地层孔隙压力与破裂压力的计算方法
- 格式:docx
- 大小:12.24 KB
- 文档页数:1
破裂压力计算概述1引言1.1破裂压力概念地层破裂压力(P B)定义为使地层产生水力裂缝或张开原有裂缝时的井底压力,要实现水力加砂压裂的前提条件是应该有足够的地面泵压使井底目的层地层开裂。
实际生产中通常用破裂压力梯度G B(地层破裂压力P B与地层深度H的比值)表示破裂压力的大小,破裂压力梯度值G B一般由压裂实践统计得出。
地层破裂压力与岩石弹性性质、孔隙压力、天然裂缝发育情况以及该地区的地应力等因素有关。
在压裂施工中的地层破裂压力还可以这样来理解就是裂缝即将开启而未开启时的井底压力;在压裂施工作业中,如果起泵初期压力有比较明显的降落时,那么我们就可以确定出破裂压力来这一数值可用下面这一关系式来描述:地层破裂压力=裂施工作业初期的最高套管压力+层中部的液柱压力1.2破裂压力的获取途径水力压裂是油气井最常用的一种增产措施,而地层破裂压力是压裂设计和施工工艺的一项重要参数,确定该参数正确与否,将关系到能否保证压开地层等问题。
该参数的获取有两种途径:一是进行室内岩石力学实验或井场水力压裂施工;二是从测井资料中提取。
目前,用测井资料估算砂泥岩剖面地层破裂压力的方法与技术较为成熟。
由于碳酸盐岩地层原生孔隙很小,次生孔隙的发育使岩石的刚性大大减弱,并呈现出明显的非均质性与各向异性,同时不同的构造部位受构造应力作用的强度难以确定,最小水平主应力和岩体抗张强度的度量较难,造成用测井资料计算的地层破裂压力精度较低。
碳酸盐岩地层破裂压力与测井响应具有密切的关系。
利用能够反映碳酸盐岩地层基本特性和岩石力学性质的测井信息,预测碳酸盐岩地层的破裂压力是一种经济、简便的可靠途径。
1957年,Hubbert和Willis根据三轴压缩试验,首先提出了地层破裂压力预测模式即H-W模式。
到目前为止,国内外提出了许多预测地层破裂压力的方法。
比较常用的有Eaton法,Stephen法,黄荣樽法等。
1997年Holbrook发表了适于预测张性盆地裂缝扩展压力的一种方法。
在此处键入公式。
六、地层压力计算1、地层孔隙压力和压力梯度(1)地层孔隙压力H g p f p ⨯⨯⨯=-ρ310式中,P p ——地层孔隙压力(在正常压实状态下,地层孔隙压力等于静液柱压力),MPa ; ρf ——地层流体密度,g/cm 3; g ——重力加速度,9.81m/s 2;H ——该点到水平面的重直高度(或等于静液柱高度),m 。
在陆上井中,H 为目的层深度,起始点自转盘方钻杆补心算起,液体密度为钻井液密度ρm ,则,H g p m h ⨯⨯⨯=-ρ310式中,p h ——静液柱压力,MPa ; ρm ——钻井液密度,g/cm 3; H ——目的层深度,m ; g ——重力加速度,9.81m/s 2。
在海上钻井中,液柱高度起始点自钻井液液面(出口管)高度算起,它与方补心高差约为0.6~3.3m ,此高差在浅层地层孔隙压力计算中要引起重视,在深层可忽略不计。
(2)地层孔隙压力梯度HP G Pp =式中 G p ——地层孔隙压力梯度,MPa/m 。
其它单位同上式。
2、上覆岩层压力及上覆岩层压力梯度 (1)上覆岩层压力])1[(1081.93o ρρΦ+Φ-⨯=-m H P式中 P o ——上覆岩层压力,MPa ; H ——目的层深度,m ; Φ——岩石孔隙度,%;ρ——岩层孔隙流体密度,g/cm 3; ρm ——岩石骨架密度,g/cm 3。
(2)上覆岩层压力梯度HP G oo =式中,G o ——上覆岩层压力梯度,MPa/m ;P o ——上覆岩层压力,MPa ; H ——深度(高度),m 。
(3)压力间关系z p P p O σ+=式中,P o ——上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa ;σz ——有效上覆岩层压力(骨架颗粒间压力或垂直的骨架应力),MPa 。
