卷题型分布情况通过分析上海市历年高考数学试卷,可以发现其题型分布大致如下:1. 选择题选择题在上海市高考数学试卷中占据比重较大,其题型包括单选题和多选题。
单选题通常涉及基本的数学概念和计算能力,而多选题则需要考生在多个选项中选择正确的答案。
选择题的数量一般占据整张试卷的30-40。
2. 填空题填空题在上海市高考数学试卷中也占有一定比重,这类题目通常要求考生根据题目给出的条件,利用数学知识进行计算并填写答案。
填空题的数量一般占据整张试卷的20-30。
3. 解答题解答题在上海市高考数学试卷中也是非常重要的一部分,这类题目通常包括证明题和应用题,要求考生深入理解数学知识,灵活运用解题方法并进行推理和推断。
解答题的数量一般占据整张试卷的30-40。
4. 计算题计算题通常要求考生进行具体的数学计算和推导,这也是数学能力的一种体现。
计算题的数量一般占据整张试卷的10-20。
通过以上分析可知,上海市高考数学试卷的题型分布相对均衡,既考察了考生的数学基础知识和计算能力,也考察了考生的数学理解和解决问题的能力。
三、上海市高考数学试卷题型分布的意义和启示上海市高考数学试卷的题型分布不仅仅是一种组织形式,更是对考生数学能力的考察和评价。
合理的题型分布能够全面地考察考生的数学基础知识、计算能力、数学理解和解决问题的能力,有利于客观地评价考生的数学水平,为高等教育提供合格的人才。
上海市高考数学试卷的题型分布也对考生有着一定的启示。
通过深入了解数学试卷的题型分布,考生可以更好地调整备考策略,有针对性地进行复习和训练,提高自己的数学水平,取得更好的成绩。
四、结语上海市高考数学试卷的题型分布是对考生数学能力的考察和评价,也是对数学教育质量的体现。
函数中存在性问题分类解析.1.,,使得,等价于函数在上的值域与函数在上的值域的交集不空,即.一 两个函数之间有如下恒成立或存在性命题及其等价命题:1对于[][]n m x b a x ,,,21∈∀∈∀,使得函数f(x),g(x)满足f(x 1)<g(x 2)恒成立. 等价于:[]b a x ,∈时f(x)的最大值小于[]n m x ,∈时g(x)的最小值 2对于[][]n m x b a x ,,,21∈∃∈∀,使得函数f(x),g(x)满足f(x 1)<g(x 2). 等价于:[]b a x ,∈时f(x)的最大值小于[]n m x ,∈时g(x)的最大值3对于[][]n m x b a x ,,,21∈∀∈∃,使得函数f(x),g(x)满足f(x 1)<g(x 2)成立. 等价于:[]b a x ,∈时f(x)的最小值小于[]n m x ,∈时g(x)的最小值4对于[][]n m x b a x ,,,21∈∃∈∃,使得函数f(x),g(x)满足f(x 1)<g(x 2),成立. 等价于:[]b a x ,∈时f(x)的最小值小于[]n m x ,∈时g(x)的最大值。
例1 设a (0<a <1)是给定的常数,f (x )是R 上的奇函数,且在(0,+∞)上是增函数,若存在f ⎝⎛⎭⎫12=0,f (log a t )>0,则t 的取值范围是________.【解析】 因为f (x )是R 上的奇函数,且在(0,+∞)上是增函数,故f (x )在区间(-∞,0)上也是增函数.画出函数f (x )的草图.当t >1时,因为0<a <1,所以log a t <0.由图象可得-12<log a t <0,解得1<t <1a;当0<t <1时,因为0<a <1,所以log a t 12<log a t ,解得0<t <a ,综上,t ∈⎝⎛⎭⎫1,1a ∪(0,a ).例2(2011江苏)设,.①若,使成立,则实数的取值范围为___;②若,,使得,则实数的取值范围为___解 ①依题意实数的取值范围就是函数的值域.设,则问题转化为求函数的值域,由均值不等式得,,故实数的取值范围是.②依题意实数的取值范围就是使得函数的值域是函数的值域的子集的实数①知,易求得函数的值域,则当且仅当即,故实数的取值范围是.3.已知是在闭区间的上连续函,则对使得,等价于.3、设()x ln 2x q px x f --=,且()2epqe e f --=(e 为自然对数的底数) (I) 求 p 与 q 的关系;(II)设()x e2x g =,若在[]e ,1上至少存在一点0x ,使得()()00x g x f >成立, 求实数 p 的取值范围.3、解:(I) 由题意得 ()()12ln 20q p f e pe e qe p q e e e e ⎛⎫=--=--⇒-+= ⎪⎝⎭而10e e +≠,所以p q =(II) ∵ g(x) = 2ex 在 [1,e] 上是减函数∴ x = e 时,g(x)min = 2,x = 1 时,g(x)max = 2e 即 g(x) ∈ [2,2e] ………… 10分① p ≤0 时,由 (II) 知 f (x) 在 [1,e] 递减 ⇒ f (x)max = f (1) = 0 < 2,不合题意。
一.复数1.(2024年新课标全国Ⅰ卷)若1i 1zz =+-,则z =()A .1i --B .1i-+C .1i -D .1i+【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.2.(2024年新课标全国Ⅱ卷)已知1i z =--,则z =()A .0B .1C D .2【详解】若1i z =--,则z ==故选:C.3.(2024年高考全国甲卷数学(理))设5i z =+,则()i z z +=()A .10iB .2iC .10D .2-【详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=.故选:A二.集合1.(2024年新课标全国Ⅰ卷)已知集合{}355,{3,1,0,2,3}A x x B =-<<=--∣,则A B = ()A .{1,0}-B .{2,3}C .{3,1,0}--D .{1,0,2}-【详解】因为{{}|,3,1,0,2,3A x x B =<=--,且注意到12<<,从而A B ={}1,0-.故选:A.2.(2024年高考全国甲卷数学(理))集合{}{}1,2,3,4,5,9,A B A ==∈,则()A A B ⋂=ð()A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,5【详解】因为{}{}1,2,3,4,5,9,A B A ==∈,所以{}1,4,9,16,25,81B =,则{}1,4,9A B = ,(){}2,3,5A A B = ð故选:D三.命题与逻辑1.(2024年新课标全国Ⅱ卷)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则()A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题【详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题.故选:B.2.(2024年高考全国甲卷数学(理))设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A .①③B .②④C .①②③D .①③④【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.四.向量1.(2024年新课标全国Ⅰ卷)已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥- ,则x =()A .2-B .1-C .1D .2【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-= ,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.2.(2024年新课标全国Ⅱ卷)已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ()A .12B C D .1【详解】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+= ,所以22144164a b b b +⋅+=+= ,从而2=b 故选:B.3.(2024年高考全国甲卷数学(理))已知向量()()1,,,2a x x b x =+=,则()A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//a b”的必要条件C .“0x =”是“a b ⊥”的充分条件D .“1x =-+”是“//a b ”的充分条件【详解】对A ,当a b ⊥时,则0a b ⋅= ,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅= ,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =B 错误;对D ,当1x =-时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.5.解三角形1.(2024年新课标全国Ⅰ卷)记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-(1)求B ;(2)若ABC 的面积为3c .【详解】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 222a b c C ab ab +-===,因为()0,πC ∈,所以sin 0C >,从而sin2C==,又因为sin C B=,即1cos2B=,注意到()0,πB∈,所以π3B=.(2)由(1)可得π3B=,cos2C=,()0,πC∈,从而π4C=,ππ5ππ3412A=--=,而5πππ1sin sin sin124622224A⎛⎫⎛⎫==+=⨯+⨯=⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin1234a b c==,从而,a b====,由三角形面积公式可知,ABC的面积可表示为21113sin222228ABCS ab C c c c==⋅=,由已知ABC的面积为32338c+=c=2.(2024年新课标全国Ⅱ卷)记ABC的内角A,B,C的对边分别为a,b,c,已知sin2A A+=.(1)求A.(2)若2a=sin sin2C c B=,求ABC的周长.【详解】(1)方法一:常规方法(辅助角公式)由sin2A A=可得1sin122A A+=,即sin()1π3A+=,由于ππ4π(0,π)(,333A A∈⇒+∈,故ππ32A+=,解得π6A=方法二:常规方法(同角三角函数的基本关系)由sin2A A=,又22sin cos1A A+=,消去sin A得到:24cos30(2cos0A A A-+=⇔-=,解得cos A=又(0,π)A∈,故π6A=方法三:利用极值点求解设()sin(0π)f x x x x=<<,则π()2sin(0π)3f x x x⎛⎫=+<<⎪⎝⎭,显然π6x=时,max()2f x=,注意到π()sin22sin(3f A A A A=+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos sin f A A A '==,即tan A =,又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ==,由题意,sin 2a b A A ⋅=+=,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==,则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A ⋅=⇔=又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,22sin 21tA A t ==+整理可得,222(2(20((2t t t --+-==--,解得tan22A t ==22tan 13t A t ==-,又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos 2B =,得到π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos C A B A B A B B A =--=+=+=由正弦定理可得,sin sin sin a b cA B C ==,即2ππ7πsin sin sin6412bc==,解得b c ==故ABC的周长为2+3.(2024年高考全国甲卷数学(理))在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A .32B C D 【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=.故选:C.6.概率统计1.(2024年新课标全国Ⅰ卷)为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A .(2)0.2P X >>B .(2)0.5P X ><C .(2)0.5P Y >>D .(2)0.8P Y ><【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC .2.(2024年新课标全国Ⅰ卷)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382k k k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=.故答案为:12.3.(2024年新课标全国Ⅱ卷)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410据表中数据,结论中正确的是()A .100块稻田亩产量的中位数小于1050kgB .100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C .100块稻田亩产量的极差介于200kg 至300kg 之间D .100块稻田亩产量的平均值介于900kg 至1000kg 之间【详解】对于A,根据频数分布表可知,612183650++=<,所以亩产量的中位数不小于1050kg ,故A 错误;对于B ,亩产量不低于1100kg 的频数为341024=+,所以低于1100kg 的稻田占比为1003466%100-=,故B 错误;对于C ,稻田亩产量的极差最大为1200900300-=,最小为1150950200-=,故C 正确;对于D ,由频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30-++++=,所以平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,故D 错误.故选;C.4.(2024年新课标全国Ⅱ卷)在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是.【详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中,则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选,所以共有432124⨯⨯⨯=种选法;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一、二、三、四列的数字,则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42),(12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40),(13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40),(15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152********+++=.故答案为:24;1125.(2024年高考全国甲卷数学(理))1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是.【详解】由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z ,设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎝⎭⎝⎭⎩,294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =,所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭.故答案为:5.6.(2024年高考全国甲卷数学(理))有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是.【详解】从6个不同的球中不放回地抽取3次,共有36A 120=种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤,故2()3c a b -+≤,故32()3c a b -≤-+≤,故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种,若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5,()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种,当5c =,则713a b ≤+≤,同理有10种,当6c =,则915a b ≤+≤,同理有2种,共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=,故所求概率为56712015=.故答案为:7157.(2024年高考全国甲卷数学(理))某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ≥0.0500.0100.001k3.8416.63510.828【详解】(1)根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得()2215026302470754.687550100965416K ⨯-⨯===⨯⨯⨯,因为3.841 4.6875 6.635<<,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.(2)由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150=,用频率估计概率可得0.64p =,又因为升级改造前该工厂产品的优级品率0.5p =,则0.50.50.5 1.650.56812.247p +++⨯≈,可知p p >+所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了.8.(2024年新课标全国Ⅱ卷)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?【详解】(1)甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,∴比赛成绩不少于5分的概率()()3310.610.50.686P =--=.(2)(i )若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P p q ⎡⎤=--⎣⎦甲,若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P q p ⎡⎤=--⋅⎣⎦乙,0p q << ,3333()()P P q q pq p p pq ∴-=---+-甲乙()2222()()()()()()q p q pq p p q p pq q pq p pq q pq ⎡⎤=-+++-⋅-+-+--⎣⎦()2222()333p q p q p q pq =---3()()3()[(1)(1)1]0pq p q pq p q pq p q p q =---=---->,P P ∴>甲乙,应该由甲参加第一阶段比赛.(ii)若甲先参加第一阶段比赛,数学成绩X 的所有可能取值为0,5,10,15,333(0)(1)1(1)(1)P X p p q ⎡⎤==-+--⋅-⎣⎦,32123(5)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦,3223(10)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦,33(15)1(1)P X p q ⎡⎤==--⋅⎣⎦,()332()151(1)1533E X p q p p p q⎡⎤∴=--=-+⋅⎣⎦记乙先参加第一阶段比赛,数学成绩Y 的所有可能取值为0,5,10,15,同理()32()1533E Y q q q p=-+⋅()()15[()()3()]E X E Y pq p q p q pq p q ∴-=+---15()(3)p q pq p q =-+-,因为0p q <<,则0p q -<,31130p q +-<+-<,则()(3)0p q pq p q -+->,∴应该由甲参加第一阶段比赛.7.立体几何1.(2024年新课标全国Ⅰ卷)已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高)A .B .C .D .