第七章 真核基因表达调控的一般规律
- 格式:ppt
- 大小:6.04 MB
- 文档页数:100
真核生物基因表达的调控远比原核生物复杂,可以发生在DNA水平、转录水平、转录后的修饰、翻译水平和翻译后的修饰等多种不同层次。
但是,最经济、最主要的调控环节仍然是在转录水平上。
DNA水平的调控DNA水平上的调控主要指通过染色体DNA的断裂,删除,扩增,重排,修饰(如甲基化与去甲基化,乙酰化与去乙酰化等)和染色质结构变化等改变基因的数量、结构顺序和活性而控制基因的表达。
转录水平的调控转录水平的调控包括染色质的活化和基因的活化。
通过染色质改型,组蛋白乙酰化,染色质变得疏松化及DNA去甲基化以便被酶和调节蛋白作用,基因的表达受顺式作用元件包括启动子及应答元件,转座元件,增强子,抑制子的调控,同时受反式作用因子包括基本转录因子,上游转录因子和转录调节因子等的调控。
转录后调控转录后调控包括hnRNA的选择性加工运输和RNA编辑在真核生物中,蛋白质基因的转录产物统称为hn RNA,必须经过加工才能成为成熟的mRNA分子。
加工过程包括三个方面:加帽、加尾和去掉内含子。
同一初级转录产物在不同细胞中可以用不同方式剪接加工,形成不同的成熟mRNA分子,使翻译成的蛋白质都可能不同。
转录后的RNA在编码区发生碱基插入,缺失或转换的现象。
翻译水平的调控阻遏蛋白与mRNA结合,可以阻止蛋白质的翻译并使成熟的mRNA变为失活状态贮存起来。
一些调控作用的micRNAh和siRNA 还可以与mRNA作用降解mRNA,阻止其翻译此外,还可以控制mRNA的稳定性和有选择的进行翻译。
翻译后调控直接来自核糖体的线状多肽链是没有功能的,必须经过加工才具有活性。
在蛋白质翻译后的加工过程中,还有一系列的调控机制。
1.蛋白质折叠线性多肽链必须折叠成一定的空间结构,才具有生物学功能。
在细胞中,蛋白质的折叠必须有分子伴侣的作用下才能完成折叠。
2.蛋白酶切割末端切割有些膜蛋白、分泌蛋白,在氨基端具有一段疏水性强的氨基酸序列,称为信号肽,用于前体蛋白质在细胞中的定位。
真核生物基因表达的调控一、生物基因表达的调控的共性首先,我们来看看在生物基因表达调控这一过程中体现的共性和一些基本模式。
1、作用范围。
生物体内的基因分为管家基因和奢侈基因。
管家基因始终表达,奢侈基因只在需要的时候表达,但二者的表达都受到调控。
可见,调控是普遍存在的现象。
2、调控方式。
基因表达有两种调控方式,即正调控与负调控,原核生物和真核生物都离不开这两种模式。
3、调控水平。
一种基因表达的调控可以在多种层面上展开,包括DNA水平、转录水平、转录后加工水平、翻译后加工水平等。
然为节省能量起见,转录的起始阶段往往作为最佳调控位点。
二、真核生物基因表达调控的特点真核生物与原核细胞在结构上就有着诸多不同,这决定了二者在运行方面的迥异途径。
真核生物比原核生物复杂,转录与翻译不同时也不同地,基因组与染色体结构复杂,因而有着更为复杂的调控机制。
1、多层次。
真核生物的基因表达可发生在染色质水平、转录起始水平、转录后水平、翻译水平以及翻译后水平。
2、无操纵子和衰减子。
3、大多数原核生物以负调控为主,而真核生物启动子以正调控为主。
4、个体发育复杂,而受环境影响较小。
真核生物多为多细胞生物,在生长发育过程中,不仅要随细胞内外环境的变化调节基因表达,还要随发育的不同阶段表达不同基因。
前者为短期调控,后者属长期调控。
从整体上看,不可逆的长期调控影响更深远。
三、真核生物基因表达调控的机制介于真核生物表达以多层次性为最主要特点,我们可以分别从它的几个水平着眼,剖析它的调控机制。
1、染色质水平。
真核生物基因组DNA以致密的染色质形式存在,发生在染色质水平的调控也称作转录前水平的调控,产生永久性DNA序列和染色质结构的变化,往往伴随细胞分化。
染色质水平的调控包括染色质丢失、基因扩增、基因重排、染色体DNA的修饰,等等。
a.基因丢失:丢失一段DNA或整条染色体的现象。
在细胞分化过程中,可以通过丢失掉某些基因而去除这些基因的活性。
