辽宁2013年高考文科数学试题带答案和解释
- 格式:doc
- 大小:19.50 KB
- 文档页数:9
绝密★启用前2013年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}1,2,3,4,|2,A B x x A B ==<=则(A ){}0 (B ){}0,1 (C ){}0,2 (D ){}0,1,2答案 B解析 B ={x ||x |<2}={x |-2<x <2},∴A ∩B ={0,1}.2.复数z =1i -1的模为( ) A.12 B.22C. 2 D .2 答案 B解析 z =1i -1=-1-i 2,∴|z |= ⎝⎛⎭⎫-122+⎝⎛⎭⎫-122=22.3.已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量为( )A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35C.⎝⎛⎭⎫-35,45D.⎝⎛⎭⎫-45,35 答案 A解析 A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4),∴与A B →同方向的单位向量为A B →|A B →|=⎝⎛⎭⎫35,-45.4.下面是关于公差d >0的等差数列{a n }的四个命题:p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎬⎫a n n 是递增数列;p 4:数列{a n +3nd }是递增数列. 其中的真命题为( )A .p 1,p 2B .p 3,p 4C .p 2,p 3D .p 1,p 4答案 D解析 a n =a 1+(n -1)d ,d >0,∴a n -a n -1=d >0,命题p 1正确.na n =na 1+n (n -1)d ,∴na n -(n -1)a n -1=a 1+2(n -1)d 与0的大小和a 1的取值情况有关. 故数列{na n }不一定递增,命题p 2不正确.对于p 3:a n n =a 1n +n -1n d ,∴a n n -a n -1n -1=-a 1+d n (n -1), 当d -a 1>0,即d >a 1时,数列{a n n}递增, 但d >a 1不一定成立,则p 3不正确.对于p 4:设b n =a n +3nd ,则b n +1-b n =a n +1-a n +3d =4d >0.∴数列{a n +3nd }是递增数列,p 4正确.综上,正确的命题为p 1,p 4.5.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )A .45B .50C .55D .60答案 B解析 由频率分布直方图,低于60分的频率为(0.01+0.005)×20=0.3.∴该班学生人数n =150.3=50.6.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则∠B 等于( )A.π6B.π3C.2π3D.5π6答案 A解析 由条件得a b sin B cos C +c b sin B cos A =12, 依正弦定理,得sin A cos C +sin C cos A =12, ∴sin(A +C )=12,从而sin B =12, 又a >b ,且B ∈(0,π),因此B =π6.7.已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+f ⎝⎛⎭⎫lg 12等于( ) A .-1 B .0 C .1 D .2答案 D解析 设g (x )=lg(1+9x 2-3x )=f (x )-1,g (-x )=lg(1+9x 2+3x )=lg 11+9x 2-3x=-g (x ). ∴g (x )是奇函数,∴f (lg 2)-1+f ⎝⎛⎭⎫lg 12-1=g (lg 2)+g ⎝⎛⎭⎫lg 12=0, 因此f (lg 2)+f ⎝⎛⎭⎫lg 12=2.8.执行如图所示的程序框图,若输入n =8,则输出S 等于( )A .49 B.67 C.89 D.1011答案 A解析 执行第一次循环后,S =13,i =4; 执行第二次循环后,S =25,i =6;执行第三次循环后,S =37,i =8;执行第四次循环后,S =49,i =10; 此时i =10>8,输出S =49.9.已知点O (0,0),A (0,b ),B (a ,a 3).若△OAB 为直角三角形,则必有( )A .b =a 3B .b =a 3+1aC .(b -a 3)⎝⎛⎭⎫b -a 3-1a =0D .|b -a 3|+⎪⎪⎪⎪b -a 3-1a =0 答案 C解析 易知A B →=O B →-O A →=(a ,a 3-b ),且b ≠0,a ≠0,若A 为直角,OA →·AB →=(0,b )·(a ,a 3-b )=b (a 3-b )=0,∴b -a 3=0,若B 为直角,O B →·A B →=(a ,a 3)·(a ,a 3-b )=0,∴a 2+a 3(a 3-b )=0,则b -a 3-1a=0, 故(b -a 3)·⎝⎛⎭⎫b -a 3-1a =0,选C.10.已知直三棱柱ABCA 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ) A.3 172 B .2 10 C.132D .3 10 答案 C解析 ∵AB ⊥AC ,且AA 1⊥底面ABC ,将直三棱柱补成内接于球的长方体,则长方体的对角线l =32+42+122=2R ,R =132.11.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则C 的离心率为( ) A.35 B.57 C.45 D.67答案 B解析 在△ABF 中,由余弦定理得|AF |2=|AB |2+|BF |2-2|AB |·|BF |cos ∠ABF ,∴|AF |2=100+64-128=36,∴|AF |=6,从而|AB |2=|AF |2+|BF |2,则AF ⊥BF .∴c =|OF |=12|AB |=5, 利用椭圆的对称性,设F ′为右焦点,则|BF ′|=|AF |=6,∴2a =|BF |+|BF ′|=14,a =7.因此椭圆的离心率e =c a =57.12.已知函数f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+8.设H 1(x )=max{f (x ),g (x )},H 2(x )=min{f (x ),g (x )}(max{p ,q }表示p ,q 中的较大值,min{p ,q }表示p ,q 中的较小值).记H 1(x )的最小值为A ,H 2(x )的最大值为B ,则A -B 等于( )A .a 2-2a -16B .a 2+2a -16C .-16D .16答案 C解析 f (x )=[x -(a +2)]2-4-4a ,g (x )=-[x -(a -2)]2+12-4a ,在同一坐标系内作f (x )与g (x )的图象(如图).依题意知,函数H 1(x )的图象(实线部分),函数H 2(x )的图象(虚线部分).∴H 1(x )的最小值A =f (a +2)=-4-4a ,H 2(x )的最大值B =g (a -2)=12-4a ,因此A -B =(-4-4a )-(12-4a )=-16.第Ⅱ卷二、填空题13.某几何体的三视图如图所示,则该几何体的体积是________.