专题11 全等三角形
- 格式:doc
- 大小:1.10 MB
- 文档页数:13
1专题11 利用x 模型证明三角形全等知识对接考点一、一线三直角的应用(1)图形中已经存在“一线三直角”,直接应用模型解题;(2)图形中存在“一线两直角”,补上“一直角”构造此模型;(3)图形中只有直线上的一个直角,补上“两直角”构造此模型;(4)图形中只有一个直角,过该直角顶点补上“一线”,再补上“两直角”,构造此模型;(5)对于平面直角坐标系,在x 轴或y 轴(也可以是平行于x 轴或y 轴的直线)上构造“一线三直角”是解决问题的关键.专项训练一、单选题1.(2021·四川)如图,在正方形ABCD 中,点O 为对角线AC 的中点,过点O 作射线OG 、ON 分别交AB 、BC 于点E 、F ,且∠EOF =90°,BO 、EF 交于点P .则下列结论中: (1)图形中全等的三角形只有两对;(2)正方形ABCD 的面积等于四边形OEBF 面积的4倍;(3)BE +BFOA ;(4)AE 2+CF 2=2OP •OB .正确的结论有( )个.A .1B .2C .3D .4【答案】C【分析】由正方形的性质和已知条件得出图形中全等的三角形有四对,得出(1)错误;由AOE BOF △≌△,得出四边形OEBF 的面积ABO =△的面积14=正方形ABCD 的面积,得出(2)正确;由BOE COF ≌,得出BE CF =,得出BE BF AB +==,得出(3)正确;由AOE BOF △≌△得出AE BF =,进而2222222AE CF BE BF EF OF +=+==,再证明OPF △∠OFB △,得出2•OF OP OB =,得出(4)正确.【详解】解:(1)不正确;图形中全等的三角形有四对:ABC ADC ≅△△,AOB COB ≅,AOE BOF ≅△△,BOE COF ≅△△;理由如下:四边形ABCD 是正方形,AB BC CD DA ∴===,90BAD ABC BCD D ∠=∠=∠=∠=︒,45BAO BCO ∠=∠=︒, 在ABC 和ADC 中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩,()ABC ADC SSS ∴≅;点O 为对角线AC 的中点,OA OC ∴=,在AOB 和COB △中,OA OC AB CB OB OB =⎧⎪=⎨⎪=⎩,()AOB COB SSS ∴≅;AB CB =,OA OC =,90ABC ∠=︒,90AOB ∠=︒∴,45OBC ∠=︒,又90EOF ∠=︒,AOE BOF ∴∠=∠,在AOE △和BOF 中,45OAE OBF OA OBAOE BOF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ()AOE BOF ASA ∴≅;同理:BOE COF ≅△△;(2)正确.理由如下:AOE BOF ≅,∴四边形OEBF 的面积ABO =△的面积14=正方形ABCD 的面积; (3)正确.理由如下:BOE COF ∆≅∆,BE CF ∴=,BE BF CF BF BC AB ∴+=+==;(4)正确.AE2+CF2=BE2+BF2=EF2OF)2=2OF2,在∠OPF与∠OFB中,∠OBF=∠OFP=45°,∠POF=∠FOB,∠∠OPF∠∠OFB,OP:OF=OF:OB,OF2=OP•OB,AE2+CF2=2OP•OB.正确结论的个数有3个;故选:C.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,以及勾股定理和相似三角形的判定和性质等.解题的关键是正确寻找全等三角形、相似三角形解决问题,属于中考常考题型.2.(2021·广东佛山市·九年级)下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相等的平行四边形是正方形C.16的平方根是4D.有两条边对应相等的两个直角三角形全等【答案】C【分析】对各选项依次进行判断分析,由此即可求解.【详解】选项A,一组对边平行,另一组对边相等的四边形不一定是平行四边形,例如等腰梯形,故本选项错误;选项B,对角线相等的平行四边形是矩形,不一定是正方形,故本选项错误;选项C,16的平方根是±4,故本选项正确;选项D,有两条边对应相等的两个直角三角形不一定全等,例如,一个直角三角形的一条直角边与另一个直角三角形的一条直角边对应相等,另一条直角边与斜边对应相等,这两个直角三角形不全等,故本选项错误.故选C.【点睛】本题考查了平行四边形、矩形、正方形的判定、平方根及全等三角形的判定等知识,熟悉相关性质是解题的关键.33.如图,点C ,F ,B ,E 在同一直线上,∠C =∠DFE =90°,添加下列条件,仍不能判定∠ACB 与∠DFE 全等的是( )A .∠A =∠D ,AB =DEB .AC =DF ,CF =BE C .AB =DE ,BC =EFD .∠A =∠D ,∠ABC =∠E【答案】D【分析】根据全等三角形的判定方法判断即可.【详解】 解:A 、∠∠A =∠D ,AB =DE ,∠C =∠DFE =90°,根据AAS 判定∠ACB 与∠DFE 全等,不符合题意;B 、∠CF =BE ,可得,BC =EF ,AC =DF ,BC =EF ,∠C =∠DFE =90°,根据SAS 判定∠ACB 与∠DFE 全等,不符合题意;C 、∠AB =DE ,BC =EF ,∠C =∠DFE =90°,根据HL 判断Rt∠ACB 与Rt∠DFE 全等,不符合题意;D 、∠∠A =∠D ,∠ABC =∠E ,∠C =∠DFE =90°,由AAA 不能判定∠ACB 与∠DFE 全等,符合题意;故选:D .【点睛】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.如图,以点O 为圆心,任意长为半径画弧,分别交OA OB 、于点C D 、.分别以C D 、两点为圆心,CD 长为半径画弧,两段弧交于点P ,作射线OP ,连接PC PD 、,则POC △与POD 全等,其全等的判定依据是( )A.SSS B.SAS C.AAS D.ASA【答案】A【分析】由画法得OC=OD,PC=PD,加上公共边OP,则可根据“SSS”可判定∠OCP∠∠ODP.【详解】解:由画法得OC=OD,PC=PD,又∠OP=OP,∠∠OCP∠∠ODP(SSS),故选:A.【点睛】本题考查了基本作图:作已知角的角平分线,全等三角形的判定定理,熟练掌握“SSS”判定两个三角形全等,是解题的关键.5.(2021·河南师大附中九年级模拟预测)如图,直线m经过点B且平行于AC,点P为直线m上的一动点,连接PC,P A,随着点P在直线m上移动,则下列说法中一定正确的是()A.ABC与PCA全等B.ABC与PCA的周长相等C.ABC与PCA的面积相等D.四边形ACBP是平行四边形【答案】C【分析】由全等三角形和平行四边形的判定,以及同底等高三角形的面积相等,可以得出正确的选项.【详解】解:选项A,因为点A,B,C是定点,而点P是直线m上的动点,所以ABC与PCA不一定全等,故A错误;选项B,ABC的周长是定值,而PCA的周长随着点P位置的变化而变化,所以B错误;选项C,由于ABC与PCA都可以看作是以AC为底边的三角形,且直线m平行于AC,可由平行线间的距离处处相等知道ABC与PCA属于同底等高的三角形,故二者面积相等,所以选项C正确;选项D,由于P是动点,点A,B,C,是定点,所以BP不总是等于AC,而平行四边形的对边应该相等,所以选项D错误.故选:C.【点睛】5本题是考查全等三角形和平行四边形的判定,以及同底等高三角形的面积相等的,属于中等难度的题目.6.(2021·内蒙古包头市·九年级)已知下列命题:∠若a b >,则ac bc >;∠若a a =,则0a >;∠内错角相等;∠周长相等的所有等腰直角三角形全等,其中真命题的个数是( ) A .1个B .2个C .3个D .4个【答案】A【分析】根据不等式的性质,绝对值的意义,平行线的判定和性质,等腰三角形的性质,全等三角形的判定和性质判断即可.【详解】解:∠若a b >,0c >,则ac bc >;故∠错误;∠若a a =,则0a ≥;故∠错误;∠两直线平行,内错角相等;故∠错误;∠周长相等的所有等腰直角三角形全等,故∠正确;故选:A【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.(2021·山东)下列命题中,是真命题的是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .两边及其中一边的对角分别相等的两个三角形全等C .两条直线被三条直线所截,内错角相等D .对角线互相垂直的平行四边形是菱形【答案】D【分析】根据平行四边形的判定、全等三角形的判定方法、平行线的性质、菱形的判定分别判断即可.【详解】解:A 、一组对边平行,另一组对边相等的四边形不一定是平行四边形,故为假命题; B 、两边及其中一边的对角分别相等满足SSA ,则两个三角形不一定全等,故为假命题; C 、两条平行线被三条直线所截,内错角相等,故为假命题;D 、对角线互相垂直的平行四边形是菱形,故为真命题;故选:D .【点睛】本题考查的是命题的真假判断,掌握三角形全等的判定方法,垂径定理,平行四边形的判定,7平行线的性质是解题的关键.8.将一个边长为4的正方形ABCD 分割成如图所示的9部分,其中ABE △,BCF △,CDG ,DAH 全等,AEH △,BEF ,CFG △,DGH 也全等,中间小正方形EFGH 的面积与ABE △面积相等,且ABE △是以AB 为底的等腰三角形,则AEH △的面积为( )A .2B .169C .32 D【答案】C【详解】解:如图,连结EG 并向两端延长分别交AB 、CD 于点M 、N ,连结HF ,∠四边形EFGH 为正方形,∠EG FH =,∠ABE △是以AB 为底的等腰三角形,∠AE BE =,则点E 在AB 的垂直平分线上,∠ABE △∠CDG ,∠CDG 为等腰三角形,∠CG DG =,则点G 在CD 的垂直平分线上,∠四边形ABCD 为正方形,∠AB 的垂直平分线与CD 的垂直平分线重合,∠MN 即为AB 或CD 的垂直平分线,则,EM AB GN CD ,EM GN ,∠正方形ABCD 的边长为4,即4AB CD AD BC ,∠4MN =,设EM GN x ,则42EG FH x ,∠正方形EFGH 的面积与ABE △面积相等,即2114(42)22x x ,解得:121,4x x ==,∠4x =不符合题意,故舍去,∠1x =,则S 正方形EFGH 14122==⨯⨯=ABE S , ∠ABE △,BCF △,CDG ,DAH 全等,∠2====ABE BCF CDG DAH S S S S ,∠正方形ABCD 的面积4416=⨯=,AEH △,BEF ,CFG △,DGH 也全等, ∠1(4=AEH S S 正方形ABCD − S 正方形EFGH 134)(16242)42-=⨯--⨯=ABE S , 故选:C .【点睛】本题考查了正方形的性质、全等三角形的性质和等腰三角形的性质,解题的关键是求得ABE △的面积.9.(2021·广东汕头市·)下列命题正确是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .有两条边对应相等的两个直角三角形全等C .垂直于圆的半径的直线是切线D .对角线相等的平行四边形是矩形【答案】D【分析】根据平行四边形的判定、三角形全等的判定定理、圆的切线的判定、矩形的判定逐项判断即可.【详解】A 、一组对边平行,另一组对边相等的四边形可能是等腰梯形,此项错误B 、有两条边对应相等的两个直角三角形不一定全等,此项错误C 、垂直于圆的半径,且与圆只有一个交点的直线是切线,此项错误D 、对角线相等的平行四边形是矩形,此项正确故选:D .【点睛】本题考查了平行四边形的判定、三角形全等的判定定理、圆的切线的判定、矩形的判定,熟记各判定方法是解题关键.10.(2021·全国)下列命题中,其逆命题是真命题的是( )A .对顶角相等B .两直线平行,同位角相等C .全等三角形的对应角相等D .正方形的四个角相等9【答案】B【分析】先写成各选项的逆命题,再根据对顶角的定义、平行线的判定、三角形全等的判定、正方形的判定逐项判断即可得.【详解】A 、逆命题:如果两个角相等,那么这两个角是对顶角相等的两个角不一定是对顶角,则此逆命题是假命题B 、逆命题:同位角相等,两直线平行由平行线的判定可知,此逆命题是真命题C 、逆命题:如果两个三角形的对应角相等,则这两个三角形是全等三角形由三角形全等的判定定理可知,此逆命题是假命题D 、逆命题:如果一个四边形的四个角都相等,则这个四边形是正方形如果一个四边形的四个角都相等,则这个四边形是矩形,不一定是正方形,则此逆命题是假命题故选:B .【点睛】本题考查了命题的逆命题、对顶角的定义、平行线的判定、三角形全等的判定、正方形的判定,正确写出各命题的逆命题是解题关键.二、填空题11.(2021·北京海淀·人大附中九年级模拟预测)如图,正方形ABCD 是由四个全等的直角三角形围成的,若5CF =,13AB =,则EF 的长为___.【答案】【分析】由全等三角形的性质可得AE =BG =CF =DH =5,AH =BE =CG =DF =12,∠DAB =90°,∠DAH =∠ABE ,可得EG =GF =FH =HF =7,∠ABE +∠BAE =90°,可证四边形EGFH 是正方形,即可求EF 的长.【详解】解:∠正方形ABCD 是由四个全等的三角形围成的,∠AE =BG =CF =DH =5,AH =BE =CG =DF =12,∠DAB =90°,∠DAH =∠ABE∠EG =GF =FH =HF =7,∠ABE +∠BAE =90°,∠四边形EGFH 是菱形,且∠AEB =90°∠四边形EGFH 是正方形∠EF EG =故答案为:【点睛】本题考查了正方形的判定和性质,全等三角形的性质,证明四边形EGFH 是正方形是本题的关键.12.(2021·浙江湖州市·)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90,3,10A BD CF ∠=︒==,则OE 的长度是_________.【答案】2【分析】设正方形ADOF 的边长为x ,在直角三角形ACB 中,利用勾股定理可建立关于x 的方程,解方程即可,进而全等三角形的性质得出OE 的长.【详解】解:设正方形ADOF 的边长为x ,由题意得:BE =BD =3,CE =CF =10,∠BC =BE +CE =BD +CF =13,在Rt ∠ABC 中,AC 2+AB 2=BC 2,即(10+x )2+(x +3)2=132,整理得,x 2+13x 30-=0,解得:x =2,或x =-15(舍去),即正方形ADOF 的边长是2,11∠DO =FO =2, ∠∠BOD ∠∠BOE , ∠2OE OD ==. 故答案为:2. 【点睛】本题考查了正方形的性质、全等三角形的性质、一元二次方程的解法、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出方程是解题的关键.13.(2021·黑龙江九年级)如图,∠ABC=∠DEF ,AB=DE ,要证明∠ABC∠∠DEF ,需要添加一个条件为_______(只添加一个条件即可);【答案】∠A=∠D (或BC=EF 或∠ACB=∠F ). 【分析】若添加条件∠A=∠D ,可利用ASA 定理证明∠ABC∠∠DEF .若添加条件BC=EF ,则利用SAS 定理证明∠ABC∠∠DEF .若添加条件∠ACB=∠F ,则利用AAS 定理证明∠ABC∠∠DEF . 【详解】解:可添加条件∠A=∠D , 理由:∠在∠ABC 和∠DEF 中,A D AB DE B DEF ∠∠⎧⎪⎨⎪∠∠⎩===∠∠ABC∠∠DEF (ASA ); 可添加条件BC=EF ,理由:∠在∠ABC 和∠DEF 中,AB DE B DEF BC EF ⎧⎪∠∠⎨⎪⎩===∠∠ABC∠∠DEF (SAS ); 可添加条件∠ACB=∠F , 理由:∠在∠ABC 和∠DEF 中,B DEF AB DE ⎪∠∠⎨⎪⎩=,=∠∠ABC∠∠DEF (AAS );故答案为∠A=∠D (或BC=EF 或∠ACB=∠F ). 【点睛】本题考查了全等三角形的判定,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.14.(2021·江苏九年级)如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为1S ,空白部分的面积为2S ,大正方形的边长为m ,小正方形的边长为n ,若12S S ,则nm的值为______.【分析】如图(见解析),设AB CD a ==,先根据直角三角形的面积公式、正方形的面积公式求出12,S S 的值,再根据12S S 建立等式,然后根据212S S m 建立等式求出a 的值,最后代入求解即可. 【详解】如图,由题意得:AC m =,BD n =,AB CD =,ABC 是直角三角形,且,m n 均为正数 则大正方形的面积为22AC m 小正方形的面积为22BD n 设(0)AB CD a a ==> 则222114422RtABDS S n AB BD n an n2214422ACDS SCD AB a 12S S13又212S S m ,即222S m224a m解得2m a =或2ma (不符题意,舍去) 将2ma =代入2222an n a 得:222m mn n 两边同除以22m 得:222()1n n m m 令0n x m则2221x x 解得x =3102x (不符题意,舍去)即n m【点睛】本题考查了一元二次方程与几何图形、勾股定理、三角形全等的性质等知识点,理解题意,正确求出12,S S 的值是解题关键.15.(2021·邹城市看庄中学九年级一模)如图,在ABC 中,点A 的坐标为()1,1-,点B 的坐标为()3,1,点C 的坐标为()2,3-,如果要使以A ,B ,D 为顶点的三角形与ABC 全等(点D 不与点C 重合),那么点D 的坐标是______.【答案】()2,1--或()4,3或()41-, 【分析】根据题意画出图形,根据A 、B 、C 的坐标和全等三角形的性质即可得出答案. 【详解】 解:如图所示:∠点A 的坐标为()1,1-,点B 的坐标为()3,1,点C 的坐标为()2,3-, ∠D 1的坐标是(-2,-1),D 2的坐标是(4,-1),D 3的坐标是(4,3), 故答案为:()2,1--或()4,3或()41-,. 【点睛】本题主要考查了全等三角形的判定,解题的关键是正确画出图形,此题难度不大. 三、解答题16.(2021·黑龙江九年级)已知:在∠ABC 和∠DBE 中,AB =DB ,BC =BE ,其中∠ABD =∠CBE .(1)如图1,求证:AC =DE ;(2)如图2,AB =BC ,AC 分别交DE ,BD 于点F ,G ,BC 交DE 于点H ,在不添加任何辅助线的情况下,请直接写出图2中的四对全等三角形.【答案】(1)见解析;(2)∠ABC∠∠DBE;∠ABG∠∠EBH;∠DBH∠∠CBG;∠DFG∠∠CFH 【分析】(1)根据SAS证明∠ABC与∠DBE全等,利用全等三角形的性质解答即可.(2)根据全等三角形的判定解答即可.