人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)
- 格式:docx
- 大小:38.38 KB
- 文档页数:7
沪科版七年级下册数学第6章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共24分)1.和数轴上的点一一对应的数是()A. 整数B. 有理数C. 无理数D. 实数2.等于()A. aB. -aC. ±aD. 以上答案都不对3.在四个实数2,0,﹣,﹣中,最小实数的倒数是()A. 0B. ﹣2C.D. ﹣4.若,且a在两个相邻整数之间,则这两个整数是A. 1和2B. 2和3C. 3和4D. 4和55.﹣8的立方根是()A. 2B. -2C. ±2D.6.如图,数轴上的A、B、C、D四点中,与表示数﹣的点最接近的是()A. 点AB. 点BC. 点CD. 点D7.大于-0.5而小于的整数共有( )A. 6个B. 5个C. 4个D. 3个8.实数5的相反数是()A. B. - C. -5 D. 59.2的算术平方根是()A. 4B. ±4C.D.10.小马虎做了下列四道题:① = ;②2+ =2 ;③ = ﹣=5﹣3=2;④ =﹣.他拿给好朋友聪聪看,聪聪告诉他只做对了()A. 4道B. 3道C. 2道D. 1道11.若6-的整数部分为x,小数部分为y,则(2x+)y的值是( )A. 5-3B. 3C. 3 -5D. -312.下列命题中正确的是()①0.027的立方根是0.3;② 不可能是负数;③如果a是b的立方根,那么ab≥0;④一个数的平方根与其立方根相同,则这个数是1.A. ①③B. ②④C. ①④D. ③④二、填空题(共10题;共22分)13.的立方根是________.14.4的算术平方根是________.15.写出一个小于﹣1无理数,这个无理数可以是________.16.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,-a,-b中最大的是________。
2022-2023学年人教版七年级数学下册《6.1平方根》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.64的平方根是()A.8B.±8C.4D.±42.下列计算正确的是()A.B.=±4C.=﹣4D.=43.的算术平方根是()A.B.C.D.4.若,则m n的值是()A.﹣1B.0C.1D.25.下列说法:(1)±3是9的平方根;(2)9的平方根是±3;(3)3是9的平方根;(4)9的平方根是3,其中正确的是()A.3个B.2个C.1个D.4个6.一个自然数的一个平方根是a,则与它相邻的上一个自然数的平方根是()A.±B.a﹣1C.a2﹣1D.±7.已知与是一个正数的平方根,则这个正数是()A.1或9B.3C.1D.818.有一个数值转换器,原理如图所示:当输入的x=64时,输出的值是()A.2B.8C.D.2二.填空题(共8小题,满分40分)9.=;的算术平方根为.10.若,则xy的算术平方根是.11.若≈10.1,=3.19,则≈.12.小杰卧室地板的总面积为16平方米,恰好由64块相同的正方形的地板砖铺成,则每块地板砖的边长是米.(答案用小数表示)13.2m﹣4和6﹣m是正数a的两个平方根,则a的值为.14.如图,一个长方形被分割成四部分,其中图形①,②,③都是正方形,且正方形①,③的面积分别为16和3,则图中阴影部分的面积为.15.一个数值转换器,如图所示:8①当输入的x为2时,输出的y值是.②当输出的y值为时,请写出两个满足条件的x的值为和.16.观察等式2;3;4;…;根据规律写出第(n ﹣1)个等式为(n为自然数,且n≥2).三.解答题(共9小题,满分40分)17.求x的值.(1)8(x+1)2=27;(2)4x2﹣16=0.18.已知3b+3的平方根为±3,3a+b的算术平方根为5.(1)求a,b的值;(2)求4a﹣6b的平方根.19.(1)观察各式:≈0.1732,≈1.732,≈17.32…发现规律:被开方数的小数点每向右移动位,其算术平方根的小数点向移动位;(2)应用:已知≈2.236,则≈,≈;(3)拓展:已知≈2.449,≈7.746,计算和的值.20.交通警察通常根据刹车时后车轮滑过的距离估计车辆行驶的速度.在某高速公路上,常用的计算公式是v2=256(df+1),其中v表示车速(单位:km/h),d表示刹车后车轮滑过的距离(单位:m),f表示摩擦系数,f=1.25.在调查这条高速公路的一次交通事故中,测得d=19.2m,求肇事汽车的速度大约是多少.21.如图,某校规划一块正方形场地ABCD,设计分别与AB,AD平行的横向通道和纵向通道,其余部分铺上草皮,这4块草坪为相同的长方形,每块草坪的长与宽之比是10:9,且草坪的总面积为90m².(1)求每块草坪的长为多少m?(2)若横向通道的宽是纵向通道的宽的3倍,求纵向通道的宽为多少m?22.为了切实减轻学生的课业负担,各地中小学积极响应,开展一系列形式多样的课后服务.某次晚托兴趣活动中:(1)小红用两个大小一样的小正方形纸片,剪拼出了一个面积400cm2的大正方形纸片.如图,则每个小正方形的边长是;(2)小美想用这块面积为400cm2的大正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为6:5,且要求长方形的四周至少留出1cm的边框.请你用所学过的知识来说明,能否用这块纸片裁出符合要求的纸片.参考答案一.选择题(共8小题,满分40分)1.解:64的平方根是±8,故选:B.2.解:A、±=±4,故A错误;B、=4,故B错误;C、负数没有算术平方根,故C错误;D、=4,故D正确.故选:D.3.解:原式=,的算术平方根是,故选:A.4.解:∵(m+1)2≥0,,∴当,则m+1=0,n﹣2=0.∴m=﹣1,n=2.∴m n=(﹣1)2=1.故选:C.5.解:由于9的平方根有两个,是3和﹣3,因此(1)±3是9的平方根,是正确的;(2)9的平方根是±3是正确的;(3)3是9的平方根是正确的;(4)9的平方根是3是错误的;综上所述正确的有:(1)(2)(3),共3个,故选:A.6.解:∵一个自然数的一个平方根是a,∴这个自然数是a2,∴与这个自然数相邻的上一个自然数是a2﹣1,∴与这个自然数相邻的上一个自然数的平方根是±,故选:D.7.解:∵≥0,≥0,而与是一个正数的平方根,∴=,即2a﹣1=﹣a+2,解得a=1,当a=1时,==1,∴这个正数是1,故选:C.8.解:当x=64时,∴=8,是有理数,∴=2,是无理数,∴输出的值是2,故选:D.二.填空题(共8小题,满分40分)9.解:=±7;∵=4,∴的算术平方根为2.故答案为:±7,2.10.解:∵,|3x﹣1|≥0,,∴3x﹣1=0,y﹣3=0,解得x=,y=3,∴xy==1,∴xy的算术平方根是.故答案为:1.11.解:==≈=1.01,故答案为:1.01.12.解:由题意知,每块地板砖的面积为16÷64=0.25(平方米),则每块地板砖的边长是=0.5(米),故答案为:0.5.13.解:∵2m﹣4和6﹣m是正数a的两个平方根,∴2m﹣4+(6﹣m)=0,解得m=﹣2,所以这两个平方根分别为:﹣8、8,∴a=64,故答案为:64.14.解:正方形①的边长是=4,正方形③的边长是,正方形②的边长是(4﹣),即阴影的宽是()=,阴影的长是:×()=,故答案为:.15.解:(1)当x=2时,输出y=.故答案为:;(2)当x=3时,y=,当x=9时,=3,3是有理数,不能输出,是无理数,y=;故答案可为:3;9.16.解:∵2;3;4;…;∴第(n﹣1)个等式为n(n为自然数,且n≥2),故答案为:n.三.解答题(共5小题,满分40分)17.解:(1)8(x+1)2=27,(x+1)2=,x+1=±,∴x=﹣1+或x=﹣1﹣;(2)4x2﹣16=0,4x2=16,x2=4,∴x=±2.18.解:(1)∵3b+3的平方根为±3,∴3b+3=9,解得b=2,∵3a+b的算术平方根为5,∴3a+b=25,∵b=2,∴a=,(2)∵a=,b=2,∴4a﹣6b=,∴4a﹣6b的平方根为.19.解:(1)观察各式:≈0.1732,≈1.732,≈17.32…发现规律:被开方数的小数点每向右移动2位,其算术平方根的小数点向右移动1位;故答案为:2,右,1;(2)应用:已知≈2.236,则≈0.2236,≈22.36;故答案为:0.2236,22.36;(3)==≈2×7.746≈15.492,==×≈3×0.2449≈0.7347.20.解:将d=19.2m,f=1.25代入v2=256(df+1),得v2=256×(19.2×1.25+1)=6400,∴v=.答:肇事汽车的速度大约是80km/h.21.解:(1)设每块草坪的长为10xm,宽为9xm,根据题意得10x•9x=×90,解之得x=±0.5,∵x>0,∴x=0.5,∴10x=5;答:每块草坪的长为5m;(2)设纵向通道的宽为ym,则横向通道的宽为3ym,根据题意得3y+9×0.5×2=y+5×2,解之得y=0.5.答:纵向通道的宽为0.5m.22.解:(1)由拼图可知,每个小正方形的面积为200cm2,所以小正方形的边长为=10(cm),故答案为:10cm;(2)不能,理由:设长方形的长为6a,则宽为5a,由长方形的面积可得,6a•5a=300,解得a=(a>0),所以这个长方形的长为6,宽为5,因为6+2>20,所以,不能剪出符合条件的长方形.。
实数的运算及大小比较一、中考题回顾1.(2016·河北中考)点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .对于以下结论:甲:b -a <0; 乙:a +b >0;丙:|a |<|b |; 丁:b a >0.其中正确的是( )A .甲乙B .丙丁C .甲丙D .乙丁2.(2017·河北中考)对于实数p ,q ,我们用符号最小{p ,q }表示p ,q 两数中较小的数,如最小{1,2}=1.因此,最小{-2 ,-3 }= ;若最小{(x -1)2,x 2}=1,则x = .3.(2017·河北中考)下列运算结果为正数的是( )A .(-3)2B .-3÷2C .0×(-2 017)D .2-34.(2016·河北中考)计算:-(-1)=( )A .±1B .-2C .-1D .15.(2015·河北中考)计算:3-2×(-1)=( )A .5B .1C .-1D .66.(2017·河北中考)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4+4-4 =6B .4+40+40=6C .4+34+4 =6D .4-1÷4 +4=67.(2013·河北中考)下列运算中,正确的是( )A .9 =±3B .3-8 =2C .(-2)0=0D .2-1=128.(2016·河北中考)8的立方根为 .9.(2019·河北中考)有个填写运算符号的游戏:在“1 2 6 9”中的每个 内,填入+,-,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2-6-9;(2)若1÷2×6 9=-6,请推算 内的符号;(3)在“1 2 6-9”的 内填入符号后,使计算所得数最小,直接写出这个最小数.10.(2018·河北中考)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和;发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.11.(2017·河北中考)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示.设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p 又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.12.(河北中考)利用运算律有时能进行简便计算.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×11845 +999×⎝ ⎛⎭⎪⎫-15 -999×1835 .二、考点解析实数的运算【例1】(1)4的平方根是 ; (2)3-27 的绝对值是 ;(3)|-9|的平方根是 .【例2】(2020·石家庄市模拟)计算: 181+3-27 +(-2)2 +(-1)2 020. 1.(2020·衡阳中考)下列各式中正确的是( )A .-|-2|=2B .4 =±2C .39 =3D .30=12.(2020·邢台市模拟)若4是数a 的平方根.则a = .3.(2020·河北中考样题)若正数m 的平方根为x +1和x -3,则m = .4.计算:|2 -1|+2sin 45°-8 +tan 260°.实数的大小比较【例3】(2020·遵化市模拟)下列实数中最大的是()A.32B.|-5|C.15D.π5.(2020·石家庄市模拟)在-3,-1,1,3四个数中,比2大的数是() A.-3 B.-1C.1 D.3,6.(2020·邢台市一模)若a表示正整数,且15.1<a<332,则a的值是()A.3 B.4 C.15 D.167.(2020·枣庄中考)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0C.a+b>0 D.1-a>1与数轴有关的运算【例4】(2020·唐山市一模)如图,数轴上A,B,C,D,E五个点表示连续的五个整数a,b,c,d,e,且a+e=0,则下列说法:①点C表示的数是0;②b+d=0;③e=-2;④a+b+c+d+e=0.正确的有()A.都正确B.只有①③正确C.只有①②③正确D.只有③不正确8.(2020·邯郸丛台区一模)如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a,c满足|a+3|+(c-5)2=0.(1)a =________,b =________,c =________;(2)若将数轴折叠,使得点A 与点C 重合,则点B 与数________表示的点重合;(3)点A ,B ,C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t s 过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________;(用含t 的代数式表示)(4)请问:3BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.实数的运算及大小比较一、中考题回顾1.(2016·河北中考)点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .对于以下结论:甲:b -a <0; 乙:a +b >0;丙:|a |<|b |; 丁:b a >0.其中正确的是(C )A .甲乙B .丙丁C .甲丙D .乙丁2.(2017·河北中考)对于实数p,q,我们用符号最小{p,q}表示p,q两数中较小的数,如最小{1,2}=1.因此,最小{-2,-3}=-3;若最小{(x-1)2,x2}=1,则x=-1或2.3.(2017·河北中考)下列运算结果为正数的是(A)A.(-3)2B.-3÷2C.0×(-2 017) D.2-34.(2016·河北中考)计算:-(-1)=(D)A.±1 B.-2 C.-1 D.15.(2015·河北中考)计算:3-2×(-1)=(A)A.5 B.1 C.-1 D.66.