答案 16π-16解析 由三视图知,该几何体是由一个底面半径r =2的圆柱内挖去了一个底面边长为2的正四棱柱,又该几何体的高h =4,∴V =(π×22-22)×4=16π-16.14.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.答案 63解析 ∵a 1,a 3是方程x 2-5x +4=0的两根,且q >1,∴a 1=1,a 3=4,则公比q =2,因此S 6=1×(1-26)1-2=63.15.已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.答案 44解析 由双曲线C 的方程,知a =3,b =4,c =5,∴点A (5,0)是双曲线C 的右焦点,且|PQ |=|QA |+|P A |=4b =16,由双曲线定义,|PF |-|P A |=6,|QF |-|QA |=6.∴|PF |+|QF |=12+|P A |+|QA |=28,因此△PQF 的周长为|PF |+|QF |+|PQ |=28+16=44.16.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为________.答案 10解析 把5个班中参加该小组的人数从小到大排列,记为x 1,x 2,x 3,x 4,x 5,(x i ∈N ,且x 1,x 2,x 3,x 4,x 5各不相同),由题意(x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2+(x 5-7)2=20.∵x 1,x 2,x 3,x 4,x 5∈N ,且各不相同. 若使x 5-7最大,只需(x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2最小,显然(x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2最小值为0+1+1+4=6.∴(x 5-7)2≤14,因此(x 5-7)2≤9,则x 5≤10,x 5∈N ,经验证x 5=10时,x 1=4,x 2=6,x 3=7,x 4=8满足,所以样本数据中的最大值为10.三、解答题17.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎡⎦⎤0,π2. (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.解 (1)由|a |2=(3sin x )2+(sin x )2=4sin 2 x ,|b |2=(cos x )2+(sin x )2=1,及|a |=|b |,得4sin 2 x =1.又x ∈⎣⎡⎦⎤0,π2,从而sin x =12,所以x =π6. (2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝⎛⎭⎫2x -π6+12, 当x =π3∈⎣⎡⎦⎤0,π2时,sin ⎝⎛⎭⎫2x -π6取最大值1. 所以f (x )的最大值为32.18. 如图,AB 是圆O 的直径,P A 垂直圆O 所在的平面,C 是圆O 上的点.(1)求证:BC ⊥平面P AC ;(2)设Q 为P A 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC .证明 (1)由AB 是圆O 的直径,得AC ⊥BC ,由P A ⊥平面ABC ,BC ⊂平面ABC ,得P A ⊥BC .又P A ∩AC =A ,P A ⊂平面P AC ,AC ⊂平面P AC ,所以BC ⊥平面P AC .(2)连OG 并延长交AC 于M ,连接QM ,QO ,由G 为△AOC的重心,得M 为AC 中点.由Q 为P A 中点,得QM ∥PC ,又O 为AB 中点,得OM ∥BC .因为QM ∩MO =M ,QM ⊂平面QMO ,MO ⊂平面QMO ,BC ∩PC =C ,BC ⊂平面PBC ,PC ⊂平面PBC .所以平面QMO ∥平面PBC .因为QG ⊂平面QMO ,所以QG ∥平面PBC .19.现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.解 (1)将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.用A 表示“都是甲类题”这一事件,则A 包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P(A)=615=25. (2)基本事件同(1),用B 表示“不是同一类题”这一事件,则B 包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P (B )=815.20. 如图,抛物线C 1:x 2=4y ,C 2:x 2=-2py (p >0).点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ).当x 0=1-2时,切线MA 的斜率为-12. (1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ).解 (1)因为抛物线C 1:x 2=4y 上任意一点(x ,y )的切线斜率为y ′=x 2,且切线MA 的斜率为-12,所以A 点坐标为⎝⎛⎭⎫-1,14,故切线MA 的方程为y =-12(x +1)+14. 因为点M (1-2,y 0)在切线MA 及抛物线C 2上,于是y 0=-12(2-2)+14=-3-224,① y 0=-(1-2)22p =-3-222p.② 由①②得p =2.(2)设N (x ,y ),A ⎝⎛⎭⎫x 1,x 214,B (x 2,x 224),x 1≠x 2, 由N 为线段AB 中点知x =x 1+x 22,③ y =x 21+x 228.④ 切线MA 、MB 的方程为y =x 12(x -x 1)+x 214.⑤ y =x 22(x -x 2)+x 224.⑥ 由⑤⑥得MA ,MB 的交点M (x 0,y 0)的坐标为x 0=x 1+x 22,y 0=x 1x 24. 因为点M (x 0,y 0)在C 2上,即x 20=-4y 0,所以x 1x 2=-x 21+x 226.⑦ 由③④⑦得x 2=43y ,x ≠0. 当x 1=x 2时,A ,B 重合于原点O ,AB 中点N 为O ,坐标满足x 2=43y . 因此AB 中点N 的轨迹方程为x 2=43y . 21.(1)证明:当x ∈[0,1]时,22x ≤sin x≤x ; (2)若不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]恒成立,求实数a 的取值范围.(1)证明 记F (x )=sin x -22x , 则F ′(x )=cos x -22. 当x ∈⎝⎛⎭⎫0,π4时,F ′(x )>0,F (x )在⎣⎡⎦⎤0,π4上是增函数; 当x ∈⎝⎛⎭⎫π4,1时,F ′(x )<0,F (x )在⎣⎡⎦⎤π4,1上是减函数. 又F (0)=0,F (1)>0,所以当x ∈[0,1]时,F (x )≥0,即sin x ≥22x . 记H (x )=sin x -x ,则当x ∈(0,1)时,H ′(x )=cos x -1<0,所以,H (x )在[0,1]上是减函数,则H (x )≤H (0)=0,即sin x ≤x . 