实验六 二组分金属相图的绘制
- 格式:doc
- 大小:82.50 KB
- 文档页数:5
专业:材料化学学号:080240008实验人:胡文想同实验人:李会勇实验名称:物化实验气压:101.325Kpa 温度:25℃二组分金属固液相图的绘制实验目的1.掌握热分析法(步冷曲线法)测绘Bi-Sn二组分固-液相图的原理和方法。
2.了解简单二组分固-液相图的特点。
3.掌握KWL-07可控升降温电炉及SWKY-Ⅲ数字控温仪的使用方法。
实验原理热分析法则是观察被研究系统温度变化与相变化的关系,这是绘制金属相图最常用的实验方法。
其原理是将系统加热熔融,然后使其缓慢而均匀地冷却,每隔一定时间记录一次温度,绘制温度与时间关系曲线——步冷曲线。
若系统在均匀冷却过程中无相变化,其温度将随时间均匀下降。
若系统在均匀冷却过程中有相变化,由于体系产生的相变热与自然冷却时体系放出的热量相抵消,步冷曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成体系的相变温度。
二组分系统相图有多种类型,其步冷曲线也各不相同,但对于简单二组分凝聚系统,其步冷曲线有三种类型,见图II-7-1。
图II-7-1 生成简单低共熔混合物的二组分系统图II-7-1A为纯物质的步冷曲线。
冷却过程中无相变发生时,系统温度随时间均匀降低,至b点开始有固体析出,建立单组分两相平衡,f=0,温度不变,步冷曲线出现水平段bc,直至液体全部凝固(c点),温度又继续均匀下降。
水平段所对应的温度为纯凝固点。
图II-7-1B 为二组分混合物的步冷曲线。
冷却过程中无相变发生,系统温度随时间均匀降低,至b点开始有一种固体析出,随着该固体析出,液相组成不断变化,凝固点逐渐降低,到c点,两种固体同时析出,固液相组成不变,系统建立三相平衡,此时f=0,温度不随时间变化,步冷曲线出现水平段cd,当液体全部凝固(d点),温度又继续均匀下降。
水平段cd所对应的温度为二组分的低共熔点温度。
图II-7-1c 为二组分低共熔混合物的步冷曲线。
冷却过程中无相变发生,系统温度随时间均匀降低,至b点,两种固体按液相组成同时析出,系统建立三相平衡,f=0,温度不随时间变化,步冷曲线出现水平段bc,当液体全部凝固(c点),温度又继续均匀降低。
一、实验目的1.掌握步冷曲线法测绘二组分金属的固液平衡相图的原理和方法。
2、了解固液平衡相图的特点,进一步学习和巩固相律等有关知识。
二、主要实验器材和药品1、仪器:KWL-II金属相图(步冷曲线)实验装置、微电脑控制器、不锈钢套管、硬质玻璃样品管、托盘天平、坩埚钳2、试剂:纯锡(AR)、纯铋(AR)、石墨粉、液体石蜡三、实验原理压力对凝聚系统影响很小,因此通常讨论其相平衡时不考虑压力的影响,故根据相律,二组分凝聚系统最多有温度和组成两个独立变量,其相图为温度组成图。
较为简单的组分金属相图主要有三种:一种是液相完全互溶,凝固后固相也能完全瓦溶成固体混合物的系统最典型的为Cu- Ni系统;另一种是液相完全互溶,而固相完全不互溶的系统,最典型的是Bi- Cd 系统;还有一种是液相完全互溶,而固相是部分互溶的系统,如Pb- Sn或Bi- Sn系统。
研究凝聚系统相平衡,绘制其相图常采用溶解度法和热分析法。
溶解度法是指在确定的温度下,直接测定固液两相平衡时溶液的浓度,然后依据测得的温度和溶解度数据绘制成相图。
此法适用于常温F易测定组成的系统,如水盐系统。
热分析法(步冷曲线法)则是观察被研究系统温度变化与相变化的关系,这是绘制金属相图最常用和最基本的实验方法。
它是利用金属及合金在加热和冷却过程中发生相变时,潜热的释出或吸收及热容的突变,来得到金属或合金中相转变温度的方法。