(2017·河北中考)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是(D)A.4+4-4=6B.4+40+40=6C .4+34+4 =6D .4-1÷4 +4=67.(2013·河北中考)下列运算中,正确的是(D )A .9 =±3B .3-8 =2C .(-2)0=0D .2-1=128.(2016·河北中考)8的立方根为2.9.(2019·河北中考)有个填写运算符号的游戏:在“1 2 6 9”中的每个 内,填入+,-,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2-6-9;(2)若1÷2×6 9=-6,请推算 内的符号;(3)在“1 2 6-9”的 内填入符号后,使计算所得数最小,直接写出这个最小数.解:(1)原式=3-6-9=-12;(2)∵1÷2×6=3,∴3 9=-6. ∴ 内的符号是“-”;(3)-20.10.(2018·河北中考)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试 (1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和;发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.解:尝试(1)-5-2+1+9=3;(2)由题意,得-5-2+1+9=-2+1+9+x.解得x=-5;应用与(2)同理,得第6个到第8个台阶上的数依次是-2,1,9,可见台阶上的数从下到上按-5,-2,1,9四个数依次循环排列.∵31=7×4+3,∴前31个台阶上数的和为7×3+(-5-2+1)=15;发现4k-1.11.(2017·河北中考)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示.设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p 又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.解:(1)若以B为原点,则点A,C分别对应-2,1,∴p=-2+0+1=-1;若以C为原点,则点A,B分别对应-3,-1,∴p=-3-1+0=-4;(2)若原点O在图中数轴上点C的右边,且CO=28,则点A,B,C分别对应-31,-29,-28,∴p =-31-29-28=-88.12.(河北中考)利用运算律有时能进行简便计算.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×11845 +999×⎝ ⎛⎭⎪⎫-15 -999×1835 . 解:(1)原式=(1 000-1)×(-15)=-15 000+15=-14 985;(2)原式=999×⎣⎢⎡⎦⎥⎤11845+⎝ ⎛⎭⎪⎫-15-1835 =999×100=99 900.二、考点解析实数的运算【例1】(1)4的平方根是±2;(2)3-27 的绝对值是3;(3)|-9|的平方根是±3.【例2】(2020·石家庄市模拟)计算:181+3-27+(-2)2+(-1)2 020.1.(2020·衡阳中考)下列各式中正确的是(D) A.-|-2|=2 B.4=±2C.39=3 D.30=12.(2020·邢台市模拟)若4是数a的平方根.则a=16. 3.(2020·河北中考样题)若正数m的平方根为x+1和x-3,则m=4.4.计算:|2-1|+2sin 45°-8+tan260°.解:原式=2-1+2×22-22+(3)2=2-1+2-22+3=2.实数的大小比较【例3】(2020·遵化市模拟)下列实数中最大的是(B)A.32B.|-5|C.15D.π5.(2020·石家庄市模拟)在-3,-1,1,3四个数中,比2大的数是(D) A.-3 B.-1C.1 D.3,6.(2020·邢台市一模)若a表示正整数,且15.1<a<332,则a的值是(B)A.3 B.4 C.15 D.167.(2020·枣庄中考)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是(D)A.|a|<1 B.ab>0C.a+b>0 D.1-a>1与数轴有关的运算【例4】(2020·唐山市一模)如图,数轴上A,B,C,D,E五个点表示连续的五个整数a,b,c,d,e,且a+e=0,则下列说法:①点C表示的数是0;②b+d=0;③e=-2;④a+b+c+d+e=0.正确的有(D)A.都正确B.只有①③正确C.只有①②③正确D.只有③不正确8.(2020·邯郸丛台区一模)如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a,c满足|a+3|+(c-5)2=0.(1)a=________,b=________,c=________;(2)若将数轴折叠,使得点A与点C重合,则点B与数________表示的点重合;(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t s 过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=________,BC=________;(用含t的代数式表示)(4)请问:3BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.解:(1)-3;-1;5;(2)3;[a+c-b=-3+5-(-1)=3.](3)3t+2;t+6;[t s过后,点A表示的数为-t-3,点B表示的数为2t-1,点C表示的数为3t+5,∴AB=(2t-1)-(-t-3)=3t+2,BC=(3t+5)-(2t-1)=t+6.](4)不变.∵AB=3t+2,BC=t+6,∴3BC-AB=3(t+6)-(3t+2)=3t+18-3t-2=16.∴3BC-AB的值为定值16.。
冀教版2020七年级数学下册第六章二元一次方程组自主学习单元达标测试题4(附答案)1.雅安地震后,全国各地都有不少人士参与抗震救灾,家住成都的王伟也参加了,他要在规定时间内由成都赶到雅安.如果他以50千米/小时的速度行驶,就会迟到24分钟;如果以75千米/小时的高速行驶,则可提前24分钟到达.若设成都至雅安的路程为S ,由成都到雅安的规定时间是t ,则可得到方程组是( )A .2450()602475()60s t s t ⎧=-⎪⎪⎨⎪=+⎪⎩B .2450(+)602475()60s t s t ⎧=⎪⎪⎨⎪=+⎪⎩C .2450()602475()60s t s t ⎧=+⎪⎪⎨⎪=-⎪⎩D .2450()602475()60s t s t ⎧=-⎪⎪⎨⎪=-⎪⎩2.将方程2x +y =3写成用含x 的式子表示y 的形式,正确的是( )A .y =2x -3B .y =3-2xC .x =D .x =3.若{x 1y 2==-是关于x 和y 的二元一次方程ax+y=1的解,则a 的值等于( ) A .3 B .1 C .1- D .3- 4.某人只带2元和5元两种人民币,他要买一件23元的商品,而商店没有零钱,那么他付款的方式有 ( )A .1种B .2种C .3种D .4种5.若二元一次方程组2143221x y x y +=⎧⎨-+=⎩的解为x a y b =⎧⎨=⎩则a +b 值为( ) A .19 B .212 C .7 D .136.已知21x y =⎧⎨=⎩是方程组18mx ny nx my -=⎧⎨+=⎩的解,则m ,n 的值分别是( ) A .m=2,n=1B .m=1,n=8C .m=2,n=3D .m=-2,n=-1 7.用“加减法”将方程组325353x y x y -=⎧⎨+=-⎩中的x 消去后得到的方程是()n n A .32y = B .78y =C .72y -=D .78y -= 8.21x y =⎧⎨=-⎩适合下列二元一次方程组中的( ) A .3525x y x y -=⎧⎨+=⎩ B .325y x y x =-⎧⎨-=⎩ C .251x y x y -=⎧⎨+=⎩ D .221x y x y =⎧⎨=+⎩ 9.下列方程组中是三元一次方程组的是( )A.212x yy zxz⎧-=⎪+=⎨⎪=⎩B.111216yxzyxz⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩C.1812m nn tt m+=⎧⎪+=⎨⎪+=⎩D.123a b c da cb d+++=⎧⎪-=⎨⎪-=⎩10.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.146yx+=D.4x=24y-11.如图,3个纸杯整齐地叠放在一起,总高度约为9cm,8个纸杯整齐地叠放在一起,总高度约为14cm,则100个这样的纸杯整齐叠放在一起时,它的高度约是________ cm.12.(2017四川省乐山市)二元一次方程组2223x y x yx+-==+的解是______.13.已知x my n=⎧⎨=⎩和x ny m=⎧⎨=⎩是方程2x-3y=1的解,则代数式2635mn--的值为______.14.若方程mx﹣2y=4的一个解是612xy=⎧⎨=⎩,则m=________.15.三元一次方程组102317328x y zx y zx y z++=⎧⎪++=⎨⎪+-=⎩的解是________.16.己知21xy=⎧⎨=-⎩是关于x的二元一次方程3mx y m+=-的一个解,则m的值是______. 17.•用加减法解0.70.31725x yx y+=⎧⎨-+=⎩时,•将方程①两边乘以________,•再把得到的方程与②相________,可以比较简便地消去未知数________.18.小明去文具店购买了5只黑色碳素笔和3个修正带,一共花费74元,其中黑色碳素笔的单价比修正带的单价多2元,求黑色碳素笔的单价和修正带的单价.设黑色碳素笔的单价为x元,修正带的单价为y元,依题意可列方程组为______________. 19.已知{21x y==是关于x、y的方程230x y k-+=的解,则k=______.20.4月15日上午8时,2018徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:女孩说:我和哥哥的年龄和是16岁.男孩说:两年后,妹妹年龄的3倍与我的年龄相加恰好等于爸爸的年龄.若设现在哥哥的年龄为x岁,妹妹的年龄为y岁,请你根据对话内容,列出方程组为____________________.21.解二元一次方程组.(1)31x yx y-=⎧⎨+=⎩(2)45321x yx y+=⎧⎨-=⎩22.解方程组:3416 5633 x yx y+=⎧⎨-=⎩.23.解方程(组):(1)4x-3=2(x-1);(2)10 216 x yx y+=⎧⎨+=⎩24.若方程组是二元一次方程组,求a的值.25.已知关于x、y的方程组2323245x y kx y k+=+⎧⎨-=-⎩的解满足x+y=2,求k的值.26.解下列方程组:5 {22 x yx y+=-=,27.解方程组:28 325 x yx y-=⎧⎨+=⎩28.已知x,y满足方程组2337-41x y mx y m+=+⎧⎨=+⎩,,且x+y<0.(1)试用含m的式子表示方程组的解;(2)求实数m的取值范围;(3)化简22-m|.参考答案1.C【解析】【分析】设成都至雅安的路程为s 千米,由成都到雅安的规定时间是t 小时,根据路程=速度×时间,即可得出关于s 、t 的二元一次方程组,此题得解.【详解】设成都至雅安的路程为s 千米,由成都到雅安的规定时间是t 小时,依题意得:245060247560s t s t ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩故选C.【点睛】考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.2.B【解析】【分析】把x 看做已知数求出y 即可.【详解】解:2x+3=y ,移项,得:y=3-2x.故选B.【点睛】本题考查了解二元一次方程,解题的关键是将x 看做已知数求出y.3.A【解析】【分析】将方程的解代入方程得到关于a 的方程,从而可求得a 的值.【详解】将12xy=⎧⎨=-⎩是代入方程ax+y=1得:a﹣2=1,解得:a=3.故选A.【点睛】本题考查了二元一次方程的解,掌握方程的解的定义是解题的关键.4.B【解析】解:设2元的人民币x张,5元的人民币y张,根据题意得:2x+5y=23,∵x,y都是正整数,∴x=9,y=1或x=4,y=3.则他的付款方式有2种.故选B.点睛:本题考查了二元一次方程的应用,要求同学们能够根据等量关系列出二元一次方程,再进一步根据未知数是正整数这一条件进行分析讨论.5.D【解析】解方程组2143221x yx y+=⎧⎨-+=⎩得112xy⎧⎨⎩==又因为元一次方程组2143221x yx y+=⎧⎨-+=⎩的解为x ay b=⎧⎨=⎩,所以a=1,b=12,所以a+b=13.故选D.6.C【解析】分析: 方程组的解就是能够使方程组中的方程同时成立的未知数的解,把方程组的解代入方程组即可得到一个关于m,n的方程组,即可求得m,n的值.详解:根据题意,得21 28 m nn m-⎧⎨+⎩==,解,得m=2,n=3.故选:C.点睛: 本题主要考查了方程组解的定义,方程组的解就是能够使方程组中的方程同时成立的7.D【解析】【分析】根据方程组中每一个方程中未知数x的系数可知,两方程相减即可消去x,据此即可得.【详解】325353x yx y-=⎧⎨+=-⎩①②,①-②,得:-7y=8,故选D.【点睛】本题考查了二元一次方程组的解法——加减法,根据方程组的特点灵活选用加减法或代入法进行求解是关键.8.C 【解析】试题分析:把21xy=⎧⎨=-⎩分别代入各个方程组,A、B、D都不适合,只有C适合.故选:C.点睛:本题考查了二元一次方程组解的概念,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,能够使得方程组中每一个方程左右两边都相等.9.C【解析】A、x 2 -y=1,未知量x的次数为2次,故A选项错误;B、含有分式,不满足三元一次方程组的定义,故B选项错误;C、满足三元一次方程组的定义,故C选项正确D、含有四个未知数,不满足三元一次方程组的定义,故D选项错误;故选C.10.D【解析】【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.根据定义判断即可.试题解析:A 、3x-2y=4z ,不是二元一次方程,因为含有3个未知数;B 、6xy+9=0,不是二元一次方程,因为其最高次数为2;C 、1x+4y=6,不是二元一次方程,因为不是整式方程; D 、4x=24y -,是二元一次方程. 故选D .【点睛】本题主要考查了二元一次方程的定义.11.106【解析】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm ,单独一个纸杯的高度为ycm ,根据题意得:29714x y x y +=⎧⎨+=⎩,解得:17x y =⎧⎨=⎩,则99x +y =99×1+7=106. 故把100个纸杯整齐地叠放在一起时的高度约是106cm .故答案为:106.点睛:本题以实物图形为题目主干,图形形象直观,直接反映了物体的数量关系,这是近年来比较流行的一种命题形式,主要考查信息的收集、处理能力.本题易错点是误把9cm 当作3个纸杯的高度,把14cm 当作8个纸杯的高度.12.51x y =-⎧⎨=-⎩. 