综上,22x ≤sin x ≤x ,x ∈[0,1]. (2)解 方法一 因为当x ∈[0,1]时, ax +x 2+x 32+2(x +2)cos x -4=(a +2)x +x 2+x 32-4(x +2)sin 2x 2≤(a +2)x +x 2+x 32-4(x +2)⎝⎛⎭⎫24x 2=(a +2)x . 所以,当a ≤-2时, 不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]恒成立. 下面证明,当a >-2时,不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]不恒成立. 因为当x ∈[0,1]时,ax +x 2+x 32+2(x +2)cos x -4 =(a +2)x +x 2+x 32-4(x +2)sin 2x 2 ≥(a +2)x +x 2+x 32-4(x +2)⎝⎛⎭⎫x 22 =(a +2)x -x 2-x 32≥(a +2)x -32x 2=-32x ⎣⎡⎦⎤x -23(a +2). 所以存在x 0∈(0,1)⎝⎛⎭⎫例如x 0取a +23和12中的较小值满足 ax 0+x 20+x 302+2(x 0+2)cos x 0-4>0. 即当a >-2时,不等式ax +x 2+x 32+2(x +2)cos x -4≤4对x ∈[0,1]不恒成立. 综上,实数a 的取值范围是(-∞,-2].方法二 记f (x )=ax +x 2+x 32+2(x +2)cos x -4,则 f ′(x )=a +2x +3x 22+2cos x -2(x +2)sin x . 记G (x )=f ′(x ),则G ′(x )=2+3x -4sin x -2(x +2)cos x .当x ∈(0,1)时,cos x >12,因此 G ′(x )<2+3x -4×22x -(x +2)=(2-22)x <0.于是F ′(x )在[0,1]上是减函数,因此,当x ∈(0,1)时,f ′(x )<f ′(0)=a +2.故当a ≤-2时,f ′(x )<0,从而f (x )在[0,1]上是减函数,所以f (x )≤f (0)=0. 即当a ≤-2时,不等式ax +x 2+x 32+2(x +2)cos x ≤4,对x ∈[0,1]恒成立. 下面证明:当a >-2时,不等式ax +x 2+x 32+ 2(x +2)cos x ≤4,对x ∈[0,1]不恒成立.由于f ′(x )在[0,1]上是减函数,且f ′(0)=a +2>0,f ′(1)=a +72+2cos 1-6sin 1. 当a ≥6sin 1-2cos 1-72时,f ′(1)≥0,所以当x ∈(0,1)时,f ′(x )>0. 因此f (x )在[0,1]上是增函数,故f (1)>f (0)=0;当-2<a <6sin 1-2cos 1-72时,f ′(1)<0. 又f ′(0)>0.故存在x 0∈(0,1),使f ′(x 0)=0,则当0<x <x 0时,f ′(x )>f ′(x 0)=0,所以f (x )在[0,x 0]上是增函数,所以当x ∈(0,x 0)时,f (x )>f (0)=0. 所以,当a >-2时,不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]不恒成立. 综上,实数a 的取值范围是(-∞,-2].22. 选修4-1:几何证明选讲如图,AB 为⊙O 的直径,直线CD 与⊙O 相切于E ,AD 垂直CD 于D ,BC 垂直CD 于C ,EF 垂直AB 于F ,连接AE ,BE .证明:(1)∠FEB =∠CEB ;(2)EF 2=AD ·BC .证明 (1)由直线CD 与⊙O 相切,得∠CEB =∠EAB .由AB 为⊙O 的直径,得AE ⊥EB ,从而∠EAB +∠EBF =π2; 又EF ⊥AB ,得∠FEB +∠EBF =π2, 从而∠FEB =∠EAB .故∠FEB =∠CEB .(2)由BC ⊥CE ,EF ⊥AB ,∠FEB =∠CEB ,BE 是公共边,得Rt △BCE ≌Rt △BFE ,所以BC =BF .同理可证,得AD =AF .又在Rt △AEB 中,EF ⊥AB ,故EF 2=AF ·BF ,所以EF 2=AD ·BC .23.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎫θ-π4=2 2. (1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧ x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值. 解 (1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧ x 1=0,y 1=4,⎩⎪⎨⎪⎧ x 2=2,y 2=2. 所以C 1与C 2交点的极坐标为⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4, 注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3).故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab 2+1, 所以⎩⎨⎧b 2=1,-ab 2+1=2,解得a =-1,b =2.24.选修4-5:不等式选讲已知函数f (x )=|x -a |,其中a >1.(1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 解 (1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧ -2x +6,x ≤2,2,2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4|得-2x +6≥4,解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|得2x -6≥4,解得x ≥5;所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}.(2)记h (x )=f (2x +a )-2f (x ),则h (x )=⎩⎪⎨⎪⎧ -2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12. 又已知|h (x )|≤2的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧ a -12=1,a +12=2,于是a =3.。
