高三数学全国统一标准测试(理科A卷)
- 格式:doc
- 大小:528.50 KB
- 文档页数:12
2020年普通高等学校招生全国统一考试·联考理科数学本试卷共5页,23小题(含选考题),满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上用2B 铅笔将试卷类型(B )填在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交。
一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}N x x x x A ∈<--=,0322,则集合A 的真子集有( )A .5个 B. 6个 C. 7个 D. 8个2.已知i 是虚数单位,则化简2020)11(ii -+的结果为( ) A.i B.i - C.1- D.13.若干年前,某教师刚退休的月退休金为400元,月退休金各种用途占比统计图如下面的条形图该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( )A .4500元 B. 5000元 C .5500元 D .6000元4.将包括甲、乙、丙在内的8人平均分成两组参加文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为( ) A.72 B.73 C.71 D.143 5已知抛物线x y 42=的焦点为F ,过点F 和抛物线上一点)32,3(M 的直线l 交抛物线于另一点N ,则NM NF :等于( )A.2:1B.3:1C.4:1D.3:16.在所有棱长都相等的直三棱柱111C B A ABC -中,D ,E 分别为棱AC CC ,1的中点,则直线AB 与平面DE B 1所成角的余弦值为( ) A.1030 B.2030 C.20130 D.1070 7已知点A (4,3),点B 为不等式组⎪⎩⎪⎨⎧≤-+≤-≥06200y x y x y 所表示平面区域上的任意一点,则AB 的最小值为( )A.5B.554 C.5 D.552 8.给出下列说法①定义在[a ,b]上的偶函数b x a x x f ++-=)4()(2的最大值为20; ②“4π=x ”是“1tan =x ”的充分不必要条件; ③命题“21),,0(000≥++∞∈∃x x x ”的否定形式是“21),,0(<++∞∈∀xx x ” 其中正确说法的个数为( )A.0B.1C.2D.39.已知5.03422log 2log ,,,03log m c m b m a m ===>,则c b a ,,间的大小关系为 A.c b a << B.c a b << C.b a c << D.a c b <<10.元代数学家朱世杰在《算学启蒙》中提及如下问题:今有银一秤一斤十两(1秤=15斤,1斤=16两),令甲、乙、丙从上作折半差分之,问:各得几何?其意思是:现有银一秤一斤十两,现将银分给甲、乙、丙三人,他们三人每一个人所得是前一个人所得的一半.若银的数量不变,按此法将银依次分给7个人,则得银最少的一个人得银( )A .9两 B.127266两 C.63266两 D.127250两 11在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若3cos cos c A b B a =-,则B b A a B a cos cos cos +的最大值为( ) A.2 B.22 C.23 D.332 12.已知几)(x f 为奇函数,)(x g 为偶函数,且)13(log )()(3+=+x x g x f ,不等式0)()(3≥--t x f x g 对R x ∈恒成立,则t 的最大值为( )A.1B.2log 233-C.2D.12log 233- 二、填空题:本题共4小题,每小题5分,共20分13已知向量a =(2,5-),b =(1,52),则b 在a 方向上的投影等于 .14在△ABC 中,∠B=32π,A 、B 是双曲线E 的左、右焦点,点C 在E 上,且BC=21AB ,则E 的离心率为 .5已知函数)0,0)(cos()(πϕωϕω≤≤>+=x x f 是奇函数,且在]4,6[ππ-上单调减,则ω的最大值是 .16已知三棱锥A-BCD 中,平面ABD ⊥平面BCD ,BC ⊥CD ,BC=CD=2,AB=AD=6,则三棱锥A-BCD 的外接球的体积为 .三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第次年题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答(一)必考题:共60分17.(12分)已知数列{a n }的前n 项和为S n ,且112n n n S na a =+-. (1)求数列{a n }的通项公式;(2)若数列22n a ⎧⎫⎨⎬⎩⎭的前n 项和为T n ,证明: 32n T <.18.(12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABEF 为正方形,AF ⊥DF ,AF=22FD ,∠DFE=∠CEF=45.(1)证明DC ∥FE ;(2)求二面角D-BE-C 的平面角的余弦值.19.(12分)已知点P 在圆O :x 2+y 2=9上,点P 在x 轴上的投影为Q ,动点M 满足432PQ MQ u u u r u u u u r .(1)求动点M 的轨迹E 的方程;(2)设G (-3,0),H (3,0),过点F (1,0)的动直线l 与曲线E 交于A 、B 两点,问直线AG 与直线BH 的斜率之比是否为定值?若为定值,求出该定值;若不为定值,试说明理由.20.(12分)某县为了帮助农户脱贫致富,鼓励农户利用荒地山坡种植果树,某农户考察了三种不同的果树苗A 、B 、C .经过引种实验发现,引种树苗A 的自然成活率为0.7,引种树苗B 、C 的自然成活率均为p (0.6≤p≤0.8)(1)任取树苗A 、B 、C 各一棵,估计自然成活的棵数为X ,求X 的分布列及其数学期望;(2)将(1)中的数学期望取得最大值时p 的值作为B 种树苗自然成活的概率,该农户决定引种n 棵B 种树苗,引种后没有自然成活的树苗有75%的树苗可经过人栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活.①求一棵B 种树苗最终成活的概率;②若每棵树苗引种最终成活可获利400元,不成活的每棵亏损80元该农户为了获利期望不低于10万元,问至少要引种种树苗多少棵?21.(12分)已知函数f (x )=(a-1)x+xlnx 的图象在点A (e 2,f (e 2))(e 为自然对数的底数)处的切线斜率为4(1)求实数a 的值;(2)若m ∈Z ,且m (x-1)<f (x )+1对任意x>1恒成立,求m 的最大值.(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题记分.22.[选修4-4:坐标系与参数方程](10分)以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为-22ππρθ⎡⎤∈⎢⎥⎣⎦,),直线l 的参数方程为2cos 4sin x t y ts αα=-+⎧⎨=-+⎩(t 为参数). (1)点A 在曲线C 上,且曲线C 在点A 处的切线与直线:x+2+1=0垂直,求点A 的直角坐标;(2)设直线l 与曲线C 有且只有一个公共点,求直线l 的斜率的取值范围.23.[选修4-5:不等式选讲](10分)设函数f (x )=|x-1|+2|x+1|,x ∈R(1)求不等式f (x )<5的解集;(2)若关于x 的不等式122)(-<+t x f 在实数范围内解集为空集,求实数t 的取值范围·11·。
2014年全国统一高考数学试卷(理科)(大纲版)一、选择题(本大题共12小题,每小题5分)1.(5分)设z=,则z的共轭复数为()A.﹣1+3i B.﹣1﹣3i C.1+3i D.1﹣3i2.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B.[0,4)C.[﹣1,0)D.(﹣1,0]3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b4.(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2B .C.1D .5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种6.(5分)已知椭圆C :+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A .+=1B .+y2=1C .+=1D .+=17.(5分)曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A.2e B.e C.2D.18.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A .B.16πC.9πD .9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A .B .C .D .10.(5分)等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()A.6B.5C.4D.311.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A .B .C .D .12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)二、填空题(本大题共4小题,每小题5分)13.(5分)的展开式中x2y2的系数为.(用数字作答)14.(5分)设x、y 满足约束条件,则z=x+4y的最大值为.15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.16.