【解析】 解:原方程可化为:22223x y x x y x +⎧=+⎪⎪⎨-⎪=+⎪⎩,化简为:46x y x y -=-⎧⎨+=-⎩,解得:51x y =-⎧⎨=-⎩.故答案为:51x y =-⎧⎨=-⎩. 13.1【解析】解:将x m y n =⎧⎨=⎩和x n y m =⎧⎨=⎩代入方程2x ﹣3y =1,得:231231m n n m -=⎧⎨-=⎩ ,解得:11m n =-⎧⎨=-⎩,则26263535m n ---=---=1.故答案为:1. 点睛:本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.14.143【解析】分析:把612x y =⎧⎨=⎩代入 mx ﹣2y =4即可求出m 的值. 详解:把612x y =⎧⎨=⎩代入 mx ﹣2y =4得,6m -24=4,解之得,m =143. 故答案为:143. 点睛:本题考查了二元一次方程的解,熟练掌握能使二元一次方程左右两边相等的未知数的值是二元一次方程的解是解答本题的关键.15.325x y z =⎧⎪=⎨⎪=⎩【解析】方程①、②分别与③相加即可消去z ,化三元一次方程组为二元一次方程组,再用代入法即可求解.解:102317328x y z x y z x y z ①②③++=⎧⎪++=⎨⎪+-=⎩①+③得:4318x y +=④,②+③得:5525x y +=,即5x y =-⑤,把⑤代入④得,4(5)318y y -+=,解得2y =,所以3x =,把3x =,2y =,代入①得5z =,所以这个三元一次方程组的解为:325x y z =⎧⎪=⎨⎪=⎩.16.1,【解析】分析:把21x y ⎧⎨-⎩==代入方程,即可得出关于m 的方程,求出方程的解即可.【解答】解:∵21x y ⎧⎨-⎩==是关于x 的二元一次方程mx+3y=-m 的一个解, ∴代入得:2m-3=-m ,解得:m=1,故答案为:1.点睛:本题考查了二元一次方程的解和解一元一次方程,能根据题意得出关于m 的方程是解此题的关键.17.10 加 x【解析】用加减法解0.70.31725x y x y +=⎧⎨-+=⎩时,将方程①两边乘以10,再把得到的方程与②相加,可以比较简便地消去未知数x.故答案:(1). 10 (2). 加 (3). X.18.53742x y x y +=⎧⎨-=⎩【解析】分析:根据等量关系:5只黑色碳素笔的花费+3个修正带的花费=74元;黑色碳素笔的单价-修正带的单价=2,结合题中所设未知数列出方程组即可.详解:设黑色碳素笔的单价为x 元,修正带的单价为y 元,依题意可列方程组为:53742x y x y +=⎧⎨-=⎩, 故答案为:53742x y x y +=⎧⎨-=⎩ . 点睛:读懂题意,找到等量关系:5只黑色碳素笔的花费+3个修正带的花费=74(元);黑色碳素笔的单价-修正带的单价=2(元),是正确解答本题的关键.19.1-【解析】【分析】知道了方程的解,可以把这对数值代入方程, 得到一个含义未知数k 的一元一次方程,从而可以求出k 的值.【详解】把21x y =⎧⎨=⎩代入原方程,得 22130k ⨯-+=,解得1k =-.故答案为:1-.【点睛】解题关键是把方程的解代入方程,关于x 和y 的方程转变成是关于k 的一元一次方程,求解即可.20.163(2)2342x y y x +=⎧⎨+++=+⎩ 【解析】分析:设今年哥哥的年龄为x 岁,妹妹的年龄为y 岁,根据两个孩子的对话,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.详解:设今年哥哥的年龄为x 岁,妹妹的年龄为y 岁,根据题意得:16322342x y y x +=⎧⎨+++=+⎩()(). 故答案为:16322342x y y x +=⎧⎨+++=+⎩()(). 点睛:本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.21.(1)21x y =⎧⎨=-⎩ (2)11x y =⎧⎨=⎩ 【解析】分析:(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.详解:(1)31x y x y ①②-=⎧⎨+=⎩ ①+②得,2x=4x=2②-①得,2y=-2y=-1∴方程组的解是x 21y =⎧⎨=-⎩; (2)45321x y x y ①②+=⎧⎨-=⎩ ①×2+②,得:11x=11x=1把x=1代入①得,4+y=5y=1∴方程组的解是11x y =⎧⎨=⎩点睛:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.612 xy=⎧⎪⎨=-⎪⎩【解析】【分析】方程组利用加减消元法求出解即可.【详解】解:3x+4y=165x-6y=33⎧⎨⎩①②,①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:y=12 -,则方程组的解为:612xy=⎧⎪⎨=-⎪⎩,故答案为612xy=⎧⎪⎨=-⎪⎩,【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(1)x = 12;(2)64xy=⎧⎨=⎩【解析】【分析】(1)这是一个带括号的方程,所以要先去括号,再移项,化系数为1,从而得到方程的解;(2)②-①消去y,求出x,把x的值代入②求出y,得到方程组的解.【详解】解:(1)4x+3=2(x-1)+1,4x+3=2x-2+1,x=-2;(2)解:2x 1610y x y +=⎧⎨+=⎩①②,②-①得,x=6,把x=6代入②得,y=4,则原方程组的解为:64x y =⎧⎨=⎩. 【点睛】本题考查的是二元一次方程组的解法,掌握用加减法解二元一次方程组的一般步骤是解题的关键.24.-3【解析】试题分析:根据二元一次方程组的定义求解即可.试题解析:∵方程组是二元一次方程组, 21a ∴-=且30a -≠,∴3a =-.25.1k =【解析】分析:利用整体的思想思考问题即可.详解:①×3+②得:77104x y k +=+, 7104x y k +=+() ③把2x y +=代入③得:1k =.点睛:本题考查了方程组的解法以及方程组的解的定义,正确解关于x 和y 的方程组是关键.26.41x y =⎧⎨=⎩【解析】直接利用加减消元法解方程得出答案.【详解】解:①×2+②,可得3x=12,解得x=4,把x=4代入①,解得y=1,∴原方程组的解是. 【点睛】此题主要考查了二元一次方程组的解法,正确掌握解题方法是解题的关键.27.32x y =⎧⎨=-⎩ 【解析】分析:因为方程②中y 的系数与方程①中y 的系数的是整数倍的关系,故可以用加减法消元.详解:28325x y x y -⎧⎨⎩=①+=②,①×2得:4216x y -=③, ②+③得:721x =,∴3x =,把3x =代入①得:68y -=,∴2y -=.所以32x y ⎧⎨-⎩==. 点睛:用加减法解二元一次方程组的一般步骤:①应仔细观察题目所给方程未知数系数的特点,选出系数的最小公倍数;②将原方程组中某个未知数的系数化成相等或相反数的形式;③把两个方程的两边同时相减或相加,从而消去未知数,进而求得方程组的解.28.(1)方程组的解为32- 1.x m y m =+⎧⎨=+⎩,;(2)m<-32;2.分析:(1)解方程组即可得出方程组的解;(2)根据x+y<0,列出不等式,从而解得m的取值范围;(3)根据m的取值范围确定出绝对值内代数式的正负,然后化简即可.详解:(1)233741x y mx y m+=+⎧⎨-=+⎩①②由②得x=4m+1+y,③把③代入①得2(4m+1+y)+3y=3m+7,解得y=-m+1.把y=-m+1代入③得x=3m+2.∴方程组的解为32- 1. x my m=+⎧⎨=+⎩,(2)∵x+y<0,∴3m+2-m+1<0,∴解得m<-3 2 .(3)∵m<-32,∴-m|-m)点睛:本题考查了二元一次方程组的解及解一元一次不等式,解题的关键是利用x+y<0求出m的取值范围.。
华师大版七年级数学下册《第6章一元一次方程》单元达标测试题(附答案)一.选择题(共8小题,满分40分)1.已知x=﹣1是关于x的方程2x+3a=7的解,则a的值为()A.﹣5B.﹣3C.3D.52.已知方程,则式子11+2()的值为()A.B.C.D.3.在解关于x的方程=﹣2时,小冉在去分母的过程中,右边的“﹣2”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是()A.x=﹣12B.x=﹣8C.x=8D.x=124.小明在某月的日历中圈出相邻的四个数,算出这4个数的和是42,那么这4个数在日历上的位置可能是()A.B.C.D.5.某车间有22名工人,每人每天可以生产600个螺钉或1000螺母.1个螺钉配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?设有x名工人生产螺钉,可列方程为()A.2×600x=1000(22﹣x)B.2×1000x=600(22﹣x)C.600x=2×1000(22﹣x)D.1000x=2×600(22﹣x)6.妞妞和馨月都有一个比自己大3岁的姐姐,若妞妞姐姐的年龄是馨月姐姐的3倍,且妞妞的年龄是磬月年龄的m倍,则所有满足要求的正整数m的值的和为()A.11B.15C.20D.247.整理一批图书,由一个人做要30小时完成,现在计划由一部分人先做2小时,再增加3人和他们一起做4小时,完成这项工作,假设每个人的工作效率相同,具体先安排x人工作,则可列方程为()A.B.C.D.8.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.288B.296C.312D.320二.填空题(共8小题,满分40分)9.若x=2是关于x的方程3x﹣4=﹣a的解,则a2021的值为.10.|x﹣3|=5,则x=.11.在一本挂历上用正方形圈住四个数,这四个数的和为52,则这四个数中,最小的数为.12.两村相距35千米,甲、乙两人从两村出发,相向而行,甲每小时行5千米,乙每小时4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行驶了小时.13.如图,长方形ABCD是由4块小长方形拼成,其中②③两长方形的形状与大小完全相同,且长与宽的差为,则小长方形④与小长方形①的周长的差是.14.已知数轴上三点A、O、B对应的数分别为﹣6、0、10,点P、C、Q分别从点A、O、B 出发沿数轴向右运动,速度分别是每秒4个单位长度,每秒3个单位长度,每秒1个单位长度,设t秒时点C到点P,点Q的距离相等,则t的值为.15.在有理数范围内定义一个新的运算法则“*”;当a≥b时,a*b=a b;当a<b时,a*b=ab.根据这个法则,方程4*(4*x)=256的解是x=.16.某种商品每件的进价为80元,标价为120元,然后在广告上写“优惠酬宾,打折促销”,结果仍赚了20%,则该商品打了折.三.解答题(共6小题,满分40分)17.解方程:(1)4(x﹣1)﹣1=3(x﹣2)(2)﹣=1.18.已知关于y的方程﹣m=5(y﹣m)与方程4y﹣7=1+2y的解相同,求2m+1的解.19.定义一种新运算:m*n=mn+n,如4*3=4×3+3=15.请解决下列问题:(1)直接写出结果:2*(﹣3)=;1*(2*3)=.(2)若a<2,比较(a﹣3)*2与(a﹣3)*1的大小,并说明理由.(3)若关于x的方程2*(x﹣a)=x*5的解与方程x+3=b的解相同,求6a+4b的值.20.抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?21.某校七年级学生准备观看电影《长津湖》.由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员打8折;方案二:打9折,有5人可以免票.(1)若一班有a(a>40)人,则方案一需付元钱,方案二需付元钱;(用含a的代数式表示)(2)若二班有41名学生,则他选择哪个方案更优惠?(3)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?22.某商店为迎接新年举行促销活动,促销活动有以下两种优惠方案:方案一:购买一件商品打八折,购买两件以上在商品总价打八折的基础上再打九折;方案二:购买一件商品打八五折,折后价格每满100元再送30元抵用券,可以用于抵扣其他商品的价格.(注:两种优惠只能选择其中一种参加)(1)小明想购买一件标价270元的衣服和一双标价450元的鞋子,请你帮助小明算一算选择哪种优惠方案更合算.(2)如果衣服和鞋子的标价都是在进价的基础上加价了50%,那么这两种优惠方案商店是赚了还是亏了?为什么?(3)如果小明已决定要购买标价为450元的鞋子,又想两种方案的优惠额相同,那么小明想购买的衣服的标价(低于450元)应调整为多少元?参考答案一.选择题(共8小题,满分40分)1.解:由题意将x=﹣1代入方程得:﹣2+3a=7,解得:a=3.故选:C.2.解:,去分母得:2﹣18(x﹣)=5,移项得:﹣18(x﹣)=3,系数化为1得:x﹣=﹣,∴11+2()=11+2×=.故选:B.3.解:把x=2代入2(2x﹣1)=3(x+a)﹣2得,2×(4﹣1)=3×(2+a)﹣2,6=6+3a﹣2,6﹣6+2=3a,a=,∴原方程为:=﹣2,去分母,得2(2x﹣1)=3(x+)﹣2×6,去括号,得4x﹣2=3x+2﹣12,移项,得4x﹣3x=2﹣12+2,把系数化为1,得x=﹣8.故选:B.4.解:设第一个数为x,根据已知:A、由题意得x+x+7+x+6+x+8=42,则x=5.25不是整数,故本选项不合题意.B、由题意得x+x+1+x+2+x+8=42,则x=7.75不是整数,故本选项不合题意.C、由题意得x+x+1+x+7+x+8=42,则x=6.5是整数,故本选项符合题意.D、由题意得x+x+1+x+6+x+7=42,则x=7是正整数,故本选项符合题意.故选:D.5.解:设安排x名工人生产螺钉,则(22﹣x)人生产螺母,由题意得:2×600x=1000(22﹣x),故选:A.6.解:设磬月的年龄是x岁,则妞妞的年龄是mx岁,根据题意得:mx+3=3(x+3),整理得:(m﹣3)x=6,则x=,∵m、x均为正整数,∴m﹣3=1,2,3,6,∴m=4,5,6,9,∴4+5+6+9=24.故选:D.7.解:假设每个人的工作效率相同,具体先安排x人工作,则:一个人做要30小时完成,现在计划由一部分人先做2小时,工作量为x,再增加3人和他们一起做4小时的工作量为(x+3),故可列式,故选:D.8.解:设第一次购物购买商品的价格为x元,第二次购物购买商品的价格为y元,当0<x<100时,x=90;当100≤x<350时,0.9x=90,解得:x=100;∵0.9y=270,∴y=300.∴0.8(x+y)=312或320.所以至少需要付312元.故选:C.二.填空题(共8小题,满分40分)9.解:把x=2代入方程3x﹣4=﹣a得:3×2﹣4=﹣a,解得:a=﹣1,所以a2021=(﹣1)2021=﹣1,故答案为:﹣1.10.解;根据|x﹣3|=5,∴x﹣3=5或x﹣3=﹣5,当x﹣3=5时,x=8;当x﹣3=﹣5时,x=﹣2.故答案为:8,﹣2.11.解:设这四个数中最小的数为x,则其他三个数分别为:x+1,x+7,x+8,由题意得x+x+1+x+7+x+8=52,解得x=9,答:这四个数中,最小的数为9.故答案为:9.12.解:设乙行了x小时.有两种情况:①两人没有相遇相距9千米,根据题意得到:5+(5+4)x=35﹣9,∴x=;②两人相遇后相距9千米,根据题意得到:5+x(5+4)x=35+9,∴x=;答:乙行了或小时.13.