其原理是将系统加热熔融,然后使其缓慢而均匀地冷却,每隔定时间记录一次温度,物系在冷却过程中温度随时间的变化关系曲线称为步冷曲线(又称为冷却曲线)。
根据步冷曲线可以判断体系有无相变的发生。
当体系内没有相变时,步冷曲线是连续变化的;当体系内有相变发生时,步冷曲线上将会出现转折点或水平部分。
这是因为相变时的热效应使温度随时间的变化率发生了变化。
因此,由步冷曲线的斜率变化可以确定体系的相变点温度。
测定不同组分的步冷曲线,找出对应的相变温度,即可绘制相图。
二组分金属相图姓名范泓洋学号2006030003 班级生64 同组实验者邢泽宇实验日期2008-3-29 ,提交报告日期2008-4-12带实验助教卢晋1. 实验原理1.1 金属相图人们常用图形来表示体系的存在状态与组成、温度、压力等因素的关系。
以体系所含物质组成为自变量,温度为应变量所得到的T-x图是常见的一种相图。
二组分相图已得到广泛的研究和应用。
固-液相图多用于冶金、化工等部门。
较为简单的二组分金属相图主要有三种;一种是液相完全互溶,凝固后,固相也能完全互溶成固熔体的系统,最典型的为Cu-Ni系统;另一种是液相完全互溶而固相完全不互溶的系统,最典型的是Bi-Cd系统;还有一种是液相完全互溶,而固相部分也互溶的系统,如Pb-Sn系统。
本实验研究的Bi-Sn系统就是这一种。
在低共熔温度下,Bi在固相Sn中最大溶解度为21%(质量百分数)。
热分析法(步冷曲线法)是绘制凝聚体系相图时常用的方法。
它是利用金属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相转变温度。
由热分析法制相图,先做步冷曲线,然后根据步冷曲线作图。
通常的做法是先将金属或合金全部熔化。
然后让其在一定的环境中自行冷却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。
Fig.1 步冷曲线Fig.2 由步冷曲线绘制相图以合金样品为例,当熔融的体系均匀冷却时,如Fig.1所示,如果系统不发生相变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统冷却速率减慢,步冷曲线上出现转折(如图中b点)。
当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。
在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线出现水平线段(如图中cd线段);当熔液完全凝固后,温度才迅速下降(如图中de线段)。
二组分金属相图的绘制一.实验目的1.用热分析法(冷却曲线法)测绘Bi—Sn二组分金属相图。
2.了解固液相图的特点,进一步学习和巩固相律等有关知识。
二.实验原理表示多相平衡体系组成、温度、压力等变量之间关系的图形称为相图。
较为简单的二组分金属相图主要有三种:一种是液相完全互溶,凝固后,固相也能完全互溶成固熔体的系统,最典型的为Cu—Ni系统;另一种是液相完全互溶而固相完全不互溶的系统,最典型的是Bi—Cd系统;还有一种是液相完全互溶,而固相是部分互溶的系统,如本实验研究的Bi—Sn系统。
在低共熔温度下,Bi在固相Sn中最大溶解度为21%(质量百分数)。
图1冷却曲线图2由冷却曲线绘制相图热分析法(冷却曲线法)是绘制相图的基本方法之一。
它是利用金属及合金在加热和冷却过程中发生相变时,潜热的释出或吸收及热容的突变,来得到金属或合金中相转变温度的方法。
通常的做法是先将一定已知组成的金属或合金全部熔化,然后让其在一定的环境中自行冷却,画出冷却温度随时间变化的冷却曲线(见图1)。
当金属混合物加热熔化后再冷却时,开始阶段由于无相变发生,体系的温度随时间变化较大,冷却较快(ab 段)。