(5分)若函数f(x)=cos2x+asinx 在区间(,)是减函数,则a的取值范围是.三、解答题17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.18.(12分)等差数列{a n}的前n项和为S n,已知a1=13,a2为整数,且S n≤S4.(1)求{a n}的通项公式;(2)设b n =,求数列{b n}的前n项和T n.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.22.(12分)函数f(x)=ln(x+1)﹣(a>1).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,a n+1=ln(a n+1),证明:<a n ≤(n∈N*).2014年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)设z=,则z的共轭复数为()A.﹣1+3i B.﹣1﹣3i C.1+3i D.1﹣3i【考点】A1:虚数单位i、复数;A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】直接由复数代数形式的除法运算化简,则z的共轭可求.【解答】解:∵z==,∴.故选:D.【点评】本题考查复数代数形式的除法运算,考查了复数的基本概念,是基础题.2.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B.[0,4)C.[﹣1,0)D.(﹣1,0]【考点】1E:交集及其运算.【专题】5J:集合.【分析】求解一元二次不等式化简集合M,然后直接利用交集运算求解.【解答】解:由x2﹣3x﹣4<0,得﹣1<x<4.∴M={x|x2﹣3x﹣4<0}={x|﹣1<x<4},又N={x|0≤x≤5},∴M∩N={x|﹣1<x<4}∩{x|0≤x≤5}=[0,4).故选:B.【点评】本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b【考点】HF:正切函数的单调性和周期性.【专题】56:三角函数的求值.【分析】可得b=sin35°,易得b>a,c=tan35°=>sin35°,综合可得.【解答】解:由诱导公式可得b=cos55°=cos(90°﹣35°)=sin35°,由正弦函数的单调性可知b>a,而c=tan35°=>sin35°=b,∴c>b>a故选:C.【点评】本题考查三角函数值大小的比较,涉及诱导公式和三角函数的单调性,属基础题.4.(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2B .C.1D .【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由条件利用两个向量垂直的性质,可得(+)•=0,(2+)•=0,由此求得||.【解答】解:由题意可得,(+)•=+=1+=0,∴=﹣1;(2+)•=2+=﹣2+=0,∴b2=2,则||=,故选:B.【点评】本题主要考查两个向量垂直的性质,两个向量垂直,则它们的数量积等于零,属于基础题.5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【考点】D9:排列、组合及简单计数问题.【专题】5O:排列组合.【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.6.(5分)已知椭圆C :+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A .+=1B .+y2=1C .+=1D .+=1【考点】K4:椭圆的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C 的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.7.(5分)曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A.2e B.e C.2D.1【考点】62:导数及其几何意义.【专题】52:导数的概念及应用.【分析】求函数的导数,利用导数的几何意义即可求出对应的切线斜率.【解答】解:函数的导数为f′(x)=e x﹣1+xe x﹣1=(1+x)e x﹣1,当x=1时,f′(1)=2,即曲线y=xe x﹣1在点(1,1)处切线的斜率k=f′(1)=2,故选:C.【点评】本题主要考查导数的几何意义,直接求函数的导数是解决本题的关键,比较基础.8.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A .B.16πC.9πD .【考点】LG:球的体积和表面积;LR:球内接多面体.【专题】11:计算题;5F:空间位置关系与距离.【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A .B .C .D .【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】根据双曲线的定义,以及余弦定理建立方程关系即可得到结论.【解答】解:∵双曲线C的离心率为2,∴e=,即c=2a,点A在双曲线上,则|F1A|﹣|F2A|=2a,又|F1A|=2|F2A|,∴解得|F1A|=4a,|F2A|=2a,||F1F2|=2c,则由余弦定理得cos∠AF2F1===.故选:A.【点评】本题主要考查双曲线的定义和运算,利用离心率的定义和余弦定理是解决本题的关键,考查学生的计算能力.10.(5分)等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()A.6B.5C.4D.3【考点】89:等比数列的前n项和.【专题】54:等差数列与等比数列.【分析】利用等比数列的性质可得a1a8=a2a7=a3a6=a4a5=10.再利用对数的运算性质即可得出.【解答】解:∵数列{a n}是等比数列,a4=2,a5=5,∴a1a8=a2a7=a3a6=a4a5=10.∴lga1+lga2+…+lga8=lg(a1a2•…•a8)=4lg10=4.故选:C.【点评】本题考查了等比数列的性质、对数的运算性质,属于基础题.11.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A .B .C .D .【考点】LM:异面直线及其所成的角.【专题】5G:空间角.【分析】首先作出二面角的平面角,然后再构造出异面直线AB与CD所成角,利用解直角三角形和余弦定理,求出问题的答案.【解答】解:如图,过A点做AE⊥l,使BE⊥β,垂足为E,过点A做AF∥CD,过点E做EF⊥AE,连接BF,∵AE⊥l∴∠EAC=90°∵CD∥AF又∠ACD=135°∴∠FAC=45°∴∠EAF=45°在Rt△BEA中,设AE=a,则AB=2a,BE=a,在Rt△AEF中,则EF=a,AF=a,在Rt△BEF中,则BF=2a,∴异面直线AB与CD所成的角即是∠BAF,∴cos∠BAF===.故选:B.【点评】本题主要考查了二面角和异面直线所成的角,关键是构造二面角的平面角和异面直线所成的角,考查了学生的空间想象能力和作图能力,属于难题.12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)【考点】4R:反函数.【专题】51:函数的性质及应用.【分析】设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,代入解析式变形可得.【解答】解:设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,又∵函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,∴P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,∴必有﹣y=g(﹣x),即y=﹣g(﹣x)∴y=f(x)的反函数为:y=﹣g(﹣x)故选:D.【点评】本题考查反函数的性质和对称性,属中档题.二、填空题(本大题共4小题,每小题5分)13.(5分)的展开式中x2y2的系数为70.(用数字作答)【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】先求出二项式展开式的通项公式,再令x、y的幂指数都等于2,求得r的值,即可求得展开式中x2y2的系数.【解答】解:的展开式的通项公式为T r+1=•(﹣1)r ••=•(﹣1)r ••,令8﹣=﹣4=2,求得r=4,故展开式中x2y2的系数为=70,故答案为:70.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.14.(5分)设x、y 满足约束条件,则z=x+4y的最大值为5.【考点】7C:简单线性规划.【专题】31:数形结合.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y 为直线方程的斜截式,得.由图可知,当直线过C点时,直线在y轴上的截距最大,z最大.此时z max=1+4×1=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.【考点】IV:两直线的夹角与到角问题.【专题】5B:直线与圆.【分析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ 的值,再根据tan2θ=,计算求得结果.【解答】解:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.16.(5分)若函数f(x)=cos2x+asinx 在区间(,)是减函数,则a的取值范围是(﹣∞,2] .【考点】HM:复合三角函数的单调性.【专题】51:函数的性质及应用;57:三角函数的图像与性质.