解:设BC的长为x,AB的长为y,长方形②的长为a,宽为(a﹣),由题意可得,④与①两块长方形的周长之差是:[2(a﹣)+2(x﹣a)]﹣{[x﹣(a﹣)]×2+2a]}=10.故答案是:10.14.解:t秒时,点P表示的数是﹣6+4t,点C表示的数是3t,点Q表示的数是10+t,∴PC=|(﹣6+4t)﹣3t|=|t﹣6|,QC=|10+t﹣3t|=|10﹣2t|,∵点C到点P,点Q的距离相等,∴|t﹣6|=|10﹣2t|,解得t=或4.故答案为:或4.15.解:由题意得①当x≤4时,4*(4*x)=4*(4x),当4≥4x时,4*(4x)=4=256,解得x=1.当4<4x时,4*(4x)=4x+1=256,解得x=3.②当x>4时,4*(4*x)=4*(4x)=16x=256,解得x=16.故答案为:1,3,16.16.解:设该商品打了x折,根据题意,得:120×﹣80=80×20%,解得x=8,答:该商品打了8折,故答案为:8.三.解答题(共6小题,满分40分)17.解:(1)去括号得:4x﹣4﹣1=3x﹣6,移项合并得:x=﹣1;(2)去分母得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.18.解:由4y﹣7=1+2y解得y=4,再由﹣m=5(y﹣m)与方程4y﹣7=1+2y的解相同,得2﹣m=5(4﹣m),解得m=,代入2m+1=10.19.解:(1)2*(﹣3)=2×(﹣3)+(﹣3)=﹣6+(﹣3)=﹣9;2*3=6+3=9,1*9=9+9=18;故答案为:﹣9;18;(2)(a﹣3)*2<(a﹣3)*1,理由如下:(a﹣3)*2=2a﹣6+2=2a﹣4,(a﹣3)*1=a﹣3+1=a﹣2,2a﹣4﹣(a﹣2)=2a﹣4﹣a+2=a﹣2,∵a<2,∴a﹣2<0,∴(a﹣3)*2<(a﹣3)*1;(3)方程2*(x﹣a)=x*5可变形为2x﹣2a+x﹣a=5x+5,解得x=,方程x+3=b的解为x=b﹣3,∵这两个方程的解相同,∴=b﹣3,∴3a+2b=1,∴6a+4b=2(3a+2b)=2.20.解:设应调至甲地段x人,则调至乙地段(29﹣x)人,根据题意得:28+x=2(15+29﹣x),解得:x=20,所以:29﹣x=9,答:应调至甲地段20人,则调至乙地段9人.21.解:(1)若一班有a(a>40)人,则方案一需付30a×0.8=24a元钱,方案二需付30(a﹣5)×0.9=27(a﹣5)元钱.故答案是:24a;27(a﹣5);(2)由题意可得,方案一的花费为:41×30×0.8=984(元),方案二的花费为:(41﹣5)×0.9×30=972(元),∵984>972,∴若二班有41名学生,则他该选选择方案二;(3)设一班有x人,根据题意得x×30×0.8=(x﹣5)×0.9×30,解得x=45.答:一班有45人.22.解:(1)方案一:(270+450)×80%×90%=518.4(元),方案二:买鞋子费用为450×85%=382.5(元),买衣服除去抵用券后费用为270﹣3×30=180(元),一共应付款:382.5+180=562.5(元),∵518.4<562.5,∴选择方案一更合算;(2)∵衣服和鞋子的标价都是在进价的基础上加价了50%,∴衣服和鞋子的进价是(270+450)÷(1+50%)=480(元),而518.4>480,562.5>480,∴这两种优惠方案商店都是赚了;(3)设小明想购买的衣服的标价(低于450元)应调整为x元,根据题意得:(450+x)×80%×90%=450×85%+x﹣3×30,解得x=112.5,答:小明想购买的衣服的标价(低于450元)应调整为112.5元.。
冀教版七年级下册数学第六章测试题(附答案)一、单选题1.我国《缉古算经》中有一题:今有五十鹿进舍,小舍容四鹿,大舍容六鹿,需舍儿何?大意为:今有50只鹿进圈舍,小圈舍可以容纳4头鹿,大圈舍可以容纳6头鹿,求所需圈舍的间数.此题解答的结果有( ) .A. 1种B. 2种C. 3种D. 4种2.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把 6m 长的彩绳截成 2m 或 1m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A. 2 种B. 3 种C. 4 种D. 5 种 3.小明要用40元钱买A 、B 两种型号的口罩,两种型号的口罩必须都买.... , 40元钱全部用尽,A 型每个6元,B 型口罩每个4元,则小明的购买方案有( )种.A. 2种B. 3种C. 4种D. 5种4.在关于x 、y 的二元一次方程组 中,若 ,则a 的值为( )A. 1B. -3C. 3D. 45.疫情期间,小明要用16元钱买A 、B 两种型号的口罩,两种型号的口罩必须都买,16元全部用完.若A 型口罩每个3元,B 型每个2元,则小明的购买方案有( )A. 2种B. 3种C. 4种D. 5种6.《九章算术》中记载:“今有上禾三秉,益实六斗,当下禾十秉;下禾五秉,益实一斗,当上禾二秉. 问上、下禾实一秉各几何?”其大意是:今有上等稻子三捆,若打出来的谷子再加六斗,则相当于十捆下等稻子打出来的谷子;有下等稻子五捆,若打出来的谷子再加一斗,则相当于两捆上等稻子打岀来的谷子. 问上等、下等稻子每捆打多少斗谷子?设上等稻子每捆打x 斗谷子,下等稻子每捆打y 斗谷子,根据题意可列方程组为( )A. B. C. D.7.小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3俞笔芯,仅用了28元.设每支中性笔x 元和每盒笔芯y 元,根据题意列方程组正确的是( )A. B. C. D. 8.若(m ﹣3)x+4y |2m ﹣5|=25是关于x ,y 的二元一次方程,则m 的值是( )A. 3或2B. 2C. 3D. 任何数9.已知二元一次方程组 如果用加减法消去n ,那么下列方法可行的是( )A. 4×①+5×②B. 5×①+4×②C. 5×①-4×②D. 4×①-5×②10.若方程ax ﹣5y=3的一个解是 ,则a 的值是( )A. 13B. ﹣13C. ﹣7D. 7二、填空题11.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.12.一根金属棒在0℃时的长度是b (m ),温度每升高1℃,它就伸长a (m ),当温度为x (℃)时,金属棒的长度y 可用公式y=ax+b 计算.已测得当x=100℃时,y=2.002m ;当x=500℃时,y=2.01m.若这根金属棒加热后长度伸长到2.015m ,则此时金属棒的温度是________℃.13.程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父. 少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统宗》). 在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?如果设大和尚有x人, 小和尚有y人,那么根据题意可列方程组为________.14.己知方程,请用含x的代数式表示y,y=________.15.方程x+2y=5的正整数解有________个.16.自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过________小时水池的水刚好注满.17.若方程的一个解是,,则________.18.已知是方程组的解,则a+b=________.19.下列方程:①x+2>0;②x+y=1;③2x+1=4.其中是二元一次方程的是________.20.如果把方程写成用含的代数式表示的形式,那么________.三、计算题21.解下列方程组:(1)(2)四、解答题22.学校在“我和我的祖国”快闪拍摄活动中,为学生租用服装,其中5名男生和3名女生共需服装费190元;3名男生的租服装的费用与2名女生的租服装的费用相同,求每位男生和女生的租服装费用分别为多少元?23.A地至B地的航线长9750km,-架飞机从A地顺风飞往B地需12.5h,它逆风飞行同样的航线需13h,求飞机无风时的平均速度与风速.24.甲、乙两人共同解方程组.解题时由于甲看错了方程①中的a,得到方程组的解为;乙看错了方程②中的b,得到方程组的,试计算a2019+( b)2020的值.25.有大小两种货车,3辆大货车与2辆小货车一次可以运货17吨,5辆大货车与6辆小货车一次可以运货35吨,那么3辆大货车与6辆小货车一次可以运货多少吨?答案一、单选题1. D2. C3. B4. C5. A6. C7. B8. B9. B 10. B二、填空题11. 7件12. 750 13. 14. 2x-5 15. 2 16. 17. 18. -5 19. ② 20. 3x+1三、计算题21. (1)解:,②×2+①得:5x=−5,解得:x=−1,把x=−1代入①得:−1−2y=5,解得:y=−3,所以方程组的解是:;(2)解:将原方程组化简得:,②−①得:3y=36,解得:y=12,把y=12代入①得:3x+24=12,解得:x=−4,所以方程组的解是:.四、解答题22. 解:设每位男生和女生的租服装费用分别为x、y元,由题意得:,解得:,答:每位男生和女生的租服装费用分别为20元,30元.23. 解:设飞机的平均速度为x千米/时,风速为y千米/时,由题意,得,解得,答:飞机的平均速度为765千米/时,风速为15千米/时.24. 解:将代入方程组中的4x−by=−2得:−12+b=−2,即b=10;将代入方程组中的ax+5y=15得:5a+20=15,即a=−1;当a=−1,b=10时,a2019+( b)2020=-1+1=0.25. 解:设每辆大货车一次可运吨,每辆小货车一次可运吨得:③得:.答:3辆大货车与6辆小货车一次可运27吨.。
(15)人教版七年级数学下册测试题附答案一、选择题1、已知a=3,b=2,c=1,abc=?A)3 B)2 C)6 D)1答案:A)32、下列哪个不是正整数?A)-2 B)1 C)3 D)5答案:A)-23、已知正整数a=6,b=8,则a+b的值是多少?A)4 B)14 C)48 D)28答案:D)284、如果36 ÷ (x-3) = 4,则x的值是多少?A)7 B)8 C)9 D)10答案:C)95、计算3×5+2÷4的值。
A)15 B)4/3 C)13/3 D)3答案:D)3二、填空题1、数轴上A点的坐标是-4,B点的坐标是1,则AB的距离是______。
答案:52、化简下列代数式:(2x+5)×(3x-2)。
答案:6x^2 + 11x - 103、化简下列代数式:(3a-4b)×2 - (a-3b)×5。
答案:5a - 2b4、首项是2,公差是5的等差数列的第10项是______。
答案:475、下列哪个数是合数?A)10 B)17 C)23 D)31答案:A)10三、解答题1、小明和小红的年龄之和是32岁,小明的年龄是小红的年龄的3倍,求他们各自的年龄。
解答:设小明的年龄为x岁,小红的年龄为y岁。
题目中已知条件可得到方程组:x + y = 32 (1)x = 3y (2)将方程(2)代入方程(1)中,得到:3y + y = 324y = 32y = 8将y = 8代入方程(2)中,得到:x = 3 × 8 = 24所以小明的年龄是24岁,小红的年龄是8岁。
2、某地一天中的最高温度和最低温度分别是20℃和6℃,则这一天中的温差是多少度?解答:温差即最高温度和最低温度的差值。
最高温度为20℃,最低温度为6℃,所以温差为20℃-6℃=14℃。
3、请计算:12×(4-2)+(5-3)×6的值。
解答:根据运算符优先级,先计算括号里的值,然后按照从左到右的顺序进行计算。
Word文档,精心制作,可任意编辑平方根学习目标1.了解平方根、开平方的概念.2.明确算术平方根与平方根的区别和联系.3.进一步明确平方与开平方是互逆的运算关系.学习过程:复习提问是2的算术平方根1.下列说法中不正确的是() A.2B.2的平方根是2C.2的算术平方根是22.0的算术平方根是 0.25的算术平方根是引入新课平方等于4的数有几个,它们是多少?3的平方等于9,平方等于9的数还有吗?是多少?自主学习合作探究一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.而把正的平方根叫算术平方根。
表达式为:若x2=a,那么x叫做a的平方根. 记作:正数a有两个平方根,它们互为相反数例如:(±4)2 =16,则+4和-4都是16的平方根;即16的平方根是±4; 4是16的算术平方根.小组比赛展示探究结果例3求下列各数的平方根:(1)64;(2);(3) 0.0004;(4);(5) 11教材想一想课堂小结平方根与算术平方根关系2.正数的平方根的互为相反数一分钟记忆:平方根的定义及性质反馈检测 : 1.下列说法中不正确的是( ) A.2-是2的平方根 B.2是2的平方根C.2的平方根是2D.2的算术平方根是22.41的平方根是( ) A.161 B.81 C.21 D.21±3.下列各式中,正确的个数是( )① 3.09.0= ②34971±= ③23-的平方根是-3 ④()25-的算术平方根是-5⑤67±是36131的平方根A.1个B.2个C.3个D.4个二、填空题4. 如果某数的一个平方根是-6,那么这个数为________.5.如果正数m 的平方根为1x +和3x -,则m 的值是 .6.16的算术平方根是 的平方根是 .三、解答题 求下列各式的值。
⑴225 ⑵0004.0- ⑶4112± ⑷ ()21.0-- 布置作业习题2.4教学反思教师反思:加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.。