若冷却过程中发生放热凝固,产生固相,将减小温度随时间的变化,使体系的冷却速度减慢(bc段)。
当融熔液继续冷却到某一点时,如c点,由于此时液相的组成为低共熔物的组成。
在最低共熔混合物完全凝固以前体系温度保持不变,冷却曲线出现平台,(如图cd段)。
当融熔液完全凝固形成两种固态金属后,体系温度又继续下降(de段)。
由此可知,对组成一定的二组分低共熔混合物系统,可以根据它的冷却曲线得出有固体析出的温度和低共熔点温度。
根据一系列组成不同系统的冷却曲线的各转折点,即可画出二组分系统的相图(T-某或T-wB图)。
不同组成熔液的冷却曲线对应的相图如图2所示。
图3可控升降温电炉前面板1.电源开关2.加热量调节旋钮3、4.电压表5.实验坩埚摆放区6.控温传感器插孔7.控温区电炉8.测试区电炉9.冷风量调节用热分析法绘制相图时,被测系统必须时时处于或接近相平衡状态,因此冷却速率要足够慢才能得到较好的结果。
实验 二组分固液金属相图的测绘I. 目的与要求一、 用热分析法测绘铅-锡二元金属相图,了解固-液相图的特点 二、 学会热电偶的制作、标定和测温技术 三、 掌握自动平衡记录仪的使用方法I I. 基本原理 一、二组分固-液相图人们常用图形来表示体系的存在状态与组成、温度、压力等因素的关系。
以体系所含物质的组成为自变量,温度为应变量所得到的T-x 图是常见的一种相图。
二组分相图已经得到广泛的研究和应用。
固-液相图多应用于冶金、化工等部门。
二组分体系的自由度与相的数目有以下关系:自由度 = 组分数 – 相数 + 2 (1)由于一般的相变均在常压下进行,所以压力P 一定,因此以上的关系式变为:自由度 = 组分数 – 相数 + 1 (2)又因为一般物质其固、液两相的摩尔体积相差不大,所以固-液相图受外界压力的影响颇小。
这是它与气-液平衡体系的最大差别。
图1以邻-、对-硝基氯苯为例表示有最低共熔点相图的构成情况:高温区为均匀的液相,下面是三个两相共存区,至于两个互不相溶的固相A 、B 和液相L 三相平衡共存现象则是固-液相图所特有的。
从式(2)可知,压力既已确定,在这三相共存的水平线上,自由度等于零。
处于这个平衡状态下的温度TE 、物质组成A 、B 和E x 都不可变。
TE 和E x 构成的这一点成为最低共熔点。
其它类型的固一液相图将在下面讨论。
二、热分析法和步冷曲线热分析法是相图绘制工作中常用的一种实验方法。
按一定比例配成均匀的液相体系,让它缓慢冷却。
以体系温度对时间作图,则为步冷曲线。
曲线的转折点表征了某一温度下发生相变的信息。
由体系的组成和相变点的温度作为T-x 图上的一个点,众多实验点的合理连接就成了相图上的一些相线,并构成若干相区。
这就是用热分析法绘制固-液相图的概要。
图1(b )为与图1(a )标示的三个组成相应的步冷曲线。
曲线(I )表示将纯B 液体冷却至T B 时,体系温度将保持恒定,直到样品完全凝固。
二组分金属相图的绘制
1 实验要求
(1) 测定Sn-Bi合金的步冷曲线,绘制其相图并确定低共熔点及相应的组成。
(2) 了解热分析法测量原理,掌握热电偶的使用和校正。
(3) 回答本次实验需要讨论的5个问题。
2 注意事项
(1)按程序降低加热电压,否则热惯性太大,温度会过高。
如温度过高,取
出样品管对炉口扇风降低温度。
(2) 试样溶解后一定要搅拌均匀,这样数据才准确。
如搅拌后温度过低,
可用50V电压再加热。
搅拌时动作要轻,防止烫伤。
3 问题讨论
(1) 在实验中,样品管内中为何加入石墨?
(2) 在实验中,为什么要选择适当的样品量和适当的升温速率?
(3) 二组分金属相图各相区的相律是多少?
(4) 何谓步冷曲线法?用步冷曲线法测绘相图时,应注意哪些问题?