【分析】利用二倍角的余弦公式化为正弦,然后令t=sinx换元,根据给出的x的范围求出t的范围,结合二次函数的图象的开口方向及对称轴的位置列式求解a的范围.【解答】解:由f(x)=cos2x+asinx=﹣2sin2x+asinx+1,令t=sinx,则原函数化为y=﹣2t2+at+1.∵x ∈(,)时f(x)为减函数,则y=﹣2t2+at+1在t ∈(,1)上为减函数,∵y=﹣2t2+at+1的图象开口向下,且对称轴方程为t=.∴,解得:a≤2.∴a的取值范围是(﹣∞,2].故答案为:(﹣∞,2].【点评】本题考查复合函数的单调性,考查了换元法,关键是由换元后函数为减函数求得二次函数的对称轴的位置,是中档题.三、解答题17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】58:解三角形.【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.【解答】解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.18.(12分)等差数列{a n}的前n项和为S n,已知a1=13,a2为整数,且S n≤S4.(1)求{a n}的通项公式;(2)设b n =,求数列{b n}的前n项和T n.【考点】8E:数列的求和.【专题】55:点列、递归数列与数学归纳法.【分析】(1)通过S n≤S4得a4≥0,a5≤0,利用a1=13、a2为整数可得d=﹣4,进而可得结论;(2)通过a n=13﹣3n,分离分母可得b n =(﹣),并项相加即可.【解答】解:(1)在等差数列{a n}中,由S n≤S4得:a4≥0,a5≤0,又∵a1=13,∴,解得﹣≤d ≤﹣,∵a2为整数,∴d=﹣4,∴{a n}的通项为:a n=17﹣4n;(2)∵a n=17﹣4n,∴b n ===﹣(﹣),于是T n=b1+b2+……+b n=﹣[(﹣)+(﹣)+……+(﹣)]=﹣(﹣)=.【点评】本题考查求数列的通项及求和,考查并项相加法,注意解题方法的积累,属于中档题.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD为二面角A1﹣AB﹣C的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD为二面角A1﹣AB﹣C的平面角,由AD==1可知D为AC中点,∴DF==,∴tan∠A1FD==,∴二面角A1﹣AB﹣C的大小为arctan【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】记A i表示事件:同一工作日乙丙需要使用设备,i=0,1,2,B表示事件:甲需要设备,C 表示事件,丁需要设备,D表示事件:同一工作日至少3人需使用设备(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.(Ⅱ)X的可能取值为0,1,2,3,4,分别求出PX i,再利用数学期望公式计算即可.【解答】解:由题意可得“同一工作日至少3人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.(Ⅱ)X的可能取值为0,1,2,3,4P(X=0)=(1﹣0.6)×0.52×(1﹣0.4)=0.06P(X=1)=0.6×0.52×(1﹣0.4)+(1﹣0.6)×0.52×0.4+(1﹣0.6)×2×0.52×(1﹣0.4)=0.25P(X=4)=P(A2•B•C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)﹣P(X=4)=0.25,P(X=2)=1﹣P(X=0)﹣P(X=1)﹣P(X=3)﹣P(X=4)=1﹣0.06﹣0.25﹣0.25﹣0.06=0.38.故数学期望EX=0×0.06+1×0.25+2×0.38+3×0.25+4×0.06=2【点评】本题主要考查了独立事件的概率和数学期望,关键是找到独立的事件,计算要有耐心,属于难题.21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【考点】KH:直线与圆锥曲线的综合.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得p的值,可得C的方程.(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px(p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去).故C的方程为y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为x﹣y﹣1=0,或x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.22.(12分)函数f(x)=ln(x+1)﹣(a>1).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,a n+1=ln(a n+1),证明:<a n ≤(n∈N*).【考点】6B:利用导数研究函数的单调性;RG:数学归纳法.【专题】53:导数的综合应用.【分析】(Ⅰ)求函数的导数,通过讨论a的取值范围,即可得到f(x)的单调性;(Ⅱ)利用数学归纳法即可证明不等式.【解答】解:(Ⅰ)函数f(x)的定义域为(﹣1,+∞),f′(x)=,①当1<a<2时,若x∈(﹣1,a2﹣2a),则f′(x)>0,此时函数f(x)在(﹣1,a2﹣2a)上是增函数,若x∈(a2﹣2a,0),则f′(x)<0,此时函数f(x)在(a2﹣2a,0)上是减函数,若x∈(0,+∞),则f′(x)>0,此时函数f(x)在(0,+∞)上是增函数.②当a=2时,f′(x)≥0,此时函数f(x)在(﹣1,+∞)上是增函数,③当a>2时,若x∈(﹣1,0),则f′(x)>0,此时函数f(x)在(﹣1,0)上是增函数,若x∈(0,a2﹣2a),则f′(x)<0,此时函数f(x)在(0,a2﹣2a)上是减函数,若x∈(a2﹣2a,+∞),则f′(x)>0,此时函数f(x)在(a2﹣2a,+∞)上是增函数.(Ⅱ)由(Ⅰ)知,当a=2时,此时函数f(x)在(﹣1,+∞)上是增函数,当x∈(0,+∞)时,f(x)>f(0)=0,即ln(x+1)>,(x>0),又由(Ⅰ)知,当a=3时,f(x)在(0,3)上是减函数,当x∈(0,3)时,f(x)<f(0)=0,ln(x+1)<,下面用数学归纳法进行证明<a n ≤成立,①当n=1时,由已知,故结论成立.②假设当n=k 时结论成立,即,则当n=k+1时,a n+1=ln(a n+1)>ln (),a k+1=ln(a k+1)<ln (),即当n=k+1时,成立,综上由①②可知,对任何n∈N•结论都成立.【点评】本题主要考查函数单调性和导数之间的关系,以及利用数学归纳法证明不等式,综合性较强,难度较大.。
全国统一标准测试数学(理科A卷)本试卷分第I卷(选择题)和第■卷(非选择题)两部分.共150分,考试用时120分钟.第I卷(选择题共60分)参考公式:sin "cos [sin(。
+ £)+sin(。
一£)]cos osin /?=— [sin( 0 + 8) —sin( Q— 8)] 2cos a cos /?=— Lcos( Q + P)+cos( a — /?)] 2sin a sin 0= —— [cos(。
+步)一cos( Q — 0)] 2c a+ B a-B sin ^4-sin p=2sin cos2 2. .…a + ”. a-(3sin a—sm p=2cos -------- Sin --------2 2, o + /? a-Bcos a +cos p =2cos -------- cos --------2 2cos Q—cos 6=—2sin^——^sin —~~— 2 2S^=- (c f +c)/(c、分别表示上、下底面周长,/表示斜高或母线长) 2V台体=! (s' +妪云+S)人(S'、S分别表示上、下底面积,*表示高) 3如果事件A、B互斥,那么P (A+B) =P (A) +P (B)如果事件A、B相互独立,那么P (A・B) =P (A)・P (B)如果事件A在一次试验中发生的概率是p,那么〃次独立重复试验中恰好发生妇欠的概率Pn(k)=C;p"l-p)'i一、选择题(木大题共12小题;每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.己知二次函数fix)=(x—t/)(x —b) —2(a<b)f并且。
、B (Q V£)是方程Rr)=0 的两根, 则o、b、a、8的大小关系是A.a <a<b< BB.o V a < J3 <bC.a< a <b< 8D. 〃<a< 0 <b2.己知0 W [0,力],A 0)=sin(cos。