【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r =即=,故3r =,故圆锥的体积为1π93⨯=.故选:B.2.(2024年新课标全国Ⅱ卷)已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为()A .12B .1C .2D .3【详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D ==可知11111662222ABC A B C S S =⨯⨯⨯==⨯⨯ 设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -==,解得h =如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,则1AA=DN AD AM MN x=--=,可得1DD==结合等腰梯形11BCC B可得22211622BB DD-⎛⎫=+⎪⎝⎭,即()221616433x x+=++,解得x=所以1A A与平面ABC所成角的正切值为11tan1A MA ADAMÐ==;解法二:将正三棱台111ABC AB C-补成正三棱锥-P ABC,则1A A与平面ABC所成角即为PA与平面ABC所成角,因为11113PA A BPA AB==,则111127P A B CP ABCVV--=,可知1112652273ABC A B C P ABCV V--==,则18P ABCV-=,设正三棱锥-P ABC的高为d,则116618322P ABCV d-=⨯⨯⨯⨯,解得d=,取底面ABC的中心为O,则PO⊥底面ABC,且AO=所以PA与平面ABC所成角的正切值tan1POPAOAO∠==.故选:B.3.(2024年高考全国甲卷数学(理))已知甲、乙两个圆台上、下底面的半径均为1r和2r,母线长分别为()212r r-和()213r r-,则两个圆台的体积之比=VV甲乙.【详解】由题可得两个圆台的高分别为)12h r r==-甲,)12h r r==-乙,所以((21211313S S h V h V h S S h ++-==++甲甲甲乙乙乙4.(2024年新课标全国Ⅰ卷)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB =.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD .【详解】(1)(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥,根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .(2)如图所示,过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角ACP D --的平面角,即sin 7DFE ∠=,即tan DFE ∠=因为AD DC⊥,设AD x =,则CD=DE =,又242xCE -==,而EFC 为等腰直角三角形,所以2EF =,故22tan4DFEx∠==x=AD=5.(2024年新课标全国Ⅱ卷)如图,平面四边形ABCD中,8AB=,3CD=,AD=,90ADC︒∠=,30BAD︒∠=,点E,F满足25AE AD=,12AF AB=,将AEF△沿EF对折至PEF!,使得PC=.(1)证明:EF PD⊥;(2)求面PCD与面PBF所成的二面角的正弦值.【详解】(1)由218,,52AB AD AE AD AF AB====,得4AE AF==,又30BAD︒∠=,在AEF△中,由余弦定理得2EF,所以222AE EF AF+=,则AE EF⊥,即EF AD⊥,所以,EF PE EF DE⊥⊥,又,PE DE E PE DE=⊂、平面PDE,所以EF⊥平面PDE,又PD⊂平面PDE,故EF⊥PD;(2)连接CE,由90,3ADC ED CD︒∠===,则22236CE ED CD=+=,在PEC中,6PC PE EC===,得222EC PE PC+=,所以PE EC ⊥,由(1)知PE EF ⊥,又,EC EF E EC EF =⊂ 、平面ABCD ,所以PE ⊥平面ABCD ,又ED ⊂平面ABCD ,所以PE ED ⊥,则,,PE EF ED 两两垂直,建立如图空间直角坐标系E xyz -,则(0,0,0),(0,0,(2,0,0),(0,E P D C F A -,由F 是AB的中点,得(4,B ,所以(4,22(2,0,2PC PD PB PF =-===-,设平面PCD 和平面PBF 的一个法向量分别为111222(,,),(,,)n x y z m x y z ==,则11111300n PC x n PD ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,222224020m PB x m PF x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,令122,y x =11220,3,1,1x z y z ===-=,所以(0,2,3),1,1)n m ==-,所以cos ,m nm n m n ⋅===设平面PCD 和平面PBF 所成角为θ,则sin 65θ==,即平面PCD 和平面PBF所成角的正弦值为65.6.(2024年高考全国甲卷数学(理))如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.【详解】(1)因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;(2)如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM 为等边三角形,O 为AM中点,所以OB =又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF =,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==,()2,3BE = ,设平面BFM 的法向量为()111,,m x y z =,平面EMB 的法向量为()222,,n x y z =,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m = ,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-,11cos ,13m n m n m n ⋅===⋅,则sin ,m n =故二面角F BM E --8.解析几何1.(2024年高考全国甲卷数学(理))已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A .4B .3C .2D .2【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,()22164410PF =++=,()2226446PF =+-=,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.2.(2024年新课标全国Ⅰ卷)造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O.且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A .2a =-B .点(22,0)在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+【详解】对于A :设曲线上的动点(),P x y ,则2x >-且()2224x y x a -+⨯-=,因为曲线过坐标原点,故()2202004a -+⨯-=,解得2a =-,故A 正确.对于B :又曲线方程为()22224x y x -+⨯+=,而2x >-,5.(2024年高考全国甲卷数学(理)22410++-=交于Ax y yA.2B.3C.4a b c成等差数列,所以【详解】因为,,++-=,即aax by b a20故选:C.(202427.(2024年新课标全国Ⅰ卷)已知(1)求C的离心率;(2)若过P的直线l交C于另一点⎧⎪⎪8.(2024年高考全国甲卷数学在C上,且MF x⊥轴.(1)求C的方程;由223412(4)x y y k x ⎧+=⎨=-⎩可得(34+故()(42Δ102443464k k =-+23264k由已知有22549m =-=,故当12k =时,过()15,4P 且斜率为22392x x +⎛⎫-= ⎪⎝⎭.解得3x =-或5x =,所以该直线与9.函数与导数1.(2024年新课标全国Ⅰ卷)已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A .3m -B .3m -C .3mD .3m【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.2.(2024年新课标全国Ⅰ卷)已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞【详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤,即a 的范围是[1,0]-.故选:B.3.(2024年新课标全国Ⅰ卷)当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A .3B .4C .6D .8【详解】因为函数sin y x =的的最小正周期为2πT =,函数π2sin 36y x ⎛⎫=- ⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=- ⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C4.(2024年新课标全国Ⅰ卷)已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A .(10)100f >B .(20)1000f >C .(10)1000f <D .(20)10000f <【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.5.(2024年新课标全国Ⅰ卷)设函数2()(1)(4)f x x x =--,则()A .3x =是()f x 的极小值点B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x >,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D ,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.6.(2024年新课标全国Ⅰ卷)若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a .【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 27.(2024年新课标全国Ⅱ卷)设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =与()y g x =恰有一个交点,则=a ()A .1-B .12C .1D .2【详解】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+,令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x ∈-时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +-=因为()1,1x ∈-,则220,1cos 0x x ≥-≥,当且仅当0x =时,等号成立,可得221cos 0x x +-≥,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =符合题意;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--∈-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=,则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-∈-,又因为220,1cos 0x x ≥-≥当且仅当0x =时,等号成立,可得()0h x ≥,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =符合题意;故选:D.8.(2024年新课标全国Ⅱ卷)设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为()A .18B .14C .12D .1【详解】解法一:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;若-≤-a b ,当(),1x b b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1b a b -<-<-,当(),1x a b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1a b -=-,当(),1x b b ∈--时,可知()0,ln 0x a x b +<+<,此时()0f x >;当[)1,x b ∈-+∞时,可知()0,ln 0x a x b +≥+≥,此时()0f x ≥;可知若1a b -=-,符合题意;若1a b ->-,当()1,x b a ∈--时,可知()0,ln 0x a x b +<+>,此时()0f x <,不合题意;综上所述:1a b -=-,即1b a =+,则()2222211112222a b a a a ⎛⎫=++=++≥ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12;解法二:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;则当(),1x b b ∈--时,()ln 0x b +<,故0x a +≤,所以10b a -+≤;()1,x b ∈-+∞时,()ln 0x b +>,故0x a +≥,所以10b a -+≥;故10b a -+=,则()2222211112222a b a a a ⎛⎫=++=++ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12.故选:C.9.(2024年新课标全国Ⅱ卷)对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列正确的有()A .()f x 与()g x 有相同零点B .()f x 与()g x 有相同最大值C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图像有相同的对称轴【详解】A 选项,令()sin 20f x x ==,解得π,2k x k =∈Z ,即为()f x 零点,令π()sin(204g x x =-=,解得ππ,28k x k =+∈Z ,即为()g x 零点,显然(),()f x g x 零点不同,A 选项错误;B 选项,显然max max ()()1f x g x ==,B 选项正确;C 选项,根据周期公式,(),()f x g x 的周期均为2ππ2=,C 选项正确;D 选项,根据正弦函数的性质()f x 的对称轴满足πππ2π,224k x k x k =+⇔=+∈Z ,()g x 的对称轴满足πππ3π2π,4228k x k x k -=+⇔=+∈Z ,显然(),()f x g x 图像的对称轴不同,D 选项错误.故选:BC10.(2024年新课标全国Ⅱ卷)设函数32()231f x x ax =-+,则()A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心【详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增,(0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值,由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减,,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-,即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为303332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a-=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由题意(1,(1))f 也是对称中心,故122aa =⇔=,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD11.(2024年新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=,则sin()αβ+=.【详解】法一:由题意得()tan tan tan1tan tan αβαβαβ++===--因为π3π2π,2π,2ππ,2π22k k m m αβ⎛⎫⎛⎫∈+∈++ ⎪⎝⎭⎝⎭,,Z k m ∈,则()()()22ππ,22π2πm k m k αβ+∈++++,,Z k m ∈,又因为()tan 0αβ+=-,则()()3π22π,22π2π2m k m k αβ⎛⎫+∈++++ ⎪⎝⎭,,Z k m ∈,则()sin 0αβ+<,则()()sin cos αβαβ+=-+()()22sin cos 1αβαβ+++=,解得()sin 3αβ+=-.法二:因为α为第一象限角,β为第三象限角,则cos 0,cos 0αβ><,cos α==cos β==则sin()sin cos cos sin cos cos (tan tan )αβαβαβαβαβ+=+=+4cos cos αβ=====故答案为:3-.12.(2024年高考全国甲卷数学(理))设函数()2e 2sin 1x xf x x +=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A .16B .13C .12D .23【详解】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+,则()()()()()02e 2cos 010e 2sin 000310f ++-+⨯'==+,即该切线方程为13y x -=,即31y x =+,令0x =,则1y =,令0y =,则13x =-,故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故选:A.13.(2024年高考全国甲卷数学(理))函数()()2e e sin x xf x x x -=-+-在区间[2.8,2.8]-的大致图像为()A .B .C .D .【详解】()()()()()22e e sin e e sin x x x xf x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.14.(2024年高考全国甲卷数学(理))已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A .1B .1C .2D .1【详解】因为cos cos sin ααα=-所以11tan =-α,tan 13⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+ ⎪-α⎝⎭,故选:B.15.(2024年高考全国甲卷数学(理))已知1a >,8115log log 42a a -=-,则=a .【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.16.(2024年新课标全国Ⅰ卷)已知函数3()ln (1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【详解】(1)0b =时,()ln 2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,(2)()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .(3)因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln 21102x x b x x+-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln201t t bt t +-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311t bt b g t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.17.(2024年新课标全国Ⅱ卷)已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.【详解】(1)当1a =时,则()e 1x f x x =--,()e 1x f x '=-,可得(1)e 2f =-,(1)e 1f '=-,即切点坐标为()1,e 2-,切线斜率e 1k =-,所以切线方程为()()()e 2e 11y x --=--,即()e 110x y ---=.(2)解法一:因为()f x 的定义域为R ,且()e '=-x f x a ,若0a ≤,则()0f x '≥对任意x ∈R 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,则()120g a a a'=+>,可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+∞;解法二:因为()f x 的定义域为R ,且()e '=-x f x a ,若()f x 有极小值,则()e '=-x f x a 有零点,令()e 0x f x a '=-=,可得e x a =,可知e x y =与y a =有交点,则0a >,若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;。