绝密★启用前2013年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}{}1,2,3,4,|2,A B x x A B ==<= 则(A ){}0 (B ){}0,1 (C ){}0,2 (D ){}0,1,2 (2)复数的11Z i =-模为(A )12(B )2 (C (D )2(3)已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为(A )3455⎛⎫ ⎪⎝⎭,- (B )4355⎛⎫ ⎪⎝⎭,-(C )3455⎛⎫- ⎪⎝⎭, (D )4355⎛⎫- ⎪⎝⎭, (4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列; {}2:n p na 数列是递增数列;3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列;其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p(5)某学校组织学生参加英语测试,成绩的频率分布直方图如图, 数据的分组一次为[)[)[)[)20,40,40,60,60,80,820,100.若低于60分的人数是15人,则该班的学生人数是(A )45 (B )50 (C )55 (D )60(6)在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则A .6π B .3π C .23π D .56π(7)已知函数())()1ln31,.lg 2lg 2f x x f f ⎛⎫=++= ⎪⎝⎭则A .1-B .0C .1D .2(8)执行如图所示的程序框图,若输入8,n S ==则输出的A .49 B .67 C .89 D .1011(9)已知点()()()30,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有A .3b a =B .31b a a=+C .()3310b a b a a ⎛⎫---= ⎪⎝⎭ D .3310b a b a a -+--=(10)已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,,,AB AC ⊥112AA O =,则球的半径为A B . C .132D . (11)已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,F C 与过原点的直线相交于,A B 两点,4,.10,8,cos ABF ,5AF BF AB B F C ==∠=连接若则的离心率为(A )35 (B )57 (C )45 (D )67(12)已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=(A )2216a a -- (B )2216a a +- (C )16- (D )16第II 卷本卷包括必考题和选考题两部分。
辽宁2013年高考文科数学试题(带答案和解释)文绝密★启用前2013年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)第I卷一、:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合(A)(B)(C)(D)(2)复数的模为(A)(B)(C)(D)(3)已知点(A)(B)(C)(D)(4)下面是关于公差的等差数列的四个命题:其中的真命题为(A)(B)(C)(D)(5)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为若低于60分的人数是15人,则该班的学生人数是(A)(B)(C)(D)(6)在,内角所对的边长分别为A. B. C. D.(7)已知函数A. B. C. D.(8)执行如图所示的程序框图,若输入A. B. C. D.(9)已知点A. B.C. D.(10)已知三棱柱A. B. C. D.(11)已知椭圆的左焦点为F(A)(B)(C)(D)(12)已知函数设表示中的较大值,表示中的较小值,记得最小值为得最小值为 ,则(A)(B)(C)(D)第II卷本卷包括必考题和选考题两部分。
第13题-第22题为必考题,每个试题考生都必须作答。
第22题-第24题为选考题,考生根据要求作答。
二、题:本大题共4小题,每小题5分.(13)某几何体的三视图如图所示,则该几何体的体积是 .(14)已知等比数列.(15)已知为双曲线.(16)为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)设向量(I)若(II)设函数18.(本小题满分12分)如图,(I)求证:(II)设19.(本小题满分12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取3道题解答.试求:(I)所取的2道题都是甲类题的概率;(II)所取的2道题不是同一类题的概率.20.(本小题满分12分)如图,抛物线(I);(II)21.(本小题满分12分)(I)证明:当(II)若不等式取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分。
2013年普通高等学校招生全国统一考试(辽宁卷)数 学(文科)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,2,3,4,|2,A B x x A B ==<=则(A ){}0 (B ){}0,1 (C ){}0,2 (D ){}0,1,22.复数的11Z i =-模为(A )12 (B )2(C (D )2 3.已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为(A )3455⎛⎫ ⎪⎝⎭,- (B )4355⎛⎫ ⎪⎝⎭,- (C )3455⎛⎫- ⎪⎝⎭, (D )4355⎛⎫- ⎪⎝⎭, 4.下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p5.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100,若低于60分的人数是15人,则该班的学生人数是(A )45 (B )50 (C )55 (D )606.在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则 A .6π B .3π C .23π D .56π7.已知函数())()1ln 31,.lg 2lg 2f x x f f ⎛⎫=++= ⎪⎝⎭则 A .1- B .0 C .1 D .28.执行如图所示的程序框图,若输入8,n S ==则输出的A .49B .67C .89D .10119.已知点()()()30,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有 A .3b a = B .31b a a=+ C .()3310b a b a a ⎛⎫---= ⎪⎝⎭ D .3310b a b a a -+--= 10.已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为A .B .C .132D .11.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,F C 与过原点的直线相交于,A B 两点,连接了,AF BF ,若410,8,cos ABF 5AB B F ==∠=,则C 的离心率为 (A )35 (B )57 (C )45 (D )6712.已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=(A )2216a a -- (B )2216a a +- (C )16- (D )16 第II 卷本卷包括必考题和选考题两部分。
2013年普通高等学校招生全国统一考试(全国新课标卷1)
文科数学答案解析
第Ⅰ卷
当0a >时,y ax =与()y f x =恒有公共点,所以排除()
若0x ≤,则以y ax =与22||y x x =-+相切为界限,
由2
,2,
y ax y x x =⎧⎨=-⎩得22()0x a x -+=. ∵22()0a ∆=+=,∴2a =-. ∴,0[]2a ∈-;故选D .