3、地层破裂压力和压力梯度 (1)地层破裂压力(伊顿法)p p z f P P P +--=)(1σμμ式中, P f ——地层破裂压力(为岩石裂缝开裂时的井内流体压力),MPa ; μ——地层的泊松比;σz ——有效上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa 。
在此处键入公式。
六、地层压力计算1、地层孔隙压力和压力梯度(1)地层孔隙压力H g p f p ⨯⨯⨯=-ρ310式中,P p ——地层孔隙压力(在正常压实状态下,地层孔隙压力等于静液柱压力),MPa ; ρf ——地层流体密度,g/cm 3; g ——重力加速度,9.81m/s 2;H ——该点到水平面的重直高度(或等于静液柱高度),m 。
在陆上井中,H 为目的层深度,起始点自转盘方钻杆补心算起,液体密度为钻井液密度ρm ,则,H g p m h ⨯⨯⨯=-ρ310式中,p h ——静液柱压力,MPa ; ρm ——钻井液密度,g/cm 3; H ——目的层深度,m ; g ——重力加速度,9.81m/s 2。
在海上钻井中,液柱高度起始点自钻井液液面(出口管)高度算起,它与方补心高差约为0.6~3.3m ,此高差在浅层地层孔隙压力计算中要引起重视,在深层可忽略不计。
(2)地层孔隙压力梯度HP G Pp =式中 G p ——地层孔隙压力梯度,MPa/m 。
其它单位同上式。
2、上覆岩层压力及上覆岩层压力梯度 (1)上覆岩层压力])1[(1081.93o ρρΦ+Φ-⨯=-m H P式中 P o ——上覆岩层压力,MPa ; H ——目的层深度,m ; Φ——岩石孔隙度,%;ρ——岩层孔隙流体密度,g/cm 3; ρm ——岩石骨架密度,g/cm 3。
(2)上覆岩层压力梯度HP G oo =式中,G o ——上覆岩层压力梯度,MPa/m ;P o ——上覆岩层压力,MPa ; H ——深度(高度),m 。
(3)压力间关系z p P p O σ+=式中,P o ——上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa ;σz ——有效上覆岩层压力(骨架颗粒间压力或垂直的骨架应力),MPa 。
3、地层破裂压力和压力梯度 (1)地层破裂压力(伊顿法)p p z f P P P +--=)(1σμμ式中, P f ——地层破裂压力(为岩石裂缝开裂时的井内流体压力),MPa ; μ——地层的泊松比;σz ——有效上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa 。
在此处键入公式。
六、地层压力计算1、地层孔隙压力和压力梯度(1)地层孔隙压力H g p f p ⨯⨯⨯=-ρ310式中,P p ——地层孔隙压力(在正常压实状态下,地层孔隙压力等于静液柱压力),MPa ; ρf ——地层流体密度,g/cm 3; g ——重力加速度,9.81m/s 2;H ——该点到水平面的重直高度(或等于静液柱高度),m 。
在陆上井中,H 为目的层深度,起始点自转盘方钻杆补心算起,液体密度为钻井液密度ρm ,则,H g p m h ⨯⨯⨯=-ρ310式中,p h ——静液柱压力,MPa ; ρm ——钻井液密度,g/cm 3; H ——目的层深度,m ; g ——重力加速度,9.81m/s 2。
在海上钻井中,液柱高度起始点自钻井液液面(出口管)高度算起,它与方补心高差约为0.6~3.3m ,此高差在浅层地层孔隙压力计算中要引起重视,在深层可忽略不计。
(2)地层孔隙压力梯度HP G Pp =式中 G p ——地层孔隙压力梯度,MPa/m 。
其它单位同上式。
2、上覆岩层压力及上覆岩层压力梯度 (1)上覆岩层压力])1[(1081.93o ρρΦ+Φ-⨯=-m H P式中 P o ——上覆岩层压力,MPa ; H ——目的层深度,m ; Φ——岩石孔隙度,%;ρ——岩层孔隙流体密度,g/cm 3; ρm ——岩石骨架密度,g/cm 3。