【详解】证明:(1)∠∠ABD=∠CBE,∠∠ABD+∠DBC=∠CBE+∠DBC,即∠ABC=∠DBE,在∠ABC与∠DBE中,AB DBABC DBE BC BE=⎧⎪∠=∠⎨⎪=⎩,∠∠ABC∠∠DBE(SAS),∠AC=DE;(2)由(1)得∠ABC∠∠DBE,∠∠A=∠D,∠C=∠E,AB=DB,BC=BE,∠AB=BE,∠AB=BC,∠∠A=∠C,∠∠A=∠E,在∠ABG与∠EBH中,A EAB BEABD EBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∠∠ABG∠∠EBH(ASA),∠BG=BH,在∠DBH与∠CBG中,BG BHDBH CBG DB CB=⎧⎪∠=∠⎨⎪=⎩∠∠DBH∠∠CBG(SAS),15∠∠D=∠C,∠DB=CB,BG=BH,∠DG=CF,在∠DFG与∠CFH中,DFG CFHD CDG CF∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠DFG∠∠CFH(AAS).【点睛】此题考查了及全等三角形的判定与性质,灵活掌握全等三角形的判定定理正确推理论证是关键.17.(2021·福建厦门双十中学思明分校九年级二模)如图,点E为正方形ABCD边BC上一点,∠O是∠ABE的外接圆,与AD交于点F.(1)尺规作图,在CD上求作点G,使∠ABE~∠FDG;(保留作图痕迹)(2)在(1)的条件下∠证明:直线FG与∠O相切∠若AB=4,DG=1,求半径OA的长.【答案】(1)作∠DFG=∠BAE,图形见详解(2)∠证明见详解,【分析】(1)利用尺规作图作∠DFG=∠BAE,即可得到∠ABE~∠FDG;(2)∠连结OF,由半径OA=OF,可得∠OAF=∠OF A,根据四边形ABCD为正方形,可得∠BAF=90°,可得∠BAE+∠OF A=90°,由作法可得∠BAE=∠DFG可得∠DFG+∠OF A=90°,可求∠OFG=90°即可.∠连结EF,由AE为直径,可得∠AFE=90°,可证四边形ABEF为矩形,可得AF=BE,设BE为x,由∠ABE~∠FDG,可列方程44-1xx=,解得=2x,在Rt∠ABE中,由勾股定理AE==【详解】解:(1)在AE上以点A为圆心,以任意长为半径画圆,交AE于H,交AB于K,再以点F为圆心,以同样长为半径画弧,交FD于I,再以点I为圆心,以KH为半径画弧,交前弧于L,过点L作射线FL交CD与G,则∠DFG=∠BAE,又∠四边形ABCD为正方形,∠∠ABE=∠FDG=90°,∠∠ABE~∠FDG;(2)∠连结OF,∠OA=OF,∠∠OAF=∠OF A,根据四边形ABCD为正方形,∠∠BAF=90°,∠∠BAE+∠EAF=90°,∠∠BAE+∠OF A=90°,由作法可得∠BAE=∠DFG,∠∠DFG+∠OF A=90°,∠∠OFG=180°-∠OF A-∠DFG=180°-(∠OF A+∠DFG)=90°,根据切线定义可得FG为∠O的切线.17∠AE为直径,∠∠AFE=90°又∠∠ABE=∠BAF=90°∠∠ABE=∠BAF=∠AFE=90°,∠四边形ABEF为矩形,∠AF=BE设BE为x∠FD=AD-AF=AD-BE=4-x,∠∠ABE~∠FDG,∠AB BEFD DG=即44-1xx=解得=2x经检验=2x是方程的解,在Rt∠ABE中,由勾股定理AE=∠OA=12AE【点睛】本题考查尺规作图作一个角等于已知角构造相似三角形,圆的切线判定,掌握尺规作图作一个角等于已知角构造相似三角形方法,圆的切线判定由切点连半径证垂直是解题关键.18.(2021·陕西西安·交大附中分校九年级)如图,已知∠ABC是等腰三角形,顶角∠A=108°.在BC边上求作一点D,使AD=CD(要求:尺规作图,保留作图痕迹,不必写作法和证明)【答案】见解析19根据垂直平分线的作图步骤,首先以点A 为圆心大于线段AC 一半的长度画弧,再以点C 为圆心,以相同长度为半径画弧,两弧相交于两点,连接两点即可得出答案. 【详解】解:如图所示:点D 即为所求.【点睛】本题考查的是垂直平分线,熟练掌握垂直平分线的作图方法以及步骤是解决本题的关键. 19.(2021·福建九年级)如图,ABC 中,90BAC ∠=︒,AD ∠BC ,垂足为D . 求作:∠ABC 的平分线,分别交AD ,AC 于P ,Q 两点,并证明APQ 是等腰三角形. (要求:尺规作图,保留作图痕迹,不写作法)【答案】见解析 【分析】以B 为圆心,任意长度为半径作弧,交,AB BD 于两点,分别以这两点为圆心,分别在∠ABC 的内部作弧交于一点,过B 与角的内部的这点作射线,交AD ,AC 于点P ,Q ,射线BQ 即为所求;先根据垂直的定义得出90CDA BAC ∠=∠=o ,故90C DAC ∠+∠=o 再根据余角的定义得出90BAP DAC ∠+∠=o ,根据角平分线的性质得出CBQ ABP ∠=∠,进而可得APQ AQP ∠=∠,即可证明. 【详解】如图所示,射线BQ 就是所求作的;证明:∠90BAC ∠=︒,AD ∠BC , ∠90CDA BAC ∠=∠=o ∠90C DAC ∠+∠=o ,90∠+∠=oBAP DAC∠C BAP∠=∠,∠BQ平分∠ABC,∠CBQ ABP∠=∠,∠APQ ABP BAP∠=∠+∠,∠=∠+∠AQP C CBQ∠=∠,∠APQ AQP=,∠AP AQ∠APQ是等腰三角形.【点睛】本题考查了基本作图,作角平分线,三角形外角性质,等腰三角形的判定,熟练掌握基本以上知识是解题的关键.20.(2021·浙江九年级)如图,在4×4方格纸中,∠ABC的三个顶点都在格点上请按要求完成作图,仅用无刻度直尺.画出一个与∠ABC全等的且有公共边的格点三角形,并给出证明.【答案】见解析【分析】作点A关于BC的对称点D,连接CD,BD,即可.【详解】如图所示,21理由如下:∠点D 与点A 关于直线BC 对称, ∠AC =DC ,AB =DB , 又∠BC =BC , ∠ABC DBC △≌△. 【点睛】本题主要考查全等三角形的判定定理,掌握“SSS ”证明全等三角形,是解题的关键. 21.(2021·河北石家庄·九年级)如图,在边长为6的正方形ABCD 中,点M 为对角线BD 上任意一点(可与B ,D 重合),连接AM ,将线段AM 绕点A 逆时针旋转90︒得到线段AN ,连接MN ,DN ,设BM x =.(1)求证:ABM ADN ≅; (2)当x MN 的长;(3)嘉淇同学在完成(1)后有个想法:“ABM 与MND 也会存在全等的情况”,请判断嘉淇的想法是否正确,若正确,请直接写出ABM 与MND 全等时x 的值;若不正确,请说明理由.【答案】(1)见解析;(2)MN =(3)正确;x = 【分析】(1)由旋转可知∠MAN =90°,然后得到BAM DAN ∠=∠,进而用SAS 证明ABM ADN ≅; (2)根据正方形的性质得到45ADB ∠=︒,由(1)中ABM ADN ≅可得到ABM ADN ∠=∠,然后得到∠MDN =90°,则∠MDN 为直角三角形,然后利用勾股定理计算MN 的长度即可; (3)由(2)可知∠MDN 为直角三角形,∠MDN =90°,所以要使得ABM 与MND 存在全等的情况,即AM ∠BD 时,此时结合(1)和(2)易证得ABM ∠NMD △,此时BM =12BD . 【详解】(1)证明:∠90BAD MAN ∠=∠=︒, ∠BAM DAN ∠=∠, 在ABM 和AND △中, AB AD BAM DAN AM AN =⎧⎪∠=∠⎨⎪=⎩, ∠ABM ADN ≅.(2)∠BD 是正方形ABCD 的对角线,且6AB =,∠BD =45ADB ∠=︒,∠MD BD BM =-== 由ABM AND ≅△△得:ND BM ==45ADN ABM ∠=∠=︒,∠454590MDN ADB ADN ∠=∠+∠=︒+︒=︒, ∠在Rt MDN 中,MN ==(3)正确; ∠ABM ADN ≅, ∠BM =ND ,由(2)可得∠MDN =90°, 当AM ∠BD 时,∠四边形ABCD 是正方形, ∠BM =AM =DM , ∠BM =DM = ND =AM ,在ABM 和NMD △中BM ND AMB NDM AM MD =⎧⎪∠=∠⎨⎪=⎩∠ABM ∠NMD △(SAS ) ∠BM =12BDx =故嘉淇的想法正确,此时x =23【点睛】本题主要考查全等三角形的判定和性质,结合勾股定理和正方形的性质,得到对应的边角数量关系是解题的关键.22.(2021·青岛市崂山区第三中学九年级)在四边形ABCD 中,,B C D E ∠=∠=∠是AB 边上一点,6,8.EB cm BC cm ==点P 从B 出发以2/cm 秒的速度沿线段BC CD 、运动,同时点Q从C 出发,沿线段CD 、射线DA 运动,当P 运动到D ,两点都停止运动.设运动时间为t (秒):(1)当Q 与P 的速度相同,且1t =时,求证:EBP PCQ ∆≅∆(2)当Q 与P 的速度不同,且P Q 、分别在()BC CD CD EB >、上运动时(如图1),若EBP ∆与PCQ ∆全等,求此时Q 的速度和t 值;(3)当P 运动到CD 上,Q 运动到射线DA 上(如图2),若Q 的速度为2.5/cm 秒,是否存在恰当的边CD 的长,使在运动过程中某一时刻刚好BCP ∆与PDQ ∆全等,若存在,请求出此时t 的值和边CD 的长;若不存在,请说明理由.【答案】(1)见解析;(2)Q 的速度为3,t 的值为2;(3)CD 的长为321633或时,163t =两三角形全等 【分析】(1)根据SAS 即可证明∠EBP∠∠PCQ .(2)正确寻找全等三角形的对应边,根据路程,速度,时间的关系即可解决问题. (3)分两种情形分别构建方程组即可解决问题. 【详解】(1)由题意:BP=CQ=1×2=2(cm ), ∠BC=8cm ,BE=6cm , ∠PC=8-2=6(cm ),EPB PCQ ∆∆在和中,EB PC =,B C ∠=∠,BP CQ =,EBP PCQ ∴∆∆≌(2)设Q 的速度为/xcm s ,则2,,82BP t CQ xt PC t ===-, 分两种情况:∠当EBP PCQ ∆∆≌时,,BE PC BP CQ ==,即8262t t xt -=⎧⎨=⎩,解得,12t x =⎧⎨=⎩(舍去)∠ 当EBP QCP ∆∆≌时,,BE CQ BP CP ==,即6282xt t t =⎧⎨=-⎩,解得,23t x =⎧⎨=⎩Q 的速度为3,t 的值为2.(3)设CD xcm =,则28,28, 2.5PC t PD x t DQ t x =-=-+=-,分两种情况:∠当BCP PDQ ∆∆≌时,,BC PD PC DQ ==, 即28828 2.5x t t t x -+=⎧⎨-=-⎩,解得,163323t x ⎧=⎪⎪⎨⎪=⎪⎩∠BCP QDP ∆∆≌当时,,.BC DQ PC PD == 即 2.582828t x x t t -=⎧⎨-+=-⎩,解得163163t x ⎧=⎪⎪⎨⎪=⎪⎩故:当CD的长为321633或时,163t 两三角形全等.【点睛】本题考查了全等三角形的判定和性质,路程,速度,时间之间的关系等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题.23.(2021·河南九年级二模)(问题提出)如图∠,已知∠ABC是等边三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将∠BCE绕点C顺时针旋转60°至∠ACF连接EF试证明:AB=DB+AF(类比探究)(1)如图∠,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图∠的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.【答案】证明见解析;(1)AB=BD﹣AF;(2)AF=AB+BD.【分析】(1)根据旋转的性质得出∠EDB与FEA全等的条件BE=AF,再结合已知条件和旋转的性质推出∠D=∠AEF,∠EBD=∠EAF=120°,得出∠EDB∠FEA,所以BD=AF,等量代换即可得出结论.(2)先画出图形证明∠∠DEB∠∠EFA,方法类似于(1);(3)画出图形根据图形直接写出结论即可.【详解】(1)证明:DE=CE=CF,∠BCE由旋转60°得∠ACF,∠∠ECF=60°,BE=AF,CE=CF,∠∠CEF是等边三角形,∠EF=CE,∠DE=EF,∠CAF=∠BAC=60°,∠∠EAF=∠BAC+∠CAF=120°,∠∠DBE=120°,∠∠EAF=∠DBE,25又∠A,E,C,F四点共圆,∠∠AEF=∠ACF,又∠ED=DC,∠∠D=∠BCE,∠BCE=∠ACF,∠∠D=∠AEF,∠∠EDB∠FEA,∠BD=AF,AB=AE+BF,∠AB=BD+AF.类比探究(1)DE=CE=CF,∠BCE由旋转60°得∠ACF,∠∠ECF=60°,BE=AF,CE=CF,∠∠CEF是等边三角形,∠EF=CE,∠DE=EF,∠EFC=∠BAC=60°,∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∠∠FCG=∠FEA,又∠FCG=∠EAD∠D=∠EAD,∠∠D=∠FEA,由旋转知∠CBE=∠CAF=120°,∠∠DBE=∠FAE=60°∠∠DEB∠∠EFA,∠BD=AE,EB=AF,∠BD=FA+AB.即AB=BD-AF.(2)AF=BD+AB(或AB=AF-BD)如图∠,27,ED=EC=CF ,∠∠BCE 绕点C 顺时针旋转60°至∠ACF , ∠∠ECF=60°,BE=AF ,EC=CF ,BC=AC , ∠∠CEF 是等边三角形, ∠EF=EC , 又∠ED=EC , ∠ED=EF ,∠AB=AC ,BC=AC , ∠∠ABC 是等边三角形, ∠∠ABC=60°, 又∠∠CBE=∠CAF , ∠∠CAF=60°,∠∠EAF=180°-∠CAF -∠BAC =180°-60°-60° =60°∠∠DBE=∠EAF ; ∠ED=EC , ∠∠ECD=∠EDC ,∠∠BDE=∠ECD+∠DEC=∠EDC+∠DEC , 又∠∠EDC=∠EBC+∠BED ,∠∠BDE=∠EBC+∠BED+∠DEC=60°+∠BEC , ∠∠AEF=∠CEF+∠BEC=60°+∠BEC , ∠∠BDE=∠AEF , 在∠EDB 和∠FEA 中, DBE EAF BDE AEF ED EF ∠∠⎧⎪∠∠⎨⎪⎩=== ∠∠EDB∠∠FEA (AAS ), ∠BD=AE ,EB=AF ,∠BE=AB+AE,∠AF=AB+BD,即AB,DB,AF之间的数量关系是:AF=AB+BD.考点:旋转变化,等边三角形,三角形全等。
初中数学全等三角形
目录
1. 几何基础知识
1.1 点、线、面的概念
1.2 角的概念
1.3 直线、射线、线段的区别
2. 三角形的性质
2.1 三角形的定义
2.2 三角形的内角和为180°
2.3 等边三角形、等腰三角形、直角三角形的特点
3. 三角形的分类
3.1 依据边长分类
3.2 依据角度分类
4. 三角形的全等性质
4.1 全等三角形的定义
4.2 全等三角形的性质
4.3 证明全等三角形的方法
5. 三角形全等定理
5.1 SSS全等定理
5.2 SAS全等定理
5.3 ASA全等定理
6. 全等三角形的应用
6.1 利用全等三角形证明几何定理
6.2 利用全等三角形解决实际问题
7. 总结与拓展
7.1 总结全等三角形的重要性
7.2 拓展全等三角形的相关知识
以上是目录,接下来将根据目录内容展开写作。
一、选择题(10×3=30分)1.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有(C)A.1个B.2个C.3个D.4个【解析】要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个.2.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为( )A.BE=DF B.BF=DE C.AE=CF D.∠1=∠23.(2018·广西梧州·3分)如图,在△ABC中,AB=AC,∠C=70°,△AB′C′与△ABC关于直线EF对称,∠CAF=10°,连接BB′,则∠ABB′的度数是()A.30°B.35°C.40°D.45°【分析】利用轴对称图形的性质得出△BAC≌△B′AC′,进而结合三角形内角和定理得出答案.4.(2018·辽宁大连·3分)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α解:由题意可得:∠CBD=α,∠ACB=∠EDB.∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°.∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°﹣α.故选C.5.(2018•聊城)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.6.(2017•营口)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD【考点】KX:三角形中位线定理;KH:等腰三角形的性质..【分析】由AB=AC,∠CAB=45°,根据等边对等角及三角形内角和定理求出∠B=∠ACB=67.5°.由Rt△ADC中,∠CAD=45°,∠ADC=90°,根据三角形内角和定理求出∠ACD=45°,根据等角对等边得出AD=DC,那么∠ECD=∠ACB+∠ACD=112.5°,从而判断A正确;根据三角形的中位线定理得到FE=AB,FE∥AB,根据平行线的性质得出∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.根据直角三角形的性质以及等腰三角形的性质得到FD=AC,DF⊥AC,∠FDC=45°,等量代换得到FE=FD,再求出∠FDE=∠FED=22.5°,进而判断B正确;由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC﹣∠FED=45°,从而判断C错误;在等腰Rt△ADC中利用勾股定理求出AC=CD,又AB=AC,等量代换得到AB=CD,从而判断D正确.∵F是AC的中点,∠ADC=90°,AD=DC,∴FD=AC,DF⊥AC,∠FDC=45°,∵AB=AC,∴FE=FD,∴∠FDE=∠FED=(180°﹣∠EFD)=(180°﹣135°)=22.5°,∴∠FDE=∠FDC,∴DE平分∠FDC,故B正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC﹣∠FED=45°,故C错误,符合题意;∵Rt△ADC中,∠ADC=90°,AD=DC,∴AC=CD,∵AB=AC,∴AB=CD,故D正确,不符合题意.故选C.7.(2017山东滨州)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4 B.3 C.2 D.1【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】如图作PE⊥OA于E,PF⊥OB于F.只要证明△POE≌△POF,△PEM≌△PFN,即可一一判断.[来&源:%中国@教*育#出版网]在△POE和△POF中,,∴△POE≌△POF,∴OE=OF,8.(2018•杭州)如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S2【分析】根据题意判定△ADE∽△ABC,由相似三角形的面积之比等于相似比的平方解答.【解答】解:∵如图,在△ABC中,DE∥BC,9.