精选数学物理方法第四版梁昆淼期末总结讲义
- 格式:ppt
- 大小:2.61 MB
- 文档页数:84
《数学物理方法》(Methods of MathematicalPhysics)《数学物理方法》是物理类及光电子类本科专业学生必修的重要基础课,是在《高等数学》课程基础上的一门重要的应用数学类课程,为专业课程的深入学习提供所需的数学方法及工具。
课程内容:复变函数(18学时),付氏变换(20学时),数理方程(26学时)第一篇复变函数(38学时)绪论第一章复变函数基本知识4学时第二章复变函数微分4学时第三章复变函数积分4学时第四章幂级数4学时第五章留数定理及应用简介2学时第六章付里叶级数第七章付里叶变换第八章拉普拉斯变换第二篇数学物理方程(26学时)第九章数理方程的预备知识第十章偏微分方程常见形式第十一章偏微分方程的应用绪 论含 义使用数学的物理——(数学)物理 物理学中的数学——(应用)数学Mathematical Physics方 程1=x{222111c y b x a c y b x a =+=+()t a dtdx= ⎰=)(t a xdt常微分方程0222=⎪⎪⎭⎫ ⎝⎛+x dt x d ω ()C t A x +=ωcos偏微分方程——数学物理方程0222222=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z y x ψψψ ()z y x ,,ψψ=12=x()ψψψψψz y x U zy x m h t h i ,,22222222+⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂-=∂∂()t z y x ,,,ψψ=复 数1. 数的概念的扩充正整数(自然数) 1,2,…运算规则 +,-,×,÷,()2,- 121-=-负 数 0,-1,-2,…整 数 …,-2,-1,0,1,2,…÷ 5.021= 333.031=有理数(分数) 整数、有限小数、无限循环小数414.12=无理数 无限不循环小数 实 数 有理数、无理数i =-1 虚 数y i复 数 实数、虚数、实数+虚数 yi x y x +,,2. 负数的运算符号12-=xi x ±=i 虚数单位,作为运算符号。
《数学物理方法》教学大纲(供物理专业试用)前言一、课程概述1.《数学物理方法》是物理教育专业本科的一门重要的基础课,它是前导课程《高等数学》的延伸,为后继开设的《电动力学》、《量子力学》和《电子技术》等课程提供必需的数学理论知识和计算工具。
本课程在本科物理教育专业中占有重要的地位,本专业学生必须掌握它们的基本内容,否则对后继课的学习将会带来很大困难。
在物理教育专业的所有课程中,本课程是相对难学的一门课,学生应以认真的态度来学好本课程。
2.本课程的主要内容包括复变函数、傅立叶级数、数学物理方程、特殊函数等。
理论力学中常用的变分法,量子力学中用到的群论以及现代物理中用到的非线性微分方程理论等,虽然也属于《数学物理方法》的内容,但在本大纲中不作要求。
可以在后续的选修课中加以介绍。
3.本课程的内容为数学课程,注重逻辑推理和具有一定的系统性和严谨性。
但是,它与其它的数学课有所不同。
本课程内容有很深广的物理背景,实用性很强。
因此,在这门课的教学过程中,不能单纯地追求理论上的完美、严谨,而忽视其应用。
学生在学习时,不必过分地追求一些定理的严格证明、复杂公式的精确推导,更不能死记硬背,而应重视其应用技巧和处理方法。
4.本课程的内容是几代数学家与物理学家进行长期创造性研究的成果,几乎处处都闪耀创新精神的光芒。
教师应当提示学生注意在概念建立、定理提出的过程中所用的创新思维方法,在课堂教学中应尽可能地体现历史上的创造过程,提高学生的创造性思维能力。
二、目的要求1.本课程要求学生对规定的内容有一个总体了解。
掌握其中的基本概念,熟悉一些重要的理论及公式,并使所学到的知识在头脑中形成合理的结构。
2.本课程要求学生能运用学到的基本数学方法解决一类常见的物理问题,能较顺利地学习本专业后继的物理课程。
3.本课程要求学生能熟悉在数学物理方法的创立过程中用过的创新思维方法,如类比、推广、猜想及模型化等,为写出有特色的学年论文和/或毕业论文创造条件。
数学物理方法期末总结目录一、基本概念与理论 (3)1. 数学物理方法概述 (4)1.1 定义与重要性 (5)1.2 历史发展 (6)2. 微积分的应用 (8)2.1 微分在物理学中的应用 (9)2.2 积分在物理学中的应用 (9)3. 线性代数 (10)3.1 向量与矩阵 (12)3.2 线性方程组 (13)3.3 特征值与特征向量 (13)4. 微分方程 (15)4.1 常微分方程 (16)4.2 偏微分方程 (17)二、数值方法与计算 (18)1. 数值分析基础 (19)1.1 误差分析 (21)1.2 置信区间与假设检验 (22)2. 求解方法 (22)2.1 直接法 (23)2.2 迭代法 (25)2.3 分裂法 (25)3. 计算机模拟 (27)3.1 数值实验步骤 (28)3.2 实验数据分析 (29)三、专题研究 (30)1. 波动理论 (31)1.1 波的传播 (32)1.2 驻波与干涉 (34)2. 量子力学基础 (35)2.1 波粒二象性 (36)2.2 薛定谔方程 (37)3. 统计物理 (38)3.1 随机过程 (40)3.2 熵与热力学第二定律 (40)四、课程总结与展望 (41)1. 重点回顾 (42)1.1 核心知识点总结 (43)1.2 学习难点解析 (44)2. 未来发展趋势 (45)2.1 数学物理方法的进步方向 (46)2.2 在现代物理学的应用前景 (47)3. 个人学习体会 (48)3.1 学习过程中的收获 (49)3.2 对未来学习的展望 (51)一、基本概念与理论数学物理方法是将数学工具应用于物理学问题的过程,它包括了数学分析、微分方程、复变函数、概率论等数学分支。