2023年普通高等学校招生全国统一考试理科数学一、选择题1.设z =2+i1+i 2+i5,则z =()A.1-2iB.1+2iC.2-iD.2+i【答案】B 【解析】【分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可.【详解】由题意可得z =2+i 1+i 2+i 5=2+i 1-1+i =i 2+i i2=2i -1-1=1-2i ,则z=1+2i.故选:B .2.设集合U =R ,集合M =x x <1 ,N =x -1<x <2 ,则x x ≥2 =()A.∁U M ∪NB.N ∪∁U MC.∁U M ∩ND.M ∪∁U N【答案】A 【解析】【分析】由题意逐一考查所给的选项运算结果是否为x |x ≥2 即可.【详解】由题意可得M ∪N =x |x <2 ,则∁U M ∪N =x |x ≥2 ,选项A 正确;∁U M =x |x ≥1 ,则N ∪∁U M =x |x >-1 ,选项B 错误;M ∩N =x |-1<x <1 ,则∁U M ∩N =x |x ≤-1 或x ≥1 ,选项C 错误;∁U N =x |x ≤-1 或x ≥2 ,则M ∪∁U N =x |x <1 或x ≥2 ,选项D 错误;故选:A .3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D 【解析】【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可.【详解】如图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=3,点H ,I ,J ,K 为所在棱上靠近点B 1,C 1,D 1,A 1的三等分点,O ,L ,M ,N 为所在棱的中点,则三视图所对应的几何体为长方体ABCD -A 1B 1C 1D 1去掉长方体ONIC 1-LMHB 1之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:2×2×2 +4×2×3 -2×1×1 =30.故选:D .4.已知f (x )=xe xe ax -1是偶函数,则a =()A.-2B.-1C.1D.2【答案】D 【解析】【分析】根据偶函数的定义运算求解.【详解】因为f x =xe x e ax-1为偶函数,则f x -f -x =xexe ax -1--x e-xe -ax -1=x e x -e a -1xe ax -1=0,又因为x 不恒为0,可得e x -e a -1 x=0,即e x =e a -1x,则x =a -1 x ,即1=a -1,解得a =2.故选:D .5.设O 为平面坐标系的坐标原点,在区域x ,y 1≤x 2+y 2≤4 内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A.18B.16C.14D.12【解析】【分析】根据题意分析区域的几何意义,结合几何概型运算求解.【详解】因为区域x ,y |1≤x 2+y 2≤4 表示以O 0,0 圆心,外圆半径R =2,内圆半径r =1的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角∠MON =π4,结合对称性可得所求概率P =2×π42π=14.故选:C .6.已知函数f (x )=sin (ωx +φ)在区间π6,2π3 单调递增,直线x =π6和x =2π3为函数y =f x 的图像的两条对称轴,则f -5π12 =()A.-32B.-12C.12D.32【答案】D 【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入x =-5π12即可得到答案.【详解】因为f (x )=sin (ωx +φ)在区间π6,2π3单调递增,所以T 2=2π3-π6=π2,且ω>0,则T =π,w =2πT =2,当x =π6时,f x 取得最小值,则2⋅π6+φ=2k π-π2,k ∈Z ,则φ=2k π-5π6,k ∈Z ,不妨取k =0,则f x =sin 2x -5π6 ,则f -5π12 =sin -5π3 =32,7.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种【答案】C 【解析】【分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【详解】首先确定相同得读物,共有C 16种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有A 25种,根据分步乘法公式则共有C 16⋅A 25=120种,故选:C .8.已知圆锥PO 的底面半径为3,O 为底面圆心,PA ,PB 为圆锥的母线,∠AOB =120°,若△PAB 的面积等于934,则该圆锥的体积为()A.πB.6πC.3πD.36π【答案】B 【解析】【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.【详解】在△AOB 中,∠AOB =120°,而OA =OB =3,取AC 中点C ,连接OC ,PC ,有OC ⊥AB ,PC ⊥AB ,如图,∠ABO =30°,OC =32,AB =2BC =3,由△PAB 的面积为934,得12×3×PC =934,解得PC =332,于是PO =PC 2-OC 2=332 2-32 2=6,所以圆锥的体积V =13π×OA 2×PO =13π×(3)2×6=6π.9.已知△ABC 为等腰直角三角形,AB 为斜边,△ABD 为等边三角形,若二面角C -AB -D 为150°,则直线CD 与平面ABC 所成角的正切值为()A.15B.25C.35D.25【答案】C 【解析】【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.【详解】取AB 的中点E ,连接CE ,DE ,因为△ABC 是等腰直角三角形,且AB 为斜边,则有CE ⊥AB ,又△ABD 是等边三角形,则DE ⊥AB ,从而∠CED 为二面角C -AB -D 的平面角,即∠CED =150°,显然CE ∩DE =E ,CE ,DE ⊂平面CDE ,于是AB ⊥平面CDE ,又AB ⊂平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ∩平面ABC =CE ,直线CD ⊂平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而∠DCE 为直线CD 与平面ABC 所成的角,令AB =2,则CE =1,DE =3,在△CDE 中,由余弦定理得:CD =CE 2+DE 2-2CE ⋅DE cos ∠CED =1+3-2×1×3×-32=7,由正弦定理得DE sin ∠DCE =CDsin ∠CED,即sin ∠DCE =3sin150°7=327,显然∠DCE 是锐角,cos ∠DCE =1-sin 2∠DCE =1-3272=527,所以直线CD 与平面ABC 所成的角的正切为35.故选:C10.已知等差数列a n 的公差为2π3,集合S =cos a n n ∈N * ,若S =a ,b ,则ab =()A.-1B.-12C.0D.12【解析】【分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素分析、推理作答.【详解】依题意,等差数列{a n }中,a n =a 1+(n -1)⋅2π3=2π3n +a 1-2π3,显然函数y =cos 2π3n +a 1-2π3的周期为3,而n ∈N ∗,即cos a n 最多3个不同取值,又{cos a n |n ∈N ∗}={a ,b },则在cos a 1,cos a 2,cos a 3中,cos a 1=cos a 2≠cos a 3或cos a 1≠cos a 2=cos a 3,于是有cos θ=cos θ+2π3 ,即有θ+θ+2π3 =2k π,k ∈Z ,解得θ=k π-π3,k ∈Z ,所以k ∈Z ,ab =cos k π-π3 cos k π-π3 +4π3 =-cos k π-π3 cos k π=-cos 2k πcos π3=-12.故选:B11.设A ,B 为双曲线x 2-y 29=1上两点,下列四个点中,可为线段AB 中点的是()A.1,1B.-1,2C.1,3D.-1,-4【答案】D 【解析】【分析】根据点差法分析可得k AB ⋅k =9,对于A 、B 、D :通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【详解】设A x 1,y 1 ,B x 2,y 2 ,则AB 的中点M x 1+x 22,y 1+y 22,可得k AB =y 1-y 2x 1-x 2,k =y 1+y 22x 1+x 22=y 1+y 2x 1+x 2,因为A ,B 在双曲线上,则x 21-y 219=1x 22-y 229=1,两式相减得x 21-x 22-y 21-y 229=0,所以k AB ⋅k =y 21-y 22x 21-x 22=9.对于选项A :可得k =1,k AB =9,则AB :y =9x -8,联立方程y =9x -8x 2-y 29=1 ,消去y 得72x 2-2×72x +73=0,此时Δ=-2×72 2-4×72×73=-288<0,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得k =-2,k AB =-92,则AB :y =-92x -52,联立方程y =-92x -52x 2-y 29=1,消去y 得45x 2+2×45x +61=0,此时Δ=2×45 2-4×45×61=-4×45×16<0,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得k =3,k AB =3,则AB :y =3x由双曲线方程可得a =1,b =3,则AB :y =3x 为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :k =4,k AB =94,则AB :y =94x -74,联立方程y =94x -74x 2-y 29=1,消去y 得63x 2+126x -193=0,此时Δ=1262+4×63×193>0,故直线AB 与双曲线有交两个交点,故D 正确;故选:D .12.已知⊙O 的半径为1,直线PA 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若PO =2,则PA ⋅PD的最大值为()A.1+22B.1+222C.1+2D.2+2【答案】A 【解析】【分析】由题意作出示意图,然后分类讨论,利用平面向量的数量积定义可得PA ⋅PD =12-22sin 2α-π4 ,或PA ⋅PD =12+22sin 2α+π4 然后结合三角函数的性质即可确定PA ⋅PD的最大值.