第Ⅱ卷
0=b c ,a 1112⨯⨯=a b 1(0[]t =+-=b c a b b ,即1()t t +-a b b 2
【解析】画出可行域如图所示。
画出直线20x y -=,并平移,当直线经过点15.【答案】9π2
【解析】如图,
设球O 的半径为R ,则AH =又∵2π·πEH =,∴1EH =.
123n +
+
-
从以上茎叶图可以看出,A 药疗效的试验结果有
710的叶集中在茎叶集中在茎0,1上,由此可看出A 药的疗效更好. 19.【答案】(Ⅰ)见解析 (Ⅱ)3
【解析】(Ⅰ)证明:取AB 的中点
因为CA CB =,所以OC AB ⊥.
由于1AB AA =,160BAA ∠︒=,故
由弦切角定理得,ABE BCE ∠∠=又因为DB BE ⊥,所以DE 为直径,
所以原不等式的解集是|0
{x<
(Ⅱ)当
1
,
22
x
a
⎡⎫
-⎪
⎢⎣⎭
∈时,(f x。
绝密★启用前2013年普通高等学校招生全国统一考试(辽宁卷)数学(文科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合=0,1,{}2,3,4A ,{||=2|<}B x x ,则=A B ( )A .{0}B .{0,1}C .{0,2}D .{0,1,2} 2.复数1=i 1z -的模为( )A .12BCD .23.已知点(1,3)A ,1(4,)B -,则与向量AB 同方向的单位向量为( )A .34(,)55-B .43(,)55-C .34(,)55-D .43(,)55-4.下面是关于公差0d >的等差数列{}n a 的四个命题: 1p :数列{}n a 是递增数列; 2p :数列{}n na 是递增数列; 3p :数列{}n an是递增数列; 4p :数列{3}n a nd +是递增数列. 其中的真命题为( )A .12p p ,B .34p p ,C .23p p ,D .14p p ,5.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是 ()A .45B .50C .55D .606.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若s i n c o s s i n c o s =12a cb B C BA+,且a b >,则B ∠=( )A .π6B .π3C .2π3D .5π67.)3)1(x f x =+,则1(lg2)(lg )2f f +=( )A .1-B .0C .1D .28.执行如图所示的程序框图,若输入8n =,则输出S = ( )A .49 B .67 C .89 D .10119.已知点(0,0)O ,()0,A b ,3(),B a a .若OAB △为直角三角形,则必有 ( )A .3=b aB .31b a a=+C .331()()0b a b a a---=D .331||||0b a b a a-+--=10.已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上.若=3AB ,=4AC ,AB AC ⊥,112=AA ,则球O 的半径为( )AB.C .132D.11.已知椭圆2222=1(0)x y a C ba b :+>>的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若||=10AB ,||=8BF ,os =45c ABF ∠,则C 的离心率为 ( )A .35B .57C .45D .6712.已知函数22(()22)f x x a x a +-=+,22((2))28g x x a x a =---++.设1()H x =max ()(){}f x g x ,,2mi (){)(n (,)}H x f x g x =({},max p q 表示p ,q 中的较大值,min{},p q 表示p ,q 中的较小值).记1()H x 的最小值为A ,2()H x 的最大值为B ,则A B -=( )A .2216a a --B .2216a a +-C .16-D .16--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.某几何体的三视图如图所示,则该几何体的体积是 . 14.已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和.若1a ,3a 是方程2540x x +=-的两个根,则6S = .15.已知F 为双曲线22=1916x y C :-的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点(5,0)A 在线段PQ 上,则PQF △的周长为 .16.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为 . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)设向量a )=,sin x x ,b (,=cos s )in x x ,2[]π0,x ∈.(Ⅰ)若|a |=|b |,求x 的值;(Ⅱ)设函数()f x =a ·b ,求()f x 的最大值.18.(本小题满分12分)如图,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上的点. (Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)设Q 为PA 的中点,G 为AOC △的重心, 求证:QG ∥平面PBC .19.(本小题满分12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求: (Ⅰ)所取的2道题都是甲类题的概率; (Ⅱ)所取的2道题不是同一类题的概率.20.(本小题满分12分)如图,抛物线214C x y :=,222()0C x py p :-=>.点00(,)M x y 在抛物线2C 上,过M 作1C 的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ).当0=1x MA 的斜率为12-.(Ⅰ)求p 的值;(Ⅱ)当M 在2C 上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ).21.(本小题满分12分) (Ⅰ)证明:当[0,1]x ∈si n x x ≤≤; (Ⅱ)若不等式23()222cos 4ax x x x x ≤++++对[0,1]x ∈恒成立,求实数a 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 为O 直径,直线CD 与O 相切于E ,AD 垂直CD 于D ,BC 垂直CD 于C ,EF 垂直AB 于F ,连接AE ,BE .证明: (Ⅰ)=FEB CEB ∠∠; (Ⅱ)2=EF AD BC .23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆1C ,直线2C 的极坐标方程分别为=4sin ρθ,πcos(4ρθ- (Ⅰ)求1C 与2C 交点的极坐标;(Ⅱ)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为33,1,2x t a b y t ⎧=+⎪⎨=+⎪⎩(t R ∈为参数),求a ,b 的值.24.