2021年人教版数学七年级下册期中测试学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.9的平方根是( ) A. 3B.3C. 3±D. 3±2.下列实数是无理数的是( ) A. 1.732 B.3C. 13-D. 03.平面直角坐标系中,点P (2,﹣3)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.下列方程组是二元一次方程组的是( )A. 141y x x y ⎧+=⎪⎨⎪-=⎩B. 43624x y y z +=⎧⎨+=⎩C. 41x y x y +=⎧⎨-=⎩D. 22513x y x y +=⎧⎨+=⎩5.如图,点E 在BC 的延长线上,下列条件不能判定//AD CB 的是( )A. 12∠=∠B. 34∠=∠C. D DCE ∠=∠D. 180D BCD ∠+∠=6.在平面直角坐标系中,若x 轴上点P 到y 轴的距离为2,则点P 的坐标为( ) A. ()2,0 B. ()2,0或()2,0- C. ()0,2D. ()0,2或()0,2 -7.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“炮”和“馬”的点的坐标分别为(),(2151),,,则表示棋子“帥”的点的坐标为()A. ()10-,B. ()1,1--C. ()00,D. ()1,2-8.在下列各组,x y 的值中,不是方程345x y +=的解的是( )A. 112xy =⎧⎪⎨=⎪⎩B. 12x y =-⎧⎨=⎩C. 250x y ⎧=⎪⎨⎪=⎩ D. 054x y =⎧⎪⎨=⎪⎩9.已知关于,x y 的二元一次方程组533321x y nx y n +=⎧⎨+=+⎩的解也是方程6x y +=的解,那么n 的值为( )A. 3B. 4C. 3-D. 4-10.如图,点,A B 为定点,直线//,l AB P 是直线l 上一动点.对于下列各值:①线段AB 的长;②APB ∠的度数;③PAB △的周长;④PAB △的面积.其中不会随点P 的移动而变化的是( )A. ①③B. ①④C. ②③D. ②④二、填空题(每题3分,满分18分,将答案填在答题纸上)16 _____.12.如图,因为,,AB l BC l B ⊥⊥为垂足,所以AB 和BC 重合,理由是________________.13.已知18n是正整数,则正整数n的最小值是_______________________.14.已知平面内一点(),M x y,若,x y满足条件0xy=,则点M的位置是______________________.15.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为_____.16.如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③,若∠DEF=x,将图③中∠CFE用x表示为_________三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.(1)计算:()2327323-+---.(2)求()21=4-x中x的值.18.由于受到新冠病毒疫情的影响,某医药厂根据市场调查得知某种消毒液的大瓶装(500克)和小瓶装(250克)两种产品的销售数量比为2:5(按瓶计算),若该厂每天生产这种消毒液22.5吨,为了满足市场需求,求这种消毒液应该分装大、小瓶两种产品各多少瓶.19.完成下面的证明:已知:如图,BE平分ABD DE∠,平分BDC∠,且90aβ∠+∠=︒求证://AB CD.证明:BE 平分ABD DE ∠,平分BDC ∠(已知),2ABD ∴∠=∠ ,2BDC ∠=∠ ,( )()222ABD BDC αβαβ∴∠+∠=∠+∠=∠+∠( )90αβ∠+∠=︒(已知)ABD BDC ∴∠+∠= , ( )//AB CD ∴( )20.如图,在平面直角坐标系中,已知点()()()()3,3,5,1,2,0,,A B C P a b ---是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△111,A B C 点P 的对应点为()16,2P a b +-.(1)直接写出点111,,A B C 的坐标. (2)在图中画出△111A B C . (3)求△111A B C 的面积. 21.已知关于,x y二元一次方程组351ax by x cy +=⎧⎨-=⎩,甲同学正确解得23x y =⎧⎨=⎩,而乙同学粗心,把c 看错了,解得36x y =⎧⎨=⎩,求abc 的值.22.已知:如图,在△ABC 中,过点A 作AD ⊥BC ,垂足为D ,E 为AB 上一点,过点E 作EF ⊥BC ,垂足为F ,过点D 作DG ∥AB 交AC 于点G . (1)依题意补全图形;(2)请你判断∠BEF 与∠ADG 的数量关系,并加以证明.23.(1)2的一系列不足近似值和过剩近似值来估计它的大小的过程如下: 因为2211,24==, 所以122,<<因为21.4 1.96=,21.5 2.25=, 所以1.42 1.5,<<因为221.41 1.9881,1.422.0164==, 所以1.412 1.42<<因为221.414 1.999396,1.4152.002225==, 所以1.4142 1.415,<<2 1.41≈(精确到百分位),5(精确到百分位).(2)我们规定用符号[]x 表示数x 的整数部分,例如[]0,2.42,34=⎤⎢⎥⎦=⎡⎣①按此规定102⎤⎦= ;35a ,b 求a b -的值.24.在平面直角坐标系xOy 中,对于任意三点A ,B ,C 的“矩面积”,给出如下定义:“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”S =ah .例如:三点坐标分别为A (1,2),B (-3,1),C (2,-2),则“水平底”a =5,“铅垂高”h =4,“矩面积”S =ah =20.根据所给定义解决下列问题:(1)若已知点D (1,2)、E (-2,1)、F (0,6),则这3点的“矩面积”=_____. (2)若D (1,2)、E (-2,1)、F (0,t )三点的“矩面积”为18,求点F 的坐标;25.探究题:学完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题. (1)小明遇到了下面的问题:如图1,12l l //,点P 在12,l l 内部,探究,,A APB B ∠∠∠之间的关系.小明过点P 作1l 的平行线,可证得APB A B ∠∠∠,,之间的数量关系是:APB ∠= .(2)如图2,若//AC BD ,点P 在,AC BD 的外部,,,A B APB ∠∠∠之间的数量关系是否会发生变化?请证明你的结论.(3)试构造平行线解决以下问题:如图3,一条河流的两岸//,AB CD 当小船行驶到河中E 点时,与两岸码头,B D 所形成的夹角为64(︒即64BED ∠=︒),当小船行驶到河中点F 时,恰好满足,,ABF EBF EDF CDF ∠=∠∠=∠请你求出此时点F 与码头,B D 所形成的夹角BFD ∠的度数.答案与解析一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.9的平方根是( )A. 3B.C. 3±D.【答案】C【解析】【分析】根据平方根的定义可得.【详解】解:∵()23=9±,∴9的平方根是3±,故答案为:C【点睛】本题考查了平方根的定义,掌握一个正数的平方根有两个,且互为相反数是解题的关键.2.下列实数是无理数的是()A. 1.732 C.13- D. 0【答案】B【解析】【分析】根据无理数的定义:无限不循环小数是无理数逐项判断即得答案.【详解】解:A、1.732是有理数,不是无理数,故本选项不符合题意;BC、13-有理数,不是无理数,故本选项不符合题意;D、0是有理数,不是无理数,故本选项不符合题意.故选:B.【点睛】本题考查了无理数的定义,属于基础概念题型,初中阶段常见无理数有三类:(1)开方开不尽的方根,(2)圆周率π是无理数;(3)有规律但不循环的无限小数是无理数,如0.101001000…(相邻两个1之间依次多1个0).3.在平面直角坐标系中,点P (2,﹣3)在( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】D 【解析】 【分析】根据各象限内点的坐标特征解答即可. 【详解】∵横坐标为正,纵坐标为负,∴点()23P -,在第四象限, 故选:D .【点睛】本题考查的是点的坐标与象限的关系,熟记各象限内点的坐标特征是解答本题的关键. 4.下列方程组是二元一次方程组的是( )A. 141y x x y ⎧+=⎪⎨⎪-=⎩B. 43624x y y z +=⎧⎨+=⎩C. 41x y x y +=⎧⎨-=⎩D. 22513x y x y +=⎧⎨+=⎩【答案】C 【解析】 【分析】根据二元一次方程组的定义逐项判断即得答案.【详解】解:A 、方程组141y x x y ⎧+=⎪⎨⎪-=⎩中第一个方程不是整式方程,不是二元一次方程组,所以本选项不符合题意; B 、方程组43624x y y z +=⎧⎨+=⎩含有三个未知数,不是二元一次方程组,所以本选项不符合题意;C 、方程组41x y x y +=⎧⎨-=⎩是二元一次方程组,所以本选项符合题意;D 、方程组22513x y x y +=⎧⎨+=⎩中第二个方程未知数x 、y 的次数是2,不是二元一次方程组,所以本选项不符合题意. 故选:C .【点睛】本题考查了二元一次方程组的定义,属于基础概念题型,熟知二元一次方程组的概念是关键. 5.如图,点E 在BC 的延长线上,下列条件不能判定//AD CB 的是( )A. 12∠=∠B. 34∠=∠C. D DCE ∠=∠D. 180D BCD ∠+∠=【答案】A 【解析】 【分析】根据平行线的判定方法逐项判断即得答案.【详解】解:A 、若12∠=∠,不能判定//AD CB ,故本选项符合题意;B 、若34∠=∠,则可根据内错角相等,两直线平行判定//AD CB ,故本选项不符合题意;C 、若D DCE ∠=∠,则可根据内错角相等,两直线平行判定//AD CB ,故本选项不符合题意; D 、若180D BCD ∠+∠=,则可根据同旁内角互补,两直线平行判定//AD CB ,故本选项不符合题意. 故选:A .【点睛】本题考查了平行线的判定,属于基础题型,熟练掌握平行线的判定方法是解题的关键. 6.在平面直角坐标系中,若x 轴上的点P 到y 轴的距离为2,则点P 的坐标为( ) A. ()2,0 B. ()2,0或()2,0- C. ()0,2 D. ()0,2或()0,2 -【答案】B 【解析】 【分析】由于点P 在x 轴上,故只要确定点P 的横坐标即可,由点P 到y 轴的距离为2可得点P 的横坐标为2或﹣2,进而可得答案.【详解】解:因为点P 到y 轴的距离为2, 所以点P 的横坐标为2或﹣2,又因为点P 在x 轴上,所以点P 的坐标是()2,0或()2,0-. 故选:B .【点睛】本题考查了坐标轴上点的坐标特点和点到坐标轴的距离等知识,属于基础题型,熟练掌握基本知识是解题关键.7.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“炮”和“馬”的点的坐标分别为(),(2151),,,则表示棋子“帥”的点的坐标为( )A. ()10-,B. ()1,1--C. ()00,D. ()1,2-【答案】D 【解析】 【分析】根据棋子“炮”和“馬”的点的坐标可得出原点的位置,进而得出答案. 【详解】如图所示:棋子“帥”的点的坐标为:(1,-2). 故选:D .【点睛】本题主要考查了坐标确定位置,解答本题的关键是明确题意,画出相应的平面直角坐标系,正确得出原点的位置.8.在下列各组,x y 的值中,不是方程345x y +=的解的是( )A. 112x y =⎧⎪⎨=⎪⎩B. 12x y =-⎧⎨=⎩C. 250x y ⎧=⎪⎨⎪=⎩D. 054x y =⎧⎪⎨=⎪⎩【答案】C【解析】【分析】 把各选项中x 、y 的值逐一代入方程345x y +=计算验证即得答案.【详解】解:A 、当112x y =⎧⎪⎨=⎪⎩时,131452⨯+⨯=,所以112x y =⎧⎪⎨=⎪⎩是方程345x y +=的解,本选项不符合题意;B 、当12x y =-⎧⎨=⎩时,()31425⨯-+⨯=,所以12x y =-⎧⎨=⎩是方程345x y +=的解,本选项不符合题意; C 、当250x y ⎧=⎪⎨⎪=⎩时,26340555⨯+⨯=≠,所以250x y ⎧=⎪⎨⎪=⎩不是方程345x y +=的解,本选项符合题意; D 、当054x y =⎧⎪⎨=⎪⎩时,530454⨯+⨯=,所以054x y =⎧⎪⎨=⎪⎩是方程345x y +=的解,本选项不符合题意. 故选:C .【点睛】本题考查了二元一次方程的解的定义,属于基础题型,熟知二元一次方程的解的概念是关键. 9.已知关于,x y 的二元一次方程组533321x y n x y n +=⎧⎨+=+⎩的解也是方程6x y +=的解,那么n 的值为( ) A. 3B. 4C. 3-D. 4- 【答案】D【解析】【分析】注意到两个方程系数的特点,只要用方程②×2-方程①即得x +y 与n 的代数式,进而可得关于n 的方程,解方程即得答案.【详解】解:对方程组533321x y n x y n +=⎧⎨+=+⎩①②,②×2-①,得:2x y n +=-, 因为6x y +=,所以26n -=,解得:n =﹣4.故选:D .【点睛】本题考查了二元一次方程组的特殊解法,属于常考题型,熟练掌握解二元一次方程组的方法、灵活应用整体的思想方法是解题的关键.10.如图,点,A B 为定点,直线//,l AB P 是直线l 上一动点.对于下列各值:①线段AB 的长;②APB ∠的度数;③PAB △的周长;④PAB △的面积.其中不会随点P 的移动而变化的是( )A. ①③B. ①④C. ②③D. ②④【答案】B【解析】【分析】 由A 、B 为定点可得AB 长为定值,进而可判断①;当P 点移动时,∠APB 的度数发生变化,P A +PB 的长也发生变化,于是可判断②、③;由直线l ∥AB 可得P 到AB 的距离为定值,于是可判断④,从而可得答案.【详解】解:∵A 、B 为定点,∴AB 长为定值,∴①线段AB 的长不会随点P 的移动而变化;当P 点移动时,∠APB 的度数发生变化,∴②∠APB 的度数会随点P 的移动而变化;当P 点移动时,P A +PB 的长发生变化,∴③△P AB 的周长会随点P 的移动而变化;∵点A ,B 为定点,直线l ∥AB ,∴P 到AB 的距离为定值,∴④△APB 的面积不会随点P 的移动而变化; 综上,不会随点P 的移动而变化的是①④.故选:B .【点睛】本题考查了平行线的性质、同底等高的三角形的面积相等以及平行线间的距离等知识,熟练掌握上述基本知识是解题的关键.二、填空题(每题3分,满分18分,将答案填在答题纸上) 16 _____.【答案】2【解析】【详解】∵16=4,4的算术平方根是2,∴16的算术平方根是2.【点睛】这里需注意:16的算术平方根和16的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.12.如图,因为,,AB l BC l B ⊥⊥为垂足,所以AB 和BC 重合,理由是________________.【答案】在同一平面内,过一点有且只有一条直线与已知直线垂直【解析】【分析】根据垂线的性质解答即可.【详解】解:如图,因为,,AB l BC l B ⊥⊥为垂足,所以AB 和BC 重合,理由是:在同一平面内,过一点有且只有一条直线与已知直线垂直.故答案为:在同一平面内,过一点有且只有一条直线与已知直线垂直.【点睛】此题考查了垂线的性质,正确把握垂线的性质是解题的关键.13.18n n 的最小值是_______________________.【答案】2【解析】【分析】由题意可得:18n 是一个完全平方数,据此解答即可.1832n n =,∵n 2n∴n 的最小整数值是2.故答案为:2.【点睛】本题考查的是二次根式的定义和二次根式的化简,属于常考题型,熟练掌握二次根式的基本知识是解题的关键.14.已知平面内一点(),M x y ,若,x y 满足条件0xy =,则点M 的位置是______________________.【答案】在x 轴或y 轴上【解析】【分析】由题意可得x =0或y =0,然后根据坐标轴上点的坐标特征解答即可.【详解】解:∵,x y 满足条件0xy =,∴x =0或y =0,当x =0时,点()0,M y 在y 轴上;当y =0时,点(),0M x 在x 轴上.∴点M 的位置是在x 轴或y 轴上.故答案:在x 轴或y 轴上.【点睛】本题考查了坐标轴上点的坐标特征,属于基础题型,熟知坐标系中x 轴和y 轴上点的坐标特点是解题的关键.15.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为_____. 【答案】 4.5112x y x y +=⎧⎪⎨-=⎪⎩ 【解析】【分析】设木条长x 尺,绳子长y 尺,根据绳子和木条长度间的关系,可得出关于,x y 的二元一次方程组,此题得解.【详解】设木条长x 尺,绳子长y 尺,依题意,得: 4.5112x y x y +=⎧⎪⎨-=⎪⎩故答案为 4.5112x y x y +=⎧⎪⎨-=⎪⎩. 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.16.