(2018•孝感)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正确结论的个数为()A.5 B.4 C.3 D.2【分析】①由等边三角形与等腰直角三角形知△CAD是等腰三角形且顶角∠CAD=150°,据此可判断;②求出∠AFP和∠FAG度数,从而得出∠AGF度数,据此可判断;③证△ADF≌△BAH即可判断;④由∠AFG=∠CBG=60°、∠AGF=∠CGB即可得证;⑤设PF=x,则AF=2x、AP==x,设EF=a,由△ADF≌△BAH知BH=AF=2x,根据△ABE是等腰直角三角形之BE=AE=a+2x,据此得出EH=a,证△PAF∽△EAH得=,从而得出a与x的关系即可判断.由AH⊥CD且∠AFG=60°知∠FAP=30°,则∠BAH=∠ADC=15°,在△ADF和△BAH中,∵,∴△ADF≌△BAH(ASA),∴DF=AH,故③正确;∵∠AFG=∠CBG=60°,∠AGF=∠CGB,∴△AFG∽△CBG,故④正确;在Rt△APF中,设PF=x,则AF=2x、AP==x,10.(2018•扬州)如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①② D.②③【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确二、填空题(6×4=24分).11.如图22-7,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是__ _(只需写一个,不添加辅助线).【解析】由已知AB=BC,及公共边BD=BD,可知要使△ABD≌△CBD,已经具备了两个边了,然后根据全等三角形的判定定理,应该有两种判定方法①SAS,②SSS.所以可添∠ABD=∠CBD或AD=CD.12.(2018·广西贺州·3分)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接BB',若∠A′B′B=20°,则∠A的度数是.13. (2018·重庆市B卷)(4.00分)如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于.【分析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.【解答】解:由题意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=,∴AE=.14.(2018•绵阳)如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于O点,则AB=.【分析】利用三角形中线定义得到BD=2,AE=,且可判定点O为△ABC的重心,所以AO=2OD,OB=2OE,利用勾股定理得到BO2+OD2=4,OE2+AO2=,等量代换得到BO2+AO2=4,BO2+AO2=,把两式相加得到BO2+AO2=5,然后再利用勾股定理可计算出AB的长.15.(2017广西)如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为.【考点】R2:旋转的性质;KK:等边三角形的性质;T7:解直角三角形.【解答】解:连接PP′,如图,∵线段PC绕点C顺时针旋转60°得到P'C,∴CP=CP′=6,∠PCP′=60°,∴△CPP′为等边三角形,∴PP′=PC=6,∵△ABC为等边三角形,∴CB=CA,∠ACB=60°,∴∠PCB=∠P′CA,在△PCB和△P′CA中,∴△PCB≌△P′CA,∴PB=P′A=10,∵62+82=102,∴PP′2+AP2=P′A2,∴△APP′为直角三角形,∠APP′=90°,∴sin∠PAP′===.故答案为.16.(2016·浙江省湖州市·3分)如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E 处,连结BE,得到四边形ABED.则BE的长是.A.4 B.C.3D.2【考点】翻折变换(折叠问题);四点共圆;等腰三角形的性质;相似三角形的判定与性质.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,三、解答题(共46分).17.某产品的商标如图所示,O是线段AC,DB的交点,且AC=BD,AB=DC,嘉琪认为图中的两个三角形全等,他的思考过程是:∵AC=DB,∠AOB=∠DOC,AB=DC,∴△ABO≌△DCO.你认为嘉琪的思考过程对吗?如果正确,指出她用的是判别三角形全等的哪个条件;如果不正确,写出你的思考过程.【点拨】判定两个三角形是否满足全等条件“SAS”.【解答】解:显然嘉琪的思路是不正确的,因为由已知条件不能直接得到这两个三角形全等.可考虑连接BC,由SSS可先得△ABC和△DCB全等,由全等三角形的性质,可得到∠A=∠D,再根据∠AOB=∠DOC,AB=DC,由AAS判断得到△ABO≌△DCO.18.如图1所示,在△ABC中,AB=AC,∠BAC=90°,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角△ADF,连接CF.(1)当点D 在线段BC 上时(不与点B 重合),线段CF 和BD 的数量关系与位置关系分别是什么?请给予证明; (2)当点D 在线段BC 的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.【点拨】 可证明△ACF ≌△ABD ,再利用全等三角形的性质,可得CF =BD ,CF ⊥BD.(2)(1)的结论仍然成立. ∵∠CAB =∠DAF =90°,∴∠CAB +∠CAD =∠DAF +∠CAD ,即∠CAF =∠BAD.在△ACF 和△ABD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAF =∠BAD ,AF =AD ,∴△ACF ≌△ABD(SAS).∴CF =BD ,∠ACF =∠B. ∵AB =AC ,∠BAC =90°, ∴∠B =∠ACB =45°.∴∠BCF =∠ACF +∠ACB =45°+45°=90°,即CF ⊥BD. 综上,CF =BD ,且CF ⊥BD.19. (2016·山东潍坊)如图,在菱形ABCD 中,AB=2,∠BAD=60°,过点D 作DE ⊥AB 于点E ,DF ⊥BC 于点F .(1)如图1,连接AC 分别交DE 、DF 于点M 、N ,求证:MN=AC ;(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.【分析】(1)连接BD,证明△ABD为等边三角形,根据等腰三角形的三线合一得到AE=EB,根据相似三角形的性质解答即可;(2)分∠EDF顺时针旋转和逆时针旋转两种情况,根据旋转变换的性质解答即可.(2)解:∵AB∥DC,∠BAD=60°,∴∠ADC=120°,又∠ADE=∠CDF=30°,∴∠EDF=60°,当∠EDF顺时针旋转时,由旋转的性质可知,∠EDG=∠FDP,∠GDP=∠EDF=60°,DE=DF=,∠DEG=∠DFP=90°,在△DEG和△DFP中,,同理可得,当逆时针旋转60°时,△DGP的面积也等于3,综上所述,将△EDF以点D为旋转中心,顺时针或逆时针旋转60°时,△DGP的面积等于3.20.(山东省菏泽市·3分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2CM+BN.【考点】等腰三角形的性质.【解答】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°.∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE.∵△AC B和△DCE均为等腰三角形,∴AC=BC,DC=EC.在△ACD和△BCE中,有,∴△ACD≌△BCE(SAS),∴AD=BE.②解:∵△ACD≌△BCE,∴∠ADC=∠BEC.∵点A,D,E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°.∵∠BEC=∠CED+∠AEB,且∠CED=50°,∴∠AEB=∠BEC﹣∠CED=130°﹣50°=80°.(2)证明:∵△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×(180°﹣120°)=30°.∵CM⊥DE,∴∠CMD=90°,DM=EM.在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=2CM.∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.。
全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等, 对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS )(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA ) (3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS) (4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS )专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是( )A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形 例题2:如图1,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD=7cm ,DM=5cm ,∠DAM=39°,则AN =____cm ,NM =____cm ,NAB ∠= .【仿练1】如图2,已知ABC ADE ∆≅∆,AB AD =,BC DE =,那么与BAE ∠相等的角是 . 【仿练2】如图3,ABC ADE ∆≅∆,则AB= ,∠E= _.若∠BAE=120°,∠BAD=40°,则∠BAC= .、图4EDCB A图2 图3M DA NBC 图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF ∵CM 是△的中线∴_____________( )∴____________________∴__________( ) 或 ∵AC=EF∴____________________∴__________( )AB=AB ( )在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧___________________________ ∴△ABC ≌△DEF ( )例1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?例2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .BFECAFE DCB ACMBA B A例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD2、如图所示,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACD B.△BDE≌△CDEC.△ABE≌△ACE D.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSS B.SAS C.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。
全等三角形1已知:AB=4, AC=2, D 是BC 中点,AD 是整数,求AD3 已知:Z1=Z2, CD=DE, EF//AB,求证:EF=AC4 已知:AD 平分ZBAC, AC=AB+BD,求证:ZB=2ZC5 已知:AC 平分ZBAD, CE 丄AB, ZB+ZD=180° ,求证:AE=AD+BEZC=ZD, F 是 CD 中点,求证:Z1=Z22 已知:BC=DE, ZB=ZE,6如图,四边形ABCD中,AB〃DC, BE、CE分别平分ZABC、ZBCD,且点E在AD上。
求证:BC=AB+DC。
7 已知:AB=CD, ZA=ZD,求证:ZB=ZC&P 是ZBAC 平分线AD 上一点,AC>AB,求证:PC-PB<AC-AB9 已知,E 是AB 中点,AF=BD, BD=5, AC=7,求DC13已知:如BD1AC ,分别为D、E, BD、CE相交于点F。
求证:BE=CD. 图,AB=AC, CEXAB,垂足10.如图,已知AD/7BC, ZPAB的平分线与ZCBA的平分线相交于E, CE的连线交AP于D.求证:AD+BC=AB. 11如图,AABC中,AD是ZCAB的平分线,且AB=AC+CD,求证:ZC=2ZB12 如图:AE、BC 交于点M, F 点在AM 上,BE/7CF, BE=CF。
求证:AM是△ABC的中线。
14 在AABC 中,ZACB = 90°, AC = BC ,直线MV 经过点C ,且AD 丄MZV 于D , BE L MN 于E . (1) 当直线MN绕点C旋转到图1的位置时,求证:① ^ADC竺ACEB;② DE = AD + BE ;(2)当直线MV绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明; 若不成立,说明理由.15如图所示,已知AE丄AB, AF丄AC, AE=AB, AF=AC。
求证:16.如图,已知AC〃BD, EA、EB分别平分ZCAB和ZE,则AB与AC+BD相等吗?请说明理由DBA, CD过点(1) EC=BF; (2) EC丄BFB C17.如图9所示,AABC是等腰直角三角形,ZACB=90° , AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:ZADC=ZBDE.图9全等三角形证明经典(答案)1. 延长AD到E,使DE=AD,则三角形ADC全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又AD是整数,则AD=52证明:连接BF和EF。
第11章《全等三角形》易错题集(02):11.2三角形全等的判定第11章《全等三角形》易错题集(02):11.2 三角形全等的判定选择题1.(2002•鄂州)下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上2.如图所示,∠1=∠2,AE⊥OB于E,BD⊥OA于D,交点为C,则图中全等三角形共有()3.下列说法中,正确的有()①三角对应相等的2个三角形全等;②三边对应相等的2个三角形全等;③两角、一边相等的2个三角形全等;④两边、4.如图,D在AB上,E在AC上,且∠B=∠C,则在下列条件:①AB=AC;②AD=AE;③BE=CD.其中能判定△ABE≌△ACD 的有()5.△ABC中,AB=AC,三条高AD,BE,CF相交于O,那么图中全等的三角形有()6.有以下四个说法:①两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;②两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;③两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等;④刘徽计算过π的值,认为其为.其中正确的有()7.如图,在△ABC与△ADE中,∠BAD=∠CAE,BC=DE,且点C在DE上,若添加一个条件,能判定△ABC≌△ADE,这个条件是()8.给出下列各命题:①有两边和它们的夹角对应相等的两个三角形一定全等;②有两边和一角对应相等的两个三角形一定全等;③有两条直角边对应相等的两个直角三角形一定全等;④有两条边分别相等的两个直角三角形一定全等;10.如图,已知AB=AC,D是BC的中点,E是AD上的一点,图中全等三角形有几对()11.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=OFE.其中能够证明△DOF≌△EOF的条件的个数有()12.下列说法中,正确的个数是()①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的对应夹角相等的两个直角三角形全等;③一锐角和斜边对应相等的两个直角三角形全等;13.对于条件:①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一直角边对应相等;④直角边和一锐角对14.(2008•鄂州)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为().D15.(2007•玉溪)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()16.如图,AB=AC,AD=AE,∠B=50°,∠AEC=120°,则∠DAC的度数等于()17.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是18.如图,已知△ABC中,AB=AC,BD=DC,则下列结论中一定错误的是()19.如图,AB.CD相交于O,O是AB的中点,∠A=∠B=80°,若∠D=40°,则∠C=()20.如图,AB∥FC,DE=EF,AB=15,CF=8,则BD等于()21.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是()22.长为3cm,4cm,6cm,8cm的木条各两根,小明与小刚分别取了3cm和4cm的两根,要使两人所拿的三根木填空题23.(2009•遂宁)已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出_________个.24.(2007•南宁)如图是用七巧板拼成的一艘帆船,其中全等的三角形共有_________对.25.在△ABC和△DEF中,①AB=DE,②BC=EF,③AC=DF,④∠A=∠D,从这四个条件中选取三个条件能判定△ABC≌△DEF 的方法共有_________种.26.如图,∠B=∠D=90°,BC=DC,∠1=40°,则∠2=_________度.27.如图所示,在四边形ABCD中,CB=CD,∠ABC=∠ADC=90°,∠BAC=35°,则∠BCD的度数为_________度.28.(2009•道里区一模)△ABC中,∠C=90°,AC=BC,分别过A、B向过C的直线CD作垂线,垂足分别为E、F,若AE=5,BF=3,则EF=_________.第11章《全等三角形》易错题集(02):11.2 三角形全等的判定参考答案与试题解析选择题1.(2002•鄂州)下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上2.如图所示,∠1=∠2,AE⊥OB于E,BD⊥OA于D,交点为C,则图中全等三角形共有()3.下列说法中,正确的有()①三角对应相等的2个三角形全等;②三边对应相等的2个三角形全等;③两角、一边相等的2个三角形全等;④两边、4.