(本小题满分10分)选修4—5:不等式选讲已知函数|(|)f x x a =-,其中1a >.(Ⅰ)当2a =时,求不等式()4||4f x x ≥--的解集;(Ⅱ)已知关于x 的不等式|()22()|2f x a f x ≤-+的解集为2|}1{x x ≤≤,求a 的值.{01}A B =,【解析】1i 1z ==-【提示】利用2i =-【试题解析】(3AB =-,,则与其同方向的单位向量3,5ABe AB ⎛== ⎝【提示】同方向的单位向量求法,向量除以模长即可【解析】根据等差数列的性质判定.d n 是假命题.a又sin a 32a b a -=-【解析】根据球的内接三棱柱的性质求解.直三棱柱中∠AB BF ABFcos,点数学试卷 第16页(共33页)【解析】a )又x )3sin =a b)AB PA 又PAAC A =,连接OG 并延长交,G Q PA 中点,∴又O QM MO M =BC PC C =,平面PBC QG ⊂平面QMO )抛物线点N点又F)解法一:当数学试卷第22页(共33页))又)直线AB又EF)BC又在AF BF,∴EF AD BC. (步骤【提示】根据圆中直线的垂直等角关系证明;根据圆中三角形的全等和线段间的关系求解【考点】弦切角及圆的有关性质,三角形全等,直角三角形性质数学试卷第28页(共33页)又(11 / 11。
2013年辽宁省高考数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}2.(5分)复数的模长为()A.B.C.D.23.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A.B.C.D.4.(5分)下列关于公差d>0的等差数列{a n}的四个命题:p1:数列{a n}是递增数列;p2:数列{na n}是递增数列;p3:数列是递增数列;p4:数列{a n+3nd}是递增数列;其中真命题是()A.p1,p2B.p3,p4C.p2,p3D.p1,p45.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()A.B.C. D.7.(5分)已知函数f(x)=ln(﹣3x)+1,则f(lg2)+f(lg)=()A.﹣1 B.0 C.1 D.28.(5分)执行如图所示的程序框图,若输入n=8,则输出S=()A.B.C.D.9.(5分)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有()A.b=a3B.C.D.10.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.11.(5分)已知椭圆C:的左焦点F,C与过原点的直线相交于A,B两点,连结AF,BF,若|AB|=10,|AF|=6,,则C的离心率为()A.B.C.D.12.(5分)已知函数f(x)满足f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a ﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max(p,q)表示p,q中的较大值,min(p,q)表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.a2﹣2a﹣16 B.a2+2a﹣16 C.﹣16 D.16二、填空题13.(5分)某几何体的三视图如图所示,则该几何体的体积是.14.(5分)已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.15.(5分)已知F为双曲线C:的左焦点,P,Q为C上的点,若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF的周长为.16.(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.三、解答题17.(12分)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.18.(12分)如图,AB是圆O的直径,PA⊥圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)若Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.19.(12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.20.(12分)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣时,切线MA的斜率为﹣.(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).21.(12分)(1)证明:当x∈[0,1]时,;(2)若不等式对x∈[0,1]恒成立,求实数a的取值范围.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分。
绝密★启用前2013年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}{}1,2,3,4,|2,A B x x AB ==<=则(A ){}0 (B ){}0,1 (C ){}0,2 (D ){}0,1,2 (2)复数的11Z i =-模为(A )12 (B )2(C (D )2 (3)已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为(A )3455⎛⎫ ⎪⎝⎭,-(B )4355⎛⎫ ⎪⎝⎭,- (C )3455⎛⎫- ⎪⎝⎭, (D )4355⎛⎫- ⎪⎝⎭, (4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p(5)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)[)[)20,40,40,60,60,80,820,100.若低于60分的人数是15人,则该班的学生人数是(A )45 (B )50 (C )55 (D )60(6)在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则 A .6π B .3π C .23π D .56π(7)已知函数())()1ln31,.lg 2lg 2f x x f f ⎛⎫=++= ⎪⎝⎭则A .1-B .0C .1D .2(8)执行如图所示的程序框图,若输入8,n S ==则输出的A .49 B .67 C .89 D .1011(9)已知点()()()30,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有A .3b a =B .31b a a=+C .()3310b a b a a ⎛⎫---= ⎪⎝⎭ D .3310b a b a a -+--=(10)已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,, ,AB AC ⊥112AA O =,则球的半径为A .2B .C .132D .(11)已知椭圆2222:1(0)x y C a b a b +=>>的左焦点为F ,F C 与过原点的直线相交于,A B 两点,4,.10,8,cos ABF ,5AF BF AB B F C ==∠=连接若则的离心率为 (A )35 (B )57 (C )45 (D )67(12)已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=(A )2216a a -- (B )2216a a +- (C )16- (D )16第II 卷本卷包括必考题和选考题两部分。