专题10 计数原理1.【2022年新高考2卷】有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有()A.12种B.24种C.36种D.48种【答案】B【解析】【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!×2×2=24种不同的排列方式,故选:B2.【2022年北京】若(2x−1)4=a4x4+a3x3+a2x2+a1x+a0,则a0+a2+a4=()A.40B.41C.−40D.−41【答案】B【解析】【分析】利用赋值法可求a0+a2+a4的值.【详解】令x=1,则a4+a3+a2+a1+a0=1,令x=−1,则a4−a3+a2−a1+a0=(−3)4=81,=41,故a4+a2+a0=1+812故选:B.)(x+y)8的展开式中x2y6的系数为________________(用3.【2022年新高考1卷】(1−yx数字作答).【答案】-28【解析】【分析】(1−yx )(x+y)8可化为(x+y)8−yx(x+y)8,结合二项式展开式的通项公式求解.【详解】因为(1−yx )(x+y)8=(x+y)8−yx(x+y)8,所以(1−yx )(x+y)8的展开式中含x2y6的项为C86x2y6−yxC85x3y5=−28x2y6,(1−yx)(x+y)8的展开式中x2y6的系数为-28故答案为:-284.【2022年浙江】已知多项式(x+2)(x−1)4=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a2=__________,a1+a2+a3+a4+a5=___________.【答案】8−2【解析】【分析】第一空利用二项式定理直接求解即可,第二空赋值去求,令x=0求出a0,再令x=1即可得出答案.【详解】含x2的项为:x⋅C43⋅x⋅(−1)3+2⋅C42⋅x2⋅(−1)2=−4x2+12x2=8x2,故a2=8;令x=0,即2=a0,令x=1,即0=a0+a1+a2+a3+a4+a5,∴a1+a2+a3+a4+a5=−2,故答案为:8;−2.1.(2022·湖南·长沙县第一中学模拟预测)62x⎫⎪⎭展开式中的常数项为()A.60B.64C.-160D.240【答案】A【解析】【分析】先得到二项式的通项公式,再令x 的指数为0得到项数,从而得到常数项大小. 【详解】解:62x ⎫⎪⎭的二项展开式的通项公式为()()62213666C 22C r r r rr r r rT x x x---+=⋅⋅-⋅=-⋅⋅.令630r -=,解得2r =,所以展开式的常数项为()2262C 60-⋅=. 故选:A .2.(2022·江苏无锡·模拟预测)二项式()()()237121212x x x ++++++的展开式中,含2x 项的二项式系数为( ) A .84 B .56 C .35 D .21【答案】B 【解析】 【分析】易知展开式中,含2x 项的二项式系数为222222234567C C C C C C +++++,再利用组合数的性质求解. 【详解】解:因为二项式为()()()237121212x x x ++++++,所以其展开式中,含2x 项的二项式系数为:222222234567C C C C C C +++++,3222244567=C C C C C ++++,32225567=C C C C +++,322667=C C C ++,3277=C C +,38=C 56=.故选:B3.(2022·湖南·邵阳市第二中学模拟预测)将5名志愿者分配到4个不同的社区进行抗疫,每名志愿者只分配到1个社区,每个社区至少分配1名志愿者,则不同的分配方案共有( ) A .120种 B .240种 C .360种 D .480种【答案】B 【解析】 【分析】将5名志愿者分为4组,每组的人数分别为2、1、1、1,再将这4组志愿者分配到4个不同的社区,利用分步乘法计数原理可得结果. 【详解】将5名志愿者分为4组,每组的人数分别为2、1、1、1,再将这4组志愿者分配到4个不同的社区,由分步乘法计数原理可知,不同的分配方案种数为2454C A 240=.故选:B.4.(2022·吉林·三模(理))对于91x ⎛- ⎝的展开式,下列说法不正确的是( )A .有理项共5项B .二项式系数和为512C .二项式系数最大的项是第4项和第5项D .各项系数和为1- 【答案】C 【解析】 【分析】由二项式展开式的通项公式与二项式系数的性质求解判断. 【详解】91x ⎛- ⎝的展开式的通项公式为 (939219912rr rr rr r T C C xx --+⎛⎫== ⎪⎝⎭,当0,2,4,6,8r =时,展开式的项为有理项, 所以有理项有5项,A 正确;所有项的二项式系数和为92512=,B 正确; 因为二项式的展开式共有10项,所以二项式系数最大的项为第5项和第6项,C 错误; 令1x =,所有项的系数和为()9121-=-,D 正确. 故选:C5.(2022·全国·模拟预测(理))为帮助用人单位培养和招聘更多实用型、复合型和紧缺型人才,促进高校毕业生更高质量就业,教育部于2021年首次实施供需对接就业育人项目.某市今年计划安排甲、乙、丙3所高校与5家用人单位开展供需对接,每家用人单位只能对接1所高校,且必有高校与用人单位对接.若甲高校对接1家用人单位,乙、丙两所高校分别至少对接1家用人单位,则不同的对接方案共有( ) A .50种 B .60种 C .70种 D .80种【答案】C 【解析】 【分析】将方案分为乙、丙高校各对接2家用人单位和乙、丙高校其中一所对接1家用人单位,另一所对接3家用人单位两种情况,根据分组分配的方法可计算得到每种情况对应的方案数,加和即可求得结果. 【详解】若乙、丙高校各对接2家用人单位,则对接方案有125430C C ⋅=种;若乙、丙高校其中一所对接1家用人单位,另一所对接3家用人单位,则对接方案有131252C C C 40=种;综上所述:不同的对接方案共有304070+=种. 故选:C.6.(2022·黑龙江·大庆实验中学模拟预测(理))已知()()()()727012723111x a a x a x a x -=+-+-++-,则3a =( )A .280B .35C .35-D .280-【答案】A 【解析】 【分析】将()()()()727012723111x a a x a x a x -=+-+-++-化为()727012721t a a t a t a t -=++++,利用展开式的通项求解即可.【详解】()()()()727012723111x a a x a x a x -=+-+-++-,令1=x t -,则=1x t + ∴()727012721t a a t a t a t -=++++,()721t -展开式的通项为:()717C (2)1rrr r T t -+=-, 令4r =,可得()3437C 2280t t =,所以3280a =.故选:A.7.(2022·江苏·常州高级中学模拟预测)()251(1)x x x -+-的展开式中4x 的系数为( )A .25-B .25C .5-D .5【答案】A 【解析】 【分析】根据题意()2525551(1)(1)(1)(1)x x x x x x x x -+-----=+,借助二项展开式通项得5(1)x -的展开式为()5151C ,0,1,2, (5)k kk T x k -+=-=,分析求解. 【详解】∵()2525551(1)(1)(1)(1)x x x x x x x x -+-----=+5(1)x -的展开式为()()55155C 11C ,0,1,2,...,5k kk k k kk T x x k --+=-=-=,令3k =,得()332251C 10x x -=-,则224(10)10x x x -=-,令2k =,得()223351C 10x x -=,则34(10)10x x x -=-, 令1k =,得()14451C 5x x -=-,∵()251(1)x x x -+-的展开式中4x 的系数为()()()1010525-+-+-=-.故选:A .8.(2022·全国·模拟预测)数论领域的四平方和定理最早由欧拉提出,后被拉格朗日等数学家证明.四平方和定理的内容是:任意正整数都可以表示为不超过四个自然数的平方和,例如正整数222222321231112220=+++=+++.设222225a b c d =+++,其中a ,b ,c ,d 均为自然数,则满足条件的有序数组(),,,a b c d 的个数是( ) A .28 B .24 C .20 D .16【答案】A 【解析】 【分析】分类讨论四个数的组成后,由计数原理求解 【详解】显然a ,b ,c ,d 均为不超过5的自然数,下面进行讨论. 最大数为5的情况:①2222255000=+++,此时共有144A =种情况;最大数为4的情况:②2222254300=+++,此时共有2412A =种情况;③2222254221=+++,此时共有2412A =种情况.当最大数为3时,222222223322253321+++>>+++,故没有满足题意的情况. 综上,满足条件的有序数组(),,,a b c d 的个数是4121228++=. 故选:A9.(2022·福建省福州格致中学模拟预测)已知21nn a =+,则关于()()()()()()123456x a x a x a x a x a x a ------的展开式,以下命题错误的是( )A .展开式中系数为负数的项共有3项B .展开式中系数为正数的项共有4项C .含5x 的项的系数是126-D .各项的系数之和为212 【答案】C 【解析】 【分析】写出展开式各项的系数判断其正负即判断选项ABC 的真假;求出各项的系数之和即可判断选项D 的真假. 【详解】解:原式=()()()()()()359173365x x x x x x ------,所以6x 的系数为1,是正数;5x 的系数为3591733651320------=-<,4x 的系数为35+39+317+333+365+59++33650⨯⨯⨯⨯⨯⨯⨯>,3x 的系数为(3)(5)(9)(3)(5)(17)(17)(33)(65)0---+---++---<,2x 的系数为3591791733650⨯⨯⨯++⨯⨯⨯>,x 的系数为(3)(5)(9)(17)(33)+(5)(9)(17)(33)(65)0-----+-----<,常数项为3591733650⨯⨯⨯⨯⨯>,所以展开式中系数为负数的项共有3项,展开式中系数为负数的项共有4项,所以选项AB 正确,选项C 错误.设()()()()()()()359173365f x x x x x x x =------,所以2345621(1)2222222f =⋅⋅⋅⋅⋅=.所以各项的系数之和为212,所以选项D 正确. 故选:C10.(2022·辽宁·鞍山一中模拟预测)数列{}n a 中,11a =,121n n a a +=+,012345515253545556C C C C C C a a a a a a +++++的值为( )A .761B .697C .518D .454【答案】D 【解析】 【分析】由()1121n n a a ++=+,结合等比数列的定义和通项公式可求出21nn a =-,结合二项式定理可求出012345515253545556C C C C C C a a a a a a +++++的值. 【详解】解:因为()112221n n n a a a ++=+=+,又11a =,所以{}1n a +以2为首项,2为公比的等比数列,所以11222n n n a -+=⨯=,所以21n n a =-,则012345515253545556C C C C C C a a a a a a +++++()01223344556012345555555555555C 2C 2C 2C 2C 2C 2C C C C C C =⨯+⨯+⨯+⨯+⨯+⨯-+++++又01223344556555555C 2C 2C 2C 2C 2C 2⨯+⨯+⨯+⨯+⨯+⨯()0011223344555555552C 2C 2C 2C 2C 2C 2=⨯⨯+⨯+⨯+⨯+⨯+⨯()5212486=⨯+=,0123455555555C C C C C C 232+++++==,所以012345515253545556C C C C C C a a a a a a +++++48632454=-=, 故选:D11.(2022·湖北·华中师大一附中模拟预测)某地区安排A ,B ,C ,D ,E ,F 六名党员志愿者同志到三个基层社区开展防诈骗宣传活动,每个地区至少安排一人,至多安排三人,且A ,B 两人安排在同一个社区,C ,D 两人不安排在同一个社区,则不同的分配方法总数为( ) A .72 B .84 C .90 D .96【答案】B 【解析】 【分析】分为每个社区各两人和一个社区1人,一个社区2人,一个社区3人两种分配方式,第二种分配方式再分AB 两人一组去一个社区,AB 加上另一人三人去一个社区,进行求解,最后相加即为结果. 【详解】第一种分配方式为每个社区各两人,则CE 一组,DF 一组,或CF 一组,DE 一组,由2种分组方式,再三组人,三个社区进行排列,则分配方式共有332A 12=种;第二种分配方式为一个社区1人,一个社区2人,一个社区3人,当AB 两人一组去一个社区,则剩下的4人,1人为一组,3人为一组,则必有C 或D 为一组,有1323C C 种分配方法,再三个社区,三组人,进行排列,有133233C C A 12=种分配方法;当AB 加上另一人三人去一个社区,若选择的是C 或D ,则有12C 种选择,再将剩余3人分为两组,有1232C C 种分配方法,将将三个社区,三组人,进行排列,有11232323C C C A 36=种分配方法;若选择的不是C 或D ,即从E 或F 中选择1人和AB 一起,有12C 种分配方法,再将CD 和剩余的1人共3人分为两组,有2种分配方法,将三个社区,三组人,进行排列,有13232C A 24=种分配方法,综上共有12+12+36+24=84种不同的分配方式 故选:B12.(2022·内蒙古·海拉尔第二中学模拟预测(理))《数术记遗》是《算经十书》中的一部,相传是汉末徐岳所著.该书记述了我国古代14种算法,分别是:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算和计数.某中学研究性学习小组有甲、乙、丙、丁四人,该小组拟全部收集九宫算、运筹算、了知算、成数算和把头算等5种算法的相关资料,要求每人至少收集其中一种,且每种算法只由一个人收集,但甲不收集九宫算和了知算的资料,则不同的分工收集方案共有( )种. A .108 B .136 C .126 D .240【答案】C 【解析】 【分析】对甲收集的方案种数进行分类讨论,结合分组分配原理以及分类加法计数原理可求得结果. 【详解】分以下两种情况讨论:①若甲只收集一种算法,则甲有3种选择,将其余4种算法分为3组,再分配给乙、丙、丁三人,此时,不同的收集方案种数为23433C A 108=种;②若甲收集两种算法,则甲可在运筹算、成数算和把头算3种算法中选择2种,其余3种算法分配给乙、丙、丁三人,此时,不同的收集方案种数为2333C A 18=种.综上所述,不同的收集方案种数为10818126+=种. 故选:C.13.(2022·广东佛山·模拟预测)“五经”是儒家典籍《周易》、《尚书》、《诗经》、《礼记》、《春秋》的合称.为弘扬中国传统文化,某校在周末兴趣活动中开展了“五经”知识讲座,每经排1节,连排5节,则《诗经》、《春秋》分开排的情况有________种. 【答案】72 【解析】 【分析】由于《诗经》、《春秋》分开排,先将《周易》、《尚书》、《礼记》进行排列,然后再把《诗经》、《春秋》插入到4个空位中即可得到答案 【详解】先将《周易》、《尚书》、《礼记》进行排列,共有33A 种排法再从产生的4个空位中选2个安排《诗经》、《春秋》,共有24A 种排法所以满足条件的情形共有3234A A 72=种.故答案为:7214.(2022·上海市光明中学模拟预测)已知二项式623x x ⎛⎫- ⎪⎝⎭,则其展开式中3x 的系数为____________. 【答案】540- 【解析】 【分析】利用二项展开式的通项公式即可求解. 【详解】由题意可知,623x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()()621231663C C 3r r rr r rr T x x x --+⎛⎫=⨯⨯-⨯ =-⨯⎪⎝⎭,令1233r -=,解得3r =.所以二项式623x x ⎛⎫- ⎪⎝⎭展开式中3x 的系数为()()363C 27205034=-=-⨯⨯-.故答案为:540-.15.(2022·吉林·三模(理))为了保障疫情期间广大市民基本生活需求,市政府准备了茄子、辣椒、白菜、角瓜、菜花、萝卜、黄瓜、土豆八种蔬菜,并从中任选五种,以“蔬菜包”的形式发给市民.若一个“蔬菜包”中不同时含有土豆和萝卜,且角瓜、黄瓜、辣椒最多只含有两种,则可以组成___________种不同的“蔬菜包”.【答案】27 【解析】 【分析】运用加法分类计数原理,结合组合的定义进行求解即可. 【详解】当土豆和萝卜都不含有时,蔬菜包的种数为2333C C 3⋅=;当土豆和萝卜中只含有一种时,蔬菜包的种数为1221323333C (C C C C )2(3331)24⋅+⋅=⨯+⨯=, 所以可以组成种不同“蔬菜包”种数为32427+=, 故答案为:2716.(2022·湖南·模拟预测)()()5321x x -+的展开式的中4x 的系数是______.【答案】5 【解析】 【分析】 由()()()()5553321211xx x x x -+=+-+,则分别求出()51x +中的4x 与x 的系数即可求解.【详解】()()()()5553321211x x x x x -+=+-+,所以展开式中4x 的系数是14552C 1C 5⋅-⋅=.故答案为:517.(2022·江苏无锡·模拟预测)甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次,已知甲和乙都没有得到冠军,并且乙不是第5名,则这5个人的名次排列情况共有________种. 【答案】54 【解析】 【分析】根据甲和乙都没有得到冠军,并且乙不是第5名,分甲是第5名和甲不是第5名分类求解. 【详解】解:因为甲和乙都没有得到冠军,并且乙不是第5名, 当甲是第5名时,则乙可以为第2,3,4名,有3种情况,剩下的3人全排列有33A 6=种,此时,由分步计数原理得共有1863=⨯种情况;当甲不是第5名时,则甲乙排在第2,3,4名,有23A 6=种情况, 剩下的3人全排列有33A 6=种,此时,由分步计数原理得共有6636⨯=种情况;综上:甲和乙都没有得到冠军,并且乙不是第5名,则这5个人的名次排列情况共有18+36=54种情况, 故答案为:5418.(2022·山东泰安·模拟预测)古希腊哲学家毕达哥拉斯曾说过:“美的线型和其他一切美的形体都必须有对称形式.”在中华传统文化里,建筑、器物、书法、诗歌、对联、绘画几乎无不讲究对称之美.如图所示的是清代诗人黄柏权的《茶壶回文诗》,其以连环诗的形式展现,20个字绕着茶壶成一圆环,无论顺着读还是逆着读,皆成佳作.数学与生活也有许多奇妙的联系,如2020年02月02日(20200202)被称为世界完全对称日(公历纪年日期中数字左右完全对称的日期).数学上把20200202这样的对称数叫回文数,若两位数的回文数共有9个(11,22,…,99).则所有四位数的回文数中能被3整除的个数是___________.【答案】30 【解析】 【分析】所有四位数的回文数中要能被3整除,这四个数的和是3的偶数倍数,分类讨论即可. 【详解】要能被3整除,则四个数的和是3的偶数倍数.满足条件的回文数分为以下几类: 和为6的回文数:1221+++,3003+++,此时有1213⨯+=个.和为12的回文数:3333+++,2442+++,1551+++,6006+++,此时有2226⨯+=个.和为18的回文数:1881+++,2772+++,3663+++,4554+++,9009+++,此时有4219⨯+=个.和为24的回文数:3993+++,4884+++,5775+++,6666+++,此时有3217⨯+=个.和为30的回文数:7887+++,6996+++,此时有224⨯=个. 和为36的回文数:9999+++,此时有1个. 故共有36974130+++++=个. 故答案为:30.19.(2022·辽宁沈阳·三模)若()2345501234512a a x a x a x a x a x x =+++-++,则012345a a a a a a +++++=_______.【答案】243##53【解析】 【分析】根据二项展开式可得012345012345a a a a a a a a a a a a +++++=-+-+-,令1x =-,即可得解. 【详解】解:()512x -的展开式得通项为()()155C 22C r rr r rr T x x +=-=-, 则012345012345a a a a a a a a a a a a +++++=-+-+-,令1x =-,则50123453243a a a a a a -+-+-==,即012345243a a a a a a +++++=. 故答案为:243.20.(2022·浙江·绍兴一中模拟预测)某科室有4名人员,两男两女,参加会议时一排有5个位置,从左到右排,则两女员工不相邻(中间隔空位也叫不相邻),且左侧的男员工前面一定有女员工的排法有_______种(结果用数字表示). 【答案】44 【解析】 【分析】应用分类分步计数,结合排列组合数及插空法求左侧的男员工前面一定有女员工的排法数. 【详解】先排两男和空位,再把两女插空,分两种情形:第一种,先排两男和空位,最左边是空位时,排两男和空位共22A 2=种,将女生插空时又分两种情形:先排两男和空位时,空位两侧排两名女生时计22A 2=种;空位两侧共排一名女生时计111222C C C 8=种,共计()2211122222A A +C C C 20=种;第二种,先排两男和空位,最左边是男生时,排两男和空位共41222C A =种,将女生插空共1123C C 6=种,共计12112223C A C C 24=种,综上,共计()221111211222222223A A C C C C A C C 44++=种.故答案为:44。