【详解】如图所示,OA =1,OP =2,则由题意可知:∠APO =45°,由勾股定理可得PA =OP 2-OA 2=1当点A ,D 位于直线PO 异侧时,设∠OPC =α,0≤α≤π4,则:PA ⋅PD =|PA |⋅|PD |cos α+π4=1×2cos αcos α+π4=2cos α22cos α-22sin α =cos 2α-sin αcos α=1+cos2α2-12sin2α=12-22sin 2α-π4 0≤α≤π4,则-π4≤2α-π4≤π4∴当2α-π4=-π4时,PA ⋅PD 有最大值1.当点A ,D 位于直线PO 同侧时,设∠OPC =α,0≤α≤π4,则:PA ⋅PD =|PA |⋅|PD |cos α-π4=1×2cos αcos α-π4=2cos α22cos α+22sin α =cos 2α+sin αcos α=1+cos2α2+12sin2α=12+22sin 2α+π40≤α≤π4,则π4≤2α+π4≤π2∴当2α+π4=π2时,PA ⋅PD 有最大值1+22.综上可得,PA ⋅PD 的最大值为1+22.【点睛】本题的核心在于能够正确作出示意图,然后将数量积的问题转化为三角函数求最值的问题,考查了学生对于知识的综合掌握程度和灵活处理问题的能力.二、填空题13.已知点A 1,5 在抛物线C :y 2=2px 上,则A 到C 的准线的距离为.【答案】94【解析】【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为x =-54,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【详解】由题意可得:5 2=2p ×1,则2p =5,抛物线的方程为y 2=5x ,准线方程为x =-54,点A 到C 的准线的距离为1--54 =94.故答案为:94.14.若x ,y 满足约束条件x -3y ≤-1x +2y ≤93x +y ≥7,则z =2x -y 的最大值为.【答案】8【解析】【分析】作出可行域,转化为截距最值讨论即可.详解】作出可行域如下图所示:z =2x -y ,移项得y =2x -z ,联立有x -3y =-1x +2y =9,解得x =5y =2,设A 5,2 ,显然平移直线y =2x 使其经过点A ,此时截距-z 最小,则z 最大,代入得z =8,故答案为:8.15.已知a n 为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=.【解析】【分析】根据等比数列公式对a 2a 4a 5=a 3a 6化简得a 1q =1,联立a 9a 10=-8求出q 3=-2,最后得a 7=a 1q ⋅q 5=q 5=-2.【详解】设a n 的公比为q q ≠0 ,则a 2a 4a 5=a 3a 6=a 2q ⋅a 5q ,显然a n ≠0,则a 4=q 2,即a 1q 3=q 2,则a 1q =1,因为a 9a 10=-8,则a 1q 8⋅a 1q 9=-8,则q 15=q 5 3=-8=-2 3,则q 3=-2,则a 7=a 1q ⋅q 5=q 5=-2,故答案为:-2.16.设a ∈0,1 ,若函数f x =a x +1+a x 在0,+∞ 上单调递增,则a 的取值范围是.【答案】5-12,1 【解析】【分析】原问题等价于f x =a x ln a +1+a x ln 1+a ≥0恒成立,据此将所得的不等式进行恒等变形,可得1+a a x ≥-ln aln 1+a ,由右侧函数的单调性可得实数a 的二次不等式,求解二次不等式后可确定实数a 的取值范围.【详解】由函数的解析式可得f x =a x ln a +1+a x ln 1+a ≥0在区间0,+∞ 上恒成立,则1+a x ln 1+a ≥-a x ln a ,即1+a a x ≥-ln aln 1+a在区间0,+∞ 上恒成立,故1+a a 0=1≥-ln aln 1+a,而a +1∈1,2 ,故ln 1+a >0,故ln a +1 ≥-ln a 0<a <1即a a +1 ≥10<a <1 ,故5-12≤a <1,结合题意可得实数a 的取值范围是5-12,1.故答案为:5-12,1.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为x i ,y i (i =1,2,⋅⋅⋅10),试验结果如下试验序号i 12345678910伸缩率x i545355525754545659545312541868伸缩率y i536527543530560533522550576536记z i =x i -y i (i =1,2,⋯,10),记z 1,z 2,⋯,z 10的样本平均数为z,样本方差为s 2,(1)求z ,s 2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥2s 210,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).【答案】(1)z =11,s 2=61;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.【解析】【分析】(1)直接利用平均数公式即可计算出x ,y ,再得到所有的z i 值,最后计算出方差即可;(2)根据公式计算出2s 210的值,和z 比较大小即可.【小问1详解】x =545+533+551+522+575+544+541+568+596+54810=552.3,y =536+527+543+530+560+533+522+550+576+53610=541.3,z =x -y=552.3-541.3=11,z i =x i -y i 的值分别为:9,6,8,-8,15,11,19,18,20,12,故s 2=(9-11)2+(6-11)2+(8-11)2+(-8-11)2+(15-11)2+0+(19-11)2+(18-11)2+(20-11)2+(12-110=61【小问2详解】由(1)知:z=11,2s 210=2 6.1=24.4,故有z ≥2s 210,所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.18.在△ABC 中,已知∠BAC =120°,AB =2,AC =1.(1)求sin ∠ABC ;(2)若D 为BC 上一点,且∠BAD =90°,求△ADC 的面积.【答案】(1)21 14;(2)310.【解析】【分析】(1)首先由余弦定理求得边长BC的值为BC=7,然后由余弦定理可得cos B=5714,最后由同角三角函数基本关系可得sin B=21 14;(2)由题意可得S△ABDS△ACD=4,则S△ACD=15S△ABC,据此即可求得△ADC的面积.【小问1详解】由余弦定理可得:BC2=a2=b2+c2-2bc cos A=4+1-2×2×1×cos120°=7,则BC=7,cos B=a2+c2-b22ac=7+4-12×2×7=5714,sin B=1-cos2B=1-2528=2114.【小问2详解】由三角形面积公式可得S△ABDS△ACD=12×AB×AD×sin90°12×AC×AD×sin30°=4,则S△ACD=15S△ABC=15×12×2×1×sin120°=310.19.如图,在三棱锥P-ABC中,AB⊥BC,AB=2,BC=22,PB=PC=6,BP,AP,BC的中点分别为D,E,O,AD=5DO,点F在AC上,BF⊥AO.(1)证明:EF⎳平面ADO;(2)证明:平面ADO⊥平面BEF;(3)求二面角D-AO-C的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)22.【解析】【分析】(1)根据给定条件,证明四边形ODEF 为平行四边形,再利用线面平行判定推理作答.(2)由(1)的信息,结合勾股定理的逆定理及线面垂直、面面垂直的判定推理作答.(3)由(2)的信息作出并证明二面角的平面角,再结合三角形重心及余弦定理求解作答.【小问1详解】连接DE ,OF ,设AF =tAC ,则BF =BA +AF =(1-t )BA +tBC ,AO =-BA +12BC ,BF ⊥AO ,则BF ⋅AO =[(1-t )BA +tBC ]⋅-BA +12BC =(t -1)BA 2+12tBC 2=4(t -1)+4t =0,解得t =12,则F 为AC 的中点,由D ,E ,O ,F 分别为PB ,PA ,BC ,AC 的中点,于是DE ⎳AB ,DE =12AB ,OF ⎳AB ,OF =12AB ,即DE ⎳OF ,DE =OF ,则四边形ODEF 为平行四边形,EF ⎳DO ,EF =DO ,又EF ⊄平面ADO ,DO ⊂平面ADO ,所以EF ⎳平面ADO .ABCDEO P【小问2详解】由(1)可知EF ⎳OD ,则AO =6,DO =62,得AD =5DO =302,因此OD 2+AO 2=AD 2=152,则OD ⊥AO ,有EF ⊥AO ,又AO ⊥BF ,BF ∩EF =F ,BF ,EF ⊂平面BEF ,则有AO ⊥平面BEF ,又AO ⊂平面ADO ,所以平面ADO ⊥平面BEF .【小问3详解】过点O 作OH ⎳BF 交AC 于点H ,设AD ∩BE =G ,由AO ⊥BF ,得HO ⊥AO ,且FH =13AH ,又由(2)知,OD ⊥AO ,则∠DOH 为二面角D -AO -C 的平面角,因为D ,E 分别为PB ,PA 的中点,因此G 为△PAB 的重心,即有DG =13AD ,GE =13BE ,又FH =13 AH ,即有DH =32GF ,cos ∠ABD =4+32-1522×2×62=4+6-PA 22×2×6,解得PA =14,同理得BE =62,于是BE 2+EF 2=BF 2=3,即有BE ⊥EF ,则GF 2=13×622+622=53,从而GF =153,DH =32×153=152,在△DOH 中,OH =12BF =32,OD =62,DH =152,于是cos ∠DOH =64+34-1542×62×32=-22,sin ∠DOH =1--222=22,所以二面角D -AO -C 的正弦值为22.ABCD EFGH OP20.已知椭圆C :y 2a 2+x 2b 2=1a >b >0 的离心率为53,点A -2,0 在C 上.