如图,D在AB上,E在AC上,且∠B=∠C,则在下列条件:①AB=AC;②AD=AE;③BE=CD.其中能判定△ABE≌△ACD 的有()5.△ABC中,AB=AC,三条高AD,BE,CF相交于O,那么图中全等的三角形有()6.有以下四个说法:①两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;②两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;③两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等;④刘徽计算过π的值,认为其为.其中正确的有()的值,认为其为7.如图,在△ABC与△ADE中,∠BAD=∠CAE,BC=DE,且点C在DE上,若添加一个条件,能判定△ABC≌△ADE,这个条件是()8.给出下列各命题:①有两边和它们的夹角对应相等的两个三角形一定全等;②有两边和一角对应相等的两个三角形一定全等;③有两条直角边对应相等的两个直角三角形一定全等;④有两条边分别相等的两个直角三角形一定全等;10.如图,已知AB=AC,D是BC的中点,E是AD上的一点,图中全等三角形有几对()11.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=OFE.其中能够证明△DOF≌△EOF的条件的个数有()12.下列说法中,正确的个数是()①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的对应夹角相等的两个直角三角形全等;③一锐角和斜边对应相等的两个直角三角形全等;13.对于条件:①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一直角边对应相等;④直角边和一锐角对14.(2008•鄂州)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为().D15.(2007•玉溪)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()(16.如图,AB=AC,AD=AE,∠B=50°,∠AEC=120°,则∠DAC的度数等于()17.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是18.如图,已知△ABC中,AB=AC,BD=DC,则下列结论中一定错误的是()19.如图,AB.CD相交于O,O是AB的中点,∠A=∠B=80°,若∠D=40°,则∠C=()20.如图,AB∥FC,DE=EF,AB=15,CF=8,则BD等于()21.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是(),22.长为3cm,4cm,6cm,8cm的木条各两根,小明与小刚分别取了3cm和4cm的两根,要使两人所拿的三根木填空题23.(2009•遂宁)已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出7个.24.(2007•南宁)如图是用七巧板拼成的一艘帆船,其中全等的三角形共有2对.25.在△ABC和△DEF中,①AB=DE,②BC=EF,③AC=DF,④∠A=∠D,从这四个条件中选取三个条件能判定△ABC≌△DEF 的方法共有2种.26.如图,∠B=∠D=90°,BC=DC,∠1=40°,则∠2=50度.27.如图所示,在四边形ABCD中,CB=CD,∠ABC=∠ADC=90°,∠BAC=35°,则∠BCD的度数为110度.28.(2009•道里区一模)△ABC中,∠C=90°,AC=BC,分别过A、B向过C的直线CD作垂线,垂足分别为E、F,若AE=5,BF=3,则EF=8或2.参与本试卷答题和审题的老师有:zhangmin;郭静慧;ln_86;zxw;zhangCF;117173;蓝月梦;星期八;zhjh;Liuzhx;csiya;py168;MMCH;zhqd;wenming;CJX;wdxwwzy;trista;110397;yingzi;lanchong;Linaliu;王岑(排名不分先后)菁优网2014年8月7日。
全等三⾓形、轴对称复习专题全等三⾓形、轴对称复习专题(⼀)知识要点1.全等三⾓形的概念:能够完全重合的两个三⾓形叫做全等三⾓形。
理解:①全等三⾓形形状与⼤⼩完全相等,与位置⽆关;②⼀个三⾓形经过平移、翻折、旋转可以得到它的全等形;③三⾓形全等不因位置发⽣变化⽽改变。
2.全等三⾓形有哪些性质(1)全等三⾓形的对应边相等、对应⾓相等。
(理解:①长边对长边,短边对短边;最⼤⾓对最⼤⾓,最⼩⾓对最⼩⾓;②对应⾓的对边为对应边,对应边对的⾓为对应⾓)。
(2)全等三⾓形的周长相等、⾯积相等。
(3)全等三⾓形的对应边上的对应中线、⾓平分线、⾼线分别相等。
3.⾓的平分线:从⼀个⾓的顶点得出⼀条射线把这个⾓分成两个相等的⾓,称这条射线为这个⾓的平分线。
性质:⾓的平分线上的点到⾓的两边的距离相等。
判定:⾓的内部到⾓的两边的距离相等的点在⾓的平分线上。
4.全等三⾓形找法(运动法寻找)翻折法:找到中⼼线经此翻折后能互相重合的两个三⾓形,易发现其对应元素旋转法:两个三⾓形绕某⼀定点旋转⼀定⾓度能够重合时,易于找到对应元素平移法:将两个三⾓形沿某⼀直线推移能重合时也可找到对应元素5.全等三⾓形的判定(证明⽅法)边边边:三边对应相等的两个三⾓形全等(可简写成“SSS”)边⾓边:两边和它们的夹⾓对应相等两个三⾓形全等(可简写成“SAS”)⾓边⾓:两⾓和它们的夹边对应相等的两个三⾓形全等(可简写成“ASA”)⾓⾓边:两⾓和其中⼀⾓的对边对应相等的两个三⾓形全等(可简写成“AAS”)斜边.直⾓边:斜边和⼀条直⾓边对应相等的两个直⾓三⾓形全等(可简写成“HL”)⼩贴⼠:学习全等三⾓形应注意以下⼏个问题:(1)要正确区分“对应边”与“对边”,“对应⾓”与“对⾓”的不同含义;(2)表⽰两个三⾓形全等时,表⽰对应顶点的字母要写在对应的位置上;(3)“有三个⾓对应相等”或“有两边及其中⼀边的对⾓对应相等”的两个三⾓形不⼀定全等;(4)时刻注意图形中的隐含条件,如 “公共⾓” 、“公共边”、“对顶⾓”(5)截长补短法证三⾓形全等。
全等三角形》讲义(完整版)全等三角形讲义全等三角形定义:若两个三角形形状大小相同,能够完全重合,则它们是全等形三角形。
对应顶点、对应边、对应角均重合。
全等三角形的性质是对应边相等,对应角相等。
全等三角形判定定理:1.边边边定理(SSS):若两个三角形的三条边对应相等,则它们是全等三角形。
2.边角边定理(SAS):若两个三角形的一条边和它们的夹角对应相等,且另一条边对应相等,则它们是全等三角形。
3.角边角定理(ASA):若两个三角形的两个角和它们的夹边对应相等,则它们是全等三角形。
4.角角边定理(AAS):若两个三角形的两个角和其中一个角的对边对应相等,则它们是全等三角形。
5.斜边直角边定理(HL):若两个直角三角形的斜边和一条直角边对应相等,则它们是全等三角形。
角平分线的性质:在角平分线上的点到角的两边的距离相等。
角平分线的判定:到角的两边距离相等的点在角的平分线上。
三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离相等。
典型例题举例:1.已知△ABN≌△ACM,对应角为∠B和∠C,对应边为AB和AC。
2.已知AB=AC,AD是连结点A与BC中点D的支架,求证△ABD≌△ACD。
3.已知点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF,求证△ABE≌△CDF。
4.在△ABC中,D在AB上,E在AC上,AB=AC,∠B =∠C,求证AD=AE。
5.已知∠1=∠2,∠3=∠4,求证AC=AD,其中D是线段BC上的一点,且BD=DC。
6.在图中,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,AB=DC,BE=CF,判断AB是否平行于CD,说明理由。
7.在图1中,△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连结EG,判断△ABC与△AEG 面积之间的关系,并说明理由。
8.在图中,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一点,连接DF,EF,求证DF=EF。
初二数学上学期期末考试复习建议(几何部分)一. 考试范围第十一章 三角形 第十二章 全等三角形 第十三章 轴对称 二. 复习目的1. 通过复习使学生对已学过的数学知识系统化, 条理化. 更有利于学生掌握基础知识和基本方法, 为进一步学习数学打下良好的基础.2. 逐步培养学生识图能力, 逻辑思维和推理论证的能力, 作图能力, 分析问题和解决问题的能力, 提高学生的数学素质.3. 使学生初步会运用数形结合、转化与化归、分类讨论等数学思想方法.三. 总体复习建议1. 重视基础: 对每一章的知识点进行总结, 使学生掌握所有重要的定义、公式、性质和判定; 掌握每章必须掌握的基本方法(包括解题规范) , 且“每一步推理都要有根据”; 关注教材中数学应用(包括尺规作图) 的实例及其数学原理.2. 优选例题习题, 使学生熟悉一些基本题型, 掌握常用辅助线的添加. 证明书写格式要规范, 思路清楚.3. 适当的综合题的训练.4. 关注新旧教材的对比与变化.5. 充分利用区里的教育资源.第十二章 全等三角形 第十三章 轴对称 一、通过框架图进行知识梳理轴对称等腰三角形 等边三角形画轴对称图形画轴对称图形的对称轴 关于坐标轴对称的点的坐标的关系 生活中的轴对称二、基本尺规作图: 作法及原理作一条线段等于已知线段;作一个角等于已知角;作已知角的平分线;作已知线段的垂直平分线(作已知线段的中点) ;三、适当总结证明方法:(1) 证明线段相等的方法①利用线段中点. ②利用数量相等.③证明两条线段所在的两个三角形全等④利用角平分线的性质证明角平分线上的点到角两边的距离相等⑤等腰三角形顶角平分线、底边上的高线平分底边⑥线段垂直平分线上的点到线段两端点的距离相等(2) 证明角相等的方法:①利用数量相等. ②利用平行线的性质进行证明.③利用角平分线证明. ④证明两个角所在的两个三角形全等⑤同角(或等角) 的余角(或补角) 相等⑥等腰三角形底边上的高线或底边中线平分顶角⑦等式性质⑧等边对等角(3) 证明两条线段的位置关系(平行、垂直) 的方法.(4) 常添加的辅助线:截长补短倍长中线角分线双垂直角分线翻折平行线+角分线: 等腰三角形角分线+垂直: 补全等腰三角形四、从图形变换的角度来复习全等同时复习几何的平移、轴对称两种变换, 归纳定义及性质, 渗透旋转变换的思想全等三角形的常见图形平移型:A'AB C C'B'轴对称型:旋转型:补充习题(一) 全等的性质和判定1. 如图, 正方形ABCD 的边长为4, 将一个足够大的直角三角板的直角顶点放于点A 处, 该三角板的两条直角边与CD 交于点F , 与CB 延长线交于点E . 四边形AECF 的面积是( ) . A A. 16 B. 12 C. 8 D. 42. 已知: 如图, AC 、BD 相交于点O , ∠A = ∠D , 请你再补充一个条件, 使△AOB ≌△DOC , 你补充的条件是____________.CA A' BABCB'C' ABCC' B'AB CC' B'B (C' )C (B' ) AA'ABB'C'CABB'C' C A'AA'B (C' )C (B' )A A'BB' C C' AA'B' BCC' ABB'C'C A'ABCDO3. 在△ABC 与△A'B'C' 中, 已知∠A = ∠A', CD 和C'D' 分别为∠ACB 和∠A'C'B' 的平分线, 再从以下三个条件: ①∠B = ∠B', ②AC = A'C', ③CD = C'D' 中任取两个为题设, 另一个为结论, 则可以构成 ( ) 个正确的命题.A . 1B . 2C . 3D . 4 4. 根据下列已知条件, 不能唯一确定......△ABC 的大小和形状的是( ) . B A. AB =3, BC =4, AC =5 B. AB =4, BC =3, ∠A =30º C. ∠A =60º, ∠B =45º, AB =4D. ∠C =90º, AB =6, AC = 55. 如图, 已知△ABC , 则甲、乙、丙三个三角形中和△ABC 全等的是( ) . Dbaca cc aa丙72︒50︒乙50︒甲50︒CBA50︒72︒58︒A. 只有乙B. 只有丙C. 甲和乙D. 乙和丙6. 已知: 如图, CB = DE , ∠B = ∠E , ∠BAE = ∠CAD . 求证: ∠ACD = ∠ADC .7. 如图, 锐角△ABC 中, D , E 分别是AB , AC 边上的点, △ADC ≌△ADC ′, △AEB ≌△AE B′, 且C ′D ∥EB ′∥BC , 记BE , CD 交于点F , 若BAC x ∠=︒, 则∠BFC 的大小是__________°. (用含x 的式子表示) (1802x -)E ABCDF E DB'C'ABC第6题图第7题图(二) 轴对称图形和垂直平分线1. 在下列各图中, 对称轴最多的图形有________条对称轴.2. (1) 点P (3, − 5) 关于x 轴的对称点坐标为( ) D A. (−3, −5) B. (5, 3) C. (−3, 5) D. (3, 5)(2) 如图, 数轴上A B ,两点表示的数分别为1-和3, 点B 关于点A 的对称点为C , 则点C 所表示的数为( ) A A. 23-- B. 13--C. 23-+D. 13+(3) 如图, 在正方形网格纸上有三个点A , B , C , 现要在图中网格范围内再找格点D , 使得A , B , C , D 四点组成的凸四边形是轴对称图形, 在图中标出所有满足条件的点D 的位置. (两个解)3. 如图, 在Rt △ABC 中, ∠ACB = 90°, ∠A = 15°, AB 的垂直平分线与 AC 交于点D , 与AB 交于点E , 连结BD . 若AD =12cm, 则BC 的长为 cm.4. 如图, 已知△ABC 中, ∠BAC = 120°, 分别作AC , AB 边的垂直平分线PM , PN 交于点P , 分别交BC 于点E 和点F . 则以下各说法中: ①∠P = 60°, ②∠EAF = 60°, ③点P 到点B 和点C 的距离相等, ④PE = PF , 正确的说法是______________. (填序号) ①②③FEPMN CAB第3题图第4题图5. 已知∠AOB =45°, 点P 在∠AOB 的内部, P 1与P 关于OB 对称, P 2与P 关于OA 对称, 则P 1、P 2与O 三点构成的三角形是( ) D A. 直角三角形 B. 等腰三角形 C. 等边三角形 D. 等腰直角三角形(三) 等腰三角形的性质和判定1. 等腰直角三角形的底边长为5, 则它的面积是( ). D A. 50B. 25C. 12.5D. 6.252. 已知: 如图3, △ABC 中, 给出下列四个命题: ① 若AB =AC , AD ⊥BC , 则∠1=∠2; ②若AB =AC , ∠1=∠2, 则BD =DC ; ③若AB =AC , BD =DC , 则AD ⊥BC ;④若AB =AC , AD ⊥BC , BE ⊥AC , 则∠1=∠3; 其中, 真命题的个数是( ). D A. 1个 B. 2个 C. 3个 D. 4个A O B3. 如图, 在△ABC 中, D 是BC 边上一点, 且AB = AD = DC , ∠BAD = 40°, 则∠C 为( ) . B A. 25° B. 35°C. 40°D. 50°4. 如图, 在△ABC 中, AB = AC , ∠BAC = 30°. 点D 为△ABC 内一点, 且DB = DC , ∠DCB = 30°. 点E 为BD 延长线上一点, 且AE = AB .(1) 求∠ADE 的度数;(2) 若点M 在DE 上, 且DM = DA , 求证: ME = DC .5. 已知: 如图, △ABC 中, 点,D E 分别在,AB AC 边上, F 是CD 中点, 连BF 交AC 于点E , 180ABE CEB ∠+∠=︒, 比较线段BD 与CE 的大小, 并证明你的结论.(提示, 注意AE = AB ; 过D 作AC 的平行线交BE 于点G )(四) 等边三角形(30° 角直角三角形)1. 下列条件中, 不能..得到等边三角形的是( ) . B A. 有两个内角是60°的三角形 B. 有两边相等且是轴对称图形的三角形 C. 三边都相等的三角形D. 有一个角是60°且是轴对称图形的三角形2. 如图, △ABC 中, AB =AC , ∠BAC =120°, DE 垂直平分AC . 根据以上条件, 可知∠B =______, ∠BAD =_______, BD : DC =_______. (30, 90, 2: 1)3. 如图, 在纸片△ABC 中, AC = 6, ∠A = 30º, ∠C = 90º, 将∠A 沿DE 折叠, 使点A 与点B 重合, 则折痕DE 的长为_____. (2)4. 如图所示△ABC 中, AB = AC , AG 平分∠BAC ; ∠FBC = ∠BFG = 60︒, 若FG = 3, FB = 7, 求BC 的长. (答案10. 提示: 延长AG 、FG 与BC 相交)ABCDABCDEADMC(五) 最值问题1. 如图, P 、Q 为ABC 边上的两个定点. 在BC 边上求作一点M , 使PM +MQ 最短2. 已知: 如图, 牧马营地在M 处, 每天牧马人要赶着马群到草地吃草, 再到河边饮水, 最后回到营地M . 请在图上画出最短的放牧路线..M河草地第1题图第2题图3. 如图, 四边形EFGH 是一长方形的台球桌面, 现在黑、白两球分别位于A 、B 两点的位置上. 试问怎样撞击黑球A , 才能使黑球A 先碰到球台边EF , 反弹一次后再击中白球B ?4. 如图, MN 是正方形ABCD 的一条对称轴, 点P 是直线MN 上的一个动点, 当PC +PD 最小时, ∠PCD = _________°. (45)DAMNBCP5. 已知两点M (4, 2) , N (1, 1) , 点P 是x 轴上一动点, 若使PM +PN 最短, 则点P 的坐标应为___________. (2, 0)6. 平面直角坐标系xOy 中, 已知点A (0, 4) , 直线x = 3, 一个动点P 自OA 的中点M 出发, 先到达x 轴上的某点(设为点E ) , 再到达直线x = 6上某点(设为点F ) 最后运动到点A , 求使点P 运动的路径中最短的点E 、F 的坐标. E (4, 0) , F (6, 1)几何专题复习 (一) 分类讨论1. ① 等腰三角形的一个角是110︒, 求其另两角? ② 等腰三角形的一个角是80︒, 求其另两角?③ 等腰三角形两内角之比为2: 1, 求其三个内角的大小? 2. ① 等腰三角形的两边长为5cm 、6cm, 求其周长? ② 等腰三角形的两边长为10cm 、21cm, 求其周长?3. ① 等腰三角形一腰上的中线将周长分为12cm 和21cm 两部分, 求其底边长? ② 等腰三角形一腰上的中线将周长分为24cm 和27cm 两部分, 求其底边长?4. 等腰三角形一腰上的高与另一腰的夹角为30°, 则其顶角为_______.