立体几何一、选择题的边长为1,1.【2012高考新课标理7】如图,网格纸上小正方形粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【答案】B【解析】由三视图可知,该几何体是三棱锥,底面是俯视图,高为3,所以几何体的体积为93362131=⨯⨯⨯⨯=V ,选B.BC=2。
将2.【2012高考浙江理10】已知矩形ABCD ,AB=1,△沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中。
A.存在某个位置,使得直线AC 与直线BD 垂直.B.存在某个位置,使得直线AB 与直线CD 垂直.C.存在某个位置,使得直线AD 与直线BC 垂直.D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 【答案】C【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C 是正确的.3.【2012高考新课标理11】已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A 26 ()B 36()C 23 ()D 22 【答案】A【解析】ABC ∆的外接圆的半径33r =,点O 到面ABC 的距离2263d R r =-=,SC 为球O 的直径⇒点S 到面ABC 的距离为2623d =此棱锥的体积为113262233436ABC V S d ∆=⨯=⨯⨯= 另:13236ABC V S R ∆<⨯=排除,,B C D ,选A.4.【2012高考四川理6】下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行 [答案]C[解析]若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B 错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D 错;故选项C 正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式. 5.【2012高考四川理10】如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠=,则A 、P 两点间的球面距离为( )A、arccos4R B 、4R π C、arccos 3R D 、3Rπ [答案]A[解析] 以O 为原点,分别以OB 、OC 、OA 所在直线为x 、y 、z 轴,则A )0,23,21(),22,0,22(R R P R R42arccos=∠∴AOP42arccos ⋅=∴R P A[点评]本题综合性较强,考查知识点较为全面,题设很自然的把向量、立体几何、三角函数等基础知识结合到了一起.是一道知识点考查较为全面的好题.要做好本题需要有扎实的数学基本功.6.【2012高考陕西理5】如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为( )A.5B.3C. 5D. 35422=•=∠∴R PO AO AOP COS【答案】A.【解析】法1:设a CB =||,则a CC CA 2||||1==,),2,0(),0,2,0(),,0,0(),0,0,2(11a a B a C a B a A ,),2,0(),,2,2(11a a BC a a a AB -=-=∴,55||||,cos 111111=⋅>=<∴BC AB BC AB BC AB ,故选A. 法2:过点1B 作11//B D C B 交Oz 轴于点D ,连结AD ,设122CA CC CB a ===,则113,5,22AB a B D a AD a ===,在1AB D ∆中,由余弦定理知直线1AB 与直线1BC 夹角的余弦值为2222221111958525235AB B D AD a a a AB B D a a+-+-==⋅⋅⋅. 7.【2012高考湖南理3】某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.【点评】本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型.8.【2012高考湖北理4】已知某几何体的三视图如右图所示,则该几何体的体积为侧视图2 正视图42 42A .8π3B .3πC .10π3D .6π【答案】B考点分析:本题考察空间几何体的三视图.【解析】显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B. 9.【2012高考广东理6】某几何体的三视图如图所示,它的体积为A .12π B.45π C.57π D.81π 【答案】C【解析】该几何体的上部是一个圆锥,下部是一个圆柱,根据三视图中的数量关系,可得πππ57533-53312222=⨯⨯+⨯⨯⨯=+=圆柱圆锥V V V .故选C .10.【2012高考福建理4】一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是 A.球 B.三棱柱 C.正方形 D.圆柱 【答案】D.【命题立意】本题考查了空间几何体的形状和三视图的概念,以及考生的空间想象能力,难度一般.【解析】法1:球的三视图全是圆;如图正方体截出的三棱锥三视图全是等腰直角三角形;正方体三视图都是正方形.可以排除ABC ,故选D.法2:球的正视图(主视图)、侧视图(左视图)和俯视图均为圆;三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形;圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆。
2019年高考数学试题分项版——统计概率(解析版)一、选择题1.(2019·全国Ⅰ文,6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生答案 C解析根据题意,系统抽样是等距抽样,所以抽样间隔为=10.因为46除以10余6,所以抽到的号码都是除以10余6的数,结合选项知,616号学生被抽到.2.(2019·全国Ⅱ文,4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B. C. D.答案 B解析设5只兔子中测量过某项指标的3只为a1,a2,a3,未测量过这项指标的2只为b1,b2,则从5只兔子中随机取出3只的所有可能情况为(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a1,b1,b2),(a2,a3,b1),(a2,a3,b2),(a2,b1,b2),(a3,b1,b2),共10种可能.其中恰有2只测量过该指标的情况为(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a2,a3,b1),(a2,a3,b2),共6种可能.故恰有2只测量过该指标的概率为=.3.(2019·全国Ⅱ文,5)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙答案 A解析由于三人成绩互不相同且只有一个人预测正确.若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,再假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,与事实矛盾;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.4.(2019·全国Ⅲ文,3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A. B. C. D.答案 D解析设两位男同学分别为A,B,两位女同学分别为a,b,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为=.5.(2019·全国Ⅲ文,4)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6 C.0.7 D.0.8答案 C解析根据题意阅读过《红楼梦》《西游记》的人数用韦恩图表示如下:所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为=0.7. 6.(2019·浙江,7)设0<a<1.随机变量X的分布列是()则当a在(0,1)内增大时,()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大答案 D解析由题意可知,E(X)=(a+1),所以D(X)=++==,所以当a在(0,1)内增大时,D(X)先减小后增大.7.(2019·全国Ⅰ理,6)我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“——”,如图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. B. C. D.答案 A解析由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为==20.根据古典概型的概率计算公式得,所求概率P==.故选A. 8.(2019·全国Ⅱ理,5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差答案 A解析记9个原始评分分别为a,b,c,d,e,f,g,h,i(按从小到大的顺序排列),易知e 为7个有效评分与9个原始评分的中位数,故不变的数字特征是中位数,故选A. 9.(2019·全国Ⅲ理,3)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6 C.0.7 D.0.8答案 C解析根据题意阅读过《红楼梦》《西游记》的人数用韦恩图表示如下:所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为=0.7. 10.(2019·全国Ⅲ理,4)(1+2x2)(1+x)4的展开式中x3的系数为()A.12 B.16 C.20 D.24答案 A解析展开式中含x3的项可以由“1与x3”和“2x2与x”的乘积组成,则x3的系数为+2=4+8=12.二、填空题1.(2019·全国Ⅱ文,14)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.答案0.98解析经停该站高铁列车所有车次的平均正点率的估计值为=0.98. 2.(2019·浙江,13)在二项式(+x)9的展开式中,常数项是________,系数为有理数的项的个数是________.答案16 5解析该二项展开式的第k+1项为T k+1=()9-k x k,当k=0时,第1项为常数项,所以常数项为()9=16;当k=1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.3.(2019·江苏,5)已知一组数据6,7,8,8,9,10,则该组数据的方差是_____________.答案解析数据6,7,8,8,9,10的平均数是=8,则方差是=. 4.(2019·江苏,6)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.答案解析记3名男同学为A,B,C,2名女同学为a,b,则从中任选2名同学的情况有(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b),共10种,其中至少有1名女同学的情况有(A,a),(A,b),(B,a),(B,b),(C,a),(C,b),(a,b),共7种,故所求概率为.5.(2019·全国Ⅰ理,15)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.答案0.18解析记事件M为甲队以4∶1获胜,则甲队共比赛五场,且第五场甲队获胜,前四场甲队胜三场负一场,所以P(M)=0.6×(0.62×0.52×2+0.6×0.4×0.52×2)=0.18.6.(2019·全国Ⅱ理,13)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.答案0.98解析经停该站高铁列车所有车次的平均正点率的估计值为=0.98. 7.(2019·天津理,10)8的展开式中的常数项为________.答案28解析二项展开式的通项T r+1=(2x)8-r r=r·28-r x8-4r,令8-4r=0可得r=2,故常数项为2×26×=28.三、解答题1.(2019·全国Ⅰ文,17)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:K2=.解(1)由调查数据,男顾客中对该商场服务满意的频率为=0.8,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的频率为=0.6,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)K2的观测值k=≈4.762.由于4.762>3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.2.(2019·全国Ⅱ文,19)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:≈8.602.解(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为=0.21.产值负增长的企业频率为=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)=×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30,s2=i(y i-)2=×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.029 6,s==0.02×≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.3.(2019·全国Ⅲ文,17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.4.(2019·北京文,17)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生中上个月A,B两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生支付金额分布情况如下:(1)估计该校学生中上个月A,B两种支付方式都使用的人数;(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.解(1)由题意知,样本中仅使用A的学生有27+3=30(人),仅使用B的学生有24+1=25(人),A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100-30-25-5=40(人).估计该校学生中上个月A,B两种支付方式都使用的人数为×1 000=400.(2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”,则P(C)==0.04.(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2 000元”.假设样本仅使用B的学生中,本月支付金额大于2 000元的人数没有变化,则由(2)知,P(E)=0.04.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的.所以无法确定有没有变化.5.(2019·天津文,15)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人随机抽取2人接受采访.①试用所给字母列举出所有可能的抽取结果;②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.解(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以,事件M发生的概率P(M)=.6.(2019·江苏,22)(10分)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2-3b2的值.解(1)因为(1+x)n=+x+x2+…+x n,n≥4,所以a2==,a3==,a4==.因为=2a2a4,所以2=2××.解得n=5.(2)由(1)知,n=5.(1+)n=(1+)5=++()2+()3+()4+()5=a+b.方法一因为a,b∈N*,所以a=+3+9=76,b=+3+9=44,从而a2-3b2=762-3×442=-32.方法二(1-)5=+(-)+(-)2+(-)3+(-)4+(-)5=-+()2-()3+()4-()5.因为a,b∈N*,所以(1-)5=a-b.因此a2-3b2=(a+b)(a-b)=(1+)5×(1-)5=(-2)5=-32.7.(2019·江苏,23)在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},C n={(0,2),(1,2),(2,2),…,(n,2)},n∈N*.令M n=A n∪B n∪C n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).解(1)当n=1时,A1={(0,0),(1,0)},B1={(0,1),(1,1)},C1={(0,2),(1,2)},所以M1={(0,0),(1,0),(0,1),(1,1),(0,2),(1,2)}.所以X的所有可能取值是1,,2,.X的概率分布为P(X=1)==,P(X=)==,P(X=2)==,P(X=)==.(2)设A(a,b)和B(c,d)是从M n中取出的两个点.因为P(X≤n)=1-P(X>n),所以仅需考虑X>n的情况.①若b=d,则AB≤n,不存在X>n的取法;②若b=0,d=1,则AB=≤,所以当且仅当AB=时X>n,此时a=0,c=n或a=n,c=0,有2种取法;③若b=0,d=2,则AB=≤,因为当n≥3时,≤n,所以当且仅当AB=时X>n,此时a=0,c=n或a=n,c=0,有2种取法;④若b=1,d=2,则AB=≤,所以当且仅当AB=时X>n,此时a=0,c=n或a=n,c=0,有2种取法.综上,当X>n时,X的所有可能取值是和,且P(X=)=,P(X=)=.因此,P(X≤n)=1-P(X=)-P(X=)=1-.8.(2019·全国Ⅰ理,21)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(ⅰ)证明:{p i+1-p i}(i=0,1,2,…,7)为等比数列;(ⅱ)求p4,并根据p4的值解释这种试验方案的合理性.(1)解X的所有可能取值为-1,0,1.P(X=-1)=(1-α)β,P(X=0)=αβ+(1-α)(1-β),P(X=1)=α(1-β).所以X的分布列为(2)(ⅰ)证明由(1)得a=0.4,b=0.5,c=0.1.因此p i=0.4p i-1+0.5p i+0.1p i+1,故0.1(p i+1-p i)=0.4(p i-p i-1),即p i+1-p i=4(p i-p i-1).又因为p1-p0=p1≠0,所以{p i+1-p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列.(ⅱ)解由(ⅰ)可得p8=p8-p7+p7-p6+…+p1-p0+p0=(p8-p7)+(p7-p6)+…+(p1-p0)=p1.由于p8=1,故p1=,所以p4=(p4-p3)+(p3-p2)+(p2-p1)+(p1-p0)=p1=.p4表示题干中的实验方案最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p4=≈0.003 9,此时得出错误结论的概率非常小,说明这种试验方案合理.9.