(1)求C 的方程;(2)过点-2,3 的直线交C 于点P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解【解析】【分析】(1)根据题意列式求解a ,b ,c ,进而可得结果;(2)设直线PQ 的方程,进而可求点M ,N 的坐标,结合韦达定理验证y M +y N2为定值即可.【小问1详解】由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.【小问2详解】由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3 x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y 2x 2+22=k x 1+2 +3x 1+2+k x 2+2 +3x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2 x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +316k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段PQ 的中点是定点0,3 .【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.21.已知函数f(x)=1x +aln(1+x).(1)当a=-1时,求曲线y=f x 在点1,f1处的切线方程;(2)是否存在a,b,使得曲线y=f1x关于直线x=b对称,若存在,求a,b的值,若不存在,说明理由.(3)若f x 在0,+∞存在极值,求a的取值范围.【答案】(1)ln2x+y-ln2=0;(2)存在a=12,b=-12满足题意,理由见解析.(3)0,12.【解析】【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;(2)首先求得函数的定义域,由函数的定义域可确定实数b的值,进一步结合函数的对称性利用特殊值法可得关于实数a的方程,解方程可得实数a的值,最后检验所得的a,b是否正确即可;(3)原问题等价于导函数有变号的零点,据此构造新函数g x =ax2+x-x+1ln x+1,然后对函数求导,利用切线放缩研究导函数的性质,分类讨论a≤0,a≥12和0<a<12三中情况即可求得实数a的取值范围.【小问1详解】当a=-1时,f x =1x-1ln x+1,则f x =-1x2×ln x+1+1x-1×1x+1,据此可得f1 =0,f 1 =-ln2,函数在1,f1处的切线方程为y-0=-ln2x-1,即ln2x+y-ln2=0.【小问2详解】由函数的解析式可得f1x=x+aln1x+1,函数的定义域满足1x+1=x+1x>0,即函数的定义域为-∞,-1∪0,+∞,定义域关于直线x=-12对称,由题意可得b=-12,由对称性可知f-12+m=f-12-mm>12,取m=32可得f1 =f-2,即a+1ln2=a-2ln 12,则a+1=2-a,解得a=12,经检验a=12,b=-12满足题意,故a=12,b=-12.即存在a=12,b=-12满足题意.【小问3详解】由函数的解析式可得f x =-1 x2ln x+1+1x+a1x+1,由f x 在区间0,+∞存在极值点,则f x 在区间0,+∞上存在变号零点;令-1 x2ln x+1+1x+a1x+1=0,则-x+1ln x+1+x+ax2=0,令g x =ax2+x-x+1ln x+1,f x 在区间0,+∞存在极值点,等价于g x 在区间0,+∞上存在变号零点,g x =2ax-ln x+1,g x =2a-1 x+1当a≤0时,g x <0,g x 在区间0,+∞上单调递减,此时g x <g0 =0,g x 在区间0,+∞上无零点,不合题意;当a≥12,2a≥1时,由于1x+1<1,所以g x >0,g x 在区间0,+∞上单调递增,所以g x >g 0 =0,g x 在区间0,+∞上单调递增,g x >g0 =0,所以g x 在区间0,+∞上无零点,不符合题意;当0<a<12时,由gx =2a-1x+1=0可得x=12a-1,当x∈0,12a-1时,g x <0,g x 单调递减,当x∈12a-1,+∞时,g x >0,g x 单调递增,故g x 的最小值为g12a-1=1-2a+ln2a,令m x =1-x+ln x0<x<1,则m x =-x+1x>0,函数m x 在定义域内单调递增,m x <m1 =0,据此可得1-x+ln x<0恒成立,则g 12a-1=1-2a +ln2a <0,令h x =ln x -x 2+x x >0 ,则hx =-2x 2+x +1x ,当x ∈0,1 时,h x >0,h x 单调递增,当x ∈1,+∞ 时,h x <0,h x 单调递减,故h x ≤h 1 =0,即ln x ≤x 2-x (取等条件为x =1),所以g x =2ax -ln x +1 >2ax -x +1 2-x +1 =2ax -x 2+x ,g 2a -1 >2a 2a -1 -2a -1 2+2a -1 =0,且注意到g 0 =0,根据零点存在性定理可知:g x 在区间0,+∞ 上存在唯一零点x 0.当x ∈0,x 0 时,g x <0,g x 单调减,当x ∈x 0,+∞ 时,g x >0,g x 单调递增,所以g x 0 <g 0 =0.令n x =ln x -12x -1x ,则n x =1x -121+1x 2=-x -1 22x2≤0,则n x 单调递减,注意到n 1 =0,故当x ∈1,+∞ 时,ln x -12x -1x <0,从而有ln x <12x -1x,所以g x =ax 2+x -x +1 ln x +1 >ax 2+x -x +1 ×12x +1 -1x +1=a -12 x 2+12,令a -12 x 2+12=0得x 2=11-2a,所以g 11-2a>0,所以函数g x区间0,+∞ 上存在变号零点,符合题意.综合上面可知:实数a 得取值范围是0,12.【点睛】(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.(2)根据函数的极值(点)求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;②验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.四、选做题【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ=2sin θπ4≤θ≤π2,曲线C 2:x =2cos αy =2sin α (α为参数,π2<α<π).(1)写出C 1的直角坐标方程;(2)若直线y =x +m 既与C 1没有公共点,也与C 2没有公共点,求m 的取值范围.【答案】(1)x 2+y -1 2=1,x ∈0,1 ,y ∈1,2 (2)-∞,0 ∪22,+∞ 【解析】【分析】(1)根据极坐标与直角坐标之间的转化运算求解,注意x ,y 的取值范围;(2)根据曲线C 1,C 2的方程,结合图形通过平移直线y =x +m 分析相应的临界位置,结合点到直线的距离公式运算求解即可.【小问1详解】因为ρ=2sin θ,即ρ2=2ρsin θ,可得x 2+y 2=2y ,整理得x 2+y -1 2=1,表示以0,1 为圆心,半径为1的圆,又因为x =ρcos θ=2sin θcos θ=sin2θ,y =ρsin θ=2sin 2θ=1-cos2θ,且π4≤θ≤π2,则π2≤2θ≤π,则x =sin2θ∈0,1 ,y =1-cos2θ∈1,2 ,故C 1:x 2+y -1 2=1,x ∈0,1 ,y ∈1,2 .【小问2详解】因为C 2:x =2cos αy =2sin α(α为参数,π2<α<π),整理得x 2+y 2=4,表示圆心为O 0,0 ,半径为2,且位于第二象限的圆弧,如图所示,若直线y =x +m 过1,1 ,则1=1+m ,解得m =0;若直线y =x +m ,即x -y +m =0与C 2相切,则m2=2m >0 ,解得m =22,若直线y=x +m 与C 1,C 2均没有公共点,则m >22或m <0,即实数m 的取值范围-∞,0 ∪22,+∞ .【选修4-5】(10分)23.已知f x =2x +x -2 .(1)求不等式f x ≤6-x 的解集;(2)在直角坐标系xOy 中,求不等式组f (x )≤yx +y -6≤0所确定的平面区域的面积.【答案】(1)[-2,2];(2)6.【解析】【分析】(1)分段去绝对值符号求解不等式作答.(2)作出不等式组表示的平面区域,再求出面积作答.【小问1详解】依题意,f (x )=3x -2,x >2x +2,0≤x ≤2-3x +2,x <0,不等式f (x )≤6-x 化为:x >23x -2≤6-x或0≤x ≤2x +2≤6-x 或x <0-3x +2≤6-x ,解x >23x -2≤6-x,得无解;解0≤x ≤2x +2≤6-x ,得0≤x ≤2,解x <0-3x +2≤6-x ,得-2≤x <0,因此-2≤x ≤2,所以原不等式的解集为:[-2,2]小问2详解】作出不等式组f (x )≤yx +y -6≤0表示的平面区域,如图中阴影△ABC,由y =-3x +2x +y =6,解得A (-2,8),由y =x +2x +y =6 , 解得C (2,4),又B (0,2),D (0,6),所以△ABC 的面积S △ABC =12|BD |×x C -x A =12|6-2|×|2-(-2)|=8.。