如图①是长方形纸带,将纸带沿EF 折叠成图②,再沿BF 折叠成图③,若∠DEF=x ,将图③中∠CFE 用x 表示为_________【答案】180°-3x【解析】【分析】根据平行线的性质可得∠BFE=∠DEF=x ;根据题意可得图①、②中的∠CFE=180°﹣∠BFE ,以下每折叠一次,减少一个∠BFE ,由此即可表示∠CFE.【详解】∵长方形的对边是平行的,∴∠BFE=∠DEF=x ;∴图①、②中的∠CFE=180°﹣∠BFE ,∴图②中等∠CFB=180°﹣2∠BFE ,∵以下每折叠一次,减少一个∠BFE ,∴图③中的∠CFE=180 °﹣3x .故答案为180°-3x. 【点睛】本题考查了图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.) 17.(1)()2327323-- (2)求()21=4-x 中x 的值.【答案】(1)43-(2)3x =或1x =-【解析】分析】(1)分别根据立方根的定义、实数的绝对值和算术平方根的性质化简各项,再合并即可;(2)把x -1看作是4的平方根解答即可.【详解】解:(1)原式(323=-+- 323=-+4=-(2)因为()214x -=,所以12x -=±, 解得3x =或1x =-.【点睛】本题考查了实数的混合运算和利用平方根解方程,属于常考题型,熟练掌握实数的基本知识是解题的关键.18.由于受到新冠病毒疫情的影响,某医药厂根据市场调查得知某种消毒液的大瓶装(500克)和小瓶装(250克)两种产品的销售数量比为2:5(按瓶计算),若该厂每天生产这种消毒液22.5吨,为了满足市场需求,求这种消毒液应该分装大、小瓶两种产品各多少瓶.【答案】这种消毒液应该分装大瓶20000瓶,小瓶50000瓶【解析】【分析】设应该分装大小瓶两种产品x 瓶、y 瓶,根据大瓶装(500g )和小瓶装(250g )两种产品的销售数量比为2:5,每天生产这种消毒液22.5吨(22500000克)列方程组成方程组即可.【详解】解:设这种消毒液应该分装大瓶x 瓶,小瓶y 瓶,由题意,得5002502250000052x y x y +=⎧⎨=⎩解得:2000050000x y =⎧⎨=⎩ 答:这种消毒液应该分装大瓶20000瓶,小瓶50000瓶.【点睛】此题考查列二元一次方程组解决实际问题,注意题目蕴含的数量关系,正确列式解答即可. 19.完成下面的证明:已知:如图,BE 平分ABD DE ∠,平分BDC ∠,且90a β∠+∠=︒求证://AB CD .证明:BE 平分ABD DE ∠,平分BDC ∠(已知),2ABD ∴∠=∠ ,2BDC ∠=∠ ,( )()222ABD BDC αβαβ∴∠+∠=∠+∠=∠+∠( )90αβ∠+∠=︒(已知)ABD BDC ∴∠+∠= , ( )//AB CD ∴( )【答案】α;β;角平分线的定义;等式的性质;180°;等量代换; 同旁内角互补两直线平行【解析】【分析】首先根据角平分线的定义结合等量代换,得到∠ABD+∠BDC=180°,然后再根据同旁内角互补两直线平行可得答案.【详解】∵BE 平分∠ABD ,DE 平分∠BDC (已知),∴∠ABD=2∠α,∠BDC=2∠β( 角平分线的定义),∴∠ABD+∠BDC =2∠α +2∠β =2(∠α +∠β)(等式的性质).∵∠α +∠β =90°(已知),∴∠ABD+∠BDC=180°( 等量代换),∴AB ∥CD ( 同旁内角互补两直线平行).故答案为:α;β;角平分线的定义;等式的性质;180°;等量代换; 同旁内角互补两直线平行.【点睛】本题主要考查了平行线的判定,关键是掌握角平分线定义和平行线的判定方法.20.如图,在平面直角坐标系中,已知点()()()()3,3,5,1,2,0,,A B C P a b ---是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△111,A B C 点P 的对应点为()16,2P a b +-.(1)直接写出点111,,A B C 的坐标.(2)在图中画出△111A B C .(3)求△111A B C 的面积.【答案】(1)()111)311,1,4,2(),(,--A B C ;(2)见解析;(3)4 【解析】【分析】(1)先根据平移前后点P 的坐标确定平移的方式,再根据平移的方式解答即可;(2)先描出平移后点111,,A B C 的坐标,再顺次连接即可,如图;(3)如图,利用111A B C △S =1DEC F S -11A B D S ∆-11B C E S ∆-11A C F S ∆解答即可.【详解】解:(1)因为经过平移,点P (a ,b )对应点的坐标为()16,2P a b +-,所以△ABC 平移的方式为:先向右平移6个单位,再向下平移2个单位;所以平移后点111,,A B C 的坐标为:()1113,11,1,4,2(),()A B C --; (2)如图,△111A B C 即为所求.(3)如图,111A B C △S =1DEC F S -11A B D S ∆-11B C E S ∆-11A C F S ∆111332231314222=⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查了平移的性质与作图和坐标系中求图形的面积等知识,属于常考题型,熟练掌握平移的性质是解题的关键.21.已知关于,x y 的二元一次方程组351ax by x cy +=⎧⎨-=⎩,甲同学正确解得23x y =⎧⎨=⎩,而乙同学粗心,把c 看错了,解得36x y =⎧⎨=⎩,求abc 的值. 【答案】﹣9【解析】【分析】将23x y =⎧⎨=⎩代入方程②即可求出c ,将23x y =⎧⎨=⎩与36x y =⎧⎨=⎩分别代入方程①即得关于a 、b 的方程组,解方程组即可求出a 、b ,进一步即可求出结果.【详解】解:对方程组351ax by x cy +=⎧⎨-=⎩①②, 将23x y =⎧⎨=⎩代入方程②,得1031c -=,解得:3c =, 将23x y =⎧⎨=⎩代入方程①,得233a b +=③, 将36x y =⎧⎨=⎩代入方程①,得363a b +=④, 联立③④,得233363a b a b +=⎧⎨+=⎩,解得31a b =⎧⎨=-⎩; 所以()3139abc =⨯-⨯=-.【点睛】本题考查了二元一次方程组的解法,属于常考题型,正确理解题意、熟练掌握代入法与加减法解二元一次方程组的方法是解题的关键.22.已知:如图,在△ABC 中,过点A 作AD ⊥BC ,垂足为D ,E 为AB 上一点,过点E 作EF ⊥BC ,垂足为F ,过点D 作DG ∥AB 交AC 于点G .(1)依题意补全图形;(2)请你判断∠BEF 与∠ADG 的数量关系,并加以证明.【答案】(1)见解析(2)∠BEF =∠ADG【解析】【分析】(1)根据题意画出图形即可;(2)证出AD ∥EF ,得出∠BEF =∠BAD ,再由平行线的性质得出∠BAD =∠ADG ,即可得出结论.【详解】解:(1)如图所示:(2)∠BEF =∠ADG .理由如下:∵AD ⊥BC ,EF ⊥BC ,∴∠ADF =∠EFB =90°.∴AD ∥EF (同位角相等,两直线平行).∴∠BEF =∠BAD (两直线平行,同位角相等).∵DG ∥AB ,∴∠BAD =∠ADG (两直线平行,内错角相等).∴∠BEF =∠ADG .【点睛】本题考查了平行线的判定与性质;熟记平行线的判定与性质是关键,注意两者的区别. 23.(1)2的一系列不足近似值和过剩近似值来估计它的大小的过程如下: 因为2211,24==, 所以122,<<因为21.4 1.96=,21.5 2.25=, 所以1.42 1.5,<< 因为221.41 1.9881,1.42 2.0164==, 所以1.412 1.42<< 因为221.414 1.999396,1.415 2.002225==, 所以1.4142 1.415,<< 2 1.41≈(精确到百分位), 5(精确到百分位).(2)我们规定用符号[]x 表示数x 的整数部分,例如[]0,2.42,34=⎤⎢⎥⎦=⎡⎣ ①按此规定102⎤⎦= ; 35a ,b 求a b -的值.【答案】(1)2.24;(2)①5,②3【解析】【分析】(1)(2)2的范围,再根据规定解答即可;的整数部分a b 的值,再代入所求式子化简计算即可.【详解】解:(1)因2224,39==,所以23,<<因为222.2 4.84,2.3 5.29==,所以2.2 2.3<<,因为222.23 4.9729,2.24 5.0176==,所以2.23 2.24,<< 因为222.236 4.999696,2.237 5.004169==,所以2.236 2.237<<,2.24≈.(2)①因为3.12=9.61,3.22=10.24,所以3.1 3.2<<,所以5.12 5.2<<,所以2⎤⎦=5;故答案为:5;②因为12,23<<<,所以1,2a b ==,所以原式12=)12123=--== 【点睛】本题考查了利用夹逼法求算术平方根的近似值、对算术平方根的整数和小数部分的认识以及实数的简单计算,属于常考题型,正确理解题意、熟练掌握算术平方根的相关知识是解题关键.24.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(-3,1),C(2,-2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.根据所给定义解决下列问题:(1)若已知点D(1,2)、E(-2,1)、F(0,6),则这3点的“矩面积”=_____.(2)若D(1,2)、E(-2,1)、F(0,t)三点的“矩面积”为18,求点F的坐标;【答案】(1)15;(2)(0,7)或(0,-4)【解析】【分析】(1)根据给出的新定义,先求出a和h,然后可求“距面积”;(2)根据题意可以求得a的值,然后再对t进行讨论,即可求得t的值,从而可以求得点F的坐标.【详解】解:(1)由题意可得,∵点D(1,2)、E(-2,1)、F(0,6),∴a=1-(-2)=3,h=6-1=5,∴S=ah=3×5=15,故答案为:15;(2)由题意:“水平底”a=1-(-2)=3,当t>2时,h=t-1,则3(t-1)=18,解得t=7,故点P的坐标为(0,7);当1≤t≤2时,h=2-1=1≠6,故此种情况不符合题意;当t<1时,h=2-t,则3(2-t)=18,解得t=-4,故点P的坐标为(0,-4),所以,点P的坐标为(0,7)或(0,-4)25.探究题:学完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,12l l //,点P 在12,l l 内部,探究,,A APB B ∠∠∠之间的关系.小明过点P 作1l 的平行线,可证得APB A B ∠∠∠,,之间的数量关系是:APB ∠= .(2)如图2,若//AC BD ,点P 在,AC BD 的外部,,,A B APB ∠∠∠之间的数量关系是否会发生变化?请证明你的结论.(3)试构造平行线解决以下问题:如图3,一条河流的两岸//,AB CD 当小船行驶到河中E 点时,与两岸码头,B D 所形成的夹角为64(︒即64BED ∠=︒),当小船行驶到河中点F 时,恰好满足,,ABF EBF EDF CDF ∠=∠∠=∠请你求出此时点F 与码头,B D 所形成的夹角BFD ∠的度数.【答案】(1)A B ∠+∠;(2)会发生变化,APB B A ∠=∠-∠,证明见解析;(3)32∠=BFD【解析】【分析】(1)如图4,根据平行公理的推论可得12////l l PQ ,根据平行线的性质可得∠APQ =∠A ,∠BPQ =∠B ,然后根据角的和差即得结论;(2)如图5,过点P 作//EP AC ,根据平行公理的推论可得////EP BD AC ,根据平行线的性质可得EPA A ∠=∠,EPB B ∠=∠,然后根据角的和差即可得到结论;(3)如图6,过点,E F 分别作//, //,EM AB FN AB FN 与BE 相交于点Q ,根据平行公理的推论可得//////AB FN EM CD ,然后根据平行线的性质、三角形的外角性质、角的和差可得2BED BFD ∠=∠,进而可得结果.【详解】解:(1)如图4,∵12l l //,1//PQ l ,∴12////l l PQ ,∴∠APQ =∠A ,∠BPQ =∠B ,∴∠APB =∠APQ +∠BPQ =A B ∠+∠.故答案为:A B ∠+∠;(2)会发生变化,APB B A ∠=∠-∠.证明:如图5,过点P 作//EP AC ,则EPA A ∠=∠,//AC BD ,//EP BD ∴,EPB B ∴∠=∠,EPB EPA B A ∴∠-∠=∠-∠,即APB B A ∠=∠-∠;(3)如图6,过点,E F 分别作//, //,EM AB FN AB FN 与BE 相交于点,Q//AB CD ,∴//////AB FN EM CD ,,BFN ABF EBF DFN CDF EDF ∴∠=∠=∠∠=∠=∠,2,2,BEM BQN EBF BFN BFN DEM CDF EDF DFN ∴∠=∠=∠+∠=∠∠=∠+∠=∠()2222BEM DEM BFN DFN BFN DFN BFD ∴∠+∠=∠+∠=∠+∠=∠,即264BED BFD ∠=∠=;32BFD ∴∠=.【点睛】本题考查了平行线的性质、平行公理的推论和三角形的外角性质等知识,正确添加辅助线、熟练掌握平行线的判定和性质是解题的关键.。
(42)人教版七年级数学下册测试题附答案注意:以下为人教版七年级数学下册测试题相关内容,请根据题目要求,在测试纸上作答。
所有题目均附答案,答案请勿在测试纸上显示。
一、选择题1. 下列各组中,只有一组成立命题的是()A. 2 + 3 = 5,6 + 1 = 8,3 + 1 = 5B. 长方形有四条边,正方形是长方形,正方形有四条边C. 周长是长和宽的两倍,三角形有三条边,三角形的周长是两条边的和D. 长方形是正方形的特殊情况,正方形是长方形答案:B2. 一车厢有21个座位,每排3个,共计有7排,该车厢有一半的座位已被乘客占用,剩余座位数为()A. 14B. 21C. 28D. 42答案:A3. 兰兰一家外出旅行,每天走了15公里,连续走了3天。
这个问题可以表示为()A. 15 ÷ 3B. 15 × 3C. 3 ÷ 15D. 3 × 15答案:B二、计算题1. 求下列各式的值:(1) 7 × (-5) + (-4) × 9 = ()(2) (-5) × (-6) + 9 × (-7) = ()答案:(1)-23(2)-572. 计算:99 × 999 = ()答案:98901三、应用题按照题目所给条件和要求,解答下列问题。
甲、你家的电视机有两个音量调节按钮,分别是“增加音量”和“减小音量”按钮。
每次按下增加音量按钮,电视机的音量增加3;每次按下减小音量按钮,音量减小2。
现在电视的音量为15,请写出使用增加和减小音量按钮,将电视音量调节到25的操作步骤。
答案:首先,按增加音量按钮3次,将音量调整到18。
然后,再按增加音量按钮2次,将音量调整到21。
最后,按减小音量按钮2次,将音量调整到25。
乙、小明每天喂养宠物狗,每次需要用2个标准勺的狗粮,一天需要喂养4次。
请问从每月1号到30号,小明一共需要用多少个标准勺的狗粮?答案:每天需要用2个标准勺的狗粮,一天需要喂养4次,所以每天需要用8个标准勺的狗粮。