(5) 分析各步冷曲线上出现平台的原因。
4 参考文献
(1)复旦大学.物理化学实验[M].北京:高等教育出版社, 1993
(2) 罗澄源.物理化学实验[M].北京:高等教育出版社,2003
(3) 刘青,王永宁等.微机金属相图绘制的实验程序设计[J].青海师范大学学
报(自然科学版),2007,(2)
(4) 于庆水,潘春晖.金属相图实验的改进[J].沧州师范专科学校学
报,2004,(1)
(5) 蔡定建,杨忠等.二元合金相图的绘制与应用实验装置的改进[J].南方冶
金学院学报,2001,(1)。
二组分合金相图一、实验目的1.用热分析法(步冷曲线法)测绘Pb—Sn二组分金属相图。
2.了解固液相图的特点,进一步学习和巩固相律等有关知识。
3.掌握金属相图(步冷曲线)测定仪的基本原理及方法。
二、实验原理1、二组分固-液相图人们常用图形来表示体系的存在状态与组成、温度、压力等因素的关系。
以体系所含物质的组成为自变量,温度为应变量所得到的T-x图是常见的一种相图。
二组分相图已经得到广泛的研究和应用。
固-液相图多应用于冶金、化工等部门。
二组分体系的自由度与相的数目有以下关系:自由度= 组分数–相数+ 2 (1)由于一般的相变均在常压下进行,所以压力P一定,因此以上的关系式变为:自由度= 组分数–相数+ 1 (2)又因为一般物质其固、液两相的摩尔体积相差不大,所以固-液相图受外界压力的影响颇小。
这是它与气-液平衡体系的最大差别。
图1以邻-、对-硝基氯苯为例表示有最低共熔点相图的构成情况:高温区为均匀的液相,下面是三个两相共存区,至于两个互不相溶的固相A、B和液相L三相平衡共存现象则是固-液相图所特有的。
从式(2)可知,压力既已确定,在这三相共存的水平线上,自由度等于零。
3、较为简单的二组分金属相图主要有三种;(1)是液相完全互溶,凝固后,固相也能完全互溶成固熔体的系统,最典型的为Cu—Ni系统;(2)是液相完全互溶而固相完全不互溶的系统,最典型是Bi—Cd系统;(3)是液相完全互溶,而固相是部分互溶的系统,如Pb—Sn系统,本实验研究的系统就是这一种。
在低共熔温度下,Pb在固相Sn中最大溶解度为(质量百分数)。
2、热分析法(步冷曲线法)是绘制相图的基本方法之一。
热分析法是相图绘制工作中常用的一种实验方法。
按一定比例配成均匀的液相体系,让它缓慢冷却。
以体系温度对时间作图,则为步冷曲线。
曲线的转折点表征了某一温度下发生相变的信息。
由体系的组成和相变点的温度作为T-x图上的一个点,众多实验点的合理连接就成了相图上的一些相线,并构成若干相区。
二组份合金体系相图的绘制Ⅰ、目的要求一、用热分析法测量铅、锡二元金属相图,了解固-液相图的基本特点。
二、学会热电偶测温技术。
三、掌握可控升降温电炉和数字式控温仪的使用方法。
Ⅱ、实验原理Ⅲ、仪器与试剂KWL-09多头可控升降温电炉。
SWKY-1型数字控温仪,配控温热电偶和测温热电偶。
微型计算机,金属相图测绘软件。
1~6号样品,分别为含铅0、20、40、60、80、100%的铅锡合金Ⅳ、实验步骤1、依次打开微型计算机和SWKY―1型数字控温仪的电源开关,调节SWKY―1型数字控温仪至380℃;按“工作/置数”键使工作指示灯亮,电炉开始通电升温。
2、从微型计算机桌面双击“金属相图1.5”软件,进入软件主界面,点击“设置坐标”,弹出对话框,设置温度范围0~400℃,时间20min。
3、从试管架上取出1号样品管放入电炉加热腔内,待“温度显示Ⅱ”示数(即样品的温度)升至380℃时(整个实验期间要绝对避免温度超过400℃,以免损坏仪器),小心将l号样品管连同测温热电偶移至冷却腔内,把2号样品管放入加热腔内加热。