(按高的位置分类)5. 等腰三角形一边上的高等于底边的一半, 则其顶角为___________.6. 等腰三角形一腰上的高等于腰的一半, 则其顶角为___________.7. 等腰三角形一边上的高等于这边的一半, 则其顶角为___________.8. △ABC 中, AB = AC, AB 的中垂线EF 与AC 所在直线相交所成锐角为40︒, 则∠B = _____. (按一腰中垂线与另一腰的交点所在位置分类)9. 已知: ()()ABC x C B A ∆-轴上一点且为、,4,00,2为等腰三角形 , 问满足条件的C 点有几个? 4个10. 在正方形ABCD 所在平面上找一点P, 使△PAD 、△PAB 、△PBC 、△PCD 均为等腰三角形, 这样的P 点有几个? 9个11. 平面内有一点D 到△ABC 三个顶点的距离DA = DB = DC , 若∠DAB = 30°, ∠DAC = 40°, 则∠BDC 的大小是_________°. (20或140)(二) 几何作图1. 如图, 某地区要在区域S 内建一个超市M , 按照要求, 超市M 到两个新建的居民小区A , B 的距离相等, 到两条公路OC , OD 的距离也相等. 这个超市应该建在何处? (本题要求: 尺规作图, 不写作法, 保留作图痕迹)SD2. 尺规作图作AOB 的平分线方法如下: 以O 为圆心, 任意长为半径画弧交OA 、OB 于C 、D , 再分别以点C 、D 为圆心, 以大于12CD 长为半径画弧, 两弧交于点P , 则作射线OP 即为所求. 由作法得OCP ODP △≌△的根据是( ) . DA. SASB. ASAC. AASD. SSS3. 如图, 用圆规以直角顶点O 为圆心, 以适当半径画一条弧 交两直角边于A 、B 两点, 若再以A 为圆心, 以OA 为半径画弧, 与弧AB 交于点C , 则∠AOC 等于 __________ °4. 小明同学在学习了全等三角形的相关知识后发现, 只用两把完全相同的长方形直尺就可以作出一个锐角的平分线. 如图: 一把直尺压住射线OB , 另一把直尺压住射线OA 并且与第一把直尺交于点P , 小明说: “射线OP 就是∠BOA 的角平分线. ”你认为小明的想法正确吗? 请说明理由.5. 阅读下列材料:木工张师傅在加工制作家具的时候, 用下面的方法在木板上画直角:如图1, 他首先在需要加工的位置画一条线段AB , 接着分别以点A 、点B 为圆心, 以大于12AB 的适当长为半径画弧, 两弧相交于点C , 再以C 为圆心, 以同样长为半径画弧交AC 的延长线于点D (点D 需落在木板上) , 连接DB . 则∠ABD 就是直角. 木工张师傅把上面的这种作直角的方法叫做“三弧法.图2EF ACBD 图1OAB解决下列问题:(1) 利用图1就∠ABD是直角作出合理解释(要求: 先写出已知、求证, 再进行证明);(2) 图2表示的一块残缺的圆形木板, 请你用“三弧法”, 在木板上...画出一个以EF为一条直角边的直角三角形EFG(要求: 尺规作图, 不写作法, 保留作图痕迹) .(三) 操作问题第1题图①图②第2题图1. 如图①, 一张四边形纸片ABCD, ∠A=50︒, ∠C=150︒. 若将其按照图②所示方式折叠后, 恰好MD'∥AB, ND'∥BC, 则∠D的度数为( ). CA. 70°B. 75°C. 80°D. 85°2. 如图所示, 把一个三角形纸片ABC顶角向内折叠3次之后, 3个顶点不重合, 那么图中∠1+ ∠2+∠3+∠4+∠5+∠6的值为( ) CA. 180°B. 270°C. 360°D. 无法确定3. 将一个菱形纸片依次按下图①、②的方式对折, 然后沿图③中的虚线裁剪, 成图④样式. 将纸展开铺平. 所得到的图形是图中的( ) A4. 如图, 等边△ABC的边长为1cm, D、E分别是AB、AC上的点, 将△ADE沿直线DE折叠, 点A落在点A´处, 且点在△ABC外部, 则阴影部分图形的周长为____________cm. (3)5. 如图, 将一张三角形纸片ABC 折叠, 使点A 落在BC 边上, 折痕EF ∥BC , 得到△EFG ; 再继续将纸片沿△BEG 的对称轴EM 折叠, 依照上述做法, 再将△CFG 折叠, 最终得到矩形EMNF , 折叠后的△EMG 和△FNG 的面积分别为1和2, 则△ABC 的面积为( ) A . 6B . 9C . 12D . 186. 将如图1所示的长方形纸片ABCD 沿过点A 的直线折叠, 使点B 落在AD 边上, 折痕为AE (如图2) ; 再继续将纸片沿过点E 的直线折叠, 使点A 落在EC 边上, 折痕为EF (如图3) , 则在图3中, ∠F AE = _______°, ∠AFE = _______°. (45, 67.5)图1 图2 图37.(1) 已知ABC △中, 90A ∠=, 67.5B ∠=, 请画一条直线, 把这个三角形分割成两个等腰三角形. (请你选用下面给出的备用图, 把所有不同的分割方法都画出来. 只需画图, 不必说明理由, 但要在图中标出相等两角的度数)(2) 已知ABC △中, C ∠是其最小的内角, 过顶点B 的一条直线把这个三角形分割成了两个等腰三角形, 请探求ABC ∠与C ∠之间的所有可能的关系.8. 当身边没有量角器时, 怎样得到一些特定度数的角呢? 动手操作有时可以解“燃眉之急”. 如图, 已知矩形ABCD , 我们按如下步骤操作可以得到一个特定的角: (1) 以点A 所在直线为折痕, 折叠纸片, 使点B 落在AD 上, 折痕与BC 交于E ; (2) 将纸片展平后, 再一次折叠纸片, 以E 所在直线为折痕, 使点A 落在BC 上, 折痕EF 交AD 于F . 则∠AFE = _______°. (67.5)A BC 备用图①A BC 备用图②ABC备用图③AC B GFEACBAM GFECB NM G FEACB A BCD ED CB AFD CEA9. 如图(1)所示Rt △ABC 中, ∠A = 90°, 三边a b c >>. 现以△ABC 某一边的垂直平分线为对称轴, 作△ABC 的轴对称图形, 记作一次操作. 例如, 若图(1)中△ABC 以a 边的垂直平分线为对称轴, 作轴对称图形得到图(2)中的△ABC , 记作“a 操作”一次; 图(2)中△ABC 继续以b 边的垂直平分线为对称轴, 作轴对称图形得到图(3)中的△ABC , 记作“b 操作”一次. 现对图(1)中的△ABC 分别按以下顺序连续进行若干次操作, 则最后得到的△ABC 与图(1)中△ABC 重合的是( ) . BA. a 操作 − b 操作 − c 操作B. b 操作 − c 操作 − b 操作 − c 操作C. a 操作 − c 操作 − b 操作 − a 操作D. b 操作 − a 操作 − b 操作 − a 操作c ba a(1)ABC (2) a 操作 (3) b 操作BCAA BCACB四、探究性问题1. 已知: 如图, Rt △ABC 中, AB = AC , ∠BAC = 90°, 直线AE 是经过点A 的任一直线, BD ⊥AE 于D , CE ⊥AE 于E , BD > CE . (1) AD 与CE 的大小关系如何? 请说明理由. (2) 求证: DE =BD -CE .2. 已知: 如图, B 、A 、C 三点共线, 并且Rt △ABD ≌Rt △ECA , M 是DE 的中点. 问题:(1) 判断△ADE 的形状并证明;(2) 判断线段AM 与线段DE 的关系并证明; (3) 判断△MBC 的形状并证明.MCDAEB3.已知: 在△ABC 中, ∠CAB = 2α, 且030α<<, AP 平分∠CAB .(1) 如图1, 若21α=, ∠ABC = 32°, 且AP 交BC 于点P , 试探究线段AB , AC 与PB 之间的数量关系, 并对你的结论加以证明;(2) 如图2, 若∠ABC = 60α-, 点P 在△ABC 的内部, 且使∠CBP = 30°, 求∠APC 的度数(用含α的代数式表示) .五、关于旋转的问题、动点问题1. 已知: 如图, △AOB 和△COD 都是等边三角形, 作直线AC 、直线BD 交于E . 求证: (1) AC =BD ; (2) ∠AEB =60°.2. 已知: 如图, 等边三角形ABC 中, AB = 2, 点P 是AB 边上的一动点(点P 可以与点A 重合, 但不与点B 重合) , 过点P 作PE ⊥BC , 垂足为E , 过点E 作EF ⊥AC , 垂足为F , 过点F 作FQ ⊥AB , 垂足为Q . 设BP = x , AQ = y . (1) 请用x 的代数式表示y (直接写出) ; (2) 当BP 的长等于多少时, 点P 与点Q 重合; (128x y =+; 43) 3. 已知: 如图, △ABC 中, ∠A =90°, AB =AC . D 是斜边BC 的中点; E 、F 分别在线段AB 、AC 上, 且∠EDF =90°.(1) 求证: △DEF 为等腰直角三角形.(2) 如果E 点运动到AB 的反向..延长线...上, F 在直线..CA 上且仍保持∠EDF =90°, 那么△DEF 还仍然是等腰直角三角形吗? 请画图(右图) 并直接写出....你的结论. 图1ABCP图2AC PBACB P EFQC4. 如图所示, 长方形ABCD 中, AB = 4, BC 点E 是折线段A —D —C 上的一个动点(点E 与点A 不重合) , 点P 是点A 关于BE 的对称点. 在点E 运动的过程中, 能使△PCB 为等腰三角形.....的点E 的位置共有( ) . CA. 2个B. 3个C. 4个D. 5个5. 如图ABC △中, 10AB AC ==厘米, 8BC =厘米, 点D 为AB 中点. (1) 如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动, 同时, 点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等, 经过1秒后, BPD △与CQP △是否全等, 请说明理由;②若点Q 的运动速度与点P 的运动速度不相等, 当点Q 的运动速度为多少时, 能够使BPD △与CQP △全等?(2) 若点Q 以②中的运动速度从点C 出发, 点P 以原来的运动速度从点B 同时出发, 都逆时针沿ABC △三边运动, 求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? ( (1) ①SAS 全等; ②415厘米/秒. (2) 经过803秒点P 与点Q 第一次在边AB 上相遇. )六、综合应用1. 在平面直角坐标系中, 直线l 过点M (3,0), 且平行于y 轴.如果△ABC 三个顶点的坐标分别是A (-2,0), B (-1,0),C (-1,2), △ABC 关于y 轴的对称图形是△A 1B 1C 1, △A 1B 1C 1关于直线l 的对称图形是△A 2B 2C 2, 在右面的坐标系中画出△A 2B 2C 2,并写出它的三个顶点的坐标.AB CDEPB2. 已知: 如图, 在△ABC 中, AB = AC , ∠BAC = α, 且60° < α < 120°. P 为△ABC 内部一点, 且PC = AC , ∠PCA = 120° − α.(1) 用含α的代数式表示∠APC , 得∠APC = ________; (2) 求证: ∠BAP = ∠PCB ; (3) 求∠PBC 的度数.3. 在△ABC 中, AD 是△ABC 的角平分线.(1) 如图1, 过C 作CE ∥AD 交BA 延长线于点E , 若F 为CE 的中点, 连结AF , 求证: AF ⊥AD ;(2) 如图2, M 为BC 的中点, 过M 作MN ∥AD 交AC 于点N , 若AB = 4, AC = 7, 求NC 的长.4.在ABC △中, BA BC BAC =∠=α,, M 是AC 的中点, P 是线段BM 上的动点, 将线段PA 绕点P 顺时针旋转2α得到线段PQ .(1) 若α=60︒且点P 与点M 重合(如图1) , 线段CQ 的延长线交射线BM 于点D , 请补全图形, 并写出CDB ∠的度数;(2) 在图2中, 点P 不与点B M ,重合, 线段CQ 的延长线与射线BM 交于点D , 猜想CDB ∠的大小(用含α的代数式表示) , 并加以证明.图1 图2BCPA5. 在Rt△ABC中, ∠ACB = 90°, ∠A = 30°, BD是△ABC的角平分线, DE⊥AB于点E.(1) 如图1, 连接EC, 求证: △EBC是等边三角形;(2) 点M是线段CD上的一点(不与点C, D重合) , 以BM为一边, 在BM的下方作∠BMG = 60°, MG交DE延长线于点G. 请你在图2中画出完整图形, 并直接写出MD, DG与AD之间的数量关系;(3) 如图3,点N是线段AD上的一点, 以BN为一边, 在BN的下方作∠BNG= 60°, NG交DE延长线于点G. 试探究ND, DG与AD数量之间的关系, 并说明理由.。
全等三角形的证明技巧专题倍长中线法1、已知,如图,△ABC 中,D 是BC 中点,DE⊥DF,试判断BE +CF 与EF 的大小关系,并证明你的结论.2、已知:如图所示,CE 、CB 分别是△ABC 与△ADC 的中线,且∠ACB =∠ABC . 求证:CD =2CE .作以角平分线为对称轴的翻折变换构造全等三角形3、已知:如图所示,在△ABC 中,∠C =2∠B ,∠1=∠2.求证:AB =AC +CD .的角平分线,H,G分别在AC,AB上,且HD=BD.4、如图,AD是ABC(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.利用截长(或补短)法作构造全等三角形5、如图,AB∥CD,BE、CE分别是∠ABC和∠BCD的平分线,点E在AD上。
求证:BC=AB+CD.6、已知:如图,在正方形ABCD中,AD=AB,∠D=∠ABC=∠BAD=90∘,E,F分别为DC,BC边上的点,且∠E AF=45∘,连接EF,求证:EF=BF+DE.在角的平分线上取一点向角的两边作垂线段7、如图所示,已知E为正方形ABCD的边CD的中点,点F在BC上,且∠DAE=∠FAE.求证:AF=AD+CF.8、如图所示,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD的延长线于E,12AE BD,求证:BD是∠ABC的平分线.K型全等9、如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S。
10、如图,△ABC中,∠ACB=90∘,AC=6,BC=8.点P从A点出发沿A−C−B路径向终点运动,终点为B点;点Q从B点出发沿B−C−A路径向终点运动,终点为A点。
点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P 和Q作PE⊥l于E,QF⊥l于F. 问:点P运动多少时间时,△PEC与QFC全等?请说明理由。
2020年决胜中考经典专题分析专题11 全等模型—半角模型什么叫半角模型定义:我们习惯把等腰三角形顶角的顶点引两条射线,使得两条射线的夹角为等腰三角形顶角的一半,这样的模型我们称为半角模型半角模型特征:两个角是一半的关系,并且两个角有公共顶点,大角的两边相等解题思路(1)将半角两边的三角形通过旋转到一边合并形成新的三角形;(2)证明与半角形成的三角形全等;(3)通过全等的性质得出线段之间的数量关系,从而解决问题口诀:大角加半角,大角两边相等,构造全等90°半角模型在正方形ABCD中,∠EAF=45°延长CB到点H,使得BH=DF,连接AH由题意得:四边形ABCD是正方形,所以AB=AD∠ABH=∠D在△ABH和△ADF中AB=AD则有∠ABH=∠D(边角边)BH=DF因此△ABH≌△ADF (SAS)则有∠FAD=∠HAB AH=AF∵∠BAD=90°,∠EAF=45°∴∠FAD+∠BAE=∠BAD-∠EAF=90°-45°=45°即∠HAE=∠HAB+∠BAE=45°∠HAE=∠EAF在△△HAE和△FAE中AH=AF∠HAE=∠EAFAE = AE因此△HAE≌△FAE,所以HE=EF则可以推理出:HB+BE=EF三角形CEF的周长等于EF+EC+FC= HB+BE+EC+FC=BC+DC则可以推理出:三角形CEF的周长等于正方形的周长一半由上面证明得△HAE≌△FAE,所以∠BEA=∠FEA则可以推理出:AE平分∠BEF又∵△ABH≌△ADF,∴∠H=∠AFD,∵△HAE≌△FAE,∴∠H=∠AFE,即∠AFE=∠AFD,则可以推理出:AF平分∠DFE.《典例1》如图,在正方形ABCD中,E,F分别是AD,CD上的点,∠EBF=45°,△EDF的周长为10,求四边形ABCD的周长?《答案》由题意得,延长AD到点H使得AH=CF∵四边形ABCD是正方形∴∠HAB=∠C=90° AB=BC∴△HAB≌△FCB即BH=BC ∠HBA=∠CBH则有∠HBE=∠EBF=45°BH=BC∠HBE=∠EBF (边角边)BE=BE∴△HAE≌△FBE (SAS)即HE=FE因此FE=AE+CF∵△EDF的周长等于AD+DC=10,∴四边形ABCD的周长=2(AD+DC)=20.《精准解析》先作辅助线使得AH=CF,构造△HAB≌△FCB,再证明△HAE≌△FBE 得EF=EH,推理出EF=AE+CF,则最终得到△EDF的周长等于AD+DC=10,四边形ABCD的周长=2(AD+DC)=20 120°半角模型,顶角为120°的等腰三角形BDC,∠MDN=60°△ABC是等边三角形.延长AB到点H,使得BH=CN,由题意得等腰三角形BDC中,∠BDC=120°,所以∠DBC=∠DCB=30°,∵△ABC是等边三角形,∴∠ABD=∠ACD=90°,即∠HBD=∠ACD,在△HBD和△NCD中,BH=CN,∠HBD=∠ACD,BD=DC,所以△HBD≌△NCD(SAS),即DH=DN,∠HDB=∠CDN,因此∠HDM=∠MDN,则在△MDN和△HDM中,DH=DN∠HDM=∠MDN(边角边)DM=DM因此△MDN≌△HDM,结论:MN=BM+NC,三角形AMN的周长=2倍等边三角形ABC的边长.《典例2》如图,三角形ABC是等边三角形,三角形BDC是等腰三角形,且∠BDC=120°,以D为顶点做一个60°的角,使得两边分别交AB于M,交AC于点N,连接MN,,已经三角形ANM的周长为6,求等边三角形ABC的周长?《答案》延长AB到点H,使得BH=CN由题意得等腰三角形BDC中,∠BDC=120°所以∠DBC=∠DCB=30°∵△ABC是等边三角形∴∠ABD=∠ACD=90°即∠HBD=∠ACD在△HBD和△NCD中BH=CN∠HBD=∠ACD(SAS)BD=DC所以△HBD≌△NCD (SAS)即DH=DN,∠HDB=∠CDN,因此∠HDM=∠MDN,则在△MDN和△HDM中DH=DN∠HDM=∠MDN(边角边)DM=DM所以△MDN≌△HDM因此MN=BM+NC,三角形AMN的周长=2倍等边三角形ABC的边长∵三角形AMN的周长等于6,∴等边三角形ABC的边长=6÷2=3,因此等边三角形ABC的周长为:3×3=9.《精准解析》先作辅助线使得BH=CN,构造△HBD≌△NCD ,再证明△MDN≌△HDM 得HM=NM,推理出NM=BH+BM=BH+CN,因为三角形AMN的周长等于6,所以推理出等边三角形ABC的边长=6÷2=3,因此等边三角形ABC的周长为:3×3=9《典例3》已知,正方形ABCD中,∠MAN=45°,∠MAN绕着点A顺时针旋转,他的两边分别交于CB,DC (或他们的延长线)于点M,N,AH⊥MN于点H(1)如图1,∠MAN绕着点A顺时针旋转到BM=DN时,请直接写出AH与AB的数量关系:()(2)如图2,∠MAN绕着点A顺时针旋转到BM≠DN时,(1)中的结论还可以成立吗?如果不成立写出结论,成立的话请证明。