(2019·全国Ⅱ理,18)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.解(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为P=[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.10.(2019·全国Ⅲ理,17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.11.(2019·北京理,17)(13分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.【思路分析】(Ⅰ)从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,从而A,B两种支付方式都使用的人数有40人,由此能求出从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率.(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,则X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和数学期望()E X.(Ⅲ)从样本仅使用A的学生有30人,其中27人月支付金额不大于2000元,有3人月支付金额大于2000元,随机抽查3人,发现他们本月的支付金额都大于2000元的概率为3 3 3 301 4060CpC==,不能认为认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化.【解析】:(Ⅰ)由题意得:从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,A∴,B两种支付方式都使用的人数有:1005302540---=,∴从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率400.4100p==.(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,则X的可能取值为0,1,2,样本仅使用A的学生有30人,其中支付金额在(0,1000]的有18人,超过1000元的有12人,样本仅使用B的学生有25人,其中支付金额在(0,1000]的有10人,超过1000元的有15人,18101806(0)302575025P X==⨯==,1815121039013(1)3025302575025P X==⨯+⨯==,12151806(2)302575025P X ==⨯==, X ∴的分布列为:数学期望()0121252525E X =⨯+⨯+⨯=. (Ⅲ)不能认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化, 理由如下:从样本仅使用A 的学生有30人,其中27人月支付金额不大于2000元,有3人月支付金额大于2000元,随机抽查3人,发现他们本月的支付金额都大于2000元的概率为3333014060C p C ==,虽然概率较小,但发生的可能性为14060. 故不能认为认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化. 【归纳与总结】本题考查概率、离散型随机变量的分布列、数学期望的求法,考查古典概型、相互独立事件概率乘法公式等基础知识,考查推理能力与计算能力,是中档题.12.(2019·天津理,16)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为,假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.解 (1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为 ,故X ~B ,从而P (X =k )= k3-k ,k =0,1,2,3. 所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=3×=2. (2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则Y ~B,且M ={X =3,Y =1}∪{X =2,Y =0}.由题意知事件{X =3,Y =1}与{X =2,Y =0}互斥,且事件{X =3}与{Y=1},事件{X=2}与{Y=0}均相互独立,从而由(1)知P(M)=P({X=3,Y=1}∪{X=2,Y=0})=P({X=3,Y=1})+P({X=2,Y=0})=P({X=3})P({Y=1})+P({X=2})P({Y=0})=×+×=.。
在高考中数学表格题分类解析近年来,涉及表格类的试题经常出现在全国各地的高考和模拟试题中,它们不仅情境新颖,而且与生活实际联系紧密,充分体现了表格的工具性和数学的适用性。
这类问题主要考查学生能否根据所学知识在新情景中吸收、处理信息的能力和分析、解决问题的能力。
本文结合实例对表格在高中数学试题中的应用作一些分析和归纳,期望对广大读者有所帮助。
一、在题设中直接以表格反映条件例1 下表给出了x 与x10的七组对应值:假设上表数据中,有且仅有一组是错误的,它是第________组。
思路:由上表可知第六组一定正确,由此判断第一、三组都是正确的(因为它们不可能全错)由第一组正确得到第五组也正确,剩下第二、四、七组必有一组错的,若第二组正确,推出第四、七组都是错的,因此第二组是错的。
评注:这是一题以指对数互化和对数的运算法则为背景的表格信息题,要求要能根据表中信息找到突破口,进行推理和假设,作出正确判断。
此类问题对考查学生的逻辑思维能力能起到很好的作用。
例2 二次函数x c bx ax y (2++=∈R )的部分对应值如下表: 则不等式ax 2+bx+c>0的解集是________________思路一:由表格可知,原函数图象过三点(-1,-4)、(0,-6)、(1,-6),由()()4112-=+-+-c b a ①,6002-=+⋅+⋅c b a ② 6112-=+⋅+⋅c b a ③,解得6,1,1-=-==c b a ,∴不等式ax 2+bx+c>0的解集是{x|x<-2或x>3}思路二:由表格可知,方程02=++c bx ax 的两根为3,2-,再由函数值的变化规律可知二次函数图象开口向上,∴不等式ax 2+bx+c>0的解集是{x|x<-2或x>3}。
评注:上述两种解法都是合理选用了表格中的信息,分别从函数与方程,数形结合两方面处理了问题。
特别是思路二,不需要计算就能得到答案,如果信息选择不当,会导致运算相对繁琐。
专题39两条直线的位置关系9题型分类1.两条直线的位置关系直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 3:A 1x +B 1y +C 1=0,l 4:A 2x +B 2y +C 2=0(其中l 1与l 3是同一条直线,l 2与l 4是同一条直线)的位置关系如下表:位置关系l 1,l 2满足的条件l 3,l 4满足的条件平行k 1=k 2且b 1≠b 2A 1B 2-A 2B 1=0且A 1C 2-A 2C 1≠0垂直k 1·k 2=-1A 1A 2+B 1B 2=0相交k 1≠k 2A 1B 2-A 2B 1≠02.三种距离公式(1)两点间的距离公式①条件:点P 1(x 1,y 1),P 2(x 2,y 2).②结论:|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.③特例:点P (x ,y )到原点O (0,0)的距离|OP |=x 2+y 2.(2)点到直线的距离点P (x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行直线间的距离两条平行直线l1:Ax+By+C1=0与l2:Ax+By+C2=0间的距离d=|C1-C2| A2+B2.常用结论1.直线系方程(1)与直线Ax+By+C=0平行的直线系方程是Ax+By+m=0(m∈R且m≠C).(2)与直线Ax+By+C=0垂直的直线系方程是Bx-Ay+n=0(n∈R).(3)过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括l2.2.五种常用对称关系(1)点(x,y)关于原点(0,0)的对称点为(-x,-y).(2)点(x,y)关于x轴的对称点为(x,-y),关于y轴的对称点为(-x,y).(3)点(x,y)关于直线y=x的对称点为(y,x),关于直线y=-x的对称点为(-y,-x).(4)点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为(x,2b-y).(5)点(x,y)关于点(a,b)的对称点为(2a-x,2b-y).(一)判断两条直线位置关系的注意点(1)斜率不存在的特殊情况.(2)可直接利用直线方程系数间的关系得出结论.,根据两直线平行和垂直时,其斜率间的关系得出方程组,解之可求得点(二)利用距离公式应注意的点(1)点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|.(2)两条平行线间的距离公式要把两条直线方程中x,y的系数化为相等.∴PB l 的倾斜角为π6,PA l 的倾斜角为∴直线l 的倾斜角的取值范围是故选:D作B 关于直线:3l x y --则直线AB '和直线l 的交点即为设D 为l 上异于P 的一点,则故DA DB DA DB -=-故||||||PA PB -最大,即此时设(,)B a b ',则432b a a b -⎧=⎪⎪⎨⎪⨯-⎪⎩作C 关于直线:3l x y --则直线AC '和直线l 的交点即为设E 为l 上异于P 的一点,则故EC EA EC EC +=+故||||+PA PC 最小,即此时设(,)C m n ',则43332n m m -⎧=⎪⎪-⎨+⎪⨯⎪⎩故直线AC '方程为19x +即即1126(,)77P ;5-4.(2024高三下·江西2430x y -+=上一动点,则A .5B 【答案】B【分析】求点()0,2A -关于直线论两点之间线段最短可求5-5.(2024高二下·上海浦东新且1PQ l ⊥,点()3,3A --,【答案】310322+【分析】作出图象,易知l 然后在l 上,直线1l ,2l 之间找点由此求解.【详解】易知12l l //,作出图象如下,过直线:3l y x =-,过P 作直线//PC QB ,与直线l 交于点C ,易知四边形PCBQ 为平行四边形,故PC QB =,且B 到直线2l 的距离等于C 到1l 的距离,设(,3)C t t -,则3230122t t +-++-=,解得32t =或12t =-(舍),所以33,22C ⎛⎫- ⎪⎝⎭,而AP PQ QB AP PQ PC ++=++,且2(1)332222PQ --===(定值),故只需求出||||AP PC +的最小值即可,显然223331033222AP PC AC ⎛⎫⎛⎫+≥=--+-+= ⎪ ⎪⎝⎭⎝⎭,故AP PQ QB ++的最小值为310322+.故答案为:310322+.5-6.(2024高三下·河南·阶段练习)已知函数()()()ln 11f x a x a =++∈R 的图象恒过定点A ,圆22:4O x y +=上的两点()11,P x y ,()22,Q x y 满足()PA AQ λλ=∈R,则11222727x y x y +++++的最小值为()A .25B .75+C .155-D .3025-【答案】C 【分析】设直线l 为270x y ++=.取圆O 的弦PQ 的中点为E ,求出其轨迹方程,求出E 到直线l 距离的最小值.过P 、E 、Q 分别作直线l 的垂线,垂足分别为M 、R 、N ,将11222727x y x y +++++转化为25ER ,即可求其最小值.【详解】由题可知A 为(0,1),且P 、A 、Q 三点共线,设弦PQ 的中点为E (x ,y ),连接OE ,则OE ⊥PQ ,即OE ⊥AE ,∴0OE AE ⋅=,由此可得E 的轨迹方程为2+−122=14,【点睛】本题需充分利用数形结合思想进行简答,直线的距离公式联系在一起,数形结合求解最值5-7.(2024高三下·上海宝山·开学考试)如图,平面上两点2MN=,且使PM MN++【答案】99, 44骣÷ç÷ç÷ç桫【点睛】本小题主要考查两点间距离公式的应用,考查对称性,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于中档题(三)对称问题的求解策略(1)解决对称问题的思路是利用待定系数法将几何关系转化为代数关系求解.(2)中心对称问题可以利用中点坐标公式解题,两点轴对称问题可以利用垂直和中点两个条件列方程组解题.求直线l关于直线0l对称的直线'lCA.35B.【答案】C【分析】求点A关于y轴的对称点6-3.(2024高二上·四川遂宁A .(1,4)-C .(3,4)--【答案】C 【分析】因点A 与点B 关于直线对称,则【详解】设(),A x y ,因点A 垂直,则212022112x y y x ++⎧++=⎪⎧⎪⇒⎨⎨-⎩⎪=⎪-⎩即点A 坐标为(3,4)--.则直线的对称点为(四)一、单选题1.(2024高二上·浙江·期中)已知点(,2)(0)a a >到直线:30l x y -+=的距离为1,则a 等于()AB.2C1D1+【答案】C【分析】根据点到直线得距离公式即可得出答案.1=.解得1a =-1a =-0a >,1a ∴=-故选:C.2.(2024高二上·黑龙江哈尔滨·期末)已知两条直线1:3460l x y -+=,2:3440l x y --=,则这两条直线之间的距离为()A .2B .3C .5D .10【答案】A【分析】由两平行线距离公式求解即可.【详解】这两条直线之间的距离为2d ==.故选:A3.(2024高二·全国·课后作业)求直线x +2y -1=0关于直线x +2y +1=0对称的直线方程()A .x +2y -3=0B .x +2y +3=0C .x +2y -2=0D .x +2y +2=0【答案】B【分析】结合两平行线间的距离公式求得正确选项.【详解】设对称直线方程为20x yc ++=,=,解得3c =或1c =-(舍去).所以所求直线方程为230x y ++=.故选:B4.(2024高二·全国·课后作业)直线0ax by c ++=关于直线0x y -=对称的直线为()A .0ax by c -+=B .0bx ay c -+=C .0bx ay c ++=D .0bx ay c +-=【答案】C【分析】根据两直线关于对称直线对称的概念即可求解【详解】解:设所求直线上的任意一点为(,)M x y 则M 关于直线0x y -=对称点为(,)N y x 点N 在直线0ax by c ++=上∴(,)N y x 满足直线方程,即0ay bx c ++=∴直线0ax by c ++=关于直线0x y -=对称的直线为0bx ay c ++=故选:C5.(2024·浙江温州·三模)已知直线12:0,:10l x y l ax by +=++=,若12l l ⊥,则a b +=()A .1-B .0C .1D .2【答案】B【分析】根据给定的条件,利用两直线的垂直关系列式计算作答.【详解】因为直线12:0,:10l x y l ax by +=++=,且12l l ⊥,则110a b ⋅+⋅=,所以0a b +=.故选:B6.(2024·安徽蚌埠·三模)已知直线1l :210ax y ++=,2l :()30a x y a --+=,则条件“1a =”是“12l l ⊥”的()A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不必要也不充分条件【答案】B 【分析】根据两直线垂直的性质,可得()312a a ⎛⎫-⨯-=- ⎪⎝⎭,求出a 的值,即可判断.【详解】若12l l ⊥,则()312a a ⎛⎫-⨯-=- ⎪⎝⎭,解得1a =或2a =.故1a =是12l l ⊥的充分不必要条件.故选:B7.(2024高二上·全国·课后作业)直线220x y ++=与420ax y +-=互相垂直,则这两条直线的交点坐标为()A .()1,4-B .()0,2-C .()1,0-D .0,12⎛⎫ ⎪⎝⎭【答案】C【分析】由两直线垂直可得2a =-,联立解方程组可得交点坐标.【详解】易知直线220x y ++=的斜率为2-,由两直线垂直条件得直线420ax y +-=的斜率142a -=,解得2a =-;联立2202420x y x y ++=⎧⎨-+-=⎩,解得10x y =-⎧⎨=⎩;即交点为()1,0-故选:C.8.(2024高二下·四川广元·期中)若直线2mx ny +=过点()2,2A ,其中m ,n 是正实数,则12m n+的最小值是()A .3B .3+C .92D .5【答案】B 【分析】由点A 在直线上可知1m n +=【详解】因为直线2mx ny +=过点(2,2)A ,所以222m n +=,由m 和n 都是正实数,所以1m n +=,0m >,0n >.所以()12122123n m m n m n m n m n⎛⎫+=++=+++≥+ ⎪⎝⎭当2n m m n =时取等号,即1m =,2n =-所以12m n+的最小值是3+故选:B .9.(2024高二上·全国·课后作业)若直线230x y --=与420x y a -+=,则a 的值为()A .4B 6C .4或16-D .8或16-【答案】C【分析】将直线230x y --=化为4260x y --=,再根据两平行直线的距离公式列出方程,求解即可.【详解】将直线230x y --=化为4260x y --=,则直线230x y --=与直线420x y a -+=之间的距离d ==,即|6|10a +=,解得4a =或16a =-,所以a 的值为4a =或16a =-.故选:C10.(2024高二上·全国·课后作业)抛物线214y x =的焦点关于直线10x y --=的对称点的坐标是()A .(2,1)-B .(1,1)-C .11,44⎛⎫- ⎪⎝⎭D .11,1616⎛⎫- ⎪⎝⎭【答案】A【分析】求出抛物线214y x =焦点坐标为(0,1)F ,设(0,1)F 关于直线10x y --=的对称点的坐标是(,)F m n ',列出关于,m n 的方程组求解即可.【详解】抛物线214y x =即24x y =,其焦点坐标为(0,1)F ,设(0,1)F 关于直线10x y --=的对称点的坐标是(,)F m n ',则1110011022n m m n -⎧⨯=-⎪⎪-⎨++⎪--=⎪⎩,解得21m n =⎧⎨=-⎩,则(2,1)F '-,故选:A .11.(2024·四川)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是A.B.C.D.【答案】B【详解】试题分析:易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,令,PA PB θθ==,则)4PA PB πθθθ+==+.因为0,0PA PB ≥≥,所以02πθ≤≤.所以sin()124πθ≤+≤PA PB ≤+≤选B.法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.【考点定位】1、直线与圆;2、三角代换.12.(2024·全国)点(0,﹣1)到直线()1y k x =+距离的最大值为()A .1B CD .2【答案】B【分析】首先根据直线方程判断出直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即可求得结果.【详解】由(1)y k x =+可知直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即为||AP =故选:B.【点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.13.(2024·北京东城·二模)已知三条直线1:220l x y -+=,2:20l x -=,3:0+=l x ky 将平面分为六个部分,则满足条件的k 的值共有()A .1个B .2个C .3个D .无数个【答案】C【分析】考虑三条直线交于一点或3l 与1l 或2l 平行时,满足条件,求出答案.【详解】当三条直线交于一点时,可将平面分为六个部分,联立1:220l x y -+=与2:20l x -=,解得22x y =⎧⎨=⎩,则将22x y =⎧⎨=⎩代入3:0+=l x ky 中,220k +=,解得1k =-,当3:0+=l x ky 与1:220l x y -+=平行时,满足要求,此时2k =-,当3:0+=l x ky 与2:20l x -=平行时,满足要求,此时0k =,综上,满足条件的k 的值共有3个.故选:C14.(2024高二上·辽宁沈阳·阶段练习)两直线方程为1:3260l x y --=,22:0x y l --=,则1l 关于2l 对称的直线方程为()A .3240x y --=B .2360x y +-=C .2340x y --=D .3260x y --=【答案】C【分析】根据题意,设所求直线上任一点M (x ,y )且M 关于直线22:0x y l --=的对称点1(M x ',1)y ,利用轴对称的性质列出方程组解出用x 、y 表示1x 、1y 的式子,再由点M '在直线3260x y --=上代入,化简即得所求对称直线方程;【详解】设所求直线上任一点(,)M x y ,M 关于直线20x y --=的对称点1(M x ',1)y ,则111112022y y x x x x y y -⎧=-⎪-⎪⎨++⎪--=⎪⎩,解出112(*)2x y y x =+⎧⎨=-⎩ 点M '在直线3260x y --=上,∴将(*)式代入,得3(2)2(2)60y x +---=,化简得2340x y --=,即为1l 关于2l 对称的直线方程.