(2)上覆岩层压力梯度HP G oo =式中,G o ——上覆岩层压力梯度,MPa/m ;P o ——上覆岩层压力,MPa ; H ——深度(高度),m 。
(3)压力间关系z p P p O σ+=式中,P o ——上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa ;σz ——有效上覆岩层压力(骨架颗粒间压力或垂直的骨架应力),MPa 。
3、地层破裂压力和压力梯度 (1)地层破裂压力(伊顿法)p p z f P P P +--=)(1σμμ式中, P f ——地层破裂压力(为岩石裂缝开裂时的井内流体压力),MPa ; μ——地层的泊松比;σz ——有效上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa 。
破裂压力计算概述1引言1.1破裂压力概念地层破裂压力(PB)定义为使地层产生水力裂缝或张开原有裂缝时的井底压力,要实现水力加砂压裂的前提条件是应该有足够的地面泵压使井底目的层地层开裂。
实际生产中通常用破裂压力梯度GB (地层破裂压力PB与地层深度H的比值)表示破裂压力的大小,破裂压力梯度值GB一般由压裂实践统计得出。
地层破裂压力与岩石弹性性质、孔隙压力、天然裂缝发育情况以及该地区的地应力等因素有关。
在压裂施工中的地层破裂压力还可以这样来理解就是裂缝即将开启而未开启时的井底压力;在压裂施工作业中,如果起泵初期压力有比较明显的降落时,那么我们就可以确定出破裂压力来这一数值可用下面这一关系式来描述:地层破裂压力=裂施工作业初期的最高套管压力+层中部的液柱压力1.2破裂压力的获取途径水力压裂是油气井最常用的一种增产措施,而地层破裂压力是压裂设计和施工工艺的一项重要参数,确定该参数正确与否,将关系到能否保证压开地层等问题。
该参数的获取有两种途径:一是进行室内岩石力学实验或井场水力压裂施工;二是从测井资料中提取。
目前,用测井资料估算砂泥岩剖面地层破裂压力的方法与技术较为成熟。
由于碳酸盐岩地层原生孔隙很小,次生孔隙的发育使岩石的刚性大大减弱,并呈现出明显的非均质性与各向异性,同时不同的构造部位受构造应力作用的强度难以确定,最小水平主应力和岩体抗张强度的度量较难,造成用测井资料计算的地层破裂压力精度较低。
碳酸盐岩地层破裂压力与测井响应具有密切的关系。
利用能够反映碳酸盐岩地层基本特性和岩石力学性质的测井信息,预测碳酸盐岩地层的破裂压力是一种经济、简便的可靠途径。
1957年,Hubbert和Willis根据三轴压缩试验,首先提出了地层破裂压力预测模式即H-W模式。
到目前为止,国内外提出了许多预测地层破裂压力的方法。
比较常用的有Eaton法,Stephen法,黄荣樽法等。
1997年Holbrook发表了适于预测张性盆地裂缝扩展压力的一种方法。
钻井常用计算公式•、地层压力计算1、静液柱压力(MPa)=P(粘井液密度)*0.00981*H(垂深m)2、压力梯度值(MPa)=p(钻井液密度)*0.009813、单位内容积(r∩3Λn>=7.854*10-5*内径2(Cm)4、单位环空容积(m3∕m)=7.854*10^5*(井径2cm-管柱外径2cm)5、容积(m?)=单位内容积(m3∕m)*长度(m)管柱单位排音量(mVm)=7.854*10^5*(外径2cm内径2cm)6、地层压力(MPa)=钻具静液柱压力+关井立压7、压井钻井液密度(g∕c11p>=(关井立压Mpa/O.00981/11(m))+当前井液P(gcm3)8、初始循环压力=关井立压+底泵速泵压9、终止循环压力=(压力井液p/当前井液p)*低泵速泵压10、溢流长度m;钻井液增量m3/环空单位容积m3∕m11、溢流密度p(g∕cm3)=当前井液P-[(套压MPa-立压Mpa)/(溢流长度m*0.00981)]12、当量循环密度p(g/cm3)-(环空循环压力损失Mpa/O.00981/垂深m)+当前井液P13、当量钻井液P(g4zm3)-总压力Mpa/O.00981/垂深m14、孔隙压力MPa=9.81*Wf(地瓜水平均密度g∕cmυ*H(垂高m)15、上覆岩层压力(Mpa)=(岩石基质重量+流体重量)/面积[9.81*[(卜-。