BPAa【变式1】如图,在t R ABC △中,AB AC =,90BAC ∠=︒,过点A 的任一直线AN ,BD AN ⊥于D ,BD AN ⊥于E求证:DE BD CE =-NEDCBA【变式2】如图,在ABC △中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E ,求证:DE AD BE =+.EDCBA专题 三角形的尺规作图知识点解析作三角形的三种类型:① 已知两边及夹角作三角形: 作图依据------SAS ② 已知两角及夹边作三角形: 作图依据------ASA ③ 已知三边作三角形: 作图依据------SSS典型例题【例1】作一条线段等于已知线段。
已知:如图,线段a . 求作:线段AB ,使AB = a .【例2】作一个角等于已知角。
已知:如图,∠AOB 。
求作:∠A’O’B’,使A’O’B’=∠AOB【例3】已知三边作三角形已知:如图,线段a,b,c.求作:△ABC,使AB = c,AC = b,BC = a.作法:【例4】已知两边及夹角作三角形已知:如图,线段m,n, ∠α.求作:△ABC,使∠A=∠α,AB=m,AC=n.【例5】已知两角及夹边作三角形已知:如图,∠α,∠β,线段c .求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.随堂练习1.根据已知条件作符合条件的三角形,在作图过程中主要依据是()A.用尺规作一条线段等于已知线段;B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角;D.不能确定2.已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为()A.作一条线段等于已知线段B.作一个角等于已知角C.作两条线段等于已知三角形的边,并使其夹角等于已知角D.先作一条线段等于已知线段或先作一个角等于已知角3.用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A.三角形的两条边和它们的夹角B.三角形的三条边C.三角形的两个角和它们的夹边;D.三角形的三个角4.已知三边作三角形时,用到所学知识是()A.作一个角等于已知角B.作一个角使它等于已知角的一半C.在射线上取一线段等于已知线段D.作一条直线的平行线或垂线专题利用三角形全等测距离知识点解析一、利用三角形全等测距离目的:变不可测距离为可测距离。
专题11全等三角形中的一线三等角模型【模型1】三垂直全等模型【说明】上图三垂直模型中,只要知道一组对应边相等,即可证明两三角形全等。
【模型2】一线三直角全等模型【说明】上图中的两个三角形中三组对应角相等,只要知道一组对应边相等,即可证明两三角形全等。
【模型3】一线三等角与一组对应边相等全等模型【说明】上图中可根据平角的概念和三角形内角和定理可求得的两个三角形中三组对应角相等,只要再知道一组对应边相等,即可证明两三角形全等。
【例1】如图,AC =CE ,∠ACE =90°,AB ⊥BD ,ED ⊥BD ,AB =6cm ,DE =2cm ,则BD 等于()A .6cmB .8cmC .10cmD .4cm【答案】B 【分析】根据题意证明ABC CDE △≌△即可得出结论.【解析】解:∵AB ⊥BD ,ED ⊥BD ,∴90ABC CDE ∠=∠=︒,∵∠ACE =90°,∴90ACB DCE ∠+∠=︒,∵90ACB BAC ∠+∠=︒,∴BAC DCE ∠=∠,在ABC 和CDE △中,90ABC CDE BAC DCE AC CE ∠=∠=︒⎧⎪∠=∠⎪⎨⎪⎪⎩=,∴()ABC CDE AAS ≌,∴6cm AB CD ==,2cm BC DE ==,∴268cm BD BC CD =+=+=,故选:B .【例2】如图所示,ABC 中,,90AB AC BAC =∠=︒.直线l 经过点A ,过点B 作BE l ⊥于点E ,过点C 作CF l ⊥于点F .若2,5==BE CF ,则EF =__________.【答案】7【分析】根据全等三角形来实现相等线段之间的关系,从而进行计算,即可得到答案;【解析】解:∵BE ⊥l ,CF ⊥l ,∴∠AEB =∠CFA =90°.∴∠EAB +∠EBA =90°.又∵∠BAC =90°,∴∠EAB +∠CAF =90°.∴∠EBA =∠CAF .在△AEB 和△CFA 中∵∠AEB =∠CFA ,∠EBA =∠CAF ,AB =AC ,∴△AEB ≌△CFA .∴AE =CF ,BE =AF .∴AE +AF =BE +CF .∴EF =BE +CF .∵2,5==BE CF ,∴257EF =+=;故答案为:7.【例3】(1)观察理解:如图1,∠ACB =90°,AC =BC ,直线l 过点C ,点A ,B 在直线l 同侧,BD ⊥l ,AE ⊥l ,垂足分别为D ,E ,求证:△AEC ≌△CDB .(2)理解应用:如图2,过△ABC边AB、AC分别向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I.利用(1)中的结论证明:I是EG的中点.(3)类比探究:①将图1中△AEC绕着点C旋转180°得到图3,则线段ED、EA和BD的关系_______;∥,AB⊥BC,AD=2,BC=3,将腰DC绕D点逆②如图4,直角梯形ABCD中,AD BC时针旋转90°至DE,△AED的面积为.【答案】(1)见解析;(2)见解析;(3)①ED=EA-BD;②1【分析】(1)根据同角的余角相等可得∠A=∠BCD,再利用AAS证得△AEC≌△CDB,即可;(2)分别过点E、G向HI作垂线,垂足分别为M、N,由(1)可证得△EMA≌△AHB,△ANG ≌△CHA ,从而得到EM =GN ,可得到△EMI ≌△GNI ,从而得到EI =IG ,即可求证;(3)①由(1)得:△AEC ≌△CDB ,可得CE =BD ,AE =CD ,即可;②过点C 作CP ⊥AD 交AD 延长线于点P ,过点E 作EQ ⊥AD 交AD 延长线于点Q ,根据旋转的性质可得根据题意得:∠CDE =90°,CD =DE ,再由(1)可得△CDP ≌△DEQ ,从而得到DP =EQ ,然后根据两平行线间的距离,可得AP =BC ,进而得到PD =1,即可求解.【解析】(1)证明:∵BD ⊥l ,AE ⊥l ,∴∠AEC =∠BDC =90°,又∵∠ACB =90°∴∠A +∠ACE =∠ACE +∠BCD =90°,∴∠A =∠BCD ,在△AEC 和△CDB 中,AEC CDB A BCD AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△CDB (AAS );(2)证明:分别过点E 、G 向HI 作垂线,垂足分别为M 、N,由(1)得:△EMA ≌△AHB ,△ANG ≌△CHA ,∴EM =AH ,GN =AH ,∴EM =GN ,在△EMI 和△GNI 中,90EIM GIN EMI GNI EM GN ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△EMI ≌△GNI (AAS );∴EI =IG ,即I 是EG 的中点;(3)解:①由(1)得:△AEC ≌△CDB ,∴CE =BD ,AE =CD ,∵ED =CD -CE ,∴ED =EA -BD ;故答案为:ED =EA -BD②如图,过点C 作CP ⊥AD 交AD 延长线于点P ,过点E 作EQ ⊥AD 交AD 延长线于点Q ,根据题意得:∠CDE =90°,CD =DE ,由(1)得:△CDP ≌△DEQ ,∴DP =EQ ,直角梯形ABCD 中,AD BC ∥,AB ⊥BC ,∴AB ⊥AD ,∴AB ∥CP ,∴BC ⊥CP ,∵BC =3,∴AP =BC =3,∵AD =2,∴DP =AP -AD =1,∴EQ =1,∴△ADE 的面积为1121122AD EN 创=.故答案为:1一、单选题1.如图,点P ,D 分别是∠ABC 边BA ,BC 上的点,且4BD =,60ABC ∠=︒.连结PD ,以PD 为边,在PD 的右侧作等边△DPE ,连结BE ,则△BDE 的面积为()A .B .2C .4D .【答案】A【分析】要求BDE ∆的面积,想到过点E 作EF BC ⊥,垂足为F ,因为题目已知60ABC ∠=︒,想到把ABC ∠放在直角三角形中,所以过点D 作DG BA ⊥,垂足为G ,利用勾股定理求出DG 的长,最后证明GPD FDE ∆≅∆即可解答.【解析】解:过点E 作EF BC ⊥,垂足为F ,过点D 作DG BA ⊥,垂足为G ,在Rt BGD 中,4BD =,60ABC ∠=︒,30BDG ∴∠=︒,122BG BD ∴==,GD ∴=PDE ∆是等边三角形,60PDE ∴∠=︒,PD DE =,180120PDB EDF PDE ∴∠+∠=︒-∠=︒,60ABC ∠=︒,180120PDB BPD ABC ∴∠+∠=︒-∠=︒,BPD EDF ∴∠=∠,90PGD DFE ∠=∠=︒,()GPD FDE AAS ∴∆≅∆,GD EF ∴==,BDE ∴∆的面积12BD EF =⋅,142=⨯⨯,=故选:A .2.课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),∠ACB =90°,AC =BC ,从三角板的刻度可知AB =20cm ,小聪想知道砌墙砖块的厚度(每块砖的厚度相等),下面为砌墙砖块厚度的平方的是().A .20013cm 2B .15013cm 2C .10013cm 2D .5013cm 2【答案】A【分析】设每块砖的厚度为x cm ,则AD =3x cm ,BE =2x cm ,然后证明△DAC ≌△ECB 得到CD =BE =2x cm ,再利用勾股定理求解即可.【解析】解:设每块砖的厚度为x cm ,则AD =3x cm ,BE =2x cm ,由题意得:∠ACB =∠ADC =∠BEC =90°,∴∠ACD +∠DAC =∠ACD +∠BCE =90°,∴∠DAC =∠ECB ,又∵AC =CB ,∴△DAC ≌△ECB (AAS ),∴CD =BE =2x cm ,∵222AC BC AB +=,222AD DC AC +=,∴()()222232220x x +=,∴220013x =,故选A .3.一天课间,顽皮的小明同学拿着老师的等腰直角三角板玩,不小心将三角板掉到两根柱子之间,如图所示,这一幕恰巧被数学老师看见了,于是有了下面这道题:如果每块砖的厚度a =8cm ,则DE 的长为()A .40cmB .48cmC .56cmD .64cm【答案】C 【分析】由等腰直角三角形的性质可得∠ACB =90°,AC =CB ,因此可以考虑证明△ACD 和△CBE 全等,可以证明DE 的长为7块砖的厚度的和.【解析】解:由题意得∠ADC =∠CEB =∠ACB =90°,AC =CB ,∴∠ACD =90°﹣∠BCE =∠CBE ,在△ACD 和△CBE 中,ADC CEB ACD CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴CD=BE=3a,AD=CE=4a,∴DE=CD+CE=3a+4a=7a,∵a=8cm,∴7a=56cm,∴DE=56cm,故选C.二、填空题4.如图,直线l1⊥l3,l2⊥l3,垂足分别为P、Q,一块含有45°的直角三角板的顶点A、B、C分别在直线l1、l2、线段PQ上,点O是斜边AB的中点,若PQ,则OQ的长等于_____.【答案】6【分析】由“AAS”可证△ACP≌△CBQ,可得AP=CQ,PC=BQ,由“AAS”可证△APO≌△BHO,可得AP=BH,OP=OH,由等腰直角三角形的性质和直角三角形的性质可求解.【解析】解:如图,连接PO,并延长交l2于点H,∵l1⊥l3,l2⊥l3,∴l1∥l3,∠APC=∠BQC=∠ACB=90°,∴∠PAC+∠ACP=90°=∠ACP+∠BCQ,∴∠PAC=∠BCQ,在△ACP和△CBQ中,∠=∠⎧⎪∠=∠⎨⎪=⎩PAC BCQ APC BQC AC BC ,∴△ACP ≌△CBQ (AAS ),∴AP =CQ ,PC =BQ ,∴PC +CQ =AP +BQ =PQ,∵AP ∥BQ ,∴∠OAP =∠OBH ,∵点O 是斜边AB 的中点,∴AO =BO ,在△APO 和△BHO 中,∠=∠⎧⎪∠=∠⎨⎪=⎩AOP BOH APO BHO AO BO ,∴△APO ≌△BHO (AAS ),∴AP =BH ,OP =OH ,∴BH +BQ =AP +BQ =PQ ,∴PQ =QH,∵∠PQH =90°,∴PHPQ =12,∵OP =OH ,∠PQH =90°,∴OQ =12PH =6.故答案为:65.如图,已知ABC 是等腰直角三角形,∠ACB =90°,AD ⊥DE 于点D ,BE ⊥DE 于点E ,且点C 在DE 上,若AD =5,BE =8,则DE 的长为_____.【答案】13【分析】先根据AD ⊥DE ,BE ⊥DE ,∠ADC =∠CEB =90°,则∠DAC +∠DCA =90°,△ABC 是等腰直角三角形,∠ACB =90°,可得AC =CB ,推出∠DAC =∠ECB ,即可证明△DAC ≌△ECB得到CE =AD =5,CD =BE =8,由此求解即可.【解析】解:∵AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∴∠DAC +∠DCA =90°,∵△ABC 是等腰直角三角形,∠ACB =90°,∴∠DCA +∠BCE =90°,AC =CB∴∠DAC =∠ECB ,∴△DAC ≌△ECB (AAS ),∴CE =AD =5,CD =BE =8,∴DE =CD +CE =13,故答案为:13.三、解答题6.已知:如图,AB ⊥BD ,ED ⊥BD ,C 是BD 上的一点,AC ⊥CE ,AB =CD ,求证:BC =DE.【答案】见解析【分析】根据直角三角形全等的判定方法,ASA 即可判定三角形全等.【解析】证明:∵AB ⊥BD ,ED ⊥BD ,AC ⊥CE (已知)∴∠ACE =∠B =∠D =90°(垂直的意义)∵∠BCA +∠DCE +∠ACE =180°(平角的意义)∠ACE =90°(已证)∴∠BCA +∠DCE =90°(等式性质)∵∠BCA +∠A +∠B =180°(三角形内角和等于180°)∠B =90°(已证)∴∠BCA +∠A =90°(等式性质)∴∠DCE =∠A (同角的余角相等)在△ABC 和△CDE 中,A DCE AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△CDE (ASA )∴BC =DE (全等三角形对应边相等)7.如图,∠B =∠C =∠FDE =80°,DF =DE ,BF =1.5cm ,CE =2cm ,求BC的长.【答案】3.5【分析】由平角定义及三角形内角和定理解得EDC BFD ∠=∠,继而证明()BFD CDE AAS ≅V V ,得到=1.5,=2BF CD BD CE ==,最后根据线段的和差解题.【解析】解:∠B =∠C =∠FDE =80°,100,100BDF EDC BDF BFD ∴∠+∠=︒∠+∠=︒EDC BFD∴∠=∠在BFD △与CDE △中,B C EDC BFD DE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩()BFD CDE AAS ∴≅=1.5,=2BF CD BD CE ∴==2 1.5 3.5BC BD DC ∴=+=+=.8.感知:(1)数学课上,老师给出了一个模型:如图1,90BAD ACB AED ∠=∠=∠=︒,由12180BAD ∠+∠+∠=︒,2180D AED ∠+∠+∠=︒,可得1D ∠=∠;又因为90ACB AED =∠=︒,可得ABC DAE △△∽,进而得到BC AC=______.我们把这个模型称为“一线三等角”模型.应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在ABC 中,10AB AC ==,12BC =,点P 是BC 边上的一个动点(不与B 、C 重合),点D 是AC 边上的一个动点,且APD B ∠=∠.①求证:ABP PCD △△∽;②当点P 为BC 中点时,求CD 的长;拓展:(3)在(2)的条件下如图2,当APD △为等腰三角形时,请直接写出BP 的长.【答案】感知:(1)AEDE;应用:(2)①见解析;②3.6;拓展:(3)2或113【分析】(1)根据相似三角形的性质,即可求解;(2)①根据等腰三角形的性质得到∠B=∠C,根据三角形的外角性质得到∠BAP=∠CPD,即可求证;②根据相似三角形的性质计算,即可求解;(3)分PA=PD、AP=AD、DA=DP三种情况,根据等腰三角形的性质、相似三角形的性质,即可求解.【解析】感知:(1)∵△ABC∽△DAE,∴BC AC AE DE=,∴BC AE AC DE=,故答案为:AE DE;应用:(2)①∵∠APC=∠B+∠BAP,∠APC=∠APD+∠CPD,∠APD=∠B,∴∠BAP=∠CPD,∵AB=AC,∴∠B=∠C,∴△ABP∽△PCD;②BC=12,点P为BC中点,∴BP=PC=6,·∵△ABP∽△PCD,∴AB BPPC CD=,即1066CD=,解得:CD=3.6;拓展:(3)当PA=PD时,△ABP≌△PCD,∴PC=AB=10,∴BP=BC-PC=12-10=2;当AP=AD时,∠ADP=∠APD,∵∠APD =∠B =∠C ,∴∠ADP =∠C ,不合题意,∴AP ≠AD ;当DA =DP 时,∠DAP =∠APD =∠B ,∵∠C =∠C ,∴△BCA ∽△ACP ,∴BC AC AC CP =,即121010CP=,解得:253CP =,∴25111233BP BC CP =-=-=,综上所述,当APD △为等腰三角形时,BP 的长为2或113.9.问题背景:(1)如图①,已知ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D ,E ,易证:DE =______+______.(2)拓展延伸:如图②,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠,请求出DE ,BD ,CE 三条线段的数量关系,并证明.(3)实际应用:如图③,在ACB △中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点A 的坐标为()6,3-,请直接写出B 点的坐标.【答案】(1)BD ;CE ;证明见详解;(2)DE=BD+CE ;证明见详解;(3)点B 的坐标为()1,4B .【分析】(1)根据全等三角形的判定和性质得到AE BD =,AD CE =,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明ABD CAE ∠=∠,证明ABD CAE ≌,根据全等三角形的性质得到AE BD =,AD CE =,结合图形解答即可;(3)根据AEC CFB ≌,得到3CF AE ==,4BF CE OE OC ==-=,根据坐标与图形性质解答即可.