【参考答案】 【选择题】 【1】.B 【2】.B 【3】.A 【4】.D 【5】.B 【6】.A 【7】.D 【8】.A 【9】.C 【10】.C 【11】.B 【12】.C 【填空题】 【13】.1616-π 【14】.63 【15】.44 【16】.10 【解答题】【17】.解:(I )由2222)(sin )4sin x x x =+=a,222(cos )(sin )1x x =+=b , 及,=a b 得24sin 1x =.又[0,],2x ∈π从而1sin 2x =,所以6x π=.(II )2()cos sin f x x x x =⋅=⋅+a b1112cos 2sin(2)2262x x x π-+=-+.当[0,]32x =∈ππ时,sin 2-6x π()取最大值1.所以()f x 的最大值为3.2【18】.证明:(I )由AB 是圆O 的直径,得AC ⊥BC . 由PA ⊥平面ABC ,BC ⊂平面ABC ,得PA ⊥BC , 又PA ∩AC =A ,PA ⊂平面PAC ,AC ⊂平面PAC , 所以BC ⊥平面PAC .(II )连接OG 并延长交AC 于M ,链接QM ,QO . 由G 为∆AOC 的重心,得M 为AC 中点, 由G 为PA 中点,得QM //PC . 又O 为AB 中点,得OM //BC . 因为QM ∩MO =M ,QM ⊂平面QMO .所以QG //平面PBC .【19】.解:(I )将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6,任取2道题,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.用A 表示“都是甲类题”这一事件,则A 包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P (A )=62.155= (II )基本事件同(I ),用B 表示“不是同一类题”这一事件,则B 包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P (B )=815. 【20】.解:(I)因为抛物线214C xy =:上任意一点(,)x y 的切线斜率为2xy '=,且切线MA 的斜率为12-,所以A 点坐标为(-1,14)。
绝密★启用前2013年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}{}1,2,3,4,|2,A B x x A B ==<= 则(A ){}0 (B ){}0,1 (C ){}0,2 (D ){}0,1,2(2)复数的11Z i =-模为(A )12 (B (C (D )2 (3)已知点()()1,3,4,1,A B AB - 则与向量同方向的单位向量为 (A )3455⎛⎫ ⎪⎝⎭,- (B )4355⎛⎫ ⎪⎝⎭,- (C )3455⎛⎫- ⎪⎝⎭, (D )4355⎛⎫- ⎪⎝⎭,(4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列; {}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p(5)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)[)[)20,40,40,60,60,80,820,100.若低于60分的人数是15人,则该班的学生人数是(A )45 (B )50(C )55 (D )60(6)在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab += ,a b B >∠=且则A .6πB .3π C .23π D .56π(7)已知函数())()1ln 31,.lg 2lg 2f x x f f ⎛⎫=++= ⎪⎝⎭则 A .1- B .0 C .1 D .2(8)执行如图所示的程序框图,若输入8,n S ==则输出的A .49B .67C .89D .1011(9)已知点()()()30,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有A .3b a =B .31b a a=+ C .()3310b a b a a ⎛⎫---= ⎪⎝⎭ D .3310b a b a a -+--= (10)已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,, ,AB AC ⊥112AA O =,则球的半径为A .2B .C .132D . (11)已知椭圆2222:1(0)x y C a b a b +=>>的左焦点为F ,F C 与过原点的直线相交于 ,A B 两点,4,.10,8,cos ABF ,5AF BF AB B F C ==∠=连接若则的离心率为 (A )35 (B )57 (C )45 (D )67(12)已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=(A )2216a a -- (B )2216a a +-(C )16- (D )16 第II 卷本卷包括必考题和选考题两部分。
辽宁2013年高考文科数学试题(带答案和解释)文
绝密★启用前
2013年普通高等学校招生全国统一考试(辽宁卷)
数学(供文科考生使用)
第I卷
一、:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)已知集合
(A)(B)(C)(D)
(2)复数的模为
(A)(B)(C)(D)
(3)已知点
(A)(B)
(C)(D)
(4)下面是关于公差的等差数列的四个命题:
其中的真命题为
(A)(B)(C)(D)
(5)某学校组织学生参加英语测试,成绩的频率分布
直方图如图,
数据的分组一次为
若低于60分的人数是15人,则该班的学生人数是(A)(B)
(C)(D)
(6)在,内角所对的边长分别为
A. B. C. D.
(7)已知函数
A. B. C. D.
(8)执行如图所示的程序框图,若输入
A. B. C. D.
(9)已知点
A. B.
C. D.
(10)已知三棱柱
A. B. C. D.
(11)已知椭圆的左焦点为F
(A)(B)(C)(D)
(12)已知函数设表示中的较大值,表示中的较小值,记得最小值为得最小值为 ,则
(A)(B)
(C)(D)
第II卷
本卷包括必考题和选考题两部分。
第13题-第22题为必考题,每个试题考生都必须作答。
第22题-第24题为选考题,考生根据要求作答。
二、题:本大题共4小题,每小题5分.