全国统一高考数学试卷(理科)(全国新课标III)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3 B.2 C.1 D.02.(5分)设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7, 8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.805.(5分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=16.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A.5 B.4 C.3 D.28.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24 B.﹣3 C.3 D.810.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A. B.C.D.11.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.112.(5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2C.D.2二、填空题:本题共4小题,每小题5分,共20分。
绝密(juémì)★启封(qǐ fēnɡ)并使用完毕前试题(shìtí)类型:A 2021年普通高等学校招生全国(quán ɡuó)统一考试理科(lǐkē)数学考前须知:1.本试卷分第一卷(选择题)和第二卷(非选择题)两局部.第一卷1至3页,第二卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第一卷一.选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〔1〕设集合,,那么〔A〕〔B〕〔C〕〔D〕〔2〕设,其中x,y是实数,那么〔A〕1〔B〕〔C〕〔D〕2〔3〕等差数列前9项的和为27,,那么〔A〕100〔B〕99〔C〕98〔D〕97〔4〕某公司的班车在7:00,8:00,8:30发车,学.科网小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,那么他等车时间不超过10分钟的概率是〔A〕〔B〕〔C〕〔D〕〔5〕方程–=1表示双曲线,且该双曲线两焦点间的距离为4,那么n的取值范围是〔A〕(–1,3) 〔B〕(–1,3) 〔C〕(0,3) 〔D〕(0,3)〔6〕如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.假设该几何体的体积是,那么它的外表积是〔A〕17π〔B〕18π〔C〕20π〔D〕28π〔7〕函数y=2x2–e|x|在[–2,2]的图像大致为〔A〕〔B〕〔C〕〔D〕〔8〕假设(jiǎshè),那么(nà me)〔A〕〔B〕〔C〕〔D〕〔9〕执行右面(yòumiàn)的程序图,如果输入的,那么(nà me)输出x,y的值满足(mǎnzú)〔A〕〔B〕〔C〕〔D〕(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的标准线于D、E两点.|AB|=,|DE|=,那么C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a过正方体ABCD-A1B1C1D1的顶点A,a//平面CB1D1,平面ABCD=m,a 平面ABA1B1=n,那么m、n所成角的正弦值为(A)(B) (C) (D)12.函数(hánshù)为的零点(línɡ diǎn),为图像(tú xiànɡ)的对称轴,且()f x在单调(dāndiào),那么的最大值为〔A〕11 〔B〕9 〔C〕7 〔D〕5第II卷本卷包括必考题(kǎo tí)和选考题两局部.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每题5分(13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,那么m=.(14)的展开式中,x3的系数是.〔用数字填写答案〕〔15〕设等比数列满足a1+a3=10,a2+a4=5,那么a1a2…a n的最大值为。
2020年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.62.(5分)复数的虚部是()A .﹣B .﹣C .D .3.(5分)在一组样本数据中,1,2,3,4出现的频率分别为p1,p2,p3,p4,且p i=1,则下面四种情形中,对应样本的标准差最大的一组是()A.p1=p4=0.1,p2=p3=0.4B.p1=p4=0.4,p2=p3=0.1C.p1=p4=0.2,p2=p3=0.3D.p1=p4=0.3,p2=p3=0.24.(5分)Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t )=,其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.695.(5分)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)6.(5分)已知向量,满足||=5,||=6,•=﹣6,则cos <,+>=()A .﹣B .﹣C .D .7.(5分)在△ABC中,cos C =,AC=4,BC=3,则cos B=()A .B .C .D .8.(5分)如图为某几何体的三视图,则该几何体的表面积是()A.6+4B.4+4C.6+2D.4+29.(5分)已知2tanθ﹣tan(θ+)=7,则tanθ=()A.﹣2B.﹣1C.1D.210.(5分)若直线l与曲线y =和圆x2+y2=都相切,则l的方程为()A.y=2x+1B.y=2x +C.y =x+1D.y =x +11.(5分)设双曲线C :﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=()A.1B.2C.4D.812.(5分)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b二、填空题:本题共4小题,每小题5分,共20分。
2023年普通高等学校招生全国统一考试(试卷类型:A )数学本试卷共4页,22小题,满分150分。
考试用时120分钟。
注意事项:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答 案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定 区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不 准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共计40分,每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项填涂在答题卡相应的位置上. 1.已知集合M ={-2,-1,0,1,2,3},N ={x |x 2-x -6≥0},则M ∩N =( ) A.{-2,-1,0,1}B.{0,1,2}C.{-2}D.22.已知z =1i22i-+则z z -=( ) A.-iB.iC.0D.13.已知向量a =(1,1),b =(1,-1).若(a +λb )⊥(a +μb ),则( ) A.λ+μ=1B.λ+μ=-1C.λμ=1D.λμ=-14设函数f (x )=2x (x -a )在区间(0,1)单调递减,则a 的取值范围是( ) A.(-∞,-2]B.[-2,0)C.(0,2]D.[2,+∞)5.设椭圆C 1:2221x y a+=(a >1),C 2:2214x y +=的离心率分别为e 1,e 2若e 21,则a =( )6.过(0,-2)与圆x 2+y 2-4x -1=0相切的两条直线的夹角为a ,则sin α=( )A.17.记S n 为数列{a n }的前n 项和,设甲:{a n }为等差数列;乙:{nS n}为等差数列,则(( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件 C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 8.已知sin(α-β)=13,cos αsin β=16则cos(2α+2β)=( ) A.79B.19C.-19D.-79二、选择题:本大题共4小题,每小题5分,共计20分每小题给出的四个选项中,有多项符合题目要求。
2023年普通高等学校招生全国统一考试数学(新高考全国Ⅰ卷)试卷类型:A一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=()A.{}2,1,0,1-- B.{}0,1,2 C.{}2- D.2【答案】C【解析】因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-.故选:C .2.已知1i22iz -=+,则z z -=()A.i -B.iC.0D.1【答案】A【解析】根据复数除法运算求出z ,再由共轭复数的概念得到z ,从而解出.因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.故选:A .3.已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+ ,则()A.1λμ+=B.1λμ+=-C.1λμ=D.1λμ=-【答案】D【解析】根据向量的坐标运算求出a b λ+ ,a b μ+,再根据向量垂直的坐标表示即可求出.因为()()1,1,1,1a b ==- ,所以()1,1a b λλλ+=+- ,()1,1a b μμμ+=+-,由()()a b a b λμ+⊥+ 可得,()()0a b a b λμ+⋅+=,即()()()()11110λμλμ+++--=,整理得:1λμ=-.故选:D .4.设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是()A.(],2-∞-B.[)2,0-C.(]0,2 D.[)2,+∞【答案】D【解析】利用指数型复合函数单调性,判断列式计算作答.函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥,所以a 的取值范围是[)2,+∞.