故选:C15.(2024高一下·海南·期末)设,,a b c 分别是ABC V 中,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ⋅++=与sin sin 0bx B y C -⋅+=的位置关系是()A .平行B .重合C .垂直D .相交但不垂直【答案】C【分析】根据直线方程确定斜率,利用三角形边角关系及直线垂直的判定判断两直线的位置关系即可.【详解】由题设,sin 0A x ay c ⋅++=的斜率为sin Aa-,sin sin 0bx B y C -⋅+=的斜率为sin b B ,又sin sin b aB A =,则1sin sin b BA a ⋅=--,即两直线垂直.故选:C16.(2024高三下·江西·开学考试)费马点是指三角形内到三角形三个顶点距离之和最小的点.当三角形三个内角均小于120°时,费马点与三个顶点连线正好三等分费马点所在的周角,即该点所对的三角形三边的张角相等且均为120°.根据以上性质,.则(,)F x y =的最小值为()A .4B.2+C.3+D.4+【答案】B【分析】根据题意作出图形,证明出三角形ABC 为等腰直角三角形,作出辅助线,找到费马点,求出最小值.【详解】由题意得:(,)F x y 的几何意义为点E 到点()(),1,1,0,2A B C 的距离之和的最小值,因为AB =CB =4AC ==,所以222AB CB AC +=,故三角形ABC 为等腰直角三角形,,取AC 的中点D ,连接BD ,与AO 交于点E ,连接CE ,故122BD AC ==,AE CE =,因为3CO AO =,所以30CAO ∠=︒,故120AEC ∠=︒,则120BEC AEB ∠=∠=︒,故点E 到三角形三个顶点距离之和最小,即(,)F x y 取得最小值,因为122AD CD AC ===,所以cos 303AD AE ==︒,同理得:3CE =,3DE =,2BE BD DE =-=-,故(,)F x y 的最小值为22333AE CE BE ++=++-=+故选:B17.(2024·贵州毕节·模拟预测)直线()()1:11l x a y a a R ++=-∈,直线21:2l y x =-,下列说法正确的是()A .R a ∃∈,使得12l l ∥B .R a ∃∈,使得12l l ⊥C .R a ∀∈,1l 与2l 都相交D .R a ∃∈,使得原点到1l 的距离为3【答案】B 【分析】对A ,要使12l l ∥,则12k k ∥,所以1112a -=-+,解之再验证即可判断;对B ,要使12l l ⊥,121k k ×=-,1112a -=-+,解之再验证即可判断;对C ,当1a =时,1l 与2l 重合,即可判断;对D ,根据点到直线距离列方程即可判断.【详解】对A ,要使12l l ∥,则12k k ∥,所以1112a -=-+,解之得1a =,此时1l 与2l 重合,选项A 错误;对B ,要使12l l ⊥,121k k ×=-,11112a ⎛⎫⎛⎫-⋅-=- ⎪ ⎪+⎝⎭⎝⎭,解之得32a =-,所以B 正确;对C ,()1:11l x a y a ++=-过定点()2,1-,该定点在2l 上,但是当1a =时,1l 与2l 重合,所以C 错误;对D ,3d ==,化简得2820170a a -+=,此方程0∆<,a 无实数解,所以D错误.故选:B.18.(2024·全国)如果直线2y ax =+与直线3y x b =-关于直线y x =对称,那么()A .1,63a b ==B .1,63a b ==-C .3,2a b ==-D .3,6a b ==【答案】A【分析】由题意在2y ax =+上任取一点(0,2),其关于直线y x =的对称点在3y x b =-上,代入可求出b ,然后在3y x b =-上任取一点,其关于直线y x =的对称点在2y ax =+上,代入可求出a .【详解】在2y ax =+上取一点(0,2),则由题意可得其关于直线y x =的对称点(2,0)在3y x b =-上,所以06b =-,得6b =,在36y x =-上取一点(0,6)-,则其关于直线y x =的对称点(6,0)-在2y ax =+上,所以062a =-+,得13a =,综上1,63a b ==,故选:A19.(2024高一·全国·课后作业)已知ΔA 的顶点()2,1B ,()6,3C -,其垂心为()3,2H -,则其顶点A 的坐标为A .()19,62--B .()19,62-C .()19,62-D .()19,62【答案】A【分析】由垂心的定义可知AH BC ⊥,BH AC ⊥;根据垂直时斜率乘积为1-可知4AH k =,5AC k =,利用两点连线斜率公式可构造出方程组求得结果.【详解】H 为ΔA 的垂心AH BC ∴⊥,BH AC⊥又311624BC k -==---,211325BH k -==---∴直线,AH AC 斜率存在且4AH k =,5AC k =设(),A x y ,则243356AH AC y k x y k x -⎧==⎪⎪+⎨-⎪==⎪+⎩,解得:1962x y =-⎧⎨=-⎩()19,62A ∴--本题正确选项:A【点睛】本题考查根据直线与直线垂直的位置关系求解参数的问题;关键是能够利用垂心的性质得到直线与直线的垂直关系.20.(2024高三·全国·课后作业)若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为()A .B .C .D .【答案】A【解析】先求出点M 所在直线的方程为l :x +y +m =0,再求出m 的值和原点到直线l 的距离即得解.【详解】依题意知AB 的中点M 的集合为与直线l 1:x +y -7=0和l 2:x +y -5=0距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离.设点M 所在直线的方程为l :x +y +m =0,所以|m +7|=|m +5|,所以m =-6,即l :x +y -6=0.根据点到直线的距离公式得M=.故选:A.【点睛】本题主要考查平行线间的距离和点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平.21.(2024高二上·湖北·阶段练习)在等腰直角三角形ABC 中,3AB AC ==,点P 是边AB 上异于A B 、的一点,光线从点P 出发,经BC CA 、反射后又回到点P ,如图,若光线QR 经过ABC V 的重心,则AP =()A .32B .34C .1D .2【答案】C【分析】根据题意,建立坐标系,设点P 的坐标,可得P 关于直线BC 的对称点1P 的坐标,和P 关于y 轴的对称点2P 的坐标,由1P ,Q ,2RP四点共线可得直线的方程,由于过ABC V 的重心,代入可得关于a 的方程,解之可得P 的坐标,进而可得AP 的值,即可得答案.【详解】根据题意,建立如图所示的坐标系,可得(3,0)B ,(0,3)C ,故直线BC 的方程为3x y +=,又由(0,0)A ,(3,0)B ,(0,3)C ,则ABC V 的重心为(1,1),设(,0)P a ,其中0<<3a ,点P 关于直线BC 的对称点1(,)P x y ,则有03220(1)1a x y y x a++⎧+=⎪⎪⎨-⎪⨯-=-⎪-⎩,解得33x y a =⎧⎨=-⎩,即1(3,3)P a -,易得P 关于y 轴的对称点2(,0)P a -,由光的反射原理可知1P ,Q ,R ,2P 四点共成直线QR 的斜率33ak a-=+,故直线QR 的方程为3()3ay x a a-=++,由于直线QR 过ABC V 的重心(1,1),代入化简可得20a a -=,解得:1a =或0(a =舍),即(1,0)P ,故1AP =,故选:C .22.(2024高一上·湖南长沙·开学考试)如下图,一次函数4y x =+的图象与x 轴,y 轴分别交于点A ,B ,点(2,0)C -是x 轴上一点,点E ,F 分别为直线4y x =+和y 轴上的两个动点,当CEF △周长最小时,点E ,F 的坐标分别为()A .53,22E ⎛⎫- ⎪⎝⎭,(0,2)F B .(2,2)E -,(0,2)F C .53,22E ⎛⎫- ⎪⎝⎭,20,3F ⎛⎫ ⎪⎝⎭D .(2,2)E -,20,3F ⎛⎫⎪⎝⎭【答案】C【分析】作C 关于y 轴的对称点G ,作C 关于4y x =+的对称点D ,连接DG 交y 轴于F ,交AB 于E ,有++=++=EC FC EF ED FG EF DG ,即此时CEF △周长最小,求出D 点坐标,可得直线DG 方程,与4y x =+联立求出E 点坐标,令0x =可得F 点坐标.【详解】作(2,0)C -关于y 轴的对称点(2,0)G ,作(2,0)C -关于4y x =+的对称点(,)D a b ,连接DG 交y 轴于F ,交AB 于E ,所以,==FG FC EC ED ,此时CEF △周长最小,即++=++=EC FC EF ED FG EF DG ,由(2,0)C -,直线AB 方程为4y x =+,所以122422ba b a ⎧=-⎪⎪+⎨-⎪=+⎪⎩,解得42a b =-⎧⎨=⎩,所以(4,2)D -,可得直线DG 方程为022042--=---y x ,即1233y x =-+,由41233y x y x =+⎧⎪⎨=-+⎪⎩,解得5232x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以53,22E ⎛⎫- ⎪⎝⎭,令0x =可23y =,所以20,3F ⎛⎫⎪⎝⎭.故选:C.23.(2024高二上·广东深圳·期中)过定点A 的动直线0x ky +=和过定点B 的动直线210kx y k --+=交于点M ,则MA MB +的最大值是()A.B .3CD【答案】C【分析】求出A ,B 的坐标,并判断两直线垂直,推出点M 在以AB为直径的圆上,求得||AB =,即225MA MB +=,结合基本不等式即可求得答案.【详解】由题意知0x ky +=过定点(0,0)A ,动直线210kx y k --+=即(2)10k x y --+=过定点(2,1)B ,对于直线0x ky +=和动直线210kx y k --+=满足1(1)0k k ⨯+⨯-=,故两直线垂直,因此点M 在以AB为直径的圆上,||AB ==则225MA MB +=,所以22222()22()10MA MB MA MB MA MB MA MB +++=+≤=,当且仅当MA MB ==故MA MB +,故选:C24.(2024高二下·陕西西安·期末)设m ∈R ,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PA PB ⋅的最大值是()AB C .5D .10【答案】C【分析】先求出两条直线经过的定点,然后根据两条直线的位置关系可判断它们垂直,从而PA PB ⊥,在利用勾股定理和基本不等式求解.【详解】显然0x my +=过定点(0,0)A 30mx y m --+=可化成(1)3y m x =-+,则经过定点()1,3B ,根据两条直线垂直的一般式方程的条件,1(1)0m m ⨯+⨯-=,于是直线0x my +=和直线30mx y m --+=垂直,又P 为两条直线的交点,则PA PB ⊥,又AB =222102PA PB AB PA PB +==≥⋅,则5PA PB ⋅≤,当PA PB ==PA PB ⋅的最大值是5.故选:C25.(河北省张家口市2023-2024学年高二上学期期末数学试题)已知0x y +=,则)AB .CD .【答案】C【分析】设点(,)P x y 为直线0x y +=上的动点,题意可转化成求(,)P x y 与()1,1的距离和(,)P x y 与()2,0的距离之和的最小值,求出1(1)M ,关于直线0x y +=的对称点)1(1M '--,,故PM PN PM PN M N''+=+≥=,即可求出答案【详解】设点(,)P x y 为直线0x y +=上的动点,可看作(,)P x y 与()1,1的距离和(,)P x y 与()2,0的距离之和,设点()()1,12,0M N ,,则点()1,1M '--为点1(1)M ,关于直线0x y +=的对称点,故PM PM '=,且M N ==',所以P M PN =+PM PN M N ''=+≥=,当且仅当,,P M N '三点共线时,取等号,.故选:C26.(2024·贵州·模拟预测)已知,x y +∈R ,满足22x y +=,则x 的最小值为()A .45B .85C .1D 【答案】B【分析】先求出点O 关于线段22x y +=的对称点C C PO P ==.根据几何意义,结合图象,即可得出取最小值时,点P 的位置,进而得出答案.【详解】如图,过点O 作点O 关于线段22x y +=的对称点C ,则PO PC =.设()00,C x y ,则有()0000212222y x x y ⎧⨯-=-⎪⎪⎨⎪⨯+=⎪⎩,解得008545x y ⎧=⎪⎪⎨⎪=⎪⎩,所以84,55C ⎛⎫⎪⎝⎭.设(),P x y,则PO =C PO P ==,又,x y +∈R ,所以点P 到y 轴的距离为x ,所以,x 可视为线段22x y +=上的点(),P x y 到y 轴的距离和到84,55C ⎛⎫⎪⎝⎭的距离之和.过P 作PD x ⊥轴,过点C 作CH x ⊥轴,显然有PD PC CH +≥,当且仅当,,C P H 三点共线时,和有最小值.则CH 即为最小值,CH 与线段AB 的交点1P ,即为最小值时P 的位置.因为85CH =,所以x 的最小值为85.故选:B .27.(2024·上海静安·二模)设直线1:220l x y --=与2l 关于直线:240l x y --=对称,则直线2l 的方程是()A .112220x y +-=B .11220x y ++=C .5110x y +-=D .10220x y +-=【答案】A【分析】根据三条直线交于一点,再利用点关于直线的对称点公式,求直线2l 上一点,即可求解.【详解】联立220240x y x y --=⎧⎨--=⎩,得20x y =⎧⎨=⎩,取直线1:220l x y --=上一点()0,1-,设点()0,1-关于直线:240l x y --=的对称点为(),a b ,则112124022b a a b +⎧=-⎪⎪⎨-⎪⨯--=⎪⎩,解得:1211,55a b ==-,直线2l 的斜率112k =-,所以直线2l 的方程为()1122y x =--,整理为:112220x y +-=.故选:A28.(2024高三·北京·+的最小值所属区间为()A .[10,11]B .(11,12]C .(12,13]D .前三个答案都不对【答案】C【分析】利用代数式的几何意义可求最小值.【详解】如图,设(,0),(0,),(9,2),(3,3)P x Q y A B --.根据题意,设题中代数式为M,则||||||||13M AP PQ QB AB =++≥==,等号当P ,Q 分别为直线AB 与x 轴,y 轴交点时取得.因此所求最小值为13.故选:C.29.(2024·北京)在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A .1B .2C .3D .4【答案】C【分析】P 为单位圆上一点,而直线20x my --=过点()2,0A ,则根据几何意义得d 的最大值为1OA +.【详解】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,选C.【点睛】与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.二、多选题30.(2024高二下·江苏南京·期末)已知动点,A B 分别在直线1:3460l x y -+=与2:34100l x y -+=上移动,则线段AB 的中点P 到坐标原点O 的距离可能为()A B .75C D 【答案】CD【分析】根据直线平行可得P 在直线:3480l x y -+=上运动,即可根据点到直线的距离公式即可求解.【详解】解: 动点,A B 分别在直线13460l x y -+=:与234100l x y -+=:上移动,又线段AB 的中点为P ,21//l l ,P ∴在直线:3480l x y -+=上运动,O ∴到直线l 的距离85d ==.P ∴到坐标原点O 的距离大于等于85.故选:CD .31.(24-25高二上·全国·单元测试)已知两条直线1l ,2l 的方程分别为34120x y ++=与8110ax y +-=,下列结论正确的是()A .若12//l l ,则6a =B .若12//l l ,则两条平行直线之间的距离为74C .若12l l ⊥,则323a =D .若6a ≠,则直线1l ,2l 一定相交【答案】AD【分析】根据两直线平行求出a 的值,可判断A 选项;利用平行线间的距离公式可判断B 选项;根据两直线垂直求出a 的值,可判断C 选项;根据两直线相交求出a 的范围,可判断D 选项.【详解】两条直线1l ,2l 的方程分别为34120x y ++=与8110ax y +-=,它们不重合,若12//l l ,则438a =⨯,得6a =,检验符合,故A 选项正确;若12//l l ,由A 选项可知,2l :68110x y +-=,直线1l 的方程可化为68240x y ++=,72=,故B 选项不正确;若12l l ⊥,则3480a +⨯=,得323a =-,故C 选项不正确;由A 选项知,当6a =时,12//l l ,所以若6a ≠,则直线1l ,2l 一定相交,故D 选项正确.故选:AD.32.(24-25高二上·全国·课后作业)已知直线l10y -+=,则下列结论正确的是()A .直线l的一个法向量为)B .若直线m:10x +=,则l m ⊥C.点)到直线l 的距离是2D.过()2与直线l40y --=【答案】CD【分析】对于A :根据直线方向向量与斜率之间的关系分析判断;对于B :根据直线垂直分析判断;对于C :根据点到直线的距离公式运算求解;对于D :根据直线平行分析求解.【详解】对于A ,因为直线l10y -+=的斜率k =11=≠-,可知)不为直线l 的一个法向量,故A 错误;对于B ,因为直线m:10x +=的斜率3k '=,且11kk '=≠-,所以直线l 与直线m 不垂直,故B 对于C,点)到直线l 的距离2d =,故C 正确;对于D ,过()2与直线l平行的直线方程是2y x -=-40y --=,故D 正确.故选:CD.33.(2024高二下·江西南昌·阶段练习)已知曲线e 2xy =和直线:240l x y --=,则()A .曲线上与直线l 平行的切线的切点为e 1,2⎛⎫⎪⎝⎭B .曲线上与直线l 平行的切线的切点为10,2⎛⎫⎪⎝⎭C .曲线上的点到直线l D.曲线上的点到直线l 的最短距离为(3e 5+【答案】BC【分析】根据导数得出切线斜率求切点判断A,B,再结合点到直线距离求出最短距离判断C,D.【详解】设与直线122y x =-平行的直线和e 2xy =相切,则斜率为12k =.因为e 2x y =,所以e 2x y '=,令e 122x k ==,可得切点为10,2⎛⎫ ⎪⎝⎭,故A 错误,B 正确;则点10,2⎛⎫ ⎪⎝⎭到直线240x y --=的距离就是曲线e 2xy =上的点到直线240x y --=的最短距离,C 正确,D 错误.故选:BC.34.(福建省莆田第三中学,励志学校2023-2024学年高二上学期期中联考数学试卷)以下四个命题叙述正确的是()A .直线210x y -+=在x 轴上的截距是1B .直线0x ky +=和2380x y ++=的交点为P ,且P 在直线10x y --=上,则k 的值是12-C .设点(,)M x y 是直线20x y +-=上的动点,O 为原点,则OM 的最小值是2D .直线()12:310:2110L ax y L x a y ++=+++=,,若12//L L ,则3a =-或2【答案】BC【分析】求出直线的横截距判断k 判断B ;求出点到直线的距离判断C ;验证判断D.【详解】对于A ,直线210x y -+=在x 轴上的截距是12-,A 错误;对于B ,由238010x y x y ++=⎧⎨--=⎩解得12x y =-⎧⎨=-⎩,即(1,2)P --,则120k --=,解得12k =-,B 正确;对于C,依题意,min OM =C 正确;对于D ,当2a =时,直线12:2310,:2310L x y L x y ++=++=重合,D 错误.故选:BC三、填空题35.(2024高二·全国·课后作业)已知(),6A a ,()2,B b -,点()2,3P 是线段AB 的中点,则a b +=.【答案】6【分析】利用中点坐标公式可求得,a b ,由此可得结果.【详解】由中点坐标公式知:222a -=,632b +=,解得:6a =,0b =,6a b ∴+=.故答案为:6.36.(2024高二·江苏·假期作业)已知点(),4M x -与点()2,3N 间的距离为x =.【答案】9或5-【分析】根据两点间的距离公式列方程求解即可.【详解】由MN =得MN ==即24450x x --=,解得9x =或5-.故答案为:9或5-.37.(2024高三上·河北廊坊·阶段练习)与直线:2310l x y -+=关于点()4,5对称的直线的方程为.【答案】23130x y -+=【分析】根据直线关于点对称方程的特点可设直线方程,在利用点到两条直线的距离相等即可求解直线方程.【详解】解:直线:2310l x y -+=关于点()4,5对称的直线的方程可设为230x y m -+=,其中1m ≠又()4,5点到直线:2310l x y -+=与到直线230x y m -+=的距离相等76m -=,所以13m =或1m =(舍).