待“温度显示Ⅱ”示数开始下降时,点击“开始绘图”,金属相图软件会记录1号样品的步冷曲线图,当温度降至140℃,点击“停止绘图”。
点击“保存”,文件名为“实验者姓名―00”,然后将1号样品管放回试管架原位置,将测温探头Ⅱ插入2号样品管内,待温度超过350℃时,小心将2号样品管连同测温热电偶移至冷却腔内,按照1号样品相同步骤冷却绘图,并保存文件名为“实验者姓名―20”。
4、用同样的方法测余下4个样品的步冷曲线图。
(在绘制6号样品图像的同时,把1号样品放在炉腔加热。
) 完毕后关闭SWKY―1型数字控温仪。
5、点击主界面“打开”键,在弹出对话框后选择文件“实验者姓名―00”,用鼠标点击图像,在平台曲线前中后各取1点,读取3点的“纵坐标”并取这3点“纵坐标”的平均值,记录于下表,同时清屏;打开“实验者姓名―100”用鼠标点击图像,在平台曲线前中后各取1点,读取3点的“纵坐标”并取这3点“纵坐标”的平均值,记录于下表,同时清屏;打开“实验者姓名―20”,点击第一拐点,读取并记录拐点温度,并找出该曲线的平台曲线温度,并记录于下表,同时清屏;依次读取“实验者姓名―20”“实验者姓名―40”、“实验者姓名―60”和“实验者姓名―80”的拐点与平台温度。
二组分金属相图实验报告引言相图是研究材料中不同组成和温度下的相变行为的重要工具。
本实验旨在通过实验方法确定二组分金属的相图,并分析其中的相变行为。
本文将详细介绍实验步骤和结果分析。
实验步骤1.准备实验样品:选择两种金属材料作为二组分金属,确保样品的纯度和尺寸一致。
2.预处理样品:将样品进行打磨和清洗,以去除表面的污垢和氧化物。
3.制备样品:根据所选金属的摩尔比例,按照一定量的金属材料进行混合。
4.烧结样品:将混合后的金属样品放入高温炉中进行烧结,以提高样品的致密度和稳定性。
5.测量温度:使用热电偶或红外测温仪测量样品的温度,记录下相变发生的温度。
6.观察样品:在不同温度下,观察样品的形态和颜色变化,记录下不同相变的特征。
7.绘制相图:根据实验结果,绘制出二组分金属相图。
实验结果根据实验步骤进行了一系列实验操作,最终得到了二组分金属的相图。
以下是实验结果的描述:1.样品形态观察:在低温下,样品呈现均匀的颗粒状结构;随着温度的升高,样品颗粒开始融化并形成液相;继续升温,液相逐渐变稀,最终完全蒸发。
2.相变温度测量:通过测量不同温度下的样品温度,确定了相变温度的范围。
在特定温度区间内,观察到样品的相变行为,例如固相到液相的转变。
3.绘制相图:根据实验结果,绘制出了二组分金属的相图。
相图中标注了不同相的温度范围和相变类型,有助于进一步理解材料的组成和结构。
结果分析通过对实验结果的分析,我们可以得出以下结论:1.样品的相变行为受温度影响较大,在一定温度范围内发生相变。
2.不同组成的金属样品可能具有不同的相变温度范围和相变类型。
3.相图的绘制可以帮助我们理解材料的相变行为,进一步研究其性质和应用。
结论本实验通过实验方法确定了二组分金属的相图,并分析了其中的相变行为。
实验结果表明,在特定温度范围内,不同金属组成的样品会发生相变,形成不同的相。
相图的绘制有助于进一步研究材料的性质和应用。
参考文献[参考文献1]:作者1, 标题1, 期刊名1, 年份1. [参考文献2]:作者2, 标题2,期刊名2, 年份2.。
实验六二组分金属相图的绘制
一、实验目的
1.学会用热分析法测绘Sn—Bi二组分金属相图。
2.了解热电偶测量温度和进行热电偶校正的方法。
二、预习要求
1.了解纯物质的步冷曲线和混合物的步冷曲线的形状有何不同,其相变点的温度应如何确定。
2.掌握热电偶测量温度的原理及校正方法。
三、实验原理