岩石孔隙度%)*pm岩石基颓密度Hem3+4>*p岩石孔隙中流体密度g/cnP]16、地层破裂压力梯度(Mpa)=Pf(破裂地层压力Mpa)/H(破裂地层垂直深度m>Pf(破裂地层压力Mpa)=Ph(液柱压力Mpa)+P(破裂实验时的立管压力MPa)二、喷射钻井计算公式1、射流喷射速度计算相同直径喷嘴VOU1.2.73*Q(通过喷嘴液体排量1.∕S)∕n(喷嘴个数)*dc>2(喷嘴直径Cm)不相同直径喷喷Vo=12.73*Q(通过喷嘴液体排量1.∕S)/de?(喷嘴当量直径Cm)试中:de喷喷当量直径(cm)计算等喷嘴直径de-(根号n喷嘴个数)*d。
地层破裂压力和地层坍塌压力预测新算法地层岩石作为一种多孔两相固体物质,其应力分析与普通单相固体物质是有区别的,但是,在我们目前所使用的地层岩石应力分析模型、理论中,都有意或无意地使用了单相固体应力分析的方法。
为了分析两者的区别,在这里我们首先引入有效应力的概念。
有效应力的概念是由李传亮老师首先提出来的,该理论认为岩石由两个有效应力:本体有效应力和结构有效应力。
本体有效应力决定岩石的本体变形,结构有效应力决定岩石的结构变形。
p s P .1Φ+-=σφσ)( (1)p s P P .)1(eff φσσφσ-=-= (2)p c c c P .1φσφσ+-=)( (3) p c c c s P .)1( eff φσσφσ-=-= (4)式中:σ——上覆地层压力;s σ——岩石骨架应力; c σ——岩石接触应力;eff P σ——岩石本体有效应力;eff s σ——岩石结构有效应力;φ——岩石孔隙度;c φ——岩石触点孔隙度;(φ=c φ)P p ——岩石空隙流体压力。
有效应力通过孔隙度把普通材料和多孔介质统一起来了,有效应力计算公式中的孔隙度反映了孔隙压力对有效应力的贡献权值。
在地应力分析中,我们所指的应力是结构有效应力。
(1)借助结构有效应力公式,我们首先分析在非均匀地应力作用下井眼周围周向结构有效应力和径向结构有效应力分布规律。
θφσφσφσφσσθ2cos )31(2).().()1(2).().(4422rr p p r r p p wp c h p c H w p c h p c H eff s +---++-+--=(5)式中:θσeff s ——距井轴r 距离并与H σ按逆时针方向成θ角处的周向结构有效应力。
p C p C b H P P P A .).)(1(0φφμμσ+-+-= (6)p C p C b h P P P B .).)(1(0φφμμσ+-+-= (7)μ——岩石泊松系数;A ,B ——构造应力系数(构造应力系数对于不同的地质构造是不同的,但在统一构造断块内部,它是一个常数,且不随地层深度变化);P P ——地层孔隙流体压力; bP 0——上覆地层压力。
. . 在此处键入公式。
六、地层压力计算1、地层孔隙压力和压力梯度(1)地层孔隙压力H g p f p ⨯⨯⨯=-ρ310式中,P p ——地层孔隙压力(在正常压实状态下,地层孔隙压力等于静液柱压力),MPa ; ρf ——地层流体密度,g/cm 3; g ——重力加速度,9.81m/s 2;H ——该点到水平面的重直高度(或等于静液柱高度),m 。
在陆上井中,H 为目的层深度,起始点自转盘方钻杆补心算起,液体密度为钻井液密度ρm ,则,H g p m h ⨯⨯⨯=-ρ310式中,p h ——静液柱压力,MPa ; ρm ——钻井液密度,g/cm 3; H ——目的层深度,m ; g ——重力加速度,9.81m/s 2。