故所求直线方程为:23130x y -+=.故答案为:23130x y -+=.38.(2024高一·全国·课后作业)已知直线l 与直线1:1l y =及直线2:70l x y +-=分别交于点P ,Q .若PQ 的中点为点()1,1M -,则直线l 的斜率为.【答案】23-【分析】由点,P Q 关于点M 对称,运算可得解.【详解】解:设(),1P a ,则()2,3Q a --.由点Q 在直线2l 上,得2370a -+-=,2a =-.故()2,1P -.所以直线l 的斜率为()1121k --=--,所以23k =-故答案为23-【点睛】本题考查了点关于点对称问题,属基础题.39.(2024高二上·辽宁大连·阶段练习)设点A 在x 轴上,点B 在y 轴上,AB 的中点是1(2)P -,,则AB 等于【答案】【解析】根据点A 在x 轴上,点B 在y 轴上,且AB 的中点是1(2)P -,,利用中点坐标公式得到A ,B 的坐标,再利用两点间的距离公式求解.【详解】因为点A 在x 轴上,点B 在y 轴上,且AB 的中点是1(2)P -,,所以(40),(02),,-A B ,所以=AB 故答案为:【点睛】本题主要考查两点间的距离公式和中点坐标公式的应用,属于基础题.40.(2024高三上·黑龙江哈尔滨·期中)点()0,1-到直线()2y k x =+的距离的最大值是.【分析】直线()2y k x =+恒过点()2,0A -,根据几何关系可得,点()0,1B -到直线()1y k x =+的距离的最大值为||AB .【详解】因为直线()2y k x =+恒过点()2,0A -,记()0,1B -,直线()2y k x =+为直线l ,则当AB l ⊥时,此时点()0,1B -到直线()1y k x =+的距离最大,∴点()0,1-到直线()1y k x =+距离的最大值为:AB =.41.(2024高二上·江苏南通·期中)已知点A 在x 轴上,点B 在y 轴上,线段AB 的中点M 的坐标为()2,1-,则线段AB 的长度为.【答案】25【分析】利用直角三角形的几何性质得出2AB OM =,利用两点间的距离公式可求得结果.【详解】在平面直角坐标系中,AO BO ⊥,则ABO 为直角三角形,且AB 为斜边,故()22222125AB OM ==+-=.故答案为:542.(2024高二·全国·课堂例题)已知点()2,1A ,()3,4B ,()2,1C --,则ABC V 的面积为.【答案】5【分析】利用两点间距离公式求出一边长,再根据两点式求出该边所在直线的方程,利用点到直线的距离公式求高,进而求得三角形面积.【详解】设AB 边上的高为h ,则h 就是点C 到AB 所在直线的距离.易知()()22324110AB -+-.由两点式可得AB 边所在直线的方程为124132y x --=--,即350x y --=.点()2,1C --到直线350x y --=的距离()()()2232151031h ⨯----==+-所以ABC V 的面积为111010522ABC S AB h =⨯⨯=⨯△.故答案为:543.(2024·云南保山·一模)已知坐标原点为O ,过点()P 2,6作直线()2mx 4m n y 2n 0(m,-++=n 不同时为零)的垂线,垂足为M ,则OM 的取值范围是.【答案】5⎡+⎣【分析】根据题意,将直线变形为()()2420m x y n y ---=,分析可得该直线恒过点()4,2,设()4,2Q ,进而分析可得点M 的轨迹是以PQ 为直径的圆,其方程为()()22345x y -+-=,据此分析可得答案.【详解】根据题意,直线()2420mx m n y n -++=,即()()2420m x y n y ---=,则有2402x y y -=⎧⎨=⎩,解可得42x y =⎧⎨=⎩,则直线l 恒过点()4,2.设()4,2Q ,又由MP 与直线垂直,且M 为垂足,则点M 的轨迹是以PQ 为直径的圆,其方程为()()22345x y -+-=,所以55OM -≤+;即OM 的取值范围是5⎡+⎣;故答案为5⎡+⎣.【点睛】此类问题为“隐形圆问题”,常规的处理办法是找出动点所在的轨迹(通常为圆),常见的“隐形圆”有:(1)如果,A B 为定点,且动点M 满足()1MA MB λλ=≠,则动点M 的轨迹为圆;(2)如果ΔA 中,BC 为定长,A 为定值,则动点A 的轨迹为一段圆弧.特别地,当2A π=,则A 的轨迹为圆(除去,B C );(3)如果,A B 为定点,且动点M 满足22MA MB λ+=(λ为正常数),则动点M 的轨迹为圆;44.(2024高二上·全国·课后作业)已知点(),2P a 、()2,3A --、()1,1B ,且PA PB =,则a =.【答案】92-【分析】利用平面内两点间的距离公式可得出关于a 的等式,解之即可.【详解】已知点(),2P a 、()2,3A --、()1,1B ,且PA PB =,92a =-.故答案为:92-.45.(2024高二上·安徽六安·期中)已知两直线1110a x b y +-=和2210a x b y +-=的交点为(1,2)P ,则过111(,),Q a b 222(,)Q a b 两点的直线方程为.【答案】210x y +-=【分析】根据两直线1110a x b y +-=和2210a x b y +-=的交点列方程,对比后求得直线12Q Q 的方程.【详解】依题意两直线1110a x b y +-=和2210a x b y +-=的交点为(1,2)P ,所以112212210,210,a b a b Q Q +-=+-=,在直线210x y +-=上,所以过111(,),Q a b 222(,)Q a b 两点所在直线方程为210x y +-=.故答案为:210x y +-=46.(2024高三上·上海青浦·阶段练习)在平面直角坐标系xOy 中,若动点(,)P a b 到两直线1:l y x =和2:2l y x =-+,则22a b +的最大值为.【答案】8【分析】由已知可知两直线12l l ⊥,取P 在12,l l 的右侧时,分别过P 作两直线的垂线,结合几何性质确定P 点轨迹,即可求得22a b +的最大值,其他位置同理可得.【详解】若动点(),P a b 到两直线1:l y x =和2:2l y x =-+12,l l 交点为()121,1,,T l l 的斜率分别为1,1-,则12l l ⊥,P 在12,l l 的右侧时,过P 分别向12,l l 引垂线,垂足分别为Q R 、,那么PQ PR +过P 作y 轴的平行线,与12,l l 交点为C B 、如图,则,PQ TR PR RB ==,所以TR RB +其它位置同理,那么点P 轨迹为正方形ABCD ,当P 在()2,2C 时,PO 取得最大值222||a b PO +=取得最大值8.故答案为:8.。
高考数学复习考点题型归类解析专题46排列组合一、关键能力1. 理解排列、组合的概念,掌握排列数公式、组合数公式,并能解决简单的实际问题. (1)考查两个计数原理;(2)考查排列组合问题、概率计算中两个计数原理的应用.(3)两个计数原理是解决排列、组合问题的基本方法,同时又能独立地解决一些简单的计数问题,通常与排列组合问题或概率计算问题综合考查. 二、必备知识1. 排列的相关概念及排列数公式(1)排列的定义:从个不同元素中取出 ()个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列.(2)排列数的定义:从个不同元素中取出 ()个元素的所有不同排列的个数叫做从个不同元素中取出个元素的排列数,用表示.(3)排列数公式:这里并且(4)全排列:个不同元素全部取出的一个排列,叫做个元素的一个全排列,(叫做n 的阶乘).排列数公式写成阶乘的形式为,这里规定.2.组合的相关概念及组合数公式n m m n ≤n m n m m n ≤n m m n A ()()()121mn A n n n n m =---+,n m N∈m n ≤n n ()()1221!n n A n n n n =--⋅⋅=()!!m n n A n m =-0!1=(1)组合的定义:从个不同元素中取出 ()个元素合成一组,叫做从个不同元素中取出个元素的一个组合.(2)组合数的定义:从个不同元素中取出 ()个元素的所有不同组合的个数,叫做从个不同元素中取出个元素的组合数,用表示.[来源:学.科.网](3)组合数的计算公式:,由于,所以.(4)组合数的性质:①;②;③.三、高频考点+重点题型 考点一 、排列问题例1-1、有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,则不同的站法共有( )A .66种B .60种C .36种D .24种 【答案】B 【分析】首先利用全排列并结合已知条件即可求解. 【详解】首先对五名学生全排列,则共有55120A =种情况,又因为只有甲在乙的左边或右边两种情况, 所以甲不排在乙的左边的不同的站法共有55602A =种情况. 故选:Bn m m n ≤n m n m m n ≤n m m n C ()()()()121!!!!mmnnmm n n n n m A n C A m m n m ---+===-0!1=01n C =m n m n n C C -=11m m m n n n C C C -+=+11r r n n rC nC --=例1-2、男生甲和女生乙及另外2男2女共6位同学排成一排拍照,要求男女生相间且甲和乙相邻,共( )种不同排法. 【答案】40 【分析】给6个人编号,在进行分类讨论,即可求解 【详解】不妨给6人从左至右依次编号为:123456,先讨论男女男女男女的排法, 若甲排1号位,则乙只能排二号位,剩下两男两女全排列,共有222214A A ⋅⋅=种;若甲排3号位,则乙可以选择2号位或4号位,剩下两男两女全排列,共有222228A A ⋅⋅=种; 若甲排5号位,则乙可以选择4号位或6号位,剩下两男两女全排列,共有222228A A ⋅⋅=种; 合计20种排法,若再将男女调换位置,则符合条件的总排法有20240⨯=种, 故答案为:40例1-3、名男同学、名女学生和位老师站成一排拍照合影,要求位老师必须站正中间,队伍左右两端不能同时是一男学生与一女学生,则总共有__________种排法. 【答案】 【解析】当两端都是男生时:当两端都是女生时:共有种排法 故答案为例2-1、用1,2,3,4,5这五个数字,可以组成比20 000大,并且百位数不是数字3的没有重复数字的五位数,共有( )3322576242342288A A A ⨯⨯=242342288A A A ⨯⨯=576576A .96个B .78个C .72个D .64个 答案 B解析 根据题意知,要求这个五位数比20 000大,则万位数必须是2,3,4,5这4个数字中的一个,当万位数是3时,百位数不是数字3,符合要求的五位数有A 44=24(个);当万位数是2,4,5时,由于百位数不能是数字3,则符合要求的五位数有3×(A 44-A 33)=54(个),因此共有54+24=78(个)这样的五位数符合要求.故选B. 例2-2、用0,1,2,3,4,5这6个数字. (1)能组成多少个无重复数的四位偶数?(2)能组成多少个奇数数字互不相邻的六位数(无重复数字)? (1)156 (2)132(1)符合要求的四位偶数可分为三类: 第一类:0在个位时,有A 35个;第二类:2在个位时,首位从1,3,4,5中选定1个(A 14种),十位和百位从余下的数字中选,有A 24种,于是有A 14·A 24个;第三类:4在个位时,与第二类同理,也有A 14·A 24个.由分类加法计数原理得,共有A 35+2A 14·A 24=156(个).(2) 先排0,2,4,再让1,3,5插空,总的排法共A 33A 34=144(种),其中0在排头,将1,3,5插在后3个空的排法共A 22·A 33=12(种),此时构不成六位数,故总的六位数的个数为A 33A 34-A 22A 33=144-12=132(种).对点练1.(2021·浙江高二期中)将编号为、、、、的个小球全部放入、、三个盒子内,若每个盒子不空,且放在同一个盒子内的小球编号不相连,则不同的方法总数有()123455A B CA .B .C .D . 【答案】A 【解析】将编号为、、、、的个小球,根据小球的个数可分为、、或、、两组. ①当三个盒子中的小球个数分别为、、时,由于放在同一个盒子里的小球编号互不相连,故个小球的编号只能是、、的在一个盒子里,故只有一种分组方法,再分配到三个盒子,此时共有种分配方法;②当三个盒子中的小球个数分别为、、时,由于放在同一个盒子里的小球编号互不相连,此时放个小球的盒子中小球的编号分别为、或、或、或、或、或、,共种,再分配到三个盒子中,此时,共有种.综上所述,不同的放法种数为种. 故选:A.对点练2.(2021·江西·横峰中学高二期中(理))现从8名学生干部中选出3名同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,则不同的选派方案的种数是________.(用数字作答) 【答案】336 【分析】根据排列定义及公式即可求解. 【详解】423648601234551131221133135336A =1222()1,3()2,4()1,3()2,5()1,4()2,5()1,4()3,5()1,5()2,4()2,4()3,5633636A =64362+=从8名学生干部中选出3名同学排列的种数为38876336A=⨯⨯=,故共有336种不同的选派方案.故答案为:336考点二.组合问题例3-1、(2018·全国Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有______种.(用数字填写答案)答案16解析方法一按参加的女生人数可分两类:只有1位女生参加有C12C24种,有2位女生参加有C22C14种.故所求选法共有C12C24+C22C14=2×6+4=16(种).方法二间接法:从2位女生,4位男生中选3人,共有C36种情况,没有女生参加的情况有C34种,故所求选法共有C36-C34=20-4=16(种).例3-2.从7名男生,5名女生中选取5人,至少有2名女生入选的种数为________.答案596解析“至少有2名女生”的反面是“只有一名女生或没有女生”,故可用间接法,所以有C512-C1515C47-C57=596(种).例4-1.(2021·衡水中学调研)为了应对美欧等国的经济制裁,俄罗斯天然气公司决定从10名办公室工作人员中裁去4人,要求甲、乙二人不能全部裁去,则不同的裁员方案的种数为________.答案182解析甲、乙中裁一人的方案有C12C38种,甲、乙都不裁的方案有C48种,故不同的裁员方案共有C12C38+C48=182(种).例4-2.(2021·河南高考模拟(理))安排,,,,,,共6名义工照顾A B C D E F甲,乙,丙三位老人,每两位义工照顾一位老人,考虑到义工与老人住址距离问题,义工不安排照顾老人甲,义工不安排照顾老人乙,则安排方法共有( ) A.30种B.40种C.42种D.48种 【答案】C 【解析】名义工照顾三位老人,每两位义工照顾一位老人共有:种安排方法其中照顾老人甲的情况有:种照顾老人乙的情况有:种照顾老人甲,同时照顾老人乙的情况有:种符合题意的安排方法有:种本题正确选项:对点练1、甲、乙两人从4门课程中各选修2门.求:(1)甲、乙所选的课程中恰有1门相同的选法有多少种? (2)甲、乙所选的课程中至少有一门不相同的选法有多少种? (1)24 (2)30(1)解法1:甲或乙中一人先选,方法有C 24,另一人再选,有C 12C 12种,则选法种数共有C 24C 12C 12=24(种).解法2:先确定相同的那一门,有C 14种,再甲、乙各选一本不同的,有A 23种,则选法种数共有C 14·A 23=24(种).(2)甲、乙两人从4门课程中各选两门不同的选法种数为C 24C 24,又甲、乙两人所选的两门课程都相同的选法种数为C 24种,因此满足条件的不同选法种数为C 24C 24-C 24=30(种).对点练2、.(湖南高考真题)在某种信息传输过程中,用4个数字的一个排列(数字允A B 62264C C 90=A 1254C C 30=B 1254C C 30=A B 1143C C 12=∴9030301242--+=C许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( ) A.10B.11C.12D.15 【答案】B 【解析】由题意知与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110有两个对应位置上的数字相同有C 42=6个;第二类:与信息0110有一个对应位置上的数字相同有C 41=4个;第三类:与信息0110有没有两个对应位置上的数字相同有C 40=1个,由分类计数原理与信息0110至多有两个数字对应位置相同的共有6+4+1=11个,故选B .对点练3.(2021·浙江温州·高三月考)一个盒子里装有7个大小、形状完成相同的小球,其中红球4个,编号分别为1,2,3,4,黄球3个,编号分别为1,2,3,从盒子中任取4个小球,其中含有编号为3的不同取法有________种. 【答案】30 【解析】从反面考虑,总数为,不含有编号为3的总数为,即得解. 【详解】从反面考虑,总数为,不含有编号为3的总数为,所以含有编号为3的总数为.故答案为:30.47C 45C 47C 45C 447530C C -=变式4.(2021·杭州二模)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A .60种B .63种C .65种D .66种 D共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有C 45+C 44+C 25C 24=66(种),故选D .考点三、排列与组合的综合问题例5、(多选题)2021年3月,为促进疫情后复工复产期间安全生产,滨州市某医院派出甲、乙、丙、丁4名医生到,,三家企业开展“新冠肺炎”防护排查工作,每名医生只能到一家企业工作,则下列结论正确的是() A .若企业最多派1名医生,则所有不同分派方案共48种 B .若每家企业至少分派1名医生,则所有不同分派方案共36种C .若每家企业至少分派1名医生,且医生甲必须到企业,则所有不同分派方案共12种D .所有不同分派方案共种 【答案】ABC 【解析】对于选项A :若企业没有派医生去,每名医生有种选择,则共用种,若企业派1名医生则有种,所以共有种.对于选项B :若每家企业至少分派1名医生,则有种, A B C C A 34C 24216=C 134232C ⋅=163248+=211342132236C C C A A ⋅=对于选项C :若每家企业至少分派1名医生,且医生甲必须到企业,若甲企业分人,则有种;若甲企业分 人,则有种,所以共有种.对于选项D :所有不同分派方案共有种. 故选:例6、(2017·浙江高考真题)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答) 【答案】660 【解析】第一类,先选女男,有种,这人选人作为队长和副队有种,故有种;第二类,先选女男,有种,这人选人作为队长和副队有种,故有种,根据分类计数原理共有种,故答案为.对点练1.(2021·浙江·诸暨市教育研究中心高二期末)用红、黄、蓝三种颜色填涂如图所示的六个方格,要求有公共边的两个方格不同色,则不同的填涂方法有( )A .96种B .48种C .144种D .72种 【答案】D 【分析】A 2336A =12123126C C A =6612+=43ABC 13316240C C =422412A =4012480⨯=22226215C C =422412A =1512180⨯=480180660+=660将涂色方法分为两类,即,,,A B D F 用三种颜色涂和用两种颜色涂,分别计算出两种情况下涂色方案的种数,根据分类加法计数原理即可求得结果.【详解】将六个方格标注为,,,,,A B C D E F ,如下图所示,①若,,,A B D F 用三种颜色涂,则,D F 同色或AF 同色或AD 同色,当,D F 同色时,六个方格的涂色方法有313212A C =种;当AF 同色时,六个方格的涂色方法有313212A C =种;当AD 同色时,六个方格的涂色方法有31132224A C C =种;②若,,,A B D F 用两种颜色涂,则,,A D F 同色,此时六个方格的涂色方法有21132224A C C =种; 综上所述:不同的填涂方法有1212242472+++=种.故选:D.对点练2.(2021·福建福州模拟)福州西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有 ()A .90种B .180种C .270种D .360种【答案】B【解析】根据题意,分3步进行分析:①在6位志愿者中任选1个,安排到甲展区,有166C =种情况;②在剩下的5个志愿者中任选1个,安排到乙展区,有C 15=5种情况;③将剩下的4个志愿者平均分成2组,然后安排到剩下的2个展区,有种情况,则一共有6×5×6=180种不同的安排方案,故选B.巩固训练一. 单选题1.三名学生报名参加校园文化活动,活动共有三个项目,每人限报其中一项,则恰有两名学生报同一项目的报名方法种数有( )A .6种B .9种C .18种D .36种【答案】C【分析】根据题意首先从三名学生中选2名选报同一项目,再从三个项目中选2项项目,全排即可.【详解】由题意可得22233233218C C A ⋅⋅=⨯⨯=,故选:C2.甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军”,对乙说:“你不会是最差的”,从这两个回答分析,这5人的名次排列所有可能的情况共有( )A .18种B .36种C .54种D .72种【答案】C【分析】222422226C C A A ⨯=甲、乙不是第一名且乙不是最后一名.