七年级数学下册期末试卷测试卷 (word 版,含解析)一、选择题1.如图,下列结论中错误的是( )A .∠1与∠2是同旁内角B .∠1与∠4是内错角C .∠5与∠6是内错角D .∠3与∠5是同位角2.下列图中的“笑脸”,是由上面教师寄语中的图像平移得到的是( )A .B .C .D . 3.若点P 在第四象限内,则点P 的坐标可能是( )A .()4,3B .()3,4-C .()3,4--D .()3,4- 4.下列四个命题:①两条直线相交,若对顶角互补,则这两条直线互相垂直;②两条直线被第三条直线所截,内错角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④经过直线外一点,有且只有一条直线与已知直线平行.其中是真命题的个数是( )A .1B .2C .3D .45.如图,//AB CD ,P 为平行线之间的一点,若AP CP ⊥,CP 平分∠ACD ,68ACD ∠=︒,则∠BAP 的度数为( )A .56︒B .58︒C .66︒D .68︒6.下列说法:①两个无理数的和可能是有理数:②任意一个有理数都可以用数轴上的点表示;③33mn π-+是三次二项式;④立方根是本身的数有0和1;其中正确的是( ) A .①② B .①③ C .①②③ D .①②④ 7.如图,//AB CD ,//BC DE ,若140CDE ∠=︒,则B 的度数是( )A .40°B .60°C .140°D .160° 8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(y ﹣1,﹣x ﹣1)叫做点P 的友好点,已知点A 1的友好点为点A 2,点A 2的友好点为点A 3,点A 3的友好点为点A 4,⋯⋯以此类推,当点A 1的坐标为(2,1)时,点A 2021的坐为( )A .(2,1)B .(0,﹣3)C .(﹣4,﹣1)D .(﹣2,3)二、填空题9.已知223130x x y -+--=,则x +y=___________10.点(m ,1)和点(2,n)关于x 轴对称,则mn 等于_______.11.如图,直线AB 与直线CD 交于点O ,OE 、OC 是AOC ∠与∠BOE 的角平分线,则AOD ∠=______度.12.如图,点D 、E 分别在AB 、BC 上,DE ∥AC ,AF ∥BC ,∠1=70°,则∠2=_____°.13.如图,将一张长方形纸片沿EF 折叠后,点A ,B 分别落在A ′,B ′的位置.如果∠1=59°,那么∠2的度数是_____.14.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.15.如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为2,则点C的坐标为_____.16.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).动点P从点A处出发,并按A﹣B﹣C﹣D﹣A﹣B…的规律在四边形ABCD的边上以每秒1个单位长的速度运动,运动时间为t秒.若t=2021秒,则点P所在位置的点的坐标是_____.三、解答题17.计算下列各题:2213-123181632163125()2-318.求下列各式中的x.(1)x2-81=0(2)(x﹣1)3=819.如图所示,已知∠1+∠2=180°,∠B=∠3,请你判断DE和BC平行吗?说明理由.(请根据下面的解答过程,在横线上补全过程和理由)解:DE∥BC.理由如下:∵∠1+∠4=180°(平角的定义),∠1+∠2=180°(),∴∠2=∠4().∴∥().∴∠3=().∵∠3=∠B(),∴=().∴DE∥BC().20.如图,在平面直角坐标系中,三角形OBC 的顶点都在网格格点上,一个格是一个单位长度.(1)将三角形OBC 先向下平移3个单位长度,再向左平移2个单位长度(点1C 与点C 是对应点),得到三角形111O B C ,在图中画出三角形111O B C ;(2)直接写出三角形111O B C 的面积为____________.21.阅读下面的文字,解答问题 22的小数部分我们不可能全部212 21,将这个数减去其整数部分,差就是小数部分. 479273, ∴7272)请解答:(157整数部分是 ,小数部分是 .(211a 7b ,求|a ﹣b 11(3)已知:5x +y ,其中x 是整数,且0<y <1,求x ﹣y 的相反数.二十二、解答题22.(1)如图1,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______cm ;(2)若一个圆的面积与一个正方形的面积都是22πcm ,设圆的周长为C 圆.正方形的周长为C 正,则C 圆______C 正(填“=”,或“<”,或“>”)(3)如图2,若正方形的面积为2900cm ,李明同学想沿这块正方形边的方向裁出一块面积为2740cm 的长方形纸片,使它的长和宽之比为5:4,他能裁出吗?请说明理由?二十三、解答题23.如图,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上,过点B 作BG AD ⊥,垂足为点G .(1)如图1,求证:90MAG PBG ∠+∠=︒;(2)若点C 在线段AD 上(不与A 、D 、G 重合),连接BC ,MAG ∠和PBC ∠的平分线交于点H 请在图2中补全图形,猜想并证明CBG ∠与AHB ∠的数量关系;24.已知//PQ MN ,将一副三角板中的两块直角三角板如图1放置,90ACB EDF ∠=∠=︒,45ABC BAC ∠=∠=︒,30DFE ∠=︒,60DEF ∠=︒.(1)若三角板如图1摆放时,则α∠=______,β∠=______.(2)现固定ABC 的位置不变,将DEF 沿AC 方向平移至点E 正好落在PQ 上,如图2所示,DF 与PQ 交于点G ,作FGQ ∠和GFA ∠的角平分线交于点H ,求GHF ∠的度数; (3)现固定DEF ,将ABC 绕点A 顺时针旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF 的一条边平行时,请直接写出BAM ∠的度数.25.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.26.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据同位角、内错角、同旁内角的定义结合图形进行判断即可.【详解】解:如图,∠1与∠2是直线a与直线b被直线c所截的同旁内角,因此选项A不符合题意;∠1与∠6是直线a与直线b被直线c所截的内错角,而∠6与∠4是邻补角,所以∠1与∠4不是内错角,因此选项B符合题意;∠5与∠6是直线c与直线d被直线b所截的内错角,因此选项C不符合题意;∠3与∠5是直线c与直线d被直线b所截的同位角,因此选项D不符合题意;故选:B.【点睛】本题主要考查同位角、内错角、同旁内角,掌握同位角、内错角、同旁内角的定义是关键.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都不是由平移得到的,D是由平移得到的.故选:D.【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都不是由平移得到的,D是由平移得到的.故选:D.【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.B【分析】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案.【详解】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有()3,4-满足要求, 故选:B .【点睛】本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键.4.C【分析】根据对顶角的性质和垂直的定义判断①;根据内错角相等的判定方法判定②;根据平行线的判定对③进行判断;根据经过直线外一点,有且只有一条直线与已知直线平行判断④即可【详解】解:两条直线相交,若对顶角互补,则这两条直线互相垂直,所以①正确;两条互相平行的直线被第三条直线所截,内错角相等;,所以②错误;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以③正确; 经过直线外一点,有且只有一条直线与已知直线平行,所以④正确.故选:C .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,熟练掌握相关性质是解题的关键.5.A【分析】过P 点作PM //AB 交AC 于点M ,直接利用平行线的性质以及平行公理分别分析即可得出答案.【详解】解:如图,过P 点作PM //AB 交AC 于点M .∵CP 平分∠ACD ,∠ACD =68°,∴∠4=12∠ACD =34°.∵AB //CD ,PM //AB ,∴PM //CD ,∴∠3=∠4=34°,∵AP ⊥CP ,∴∠APC =90°,∴∠2=∠APC -∠3=56°,∵PM //AB ,∴∠1=∠2=56°,即:∠BAP 的度数为56°,故选:A .【点睛】此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.6.A【分析】根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可.【详解】①两个无理数的和可能是有理数,说法正确(0=,0是有理数②有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确③3327mn mn ππ=-+-+是二次二项式,说法错误④立方根是本身的数有0和±1,说法错误综上,说法正确的是①②故选:A .【点睛】本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键.7.A【分析】根据平行线的性质求出∠C ,再根据平行线的性质求出∠B 即可.【详解】解:∵BC ∥DE ,∠CDE =140°,∴∠C =180°-140°=40°,∵AB ∥CD ,∴∠B =40°,故选:A .【点睛】本题考查了平行线的性质的应用,注意:平行线的性质有①两直线平行,内错角相等,②两直线平行,同位角相等,③两直线平行,同旁内角互补.8.A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A解析:A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A4(-2,3),A5(2,1),…,∴A4n+1(2,1),A4n+2(0,-3),A4n+3(-4,-1),A4n+4(-2,3)(n为自然数).∵2021=505×4+1,∴点A2021的坐标为(2,1).故选:A.【点睛】本题考查了规律型的点的坐标,从已知条件得出循环规律:每4个点为一个循环是解题的关键.二、填空题9.-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+解析:-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+(-3)=-1.故答案为:-1.【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】∵点A(m,1)和点B(2,n)关于x轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题解析:-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】∵点A(m,1)和点B(2,n)关于x轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题主要考查了关于x轴对称点的性质,正确掌握关于x轴对称点的性质是解题关键.11.60【分析】由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数.【详解】∵OE平分∠AOC,∴∠AOE=∠EOC,∵OC平分∠BOE,∴解析:60【分析】由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数.【详解】∵OE平分∠AOC,∴∠AOE=∠EOC,∵OC平分∠BOE,∴∠EOC=∠COB∴∠AOE=∠EOC=∠COB,∵∠AOE+∠EOC+∠COB=180︒∴∠COB=60°,∴∠AOD=∠COB=60°,故答案为:60【点睛】本题主要考查了角平分线的应用以及对顶角相等的性质,熟练运用角平分线的定义是解题的关键.12.70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答解析:70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答案为70.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.13.62°【分析】根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁解析:62°【分析】根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.:求出即可.【详解】解:∵将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,∠1=59°,∴∠EFB′=∠1=59°,∴∠B′FC=180°−∠1−∠EFB′=62°,∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠B′FC=62°,故答案为:62°.【点睛】本题考查了对平行线的性质和折叠的性质的应用,解此题的关键是求出∠B′FC的度数,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.14.或【详解】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【详解】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}= min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.15.(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),解析:(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),B(2,0),∴AB=2-1=1,∴△ABC的面积=12×1•h=2,解得h=4,点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4).故答案为:(0,4)或(0,-4).【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.16.(0,1)【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由题意可知P 点的运动是绕矩形ABCD的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1), B解析:(0,1)【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由题意可知P点的运动是绕矩形ABCD的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1),B(-1,1),C(-1,-2), D(1,-2)∴AB= CD= 2,AD= BC= 3,∴四边形ABCD 的周长= AB+ AD+BC+CD= 10∵P点的运动是绕矩形ABCD的周长的循环运动,且速度为每秒一个单位长度∴P点运动一周需要的时间为10秒∵2021=202×10+1∴当t=2021秒时P的位置相当于t=1秒时P的位置∵t=1秒时P的位置是从A点向B移动一个单位∴此时P点的坐标为(0,1)∴t=2021秒时P点的坐标为(0,1)故答案为:(0,1).