在海上钻井中,液柱高度起始点自钻井液液面(出口管)高度算起,它与方补心高差约为0.6~3.3m ,此高差在浅层地层孔隙压力计算中要引起重视,在深层可忽略不计。
(2)地层孔隙压力梯度HP G P p =式中 G p ——地层孔隙压力梯度,MPa/m 。
其它单位同上式。
2、上覆岩层压力及上覆岩层压力梯度 (1)上覆岩层压力])1[(1081.93o ρρΦ+Φ-⨯=-m H P式中 P o ——上覆岩层压力,MPa ; H ——目的层深度,m ; Φ——岩石孔隙度,%;ρ——岩层孔隙流体密度,g/cm 3; ρm ——岩石骨架密度,g/cm 3。
(2)上覆岩层压力梯度HP G oo =式中,G o ——上覆岩层压力梯度,MPa/m ;P o ——上覆岩层压力,MPa ; H ——深度(高度),m 。
(3)压力间关系. . z p P p O σ+=式中,P o ——上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa ;σz ——有效上覆岩层压力(骨架颗粒间压力或垂直的骨架应力),MPa 。
3、地层破裂压力和压力梯度 (1)地层破裂压力(伊顿法)p p z f P P P +--=)(1σμμ式中, P f ——地层破裂压力(为岩石裂缝开裂时的井流体压力),MPa ; μ——地层的泊松比;σz ——有效上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa 。
破裂压力计算概述1引言1.1破裂压力概念地层破裂压力(PB)定义为使地层产生水力裂缝或张开原有裂缝时的井底压力,要实现水力加砂压裂的前提条件是应该有足够的地面泵压使井底目的层地层开裂。
实际生产中通常用破裂压力梯度GB(地层破裂压力PB与地层深度H的比值)表示破裂压力的大小,破裂压力梯度值GB一般由压裂实践统计得出。
地层破裂压力与岩石弹性性质、孔隙压力、天然裂缝发育情况以及该地区的地应力等因素有关。
在压裂施工中的地层破裂压力还可以这样来理解就是裂缝即将开启而未开启时的井底压力;在压裂施工作业中,如果起泵初期压力有比较明显的降落时,那么我们就可以确定出破裂压力来这一数值可用下面这一关系式来描述:地层破裂压力=裂施工作业初期的最高套管压力+层中部的液柱压力1.2破裂压力的获取途径水力压裂是油气井最常用的一种增产措施,而地层破裂压力是压裂设计和施工工艺的一项重要参数,确定该参数正确与否,将关系到能否保证压开地层等问题。
该参数的获取有两种途径:一是进行室内岩石力学实验或井场水力压裂施工;二是从测井资料中提取。
目前,用测井资料估算砂泥岩剖面地层破裂压力的方法与技术较为成熟。
由于碳酸盐岩地层原生孔隙很小,次生孔隙的发育使岩石的刚性大大减弱,并呈现出明显的非均质性与各向异性,同时不同的构造部位受构造应力作用的强度难以确定,最小水平主应力和岩体抗张强度的度量较难,造成用测井资料计算的地层破裂压力精度较低。
碳酸盐岩地层破裂压力与测井响应具有密切的关系。
利用能够反映碳酸盐岩地层基本特性和岩石力学性质的测井信息,预测碳酸盐岩地层的破裂压力是一种经济、简便的可靠途径。
1957年,Hubbert和Willis根据三轴压缩试验,首先提出了地层破裂压力预测模式即H-W模式。
到目前为止,国内外提出了许多预测地层破裂压力的方法。
比较常用的有Eaton法,Stephen法,黄荣樽法等。
1997年Holbrook发表了适于预测张性盆地裂缝扩展压力的一种方法。
在此处键入公式。
六、地层压力计算1、地层孔隙压力和压力梯度(1)地层孔隙压力H g p f p ⨯⨯⨯=-ρ310式中,P p ——地层孔隙压力(在正常压实状态下,地层孔隙压力等于静液柱压力),MPa ; ρf ——地层流体密度,g/cm 3; g ——重力加速度,9.81m/s 2;H ——该点到水平面的重直高度(或等于静液柱高度),m 。