【解析】(1)证明:∵BD m ⊥,CE m ⊥,∴90ADB CEA ∠=∠=︒,∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒,∵90BAD ABD ∠+∠=︒,∴ CAE ABD ∠=∠,在ADB 和CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADB CEA ≌,∴AE BD =,AD CE =,∴DE AE AD BD CE =+=+,即:DE BD CE =+,故答案为:BD ;CE ;(2)解:数量关系:DE BD CE =+,证明:在ABD 中,180ABD ADB BAD ∠=︒-∠-∠,∵180CAE BAC BAD ∠=︒-∠-∠,BDA AEC ∠=∠,∴ABD CAE ∠=∠,在ABD 和CAE 中,ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩===∴ABD CAE ≌,∴AE BD =,AD CE =,∴DE AD AE BD CE =+=+;(3)解:如图,作AE x ⊥轴于E ,BF x ⊥轴于F,由(1)可知,AEC CFB ≌,∴3CF AE ==,4BF CE OE OC ==-=,∴1OF CF OC =-=,∴点B 的坐标为()1,4B .10.在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA =∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由.【答案】(1)DE=BD+CE.(2)DE=BD+CE仍然成立,证明见解析【分析】(1)由∠BDA=∠BAC=∠AEC=90°得到∠BAD+∠EAC=∠BAD+∠DBA=90°,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE;(2)由∠BDA=∠BAC=∠AEC=α得到∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE.【解析】(1)解:DE=BD+CE,理由如下,∵∠BDA=∠BAC=∠AEC=90°,∴∠BAD+∠EAC=∠BAD+∠DBA=90°,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,故答案为:DE=BD+CE.(2)DE=BD+CE仍然成立,理由如下,∵∠BDA=∠BAC=∠AEC=α,∴∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴BD=AE,AD=CE,∴DE =AD +AE =BD +CE ;11.如图,90,ABC FA AB ∠=⊥于点A ,点D 在直线AB 上,,AD BC AF BD ==.(1)如图1,若点D 在线段AB 上,判断DF 与DC 的数量关系和位置关系,并说明理由;(2)如图2,若点D 在线段AB 的延长线上,其他条件不变,试判断(1)中结论是否成立,并说明理由.【答案】(1)DF =DC ,DF ⊥DC ;理由见解析(2)成立,理由见解析【分析】(1)先证△ADF ≌△BCD ,得DF =DC ,ADF BCD ∠=∠,再证∠FDC =90°即可得垂直;(2)先证△ADF ≌△BCD ,得DF =DC ,ADF BCD ∠=∠,再证∠FDC =90°即可得垂直.【解析】(1)解:∵90,ABC FA AB ∠=⊥,∴90ABC DAF ∠∠==,在△ADF 与△BCD 中AF BD DAF ABC AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BCD ,∴DF =DC ,ADF BCD ∠=∠,∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .(2)∵90,ABC FA AB ∠=⊥,∴90DBC DAF ∠∠==,在△ADF 与△BCD 中AF BD DAF DBC AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BCD ,∴DF =DC ,ADF BCD ∠=∠,∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .12.在直线m 上依次取互不重合的三个点,,D A E ,在直线m 上方有AB AC =,且满足BDA AEC BAC α∠=∠=∠=.(1)如图1,当90α=︒时,猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2,当0180α<<︒时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在ABC 中,BAC ∠是钝角,AB AC =,,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠,直线m 与CB 的延长线交于点F ,若3BC FB =,ABC 的面积是12,求FBD 与ACE 的面积之和.【答案】(1)DE =BD +CE(2)DE =BD +CE 仍然成立,理由见解析(3)△FBD 与△ACE 的面积之和为4【分析】(1)由∠BDA =∠BAC =∠AEC =90°得到∠BAD +∠EAC =∠BAD +∠DBA =90°,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD +CE ;(2)由∠BDA =∠BAC =∠AEC =α得到∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD +CE ;(3)由∠BAD >∠CAE ,∠BDA =∠AEC =∠BAC ,得出∠CAE =∠ABD ,由AAS 证得△ADB ≌△CAE ,得出S △ABD =S △CEA ,再由不同底等高的两个三角形的面积之比等于底的比,得出S △ABF 即可得出结果.【解析】(1)解:DE =BD +CE ,理由如下,∵∠BDA =∠BAC =∠AEC =90°,∴∠BAD +∠EAC =∠BAD +∠DBA =90°,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴AD =CE ,BD =AE ,∴DE =AD +AE =BD +CE ,故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立,理由如下,∵∠BDA =∠BAC =∠AEC =α,∴∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE ;(3)解:∵∠BAD <∠CAE ,∠BDA =∠AEC =∠BAC ,∴∠CAE =∠ABD ,在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CAE (AAS ),∴S △ABD =S △CAE ,设△ABC 的底边BC 上的高为h ,则△ABF 的底边BF 上的高为h ,∴S △ABC =12BC •h =12,S △ABF =12BF •h ,∵BC =3BF ,∴S △ABF =4,∵S △ABF =S △BDF +S △ABD =S △FBD +S △ACE =4,∴△FBD 与△ACE 的面积之和为4.13.通过对下面数学模型的研究学习,解决下列问题:(1)如图1,∠BAD =90°,AB =AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥AC 于点E .由∠1+∠2=∠2+∠D =90°,得∠1=∠D .又∠ACB =∠AED =90°,可以推理得到△ABC ≌△DAE .进而得到AC =,BC =AE .我们把这个数学模型称为“K 字”模型或“一线三等角”模型;(2)如图2,∠BAD =∠CAE =90°,AB =AD ,AC =AE ,连接BC ,DE ,且BC ⊥AF 于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;(深入探究)(3)如图,已知四边形ABCD 和DEGF 为正方形,△AFD 的面积为S 1,△DCE 的面积为S 2,则有S 1S 2(填“>、=、<”)【答案】(1)DE ;(2)见解析;(3)=【分析】(1)根据全等三角形的性质可直接进行求解;(2)分别过点D 和点E 作DH ⊥FG 于点H ,EQ ⊥FG 于点Q ,进而可得∠BAF =∠ADH ,然后可证△ABF ≌△DAH ,则有AF =DH ,进而可得DH =EQ ,通过证明△DHG ≌△EQG 可求解问题;(3)过点D 作DO ⊥AF 交AF 于O ,过点E 作EN ⊥OD 交OD 延长线于N ,过点C 作CM ⊥OD 交OD 延长线于M ,由题意易得∠ADC =∠90°,AD =DC ,DF =DE ,然后可得∠ADO =∠DCM ,则有△AOD ≌△DMC ,△FOD ≌△DNE ,进而可得OD =NE ,通过证明△ENP ≌△CMP 及等积法可进行求解问题.【解析】解:(1)∵ABC DAE △≌△,∴AC DE =;(2)分别过点D 和点E 作DH ⊥FG 于点H ,EQ ⊥FG 于点Q ,如图所示:∴90DAH ADH ∠+∠=︒,∵90BAD ∠=︒,∴90BAF DAH ∠+∠=︒,∴BAF ADH ∠=∠,∵BC AF ⊥,∴90BFA AHD ∠=∠=︒,∵AB DA =,∴△ABF ≌△DAH ,∴AF =DH ,同理可知AF =EQ ,∴DH =EQ ,∵DH ⊥FG ,EQ ⊥FG ,∴90DHG EQG ∠=∠=︒,∵DGH EGQ∠=∠∴△DHG ≌△EQG ,∴DG =EG ,即点G 是DE 的中点;(3)12S S =,理由如下:如图所示,过点D 作DO ⊥AF 交AF 于O ,过点E 作EN ⊥OD 交OD 延长线于N ,过点C 作CM ⊥OD 交OD 延长线于M∵四边形ABCD 与四边形DEGF 都是正方形∴∠ADC =∠90°,AD =DC ,DF =DE∵DO ⊥AF ,CM ⊥OD ,∴∠AOD =∠CMD =90°,∠OAD +∠ODA =90°,∠CDM +∠DCM =90°,又∵∠ODA +∠CDM =90°,∴∠ADO =∠DCM ,∴△AOD ≌△DMC ,∴AOD DMC S S =△△,OD =MC ,同理可以证明△FOD ≌△DNE ,∴FOD DNE S S =△△,OD =NE ,∴MC =NE ,∵EN ⊥OD ,CM ⊥OD ,∠EPN =∠CMP ,∴△ENP ≌△CMP ,∴ENP CMP S S △△=,∵,ADF AOD FOD DCE DCM CMP DEN ENP SS S S S S S S =+=-++,∴DCE DCM DEN AOD FOD S S S S S =+=+,∴DCE ADF S S △△=即12S S =.14.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D ,E .求证:DE BD CE =+.(2)组员小明想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线l 上,并且有BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问结论DE BD CE =+是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过ABC 的边AB ,AC 向外作正方形ABDE 和正方形ACFG ,AH 是BC 边上的高.延长HA 交EG 于点I .若7AEG S =△,则AEI S =△______.【答案】(1)见解析;(2)结论成立,理由见解析;(3)3.5【分析】(1)由条件可证明△ABD ≌△CAE ,可得DA =CE ,AE =BD ,可得DE =BD +CE ;(2)由条件可知∠BAD +∠CAE =180°-α,且∠DBA +∠BAD =180°-α,可得∠DBA =∠CAE ,结合条件可证明△ABD ≌△CAE ,同(1)可得出结论;(3)由条件可知EM =AH =GN ,可得EM =GN ,结合条件可证明△EMI ≌△GNI ,可得出结论I 是EG 的中点.【解析】解:(1)证明:如图1中,∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°,∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD ,在△ADB 和△CEA 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE .(2)解:成立.理由:如图2中,∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠CAE =180°-α,∴∠DBA =∠CAE ,在△ADB 和△CEA 中,BDA AEC DBA CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE .(3)如图3,过E 作EM ⊥HI 于M ,GN ⊥HI 的延长线于N.∴∠EMI =∠GNI =90°由(1)和(2)的结论可知EM =AH =GN∴EM =GN在△EMI 和△GNI 中,GIN EIM EM GN GNI EMI ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EMI ≌△GNI (AAS ),∴EI =GI ,∴I 是EG 的中点.∴S △AEI =12S △AEG =3.5.故答案为:3.5.15.(1)模型建立,如图1,等腰直角三角形ABC 中,∠ACB =90°,CB =CA ,直线ED 经过点C ,过A 作AD ⊥ED 于D ,过B 作BE ⊥ED 于E .求证:△BEC ≌△CDA ;(2)模型应用:①已知直线y =34x +3与y 轴交于A 点,与x 轴交于B 点,将线段AB 绕点B 逆时针旋转90度,得到线段BC ,过点A ,C 作直线,求直线AC 的解析式;②如图3,矩形ABCO ,O 为坐标原点,B 的坐标为(8,6),A ,C 分别在坐标轴上,P 是线段BC 上动点,已知点D 在第一象限,且是直线y =2x ﹣5上的一点,若△APD 是不以A 为直角顶点的等腰直角三角形,请直接写出所有符合条件的点D的坐标.【答案】(1)见解析;(2)137y x =-+;(3)(3,1)或(913),或1923(33,【分析】(1)由条件可求得EBC ACD ∠=∠,利用AAS 可证明BEC CDA ≌;(2)由直线解析式可求得A 、B 的坐标,利用模型结论可得CE BO =,BE AO =,从而可求得C 点坐标,利用待定系数法可求得直线AC 的解析式;(3)分两种情况考虑:如图2所示,当90ADP ∠=︒时,AD PD =,设D 点坐标为(,25)x x -,利用三角形全等得到1128x x -+=,易得D 点坐标;如图3所示,当90APD ∠=︒时,AP PD =,设点P 的坐标为(8,)m ,表示出D 点坐标为(14,8)m m -+,列出关于m 的方程,求出m 的值,即可确定出D 点坐标;如图4所示,当90ADP ∠=︒时,AD PD =时,同理求出D 的坐标.【解析】解:(1)由题意可得,90ACB ADC BEC ∠=∠=∠=︒,∴90EBC BCE BCE ACD ∠+∠=∠+∠=︒,∴EBC ACD ∠=∠,在BEC △和CDA 中EBC ACD E D BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()BEC CDA AAS ≌;(2)过点C 作CD x ⊥轴于点D ,如图2,在334y x =+中,令0y =可求得4x =-,令0x =可求得3y =,∴3OA =,4OB =同(1)可证得CDB BOA ≌,∴4CD BO ==,3BD AO ==,∴437OD =+=,∴()7,4C -且()0,3A ,设直线AC 解析式为3y kx =+,把C 点坐标代入可得734k -+=,解得17k =-,∴直线AC 解析式为137y x =-+;(3)如图2,当90ADP ∠=︒时,AD PD =,过点D 作DE OA ⊥于E ,过点D 作DF BC ⊥于F ,同理可得:AED DFP△≌△设D 点坐标为(,25)x x -,则6(25)112AE DF x x ==--=-,∵DE DF EF BC +==,即1128x x -+=,解得3x =,可得D 点坐标(3,1);如图3,当90APD ∠=︒时,AP PD =,过点P 作PE OA ⊥于E ,过点D 作DF PE ⊥于F ,设点P 的坐标为()8,m ,同理可得:APE PDF ≌△△,∴6PF AE m ==-,8DF PE ==,∴D 点坐标为()14,8m m -+,∴()82145m m +=--,得5m =,∴D 点坐标(913),;如图4,当90ADP ∠=︒时,AD PD =时,同理可得ADE DPF △△≌,设(,25)D n n -,则DE PF n ==,25OE n =-,AE DF =则256211DF AE n n ==--=-,∵8DE DF EF OC +===∴2118n n +-=,解得193n =,23253n -=∴D 点坐标1923()33,,综上可知满足条件的点D 的坐标分别为(3,1)或(913),或1923(33,.。
一、全等三角形注: ① 判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等. 2. 证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS例1: 如图, 在△ABE 中, AB =AE,AD =AC,∠BAD =∠EAC, BC.DE 交于点O.求证: (1) △ABC ≌△AED ; (2) OB =OE .例2: 如图所示, 已知正方形ABCD 的边BC.CD 上分别有点E 、点F, 且BE +DF =EF, 试求∠EAF 的度数.AD F例3.在△ABC中, ∠ACB=90°,AC=BC, AE是BC的中线, 过点C作CF⊥AE于F,过B作BD⊥CB 交CF的延长线于点D。
(1)求证:AE=CD, (2)若BD=5㎝,求AC的长。
例4:如图, △ABE和△ADC是△ABC分别沿着AB.AC边翻折180°形成的, 若∠1: ∠2: ∠3=28: 5: 3, 则∠a的度数为例5: 如图: 在△ABC中, ∠ACB=90°, AC=BC, D是AB上一点, AE⊥CD于E, BF⊥CD交CD的延长线于F.求证: AE=EF+BF。
练习:1.已知: 如图5—129, △ABC 的∠B.∠C 的平分线相交于点D, 过D 作MN ∥BC 交AB.AC 分别于点M 、N, 求证:BM +CN =MN2.如图(13):已知AB ⊥BD, ED ⊥BD, AB=CD , BC=DE ,请你判断AC 垂直于CE 吗? 并说明理由。