数学物理方法的基本目标是建立物理现象与数学模型之间的联系,通过求解数学模型来揭示物理现象的本质规律。
微分方程是描述自然界中运动变化的数学工具,它将偏微分方程和常微分方程两种形式结合在一起,可以用于求解各种类型的物理问题。
物理学院本科生课程教案单位:物理学院学年度:2017——2018课程名称:数学物理方法课程类型:B使用教材名称:数学物理方法作(译)者:梁昆淼出版社/年度:高等教育出版社/第四版适用专业:物理学、光信息科学与技术、材料物理、应用物理学授课教师:缪炎刚教授考试方式(比重):平时作业20%,期末考试80%物理学院本科生课程教案注:一般的每两个课时为一个教案单元。
每次三课时的可按三课时为一个教案单元。
物理学院本科生课程教案注:一般的每两个课时为一个教案单元。
每次三课时的可按三课时为一个教案单元。
物理学院本科生课程教案注:一般的每两个课时为一个教案单元。
每次三课时的可按三课时为一个教案单元。
物理学院本科生课程教案注:一般的每两个课时为一个教案单元。
每次三课时的可按三课时为一个教案单元。
物理学院本科生课程教案物理学院本科生课程教案注:一般的每两个课时为一个教案单元。
每次三课时的可按三课时为一个教案单元。
物理学院本科生课程教案注:一般的每两个课时为一个教案单元。
每次三课时的可按三课时为一个教案单元。
物理学院本科生课程教案注:一般的每两个课时为一个教案单元。
每次三课时的可按三课时为一个教案单元。
物理学院本科生课程教案注:一般的每两个课时为一个教案单元。
每次三课时的可按三课时为一个教案单元。
物理学院本科生课程教案注:一般的每两个课时为一个教案单元。
每次三课时的可按三课时为一个教案单元。
物理学院本科生课程教案注:一般的每两个课时为一个教案单元。
每次三课时的可按三课时为一个教案单元。
物理学院本科生课程教案注:一般的每两个课时为一个教案单元。
每次三课时的可按三课时为一个教案单元。
物理学院本科生课程教案注:一般的每两个课时为一个教案单元。
每次三课时的可按三课时为一个教案单元。
物理学院本科生课程教案注:一般的每两个课时为一个教案单元。
每次三课时的可按三课时为一个教案单元。
物理学院本科生课程教案注:一般的每两个课时为一个教案单元。
《数学物理方法》(Methods of MathematicalPhysics)《数学物理方法》是物理类及光电子类本科专业学生必修的重要基础课,是在《高等数学》课程基础上的一门重要的应用数学类课程,为专业课程的深入学习提供所需的数学方法及工具。
课程内容:复变函数(18学时),付氏变换(20学时),数理方程(26学时)第一篇复变函数(38学时)绪论第一章复变函数基本知识4学时第二章复变函数微分4学时第三章复变函数积分4学时第四章幂级数4学时第五章留数定理及应用简介2学时第六章付里叶级数第七章付里叶变换第八章拉普拉斯变换第二篇数学物理方程(26学时)第九章数理方程的预备知识第十章偏微分方程常见形式第十一章偏微分方程的应用绪 论含 义使用数学的物理——(数学)物理 物理学中的数学——(应用)数学Mathematical Physics方 程1=x{222111c y b x a c y b x a =+=+()t a dtdx= ⎰=)(t a xdt常微分方程0222=⎪⎪⎭⎫ ⎝⎛+x dt x d ω ()C t A x +=ωcos偏微分方程——数学物理方程0222222=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z y x ψψψ ()z y x ,,ψψ=12=x()ψψψψψz y x U zy x m h t h i ,,22222222+⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂-=∂∂()t z y x ,,,ψψ=复 数1. 数的概念的扩充正整数(自然数) 1,2,…运算规则 +,-,×,÷,()2,- 121-=-负 数 0,-1,-2,…整 数 …,-2,-1,0,1,2,…÷ 5.021= 333.031=有理数(分数) 整数、有限小数、无限循环小数414.12=无理数 无限不循环小数 实 数 有理数、无理数i =-1 虚 数y i复 数 实数、虚数、实数+虚数 yi x y x +,,2. 负数的运算符号12-=xi x ±=i 虚数单位,作为运算符号。