在陆上井中,H 为目的层深度,起始点自转盘方钻杆补心算起,液体密度为钻井液密度ρm ,则,H g p m h ⨯⨯⨯=-ρ310式中,p h ——静液柱压力,MPa ; ρm ——钻井液密度,g/cm 3; H ——目的层深度,m ; g ——重力加速度,9.81m/s 2。
在海上钻井中,液柱高度起始点自钻井液液面(出口管)高度算起,它与方补心高差约为0.6~3.3m ,此高差在浅层地层孔隙压力计算中要引起重视,在深层可忽略不计。
(2)地层孔隙压力梯度HP G Pp =式中 G p ——地层孔隙压力梯度,MPa/m 。
其它单位同上式。
2、上覆岩层压力及上覆岩层压力梯度 (1)上覆岩层压力])1[(1081.93o ρρΦ+Φ-⨯=-m H P式中 P o ——上覆岩层压力,MPa ; H ——目的层深度,m ; Φ——岩石孔隙度,%;ρ——岩层孔隙流体密度,g/cm 3; ρm ——岩石骨架密度,g/cm 3。
(2)上覆岩层压力梯度HP G oo =式中,G o ——上覆岩层压力梯度,MPa/m ;P o ——上覆岩层压力,MPa ; H ——深度(高度),m 。
(3)压力间关系z p P p O σ+=式中,P o ——上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa ;σz ——有效上覆岩层压力(骨架颗粒间压力或垂直的骨架应力),MPa 。
3、地层破裂压力和压力梯度 (1)地层破裂压力(伊顿法)p p z f P P P +--=)(1σμμ式中, P f ——地层破裂压力(为岩石裂缝开裂时的井内流体压力),MPa ; μ——地层的泊松比;σz ——有效上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa 。
破裂压力计算概述1引言1.1破裂压力概念地层破裂压力(P B)定义为使地层产生水力裂缝或张开原有裂缝时的井底压力,要实现水力加砂压裂的前提条件是应该有足够的地面泵压使井底目的层地层开裂。
实际生产中通常用破裂压力梯度G B(地层破裂压力P B与地层深度H的比值)表示破裂压力的大小,破裂压力梯度值G B一般由压裂实践统计得出。
地层破裂压力与岩石弹性性质、孔隙压力、天然裂缝发育情况以及该地区的地应力等因素有关。
在压裂施工中的地层破裂压力还可以这样来理解就是裂缝即将开启而未开启时的井底压力;在压裂施工作业中,如果起泵初期压力有比较明显的降落时,那么我们就可以确定出破裂压力来这一数值可用下面这一关系式来描述:地层破裂压力=裂施工作业初期的最高套管压力+层中部的液柱压力1.2破裂压力的获取途径水力压裂是油气井最常用的一种增产措施,而地层破裂压力是压裂设计和施工工艺的一项重要参数,确定该参数正确与否,将关系到能否保证压开地层等问题。
该参数的获取有两种途径:一是进行室内岩石力学实验或井场水力压裂施工;二是从测井资料中提取。
目前,用测井资料估算砂泥岩剖面地层破裂压力的方法与技术较为成熟。
由于碳酸盐岩地层原生孔隙很小,次生孔隙的发育使岩石的刚性大大减弱,并呈现出明显的非均质性与各向异性,同时不同的构造部位受构造应力作用的强度难以确定,最小水平主应力和岩体抗张强度的度量较难,造成用测井资料计算的地层破裂压力精度较低。
碳酸盐岩地层破裂压力与测井响应具有密切的关系。
利用能够反映碳酸盐岩地层基本特性和岩石力学性质的测井信息,预测碳酸盐岩地层的破裂压力是一种经济、简便的可靠途径。
1957年,Hubbert和Willis根据三轴压缩试验,首先提出了地层破裂压力预测模式即H-W模式。
到目前为止,国内外提出了许多预测地层破裂压力的方法。
比较常用的有Eaton法,Stephen法,黄荣樽法等。
1997年Holbrook发表了适于预测张性盆地裂缝扩展压力的一种方法。