某些原生动物、线虫、昆虫和甲壳类动物在个体发育中,许多体细胞常常丢失掉整条或部分的染色体,只有将来分化产生生殖细胞的那些细胞一直保留着整套的染色体。
第一部分课程性质与目标一、课程性质和特点《分子生物学》课程是我省高等教育自学考试生物工程专业(独立本科段)的一门重要的专业必修课程,通过本课程的学习要求学生熟知核酸(尤其是DNA)的基本生物化学特性,生物信息的储存、传递与表达过程,特别是基因的一般结构与生物功能,基因表达的调控原理。
掌握分子克隆与DNA重组的基本技术与原理,了解现代分子生物学基本研究方法,了解基因治疗与人类基因组计划、克隆技术的新成果和新进展。
激发学生对生命本质探索的热情,培养具备生命科学的基本知识和较系统的生物技术及其产业化的科学原理和工艺技术过程的基本理论和基本技能,能在生物产业领域的公司、工厂等企业单位从事生物工程及其高新技术产品生产、开发研究和企业经营管理工作的高级应用人才。
本课程在内容上共分十章,第一章介绍了分子生物学研究的主要内容及发展简况。
第二章是染色质、染色体、基因和基因组,重点介绍了遗传物质的分子结构、性质和功能,重点介绍了核酸的结构、功能、变性、复性和杂交等基本概念,也介绍了病毒核酸的相关知识和反义技术特点。
染色质和染色体的形态、组成和功能,基因的概念、功能和基本特征,基因组的概念、结构特点及有关基因组研究中基本理论和内容。
DNA的复制、突变、损伤和修复,主要介绍了DNA复制的过程、基因突变损伤和修复功能转座子结构特征和转座机制、以及遗传重组的机制。
第三、四章主要从动态角度探讨了遗传物质的运动的基本规律。
第三章是转录,重点介绍了转录的基本原理、转录过程及转录后加工过程和机制。
第四章是蛋白质的翻译,内容包括遗传密码、蛋白质合成、蛋白质的运转及蛋白质合成后的折叠和修饰加工,最后从应用的角度介绍了功能蛋白质研究的最新进展。
第五章介绍了分子生物学目前常用的基本研究方法。
第六、七章是基因表达的调控,分别从原核生物和真核生物两方面介绍了基因表达在转录和翻译水平上调控的机制。
第八章主要介绍了一些人类疾病的分子机制,以及基因治疗的概念。
简述真核生物基因表达调控过程真核生物基因表达调控过程是指在真核生物细胞中,如何通过一系列的调控机制,将基因中的遗传信息转化为蛋白质,以实现细胞功能的正常发挥。
基因表达调控过程可以分为转录调控和转录后调控两个阶段。
在转录调控阶段,首先是在细胞核中进行转录。
细胞核中的DNA被RNA聚合酶酶识别并解链,形成单链mRNA。
但并不是所有基因都会被转录,细胞会根据需要选择性地进行转录。
这是通过转录因子的作用来实现的。
转录因子是一类能够与DNA特定序列结合的蛋白质,它们能够促进或抑制转录的进行。
转录因子的结合位点位于启动子区域,当转录因子结合到启动子区域时,会引发一系列的反应,包括启动RNA聚合酶的活性和引导其结合到合适位置上,从而促使转录的进行。
转录因子的表达受到多种因素的调控,如细胞内的信号分子、细胞周期等。
转录后调控是指在mRNA合成后,通过一系列的调控机制来决定其在细胞中的命运。
mRNA在合成后需要经过剪接、修饰和运输等过程。
剪接是指将mRNA中的内含子去除,将外显子进行连接的过程。
通过剪接的不同方式,可以生成不同的mRNA亚型,从而在翻译过程中产生不同的蛋白质。
修饰是指在mRNA上加上帽子和尾巴等化学修饰,这些修饰可以保护mRNA不被降解,并帮助mRNA与翻译机器结合。
运输是指mRNA离开细胞核,进入到细胞质中,进一步参与翻译过程。
这个过程受到RNA结合蛋白的调控。
在翻译过程中,mRNA被核糖体识别并翻译成蛋白质。
这个过程也受到多种调控机制的影响。
一方面,mRNA上的启动子序列会影响翻译的起始位置,从而决定蛋白质的翻译起始位点。
另一方面,mRNA的稳定性也会影响翻译的效率和蛋白质的表达水平。
mRNA 的稳定性受到RNA结合蛋白和非编码RNA的调控。
总的来说,真核生物基因表达调控过程是一个复杂而精细的调控网络。
通过转录调控和转录后调控的相互作用,细胞可以根据内外环境的需要,在不同的时空位置上产生不同类型的蛋白质,以实现细胞功能的正常发挥。