测绘金属相图常用的实验方法是热分析法,其原理是将一种金属或合金熔融后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与时间关系的曲线叫步冷曲线。
当熔融体系在均匀冷却过程中无相变化时,其温度将连续均匀下降得到一光滑的冷却曲线;当体系内发生相变时,则因体系产生之相变热与自然冷却时体系放出的热量相抵偿,冷却曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成合金的相变温度。
利用冷却曲线所得到的一系列组成和所对应的相变温度数据,以横轴表示混合物的组成,纵轴上标出开始出现相变的温度,把这些点连接起来,就可绘出相图。
二元简单低共熔体系的冷却曲线具有图1所示的形状。
图1根据步冷曲线绘制相图
图2有过冷现象时的步冷曲线
用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此必须保证冷却速度足够慢才能得到较好的效果。
此外,在冷却过程中,一个新的固相出现以前,常常发生过冷现象,轻微过冷则有利于测量相变温度;但严重过冷现象,却会使折点发生起伏,使相变温度的确定产生困难。
见图2。
遇此情况,可延长dc线与ab线相交,交点e即为转折点。
四、仪器药品
1.仪器
立式加热炉1台;冷却保温炉1台;长图自动平衡记录仪1台;调压器1台;镍铬-镍硅热电偶1副;样品坩埚6个;玻璃套管6只;烧杯(250mL)2个;玻璃棒1只。
2.药品
Sn(化学纯);Bi(化学纯);石腊油;石墨粉。
五、实验步骤
1.热电偶的制备
取60cm长的镍铬丝和镍硅丝各一段,将镍铬丝用小绝缘瓷管穿好,将其一端与镍硅丝的一端紧密地扭合在一起(扭合头为0.5cm),将扭合头稍稍加热立即沾以硼砂粉,并用小火熔化,然后放在高温焰上小心烧结,直到扭头熔成一光滑的小珠,冷却后将硼砂玻璃层除去。
2.样品配制
用感量0.1g的台称分别称取纯Sn、纯Bi各50g,另配制含锡20%、40%、60%、80%的铋锡混合物各50g,分别置于坩埚中,在样品上方各覆盖一层石墨粉。
3.绘制步冷曲线
图3步冷曲线测量装置
1.加热炉;
2.坩埚;
3.玻璃套管;
4.热电偶
(1)将热电偶及测量仪器如图3连接好。
(2)将盛样品的坩埚放入加热炉内加热(控制炉温不超过400℃)。
待样品熔化后停止加热,用玻璃棒将样品搅拌均匀,并将石墨粉拨至样品表面,以防止样品氧化。
(3)将坩埚移至保温炉中冷却,此时热电偶的尖端应置于样品中央,以便反映出体系的真实温度,同时开启记录仪绘制步冷曲线,直至水平线段以下为止。
(4)用上述方法绘制所有样品的步冷曲线。
(5)用小烧杯装一定量的水,在电炉上加热,将热电偶插入水中绘制出当水沸腾时的水平线。
六、注意事项
1.用电炉加热样品时,注意温度要适当,温度过高样品易氧化变质;温度过低或加热时间不够则样品没有全部熔化,步冷曲线转折点测不出。
2.热电偶热端应插到样品中心部位,在套管内注入少量的石腊油,将热电偶浸入油中,以改善其导热情况。
搅拌时要注意勿使热端离开样品,金属熔化后常使热电偶玻璃套管浮起,这些因素都会导致测温点变动,必须消除。
3.在测定一样品时,可将另一待测样品放入加热炉内预热,以便节约时间,合金有两个转折点,必须待第二个转折点测完后方可停止实验,否则须重新测定。
七、数据处理
1.用已知纯Bi、纯Sn的熔点及水的沸点作横坐标,以纯物步冷曲线中的平台温度为纵坐标作图,画出热电偶的工作曲线。
2.找出各步冷曲线中拐点和平台对应的温度值。
3.从热电偶的工作曲线上查出各拐点温度和平台温度,以温度为纵坐标,以组成为横坐标,绘出Sn—Bi合金相图。
【思考问题】
1.对于不同成分的混合物的步冷曲线,其水平段有什么不同?
2.作相图还有哪些方法?。