3.如图(14),已知AB=DC , DE=BF, ∠B=∠D , 试说明(1)DE ∥BF (2)AE=CFFDCABE(14)4.如图: 在△ABC中, ∠BAC=90°,∠ABD= ∠ABC, DF⊥BC, 垂足为F, AF交BD于E。
全等三角形的判定专题1.如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.2.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.3.已知:如图,点A,F,E,C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.4.如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.5.如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.6.如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.7.如图,已知CA=CD,∠1=∠2(1)请你添加一个条件使△ABC≌△DEC,你添加的条件是;(2)添加条件后请证明△ABC≌△DEC.8.如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.9.如图,四边形ABCD是正方形,M为BC上一点,连接AM,延长AD至点E,使得AE=AM,过点E 作EF⊥AM,垂足为F,求证:AB=EF.10.如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME ∥BC交AB于点E.求证:△ABC≌△MED.11.如图,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CE于点E.(1)求证:△ACD≌△CBE;(2)已知AD=4,DE=1,求EF的长.12.如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连结AH,已知ED=2,求AH的值.13.如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=°.14.如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G,H,若AB=CD,求证:AG=DH.15.已知:如图,点A 、D 、C 、B 在同一条直线上,AD =BC ,AE =BF ,CE =DF ,求证:AE ∥FB .16.如图,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF =CD ,连接CF .(1)求证:△AEF ≌△DEB ;(2)若AB =AC ,试判断四边形ADCF 的形状,并证明你的结论.17.如图,点B 、F 、C 、E 在一条直线上,FB =CE ,AB ∥ED ,AC ∥FD ,AD 交BE 于O .求证:AD 与BE 互相平分.18.如图,在四边形ABCD 中,E 是AB 的中点,AD ∥EC ,∠AED =∠B . (1)求证:△AED ≌△EBC . (2)当AB =6时,求CD 的长.19.如图,正方形ABCD 中,E 是BC 上的一点,连接AE ,过B 点作BH ⊥AE ,垂足为点H ,延长BH 交CD 于点F ,连接AF .(1)求证:AE =BF .(2)若正方形边长是5,BE =2,求AF 的长.20.已知:在△ABC 中,AB =AC ,D 为AC 的中点,DE ⊥AB ,DF ⊥BC ,垂足分别为点E ,F ,且DE =DF .求证:△ABC 是等边三角形.21.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AC⊥AB,试判断四边形ADCF的形状,并证明你的结论.22.如图所示,在四边形ABCD中,AE⊥BD于点E,CF⊥BD于点F,AE=CF,BE=DF.求证:(1)△ABE≌△CDF;(2)四边形ABCD是平行四边形.23.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.24.已知:如图,在Rt△ACB中,∠ACB=90°,点D是AB的中点,且CD =AB,点E是CD的中点,过点C作CF∥AB交AE的延长线于点F.(1)求证:△ADE≌△FCE;(2)若∠DCF=120°,DE=2,求BC的长.25.如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.求证:∠AOB =60°.26.如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.27.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.28.如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.29.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知∠ABC=60°,EF⊥AB,垂足为F,连接DF.(1)求证:△ABC≌△EAF;(2)试判断四边形EFDA的形状,并证明你的结论.30.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.31.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.32.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.33.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.34.如图,在△ABC中,CD是AB边上的中线,F是CD的中点,过点C作AB的平行线交BF的延长线于点E,连接AE.(1)求证:EC=DA;(2)若AC⊥CB,试判断四边形AECD的形状,并证明你的结论.35.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:△BEC≌△CDA.36.如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.37.如图,四边形ABCD、BEFG均为正方形,连接AG、CE.(1)求证:AG=CE;(2)求证:AG⊥CE.38.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.39.如图,⊙O的直径为AB,点C在⊙O上,点D,E分别在AB,AC的延长线上,DE⊥AE,垂足为E,∠A=∠CDE.(1)求证:CD是⊙O的切线;(2)若AB=4,BD=3,求CD的长.40.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若DE+EA=8,⊙O的半径为10,求△OAF的面积.。
人大初中数学教研组2011年9月专题十一全等三角形1.(2008朝阳一模,18)如图,在矩形ABCD中,以点B为圆心、BC长为半径画弧,交AD于点E,连结BE,过点C作CF⊥BE,垂足为F.猜想线段BF与图中现有的哪一条线段相等.先将你猜想出的结论填写在下面的横线上,然后再加以证明.结论:BF=________.2.(2008崇文一模,18)如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E是BC边的中点,EM⊥AB,EN⊥CD,垂足分别为M、N.求证:EM=EN.3.(2008东城一模,16)已知:如图,在等边三角形ABC中,点D、E分别是AB、BC延长线上的点,且BD=CE.求证:DC=AE.4. (2008海淀一模,17)已知:如图,菱形ABCD中,E、F分别是AB、CD边的中点,连结CE、AF.求证:AF=CE.5.(2008朝阳二模,16)已知:如图,在菱形ABCD中,E、F分别是CB、CD上的点,且BE =DF.求证:∠AEF=∠AFE.6.(2008东城二模,17)如图,AD=BC,请添加一个条件,使图中存在全等三角形,并给予证明.你所添加的条件为________;得到的一对全等三角形是△________≌△________.7.(2008海淀二模,17)已知:如图,M 是矩形ABCD 外一点,连结MB 、MC 、MA 、MD ,且MA =MD .求证:MB =MC .8.(2008西城二模,16)如图,将正方形OABC 绕点O 顺时针方向旋转角a (0°< a <45°),得到正方形ODEF ,EF 交AB 于H .求证:BH =HE .9.(2008宣武二模,18)如图,已知:AD =AE ,AB =AC .(1)求证:∠B =∠C ;(2)若∠A =50°,问△ADC 经过怎样的变换能与△AEB 重合.10.(2009朝阳一模,16)已知:如图,AD ∥BC ,AD =BC ,E 为BC 上一点,且AE =AB .求证:DE =AC .11.(2009崇文二模,15)如图,已知AB DC AC DB ==,.求证:12∠=∠.12.(2009东城二模,16)如图,已知D 是△ABC 的边AB 上一点,FC//AB ,DF 交AC 于点E ,ADB CO 1 2F E DCADE =EF .求证:E 是AC 的中点。
13.(2009海淀二模,15)已知:如图,点B 、E 、F 、C 在同一条直线上,AB =DE ,BE =CF ,∠B =∠CED .求证: AF =DC .14.(2009石景山一模,16)已知:如图,在菱形ABCD 中,分别延长AB 、AD 到E 、F ,使得BE =DF ,连结EC 、FC .求证:EC =FC .15.(2009西城一模,15)已知:如图,△ABC 中,AB =AC ,BC 为最大边,点D 、E 分别在BC 、AC 上,BD =CE ,F 为BA 延长线上一点,BF =CD . 求证:∠DEF =∠DFE .16.(2009宣武一模,15)如图,在ABCD 中,E 是AD 的中点,BE 的延长线与CD 的延长线相交于点F .(1) 求证:△ABE ≌△DFE ;(2) 连结BD 、AF ,请判断四边形ABDF 的形状,并证明你的结论.(第15题图)17.(2009石景山二模,16)已知:如图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE 、CD 交于点O ,且AO 平分∠BAC .求证:OB =OC .E DC B AF18.(2009海淀二模,15)已知:如图,在平行四边形ABCD 中,点E 、F 分别是AB 、DC 的中点.求证:∠DEA =∠BFC .19.(2009朝阳二模,14)已知:如图,点B 、F 、C 、E 在同一直线上,BF CE =,AB BE ⊥,DE BE ⊥,垂足分别为B 、E ,且AB DE =,连接AC 、DF.求证:∠A=∠D .20.(2009崇文二模,15)如图,点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且EA AF ⊥.求证:AFB AED ≅ .21.(2009西城二模,16)如图,矩形ABCD 中,E 、F 点分别在BC 、AD 边上,∠DAE =∠BCF .求证:△ABE ≌△CDF .22.(2010密云一模,16)已知:如图:在正方形ABCD 中,E 、F 分别是AB 、AD 上的点,且AE =AF . 求证:CE =CF .23.(2010大兴一模,15)已知:如图5,点A 、E 、F 、C 在同一条直线上,AD =BC ,A E =CF ,∠A =∠C .求证: DF =BE .图5 24.(2010石景山一模,15)已知:如图,D C B A 、、、四点在同一直线上,请你从下面EA F DGF EDCB AAB CD E四项中选出三个作为条件,其余一个作为结论,构成一个真命题,并进行证明.①D ACE ∠=∠,②CD AB =,③ BF AE =,④ FBG EAG ∠=∠25.(2010昌平一模,16)已知:如图,△ACB 和△ECD 都是等腰直角三角形, 90ACB ECD ∠=∠=︒,点D 在AB 上.求证:BD AE =.26.(2010东城一模,15)如图,ABC ∆与ADE ∆均为等腰直角三角形,90BAC EAD ∠=∠=︒,求证:BAE CAD ∆≅∆.27.(2010丰台一模,15)已知:如图,□ABCD 中,点E 是AD 的中点,延长CE 交BA 的延长线于点F .求证:AB=AF .28.(2010宣武一模,16)已知:如图,ABCD 是正方形.G 是 BC 上的一点,AG DE ⊥于E ,AG BF ⊥于F .(1)求证:△ABF ≌△DAE ; (2)求证:FB EF AF +=.D B A C EE B D A FA DEF C B29.(2010朝阳一模,16)已知:如图,梯形ABCD 中,AD∥BC,AB=DC ,∠BAD、∠CDA 的平分线AE 、DF 分别交直线BC 于点E 、F .求证: CE=BF .30.(2010崇文一模,15)如图,在ABC 中,90A ∠=︒,AC CE ⊥,且BC CE =,过E 作BC 的垂线,交BC 延长线于点D . 求证:AB CD =.31.(2010西城一模,15)已知:如图,A 、B 、C 、D 四点在一条直线上,且AB =CD ,∠A=∠D ,∠ECD=∠FBA . 求证: AE =DF .32.(2010海淀一模,15)如图, △OAB 和△COD 均为等腰直角三角形,90AOB COD ∠=∠=︒, 连接AC 、BD .求证: AC BD =.33.(2010昌平一模,16)如图,ABC ∆中,90,ACB AC BC ∠=︒=,E 是BC 延长线上一点,D 为AC 边上一点,且CE CD =,你认为AE 与BD 相等吗?请说明理由.34.(2010密云二模,15)已知:如图,在△ABC 中,∠C =90°,点E 在AC 上,且 AE =BC ,ED ⊥AB 于点D ,过A 点作AC 的垂线,交ED 的延长线于点F .求证:AB =EF .C B E A FD GABCDEAB C DEF35.(2010大兴二模,15)已知:如图8,在平行四边形ABCD 中,点E 、F 分别在AB 、DC 上,AE = CF.求证:∠ADE =∠CBF . 36.(2010海淀二模,15) 如图,点M 、E 分别在正方形ABCD 的边AB 、BC 上,以M 为圆心,ME 的长为半径画弧,交AD 边于点F .当90EMF ∠=︒时,求证:AF BM =.37.(2010朝阳二模,15)已知:如图,AC 与BD 相交于点O ,且OB=OC ,OA=OD .求证:∠ABC =∠DCB .38.(2010东城二模,16)如图,AD∥BC,∠BAD=90°,以点B 为圆心,BC 长为半径画弧,与射线AD 相交于点E ,连接BE ,过C 点作CF⊥BE,垂足为F. 线段BF 与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明. 结论:BF= .39.(2010西城二模,15)已知:如图,在正方形ABCD 中, 点E 在CD 边上,点F 在CB的延长线上,且FA ⊥EA .求证:DE =BF ..40.(2010崇文二模,15)如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE =.41.(2011平谷一模)15.已知:如图,C F 、在BE 上,A D AC DF BF EC ∠=∠=,∥,.A DCFB E D CA BEF求证:△ABC ≌DEF .42.(2011房山一模,15)如图,A 、B 、C 三点 在同一条直线上,AB=2BC ,分别以AB ,BC 为边做正方形ABEF 和正方形BCMN , 联结FN ,EC . 求证:FN=EC43.(2011密云一模,16)已知:如图,平行四边形ABCD 中,AE ⊥BD , CF ⊥BD ,垂足分别为E 、F ,求证:∠BAE =∠DCF.44.(2011昌平一模,16)如图,已知线段AC 与BD 相交于点O ,联结AB DC 、,E 为OB 的中点,F 为OC 的中点,联结EF .若∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC . 45.(2011西城一模,17)如图,在四边形ABCD 中,AB =BC ,BF 平分∠ABC ,AF ∥DC , 连接AC ,CF . 求证:(1)AF =CF ;(2)CA 平分∠DCF .46.(2011海淀一模,15)如图,点C 、D 在线段AB 上,E 、F 在AB 同侧,DE 与CF 相交于点O ,且AC =BD , CO =DO ,A B ∠=∠.求证:AE =BF . 47.(2011东城一模,16)如图,在四边形ABCD 中, AC 是∠DAE 的平分线,DA ∥CE ,∠AEB =∠CEB . 求证:AB=CB .ODC ABEFABC FEDFN MECAA C D BE FOEDCBAAB CDE F48.(2011朝阳一模,15)已知:如图,在梯形ABCD 中,AD ∥BC ,E 是AB 的中点,CE 的延长线与DA 的延长线相交于点F . (1)求证:△BCE ≌△AFE ;(2)连接AC 、FB ,则AC 与FB 的数量关系是 ,位置关系是 .49.(2011丰台一模,15)已知:如图,∠B=∠D ,∠DAB=∠EAC ,AB=AD . 求证:BC=DE .50.(2011大兴二模,15)如图,F 、C 是线段BE 上的两点,BF=CE ,AB=DE , ∠B=∠E ,QR ∥BE.试判断△PQR 的形状,并说明理由.51.(2011房山二模,15)已知:如图,在△ABC 中,∠ACB=90°点D 是AB 的中点,延长BC 到点F , 延长CB 到点E ,使CF=BE ,联结DE 、DC 、DF . 求证:DE=DF .52.(2011丰台二模,15)已知:如图,点B 、F 、E 、C 在同一条直线上,且DF ⊥BE 于点F ,AC ⊥BE 于点C ,BF =CE ,DF =AC .求证:AB =DE .53.(2011海淀二模,15)如图,菱形ABCD 中,AE ⊥BC 于E , AF ⊥CD 于F .求证:AE =AF .54.(2011平谷二模,15)已知:如图,在Rt ABC △中,∠BAC =90D 是BC 边上一点,45ADE ∠= ,AD =DE .RQ PFE D B CA FED CAA BEFCDQ D CB AP 求证:BD=EC55.(2011石景山二模,15)已知:如图,四边形ABCD 是矩形,PBC △和QCD △都是等边三角形,且点P 在矩形上方,点Q 在矩形内. (1) 求PCQ ∠的度数;(2) 求证:QPC APB ∠=∠.56.(2011西城二模,15)已知:如图,直线AB 同侧两点C ,D 满足,,DBC CAD ∠=∠AC =BD ,BC 与AD 相交于点E . 求证:AE =BE .57.(2011门头沟二模,15)已知:如图,DB ∥AC ,且12DB AC =,E 是AC 的中点. 求证:BC=DE .58.(2011大兴一模,15)已知,在△ABC 中,DE ∥AB ,FG ∥AC ,BE=GC. 求证:DE=FB.59.(2006课标,16)已知:如图,AB ∥ED ,点F 、点C 在AD 上,AB =DE ,AF =DC 。