乙的限制最多,故先排乙,有可能是第二、三、四名3种情况;再排甲,也有3种情况;余下的问题是三个元素在三个位置全排列,根据分步计数原理即可得到结果.【详解】由题意得:甲、乙都不是第一名且乙不是最后一名.乙的限制最多,故先排乙,有可能是第二、三、四名3种情况;再排甲,也有3种情况;余下3人有33A 种排法.故共有33333332154A ⨯⨯=⨯⨯⨯⨯=种不同的情况.故选:C.3.某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .120C .144D .168答案 B解析 安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”“小品1,相声,小品2”和“相声,小品1,小品2”.对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A 22C 13A 23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A 22A 34=48(种)安排方法,故共有36+36+48=120(种)安排方法.4.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在.某城市关系要好的A ,B ,C ,D 四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A 家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有( )A.18种B.24种C.36种D.48种答案 B解析根据题意,分两种情况讨论:①A家庭的孪生姐妹在甲车上,甲车上另外的两个孩子要来自不同的家庭,可以在剩下的三个家庭中任选2个,再从每个家庭的2个孩子中任选一个来乘坐甲车,有C23×C12×C12=12(种)乘坐方式;②A家庭的孪生姐妹不在甲车上,需要在剩下的三个家庭中任选1个,让其2个孩子都在甲车上,对于剩余的两个家庭,从每个家庭的2个孩子中任选一个来乘坐甲车,有C13×C12×C12=12(种)乘坐方式,故共有12+12=24(种)乘坐方式,故选B.5.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为()A.16 B.18 C.24 D.32答案 C解析将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A33=6(种)排法,再将捆绑在一起的4个车位插入4个空档中,有4种方法,故共有4×6=24(种)方法.6.互不相同的5盆菊花,其中2盆为白色,2盆为黄色,1盆为红色,现要摆成一排,要求红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,共有摆放方法() A.A55种B.A22种C.A24A22种D.C12C12A22A22种答案 D解析红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,即红色菊花两边各一盆白色菊花,一盆黄色菊花,共有C12C12A22A22种摆放方法.7.十三届全国人大二次会议于2021年3月5日至15日在北京召开,会议期间工作人员将其中的5个代表团人员(含A,B两市代表团)安排至a,b,c三家宾馆入住,规定同一个代表团人员住同一家宾馆,且每家宾馆至少有一个代表团入住,若A,B两市代表团必须安排在a宾馆入住,则不同的安排种数为()A.6 B.12 C.16 D.18答案 B解析如果仅有A,B入住a宾馆,则余下三个代表团必有2个入住同一个宾馆,此时共有C23A22=6(种)安排数,如果有A,B及其余一个代表团入住a宾馆,则余下两个代表团入住b,c,此时共有C13A22=6(种)安排数,综上,共有不同的安排种数为12.8.马路上有七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案共有()A.60种B.20种C.10种D.8种答案 C解析根据题意,可分为两步:第一步,先安排四盏不亮的路灯,有1种情况;第二步,四盏不亮的路灯排好后,有5个空位,在5个空位中任意选3个,插入三盏亮的路灯,有C35=10(种)情况.故不同的开灯方案共有10×1=10(种).9.有5列火车分别准备停在某车站并行的5条轨道上,若快车A不能停在第3道上,货车B不能停在第1道上,则5列火车不同的停靠方法数为()A.56 B.63 C.72 D.78答案 D解析若没有限制,5列火车可以随便停,则有A55种不同的停靠方法;快车A停在第3道上,则5列火车不同的停靠方法为A44种;货车B停在第1道上,则5列火车不同的停靠方法为A44种;快车A停在第3道上,且货车B停在第1道上,则5列火车不同的停靠方法为A33种,故符合要求的5列火车不同的停靠方法数为A55-2A44+A33=120-48+6=78.10.身穿红、黄两种颜色衣服的各有两人,身穿蓝色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法种数共有()A.24种B.28种C.36种D.48种答案 D解析分类计数原理,按红红之间有蓝无蓝两类来分.(1)当红红之间有蓝时,则有A22A24=24(种).(2)当红红之间无蓝时,则有C12A22C12C13=24(种);因此,这五个人排成一行,穿相同颜色衣服的人不能相邻,则有48种排法.11.(2017·全国Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种答案 D解析由题意可知,其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C 13·C 24·A 22=36(种),或列式为C 13·C 24·C 12=3×4×32×2=36(种).12.若一个四位数的各位数字之和为10,则称该数为“完美四位数”,如数字“2 017”.试问用数字0,1,2,3,4,5,6,7组成的无重复数字且大于2 017的“完美四位数”的个数为( )A .55B .59C .66D .71答案 D解析 记千位为首位,百位为第二位,十位为第三位,由题设中提供的信息可知,和为10的无重复的四个数字有(0,1,2,7),(0,1,3,6),(0,1,4,5),(0,2,3,5),(1,2,3,4),共五组.其中第一组(0,1,2,7)中,7排在首位有A 33=6(种)情形,2排在首位,1或7排在第二位上时,有2A 22=4(种)情形,2排在首位,0排在第二位,7排在第三位有1种情形,共有6+4+1=11(种)情形符合题设;第二组中3,6分别排在首位共有2A 33=12(种)情形;第三组中4,5分别排在首位共有2A 33=12(种)情形;第四组中2,3,5分别排在首位共有3A 33=18(种)情形;第五组中2,3,4分别排在首位共有3A 33=18(种)情形.依据分类计数原理可知符合题设条件的“完美四位数”共有11+12+12+18+18=71(个)二. 填空题13.(2018·浙江高考真题)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)【答案】1260.【解析】若不取零,则排列数为224534C C A ,若取零,则排列数为21135333C C A A ,因此一共有22421135345333C C A C C A A 1260+=个没有重复数字的四位数. 14.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)【答案】1080【解析】41345454A C C A 1080+=15.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).【答案】120【解析】①1男4女,1436C C 45=种;②2男3女,2336C C 60=种;③3男2女,3236C C 15=种;∴一共有456015120++=种.故答案为:120.16.(2021·全国高考真题(理))4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】36【解析】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学∴先取2名同学看作一组,选法有:246C =现在可看成是3组同学分配到3个小区,分法有:336A =根据分步乘法原理,可得不同的安排方法6636⨯=种故答案为:36.17.用数字1,2,3,4,5,6组成没有重复数字的6位数,要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是________.答案40解析第一步将3,4,5,6按奇偶相间排成一列,共有2×A22×A22=8(种)排法;第二步再将1,2捆绑插入4个数字产生的5个空位中,共有A15=5(种)插法,插入时需满足条件相邻数字的奇偶性不同,1,2的排法由已排4个数的奇偶性确定.∴不同的排法有8×5=40(种),即这样的六位数有40个.18.某省高中学校自实施素质教育以来,学生社团得到迅猛发展.某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为________.答案180解析设五名同学分别为甲、乙、丙、丁、戊,由题意,如果甲不参加“围棋苑”,有下列两种情况:(1)从乙、丙、丁、戊中选一人(如乙)参加“围棋苑”,有C14种方法,然后从甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与甲、戊分配到其他三个社团中,有C24A33种方法,这时共有C14C24A33种参加方法;(2)从乙、丙、丁、戊中选2人(如乙、丙)参加“围棋苑”,有C24种方法,甲与丁、戊分配到其他三个社团中有A33种方法,这时共有C24A33种参加方法;综合(1)(2),共有C14C24A33+C24A33=180(种)参加方法.19.从4名男生和3名女生中选出4名去参加一项活动,要求男生甲和乙不能同时参加,女生中的丙和丁至少有一名参加,则不同的选法种数为________.(用数字作答) 答案 23解析 ①设甲参加,乙不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为C 35-C 33=9,②设乙参加,甲不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为C 35-C 33=9,③设甲,乙都不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为C 45=5, 综合①②③得,不同的选法种数为9+9+5=23.20.某宾馆安排A ,B ,C ,D ,E 五人入住3个房间,每个房间至少住1人,且A ,B 不能住同一房间,则共有________种不同的安排方法.(用数字作答)答案 114解析 5个人住3个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C 35·A 33=60(种),A ,B 住同一房间有C 13·A 33=18(种),故有60-18=42(种),当为(2,2,1)时,有C 25·C 23A 22·A 33=90(种),A ,B 住同一房间有C 23·A 33=18(种), 故有90-18=72(种),根据分类计数原理可知,共有42+72=114(种).三. 解答题21.求下列各式中的正整数n :(1)33210n n A A =;(2)101098765n A =⨯⨯⨯⨯⨯.21 / 21 【答案】(1)8n =(2)6【分析】(1)根据排列数公式列出方程即可求解;(2)根据排列数公式列出方程即可求解; (1)解:因为33210n n A A =,所以()()()()221221012n n n n n n ⨯-⨯-=⨯⨯-⨯-,解得8n =; (2)解:因为101098765n A =⨯⨯⨯⨯⨯,又()10109101n A n =⨯⨯⨯-+,所以1015n -+=,解得6n =.22.利用组合数公式证明111m m m n n n C C C ++++=.【答案】证明见解析【分析】利用组合数公式分别计算等式左右两边即可证明.【详解】证明:因为()11(1)!1!()!m n n C m n m +++=+-,()()()1!11!!!(1)!(1)!!()!(1)!()!(1)!()!m m n n n n m m n n n C C n m m m n m m n m m n m +⎡⎤-+++⎣⎦++==--+-+--=+, 所以111m m m n n n C C C ++++=。
在高考中数学表格题分类解析
近年来,涉及表格类的试题经常出现在全国各地的高考和模拟试题中,它们不仅情境新颖,而且与生活实际联系紧密,充分体现了表格的工具性和数学的适用性。
这类问题主要考查学生能否根据所学知识在新情景中吸收、处理信息的能力和分析、解决问题的能力。
本文结合实例对表格在高中数学试题中的应用作一些分析和归纳,期望对广大读者有所帮助。
一、在题设中直接以表格反映条件
例1 下表给出了x 与x
10的七组对应值:
假设上表数据中,有且仅有一组是错误的,它是第________组。
思路:由上表可知第六组一定正确,由此判断第一、三组都是正确的(因为它们不可
能全错)由第一组正确得到第五组也正确,剩下第二、四、七组必有一组错的,若第二组正确,推出第四、七组都是错的,因此第二组是错的。
评注:这是一题以指对数互化和对数的运算法则为背景的表格信息题,要求要能根据
表中信息找到突破口,进行推理和假设,作出正确判断。
此类问题对考查学生的逻辑思维能力能起到很好的作用。
例2 二次函数x c bx ax y (2++=∈R )的部分对应值如下表: 则不等式ax 2+bx+c>0的解集是________________
思路一:由表格可知,原函数图象过三点(-1,-4)、(0,-6)、(1,-6), 由()()4112-=+-+-c b a ①,6002
-=+⋅+⋅c b a ② 6112-=+⋅+⋅c b a ③,解得6,1,1-=-==c b a ,∴不等式ax 2+bx+c>0的解集是{x|x<-2或x>3}
思路二:由表格可知,方程02
=++c bx ax 的两根为3,2-,再由函数值的变化规律
可知二次函数图象开口向上,∴不等式ax 2+bx+c>0的解集是{x|x<-2或x>3}。
评注:上述两种解法都是合理选用了表格中的信息,分别从函数与方程,数形结合两
方面处理了问题。
特别是思路二,不需要计算就能得到答案,如果信息选择不当,会导致运算相对繁琐。
例3 )
(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:
经长期观观察,函数)(t f y =的图象可以近似地看成函数)sin(ϕω++=t A k y 的图象,在下面的函数中,最能近似表示表中数据间对应关系的函数( )
(A )]24,0[,6sin 312∈+=t t y π (B )]24,0[),6sin(312∈++=t t y ππ (C )]24,0[,12sin 312∈+=t t y π
(D )]24,0[),212sin(312t t y π
π
++=
思路一:考虑到是选择题,可用赋值验证法,令0=t ,排除答案D ,再令3=t ,
排除答案B 、C ,得到答案A
思路二:考虑到函数()ϕω++=x A k y sin 的图象特征,两个相邻深度最大值对应的
时间差可看成函数()ϕω++=x A k y sin 的一个周期,得到该函数的一个周期为12,从而排除答案A 、D ,再赋3=t 检验,即可得到答案A 。
评注:这是一个提供数据,寻求“近似”解析式的问题,关键是把握好近似的度,
正面解决有困难时,可根据表格信息,借助图象特征,合理筛选,间接的将问题处理。
例4 在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表.
公差的等差数列,第一个应填140,舒张压随着年龄的增长,奇数项构成一个以70为首项,5为公差的等差数列,偶数项构成一个以73为首项,5为公差的等差数列,第二个应填85。
评注:这是一个以医学知识作为背景,考察等差数列的表格题,读者要能跟据所学
知识将一组数据信息化归为一个数列问题。
例5 某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下
若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( )
(A) 计算机行业好于化工行业. (B) 建筑行业好于物流行业.
(C) 机械行业最紧张. (D) 营销行业比贸易行业紧张.
思路:根据题意,某行业的就业形势由该行业的招聘人数
应聘人数来决定,比值越小,就业形势越好。
因计算机行业的应聘人数与招聘人数比值为
>>70430
65280124620215830化工行业的比值,可排除A ,又因建筑行业的比值 <<<70430
652807651665280物流行业的比值,故选B 。
评注:本题是以统计为背景的表格应用题。
不仅要看到表中的信息,而且要能发
现隐含信息,如应聘人数统计表中的物流、贸易在招聘人数表中没有出现,说明其排在前5名之后,同样招聘人数统表中的建筑、化工两行也业的应聘人数也排在前5名之后,如若发现不了上述信息,本题做起来就会有困难。
二、在解决问题的过程中使用表格
例6 旅馆里住着6位旅客,他们分别来自:北京(B )、天津(T )、上海(S )、扬州(Y )、
南京(N )、和杭州(H ),他们分别姓赵、钱、孙、李、周和吴,他们的职业各不相同,还知道:(1)老赵和北京人都是医生,老周和天津人都是教师,老孙和上海人都是工程师;(2)扬州人和老钱、老吴都是退伍军人,而上海人从未参过军;
(3)南京人和扬州人都比老赵岁数大,杭州人比老钱的岁数大,老吴最年轻;(4)老钱和北京人一起去扬州,老孙和南京人要去广州。
试根据条件确定每位旅客的籍贯。
思路:本题是一道典型的逻辑推理题,由于每位旅客的姓名和籍贯是一一对应的,
职业不同可判断:老周和老孙都不是北京人,老赵和老周都不是上海人,老赵和老孙都不是天津人,在表中相应的空格打上“×”表示不可能,根据条件(2):可划去钱(Y )、吴(Y )、钱(S )、吴(S ),根据条件(3):可划去赵(N )、赵(Y )、钱(H )、吴(N )、吴(H ),根据条件(4):划去钱(B )、孙(N )、钱(N )。
最后再观察表上空格,可判断老赵是杭州人,老钱是天津人,就可划去李(T )、孙(H )和吴(T ),同理,可判断老李是上海人,就可划去李(B )、
李(N )、李(Y )、李(T )、李(H ),依此类推,不难得到正确的结论。
所以,老赵是杭州人,老钱是天津人,老孙是扬州人,老周是南京人,老吴是北京人。
评注:制表是解决类似逻辑推理题的有效途径之一,能真正反映数学解题过程是对信
息的获取、处理、输出过程。
例 7某工厂生产甲,乙两种产品。
已知生产甲种产品1t ,需耗A 种矿石10t 、B 种矿
石5t 、煤4t;生产乙种产品需耗A 种矿石4吨、B 种矿石4t 、煤9吨,每1t 甲种产品的利润是600元,每1t 乙种产品的利润是1000元。
工厂在生产这两种
产品的计划中要求消耗A 种矿石不超过360t,B 种矿石不超过200t,煤不超过300t,甲乙两种产品应各生产多少(精确到0.1t ),能使利润种额达到最大? 思路:由于条件较多,为了使条件更加清晰且具有条理性,可采用列表反映条件:
消耗量 产品 甲产品 乙产品 资源限额
资源 (1t ) (1t ) (t)
A 种矿石(t ) 10 4 300
B 种矿石(t ) 5 4 200
C 种矿石(t ) 4 9 360
利润 600 1000
设生产甲乙两种产品分别为x t,y t,利润总额为z 元,那么
⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+0
03609420045300410y x y x y x y x 目标函数.1000600y x z +=
作出可行域,借助线性规划的内容得到;当t y t x 4.34,4.12≈≈时能使利润达到最
大。
评注:线性规划问题中的条件的反映在很多时候往往可列表,通过表格来理清解题思
路和方向。
例8 已知函数)(x f 的导数为x x x f 44)(3'-=,且图象过定点(0,-5),求函数)
(x f 的单调区间及极值。
思路:利用题中已知),('
x f 可直接求单调区间及导数为0的点,但无法求出极值,要
求极值,须求出)(x f 的解析式。
由x x x f 44)(3'-=,可设 m x x x f +-=242)(,由,5,5)0(-=∴-=m f 52)(24--=x x x f 。
令
,0)('=x f 即得0443=-x x ,解得1,0,1==-=x x x ,列表讨论:
1,+∞)上单调递增,在1±=x 处有极小值-6,在0=x 处有极大值-5。
评注:在画函数的图象,研究一元高次函数单调性,极值和最值时,经常会采用列表
的方法去处理。
通过以上各例可以看出,表格类试题内容主要涉及逻辑初步、函数与导数、数列、线性规划、概率与统计等方面,处理这类问题关键是应根据表中数据信息实施转化与化归,使它们对应于数学中的数、形、式,并辅助计算、推理、假设、验证等方法去求解;同时由于表格是信息的良好载体,能集中给出解题信息,给人的感觉直观通俗,在解题时应注意使用。
随着高考“深化数学理性思维”的要求,用表格作为信息源和处理手段的新试题,将是高考试题新的生长点,正确求解这类题既是高考取胜的需要,也是新课程标准下素质教育的内在要求。