(13)某几何体的三视图如图所示,则该几何体的体积是 .
(14)已知等比数列
.
(15)已知为双曲线
.
(16)为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为 .
三、解答题:解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分12分)
设向量
(I)若
(II)设函数
18.(本小题满分12分)
如图,
(I)求证:
(II)设
19.(本小题满分12分)
现有6道题,其中4道甲类题,2道乙类题,张同学从中任取3道题解答.试求:
(I)所取的2道题都是甲类题的概率;
(II)所取的2道题不是同一类题的概率.
20.(本小题满分12分)
如图,抛物线
(I);
(II)
21.(本小题满分12分)
(I)证明:当
(II)若不等式取值范围.
请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分。
作答时用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑。
22.(本小题满分10分)选修4-1:几何证明选讲
如图,
(I)
(II)
22.(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系中以为极点,轴正半轴为极轴建立坐标系.圆,直线的极坐标方程分别为 .
(I)
(II)
22.(本小题满分10分)选修4-5:不等式选讲
已知函数
(I)
(II)
2013高考数学辽宁卷(文科)解析
大连市红旗高级中学王金泽
一.
1. [答案]B
[解析] 由已知,所以,选B。
2. [答案]B
[解析]由已知所以
3 [答案]A
[解析] ,所以,这样同方向的单位向量是
4 [答案]D
[解析]设,所以正确;如果则满足已知,但并非递增所以错;如果若,则满足已知,但,是递减数列,所以错;,所以是递增数列,正确
5 [答案]B
[解析]第一、第二小组的频率分别是、,所以低于60分的频率是0.3,设班级人数为,则,。
6 [答案]A
[解析]边换角后约去,得,所以,但B非最大角,所以。
7 [答案]D
[解析] 所以,因为,为相反数,所以所求值为2.
8 [答案]A
[解析] 的意义在于是对求和。
因为,同时注意,所以所求和为 =
9 [答案]C
[解析]若A为直角,则根据A、B纵坐标相等,所以;若B 为直角,则利用得,所以选C
10 [答案]C
[解析]由球心作面ABC的垂线,则垂足为BC中点。
计算A= ,由垂径定理,O=6,所以半径R=
11 [答案]B
[解析]由余弦定理,AF=6,所以,又,所以
12 [答案]C
[解析] 顶点坐标为,顶点坐标,并且与的顶点都在对方的图象上,图象如图, A、B分别为两个二次函数顶点的纵坐标,所以A-B=
[方法技巧](1)本题能找到顶点的特征就为解题找到了突破口。
(2)并不是A,B在同一个自变量取得。
二.题
13 [答案]
[解析]直观图是圆柱中去除正四棱柱。
14 [答案]63
[解析] 由递增,,所以,代入等比求和公式得
15 [答案]44
[解析] 两式相加,所以并利用双曲线的定义得,所以周长为
16 [答案]10
[解析]设五个班级的数据分别为。
由平均数方差的公式得,,显然各个括号为整数。
设分别为,,则。
设 = = ,由已知,由判别式得,所以,所以。
三.解答题
17[解题思路](Ⅰ)(1)一般给出模的关系就可以考虑把模平方,进而可以把向量问题转化为三角函数问题求出(2)因为,根据象限符号知求出,所以。
(Ⅱ)通过降幂公式和二倍角公式可化简,最后解得最大值为。
18. [解题思路](Ⅰ)由AB为直径条件推出,再结合面ABC即可证面PAC。
(Ⅱ)由重心想到中点是关键,由面面平行推出线面平行是重要方法。
19[解题思路](Ⅰ)基本事件空间中有15个基本事件,都是甲类的有6个,所以可求得概率(Ⅱ)不是同一类的有8个基本事件,所以所求的概率是。
20[解题思路](Ⅰ)(1)切线的斜率可通过求导求解。
(2)用点斜式建立切线方程(3)用方程的思想解决求值问题。
(Ⅱ)列A和B两个切线方程,利用解方程的方法求得坐标再代入C2最后可得所求的轨迹方程
21[解题思路](Ⅰ)(1)不等式中间式子分别减左,减右的式子记为,,(2)求导研究单调性(3)根据单调性分析
在区间上的那个自变量能得到为零的最值。
然后与这个最值比较即可证出不等式。
(Ⅱ)解法一,利用上面证明的不等式代入化简,在进行分析;解法二:利用二阶导数研究单调性,进而求出范围。
22[解题思路](Ⅰ)(1)弦切角等于弦所对的圆周角(2)直径所对是圆周角是直角得到互余关系从而找到角的相等关系(Ⅱ)利用全等相似导乘积式。
23[解题思路](Ⅰ)由已知极坐标化成直角坐标方程再解出直角坐标,然后再化极坐标(Ⅱ)参数方程化成普通方程,列PQ两种形式的直角坐标方程,再用待定系数法求解。
24[解题思路](Ⅰ)将已知不等式转化为,再分类讨论。
(Ⅱ)构造辅助函数用两种方法列出的解集,然后进行比较即可得到答案。
文。