【点睛】本题主要考查了点的坐标与运动方式的关系,解题的关键在于找出P点一个循环运动需要花费的时间.三、解答题17.(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)==5;(2)-× =-×4=-2;(3)-++=-6+5+3=2.【点睛】此题主要解析:(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解12×4=-2;【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.18.(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(解析:(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(2)方程整理得:(x-1)3=8,开立方得:x-1=2,解得:x=3.【点睛】本题考查了平方根、立方根,熟练掌握各自的定义是解本题的关键.19.已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行【分析】求出∠2=∠4,根据平行线的判定得出AB解析:已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行【分析】求出∠2=∠4,根据平行线的判定得出AB∥EF,根据平行线的性质得出∠3=∠ADE,求出∠B=∠ADE,再根据平行线的判定推出即可.【详解】解:DE∥BC,理由如下:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知),∴∠2=∠4(同角的补角相等),∴AB∥EF(内错角相等,两直线平行),∴∠3=∠ADE (两直线平行,内错角相等),∵∠3=∠B (已知),∴∠B =∠ADE (等量代换),∴DE ∥BC (同位角相等,两直线平行),【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的性质定理及判定定理是解题的关键. 20.(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积解析:(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O 1、B 1、C 1的坐标,然后顺次连接O 1、B 1、C 1即可;(2)根据111O B C 的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可.【详解】解:(1)如图所示,111O B C 即为所求;(2)由题意得:11111143421313=5222O B C S =⨯-⨯⨯-⨯⨯-⨯⨯△. 【点睛】本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法. 21.(1)7;-7;(2)5;(3)13-.【分析】(1)估算出的范围,即可得出答案;(2)分别确定出a 、b 的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y 的值,进而求解析:(1)7;(2)5;(3)【分析】(1(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求.【详解】解:(1)∵78,∴7.故答案为:7.(2)∵34,∴a,3∵23,∴b=2∴=5(3)∵23∴11<12,∵,其中x是整数,且0﹤y<1,∴x=11,y=,∴x-y==【点睛】本题考查的是无理数的小数部分和整数部分及其运算.估算无理数的整数部分是解题关键.二十二、解答题22.(1);(2)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的解析:(12)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,设大正方形的边长为x cm ,∴22x = , ∴x∴;(2)设圆的半径为r ,∴由题意得22r ππ=, ∴r = ∴=22C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C ===<圆正 故答案为:<;(3)解:不能裁剪出,理由如下:∵正方形的面积为900cm 2,∴正方形的边长为30cm∵长方形纸片的长和宽之比为5:4,∴设长方形纸片的长为5x ,宽为4x ,则54740x x ⋅=,整理得:237x =,∴22(5)252537925900x x ==⨯=>,∴22(5)30x >,∴530x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.二十三、解答题23.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解.【详解】(1)证明:解析:(1)证明见解析;(2)补图见解析;当点C 在AG 上时,290AHB CBG ∠-∠=︒;当点C 在DG 上时,290AHB CBG ∠+∠=︒.【分析】(1)过点G 作//GE MN ,根据平行线的性质即可求解;(2)分两种情况:当点C 在AG 上,当点C 在DG 上,再过点H 作//HF MN 即可求解.【详解】(1)证明:如图,过点G 作//GE MN ,∴MAG AGE ∠=∠,∵//MN PQ ,∴//GE PQ .∴PBG BGE ∠=∠.∵BG AD ⊥,∴90AGB ∠=︒,∴90MAG PBG AGE BGE AGB ∠+∠=∠+∠=∠=︒.(2)补全图形如图2、图3,猜想:290AHB CBG ∠-∠=︒或290AHB CBG ∠+∠=︒.证明:过点H 作//HF MN .∴1AHF ∠=∠.∵//MN PQ ,∴//HF PQ∴2BHF ∠=∠,∴12AHB AHF BHF ∠=∠+∠=∠+∠.∵AH 平分MAG ∠,∴21MAG ∠=∠.如图3,当点C 在AG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠+∠=∠,∵//MN PQ ,∴MAG GDB ∠=∠,2212290AHB MAG PBG CBGGDB PBG CBG CBG∴∠=∠+∠=∠+∠+∠=∠+∠+∠=︒+∠即290AHB CBG ∠-∠=︒.如图2,当点C 在DG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠-∠=∠.∴2212290AHB MAG PBG CBG CBG ∠=∠+∠=∠+∠-∠=︒-∠.即290AHB CBG ∠+∠=︒.【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.24.(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当BC ∥DE 时,当BC ∥EF 时,当BC ∥DF 时,三种情况进行解答即可.【详解】解:(1)作EI ∥PQ ,如图,∵PQ∥MN,则PQ∥EI∥MN,∴∠α=∠DEI,∠IEA=∠BAC,∴∠DEA=∠α+∠BAC,∴α= DEA -∠BAC=60°-45°=15°,∵E、C、A三点共线,∴∠β=180°-∠DFE=180°-30°=150°;故答案为:15°;150°;(2)∵PQ∥MN,∴∠GEF=∠CAB=45°,∴∠FGQ=45°+30°=75°,∵GH,FH分别平分∠FGQ和∠GFA,∴∠FGH=37.5°,∠GFH=75°,∴∠FHG=180°-37.5°-75°=67.5°;(3)当BC∥DE时,如图1,∵∠D=∠C=90 ,∴AC∥DF,∴∠CAE=∠DFE=30°,∴∠BAM+∠BAC=∠MAE+∠CAE,∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;当BC∥EF时,如图2,此时∠BAE=∠ABC=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°;当BC∥DF时,如图3,此时,AC ∥DE ,∠CAN =∠DEG =15°,∴∠BAM =∠MAN -∠CAN -∠BAC =180°-15°-45°=120°.综上所述,∠BAM 的度数为30°或90°或120°.【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠; (2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.26.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.。
人教版七年级数学下册第六章实数。
单元测试题精选(Word版附答案)
人教版七年级数学第6章《实数》单元测试题精选
完成时间:120分钟满分:150分
得分评卷人:______________ 姓名:______________ 成绩:______________
一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)
题号 1 2 3 4 5 6 7 8 9 10
答案 B A D A A C D C B B
二、填空题(每题5分,共20分)
11.m = 3.n = 1.(m+n)^5 = 243.
12.(1) 0.000 521 7 (2) 0.002 284.
13.3.
14.x = 8.
三、解答题(共90分)
15.
1) x = ±5/3;
2) x = 3/5.
16.1.
17.
a = 9.
b = -8.3a+b的算术平方根为 5.
18.已知 $m=\lfloor 313\rfloor$。
$n=0.13$,求 $m-n$ 的值。
19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,
并且它的长与宽之比为 $5:2$。
讨论方案时,XXX说:“我们
不可能围成满足要求的长方形场地。
”小军说:“面积和长宽比
例是确定的,肯定可以围得出来。
”请你判断谁的说法正确,为什么?
解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。
20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?
解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得
$\left(\frac{3-x}{y-3}\right)^{671}$。
21.已知 $1-3a$ 和 $|8b-3|$ 互为相反数,求 $3ab$ 的值。
解:由 $1-3a$ 和 $|8b-3|$ 互为相反数得 $1-3a=-|8b-3|$ 或$1-3a=|8b-3|$,解得 $a=\frac{1}{3}$,$b=\frac{2}{3}$ 或 $a=-
\frac{2}{3}$,$b=\frac{1}{3}$,故 $3ab=2$ 或 $-2$。
22.若 $x,y$ 都是实数,且 $y=x-3+\frac{3}{x-3}$,求
$x+3y$ 的立方根。
解:将 $y=x-3+\frac{3}{x-3}$ 化简得 $y-2=x-
5+\frac{3}{x-3}$,即 $x+3y=x+3(x-5+\frac{3}{x-3})=4x-
12+\frac{9}{x-3}$,所以 $x+3y$ 的立方根为 $\sqrt[3]{4x-
12+\frac{9}{x-3}}$。
23.你能找出规律吗?
1) 计算:$4\times9=6$,$4\times9=6$;$16\times25=20$,$16\times25=20$。
2) 请按找到的规律计算:$5\times125=30$,
$123\times9^3=7380$。
3) 已知 $a=2$,$b=10$,用含 $a,b$ 的式子表示 $40$。
$40=8a+3b$。
1.在第一题中,删除了没有意义的“得分评卷人”部分。
2.改写第一题中的问题为:“在π-2,-27,0.xxxxxxxx21.(相邻两个1之间依次多一个2)中,有理数有几个?”
3.改写第二题中的问题为:“计算22-2的值为多少?”
4.在第三题中,将“得分评卷人”部分移动到最后。
5.在第十一题中,将“,则(m+n)5=-1.”改为“,则(m+n)的
五次方等于-1.”
6.在第十二题中,将“观察:已知5.217=2.284,
521.7=22.84.”改为“已知5.217=2.284,521.7=22.84,填写下列
空格:”
7.在第十三题中,将“若x+2=3,则2x+5的平方根是±19.”
改为“如果x+2=3,那么2x+5的平方根是多少?”
8.在第十四题中,将“若x-1是125的立方根,则x-7的立
方根是-1.”改为“如果x-1是125的立方根,那么x-7的立方根
是多少?”
9.在第十五题中,将“求下列各式中的x:x3125=-925=;89,”改为“如果x的三次方等于125/8,那么x等于多少?”
10.在第十六题中,将“原式=2-1+3-2=3-1.”改为“|1-
2|+|3-2|的值为多少?”
11.在第十七题中,将“已知某正数的两个平方根分别是a
+3和2a-15,b的立方根是-2,求3a+b的算术平方根.”改
为“如果某个正数的两个平方根分别是a+3和2a-15,且b的立方根是-2,那么3a+b的算术平方根是多少?”
12.在第十九题中,将“如图,计划围一个面积为50 m2的
长方形场地,一边靠旧墙(墙长为10 m),另外三边用篱笆围成,并且它的长与宽之比为5∶2.讨论方案时,XXX说:“我们不
可能围成满足要求的长方形场地.”小军说:“面积和长宽比例
是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?”改为“假设要围一个面积为50平方米的长方形场地,一
边靠旧墙(墙长为10米),另外三边用篱笆围成,并且它的
长与宽之比为5∶2.XXX说:“我们不可能围成满足要求的长
方形场地。
”小军说:“面积和长宽比例是确定的,肯定可以围得出来。
”请判断谁的说法正确,为什么?”
文章已经没有格式错误和明显有问题的段落了,以下是小幅度的改写:
根据题意,如果长与墙平行,则无法围成满足条件的长方形场地,只有宽与墙平行才行。
因此,他们的说法都不正确。
题目中给出了一个等式,根据它可得出xy的值为-1,因此,(xy)2015的值为-1.
已知1-3a和|8b-3|互为相反数,代入相应的公式可求出a 和b的值,从而计算出3ab的值为2.
根据题意,可得出x=3,代入公式求出y=8,进而计算出x+3y的值为27,再求出它的立方根为3.
通过观察计算结果可以发现,每个结果都是将第一个数的个位数和第二个数的十位数相乘,再在结果后面加上0.因此,按照这个规律计算得出:①5×125=625,②123×935=,都符合规律。
根据题意,可以得到40=2×(10+3)×2,因此,用含a,b
的式子表示40为2ab(a+b)。