故选:D5.设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若21e =,则=a ()A.233B.C.D.【答案】A【解析】根据给定的椭圆方程,结合离心率的意义列式计算作答.由21e =,得22213e e =,因此2241134a a --=⨯,而1a >,所以3a =,故选:A 6.过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A.1B.4C.4D.4【答案】B【解析】因为22410x y x +--=,即()2225x y -+=,可得圆心()2,0C ,半径r =,过点()0,2P -作圆C 的切线,切点为,A B ,因为PC ==,则PA ==,可得106sin ,cos44APC APC ∠==∠=,则sin sin 22sin cos 2444APB APC APC APC ∠=∠=∠∠=⨯⨯=,22221cos cos 2cos sin 0444APB APC APC APC ⎛⎫⎛⎫∠=∠=∠-∠=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,即APB ∠为钝角,所以()sin sin πsin 4APB APB =-∠=∠=α;故选:B.7.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】C【解析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,甲:{}n a 为等差数列,设其首项为1a ,公差为d ,则1111(1)1,222212n n n n S S S n n n d d dS na d a n a n n n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件;反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立,因此{}n a 为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件,C 正确.故选:C8.已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=().A.79 B.19C.19-D.79-【答案】B【解析】根据给定条件,利用和角、差角的正弦公式求出sin()αβ+,再利用二倍角的余弦公式计算作答.因为1sin()sin cos cos sin 3αβαβαβ-=-=,而1cos sin 6αβ=,因此1sin cos 2αβ=,则2sin()sin cos cos sin 3αβαβαβ+=+=,所以2221cos(22)cos 2()12sin ()12()39αβαβαβ+=+=-+=-⨯=.故选:B【点睛】方法点睛:三角函数求值的类型及方法(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但非特殊角与特殊角总有一定关系.解题时,要利用观察得到的关系,结合三角函数公式转化为特殊角的三角函数.(2)“给值求值”:给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角,有时要压缩角的取值范围.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则()A.2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数B.2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数C.2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差D.2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差【答案】BD【解析】根据题意结合平均数、中位数、标准差以及极差的概念逐项分析判断.对于选项A :设2345,,,x x x x 的平均数为m ,126,,,x x x ⋅⋅⋅的平均数为n ,则()()165234123456234526412x x x x x x x x x x x x x x x x n m +-+++++++++++-=-=,因为没有确定()1652342,x x x x x x ++++的大小关系,所以无法判断,m n 的大小,例如:1,2,3,4,5,6,可得 3.5m n ==;例如1,1,1,1,1,7,可得1,2m n ==;例如1,2,2,2,2,2,可得112,6m n ==;故A 错误;对于选项B :不妨设123456x x x x x x ≤≤≤≤≤,可知2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数均为342x x +,故B 正确;对于选项C :因为1x 是最小值,6x 是最大值,则2345,,,x x x x 的波动性不大于126,,,x x x ⋅⋅⋅的波动性,即2345,,,x x x x 的标准差不大于126,,,x x x ⋅⋅⋅的标准差,例如:2,4,6,8,10,12,则平均数()12468101276n =+++++=,标准差11053s =,4,6,8,10,则平均数()14681074m =+++=,标准差2s ==显然53>,即12s s >;故C 错误;对于选项D :不妨设123456x x x x x x ≤≤≤≤≤,则6152x x x x -≥-,当且仅当1256,x x x x ==时,等号成立,故D 正确;故选:BD.10.噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级20lgp pL p =⨯,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:声源与声源的距离/m声压级/dB燃油汽车106090混合动力汽车105060电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则().A.12p p ≥B.2310p p >C.30100p p =D.12100p p ≤【答案】ACD【解析】根据题意可知[][]12360,90,50,60,40p p p L L L ∈∈=,结合对数运算逐项分析判断.由题意可知:[][]12360,90,50,60,40p p p L L L ∈∈=,对于选项A :可得1212100220lg 20lg 20lg p p p p pL L p p p =-⨯=⨯-⨯,因为12p p L L ≥,则121220lg 0p p p L L p =-⨯≥,即12lg 0p p ≥,所以121pp ≥且12,0p p >,可得12p p ≥,故A 正确;对于选项B :可得2332200320lg20lg 20lg p p p p p L L p p p =-⨯=⨯-⨯,因为2324010p p p L L L -=-≥,则2320lg10p p ⨯≥,即231lg 2p p ≥,所以23pp ≥23,0p p >,可得23p ≥,当且仅当250p L =时,等号成立,故B 错误;对于选项C :因为33020lg 40p p L p =⨯=,即30lg 2p p =,可得30100pp =,即30100p p =,故C 正确;对于选项D :由选项A 可知:121220lgp p p L L p =-⨯,且12905040p p L L ≤-=-,则1220lg40p p ⨯≤,即12lg2p p ≤,可得12100pp ≤,且12,0p p >,所以12100p p ≤,故D 正确;故选:ACD.11.已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则().A.()00f =B.()10f =C.()f x 是偶函数 D.0x =为()f x 的极小值点【答案】ABC【解析】因为22()()()f xy y f x x f y =+,对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确.对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确.对于C ,令1x y ==-,(1)(1)(1)2(1)f f f f =-+-=-,则(1)0f -=,令21,()()(1)()y f x f x x f f x =--=+-=,又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确,对于D ,不妨令()0f x =,显然符合题设条件,此时()f x 无极值,故D 错误.故选:ABC .12.下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m 的球体B.所有棱长均为1.4m 的四面体C.底面直径为0.01m ,高为1.8m 的圆柱体D.底面直径为1.2m ,高为0.01m 的圆柱体【答案】ABD【解析】根据题意结合正方体的性质逐项分析判断.对于选项A :因为0.99m 1m <,即球体的直径小于正方体的棱长,所以能够被整体放入正方体内,故A 正确;对于选项B 1.4>,所以能够被整体放入正方体内,故B 正确;对于选项C 1.8<,所以不能够被整体放入正方体内,故C 正确;对于选项D :因为正方体的体对角线长为 1.2>,设正方体1111ABCD A B C D -的中心为O ,以1AC 为轴对称放置圆柱,设圆柱的底面圆心1O 到正方体的表面的最近的距离为m h ,如图,结合对称性可知:111111133,0.6222OC C A C O OC OO ===-=-,则1111C O h AA C A =,即30.6213h -=,解得10.60.340.0123h =->>,所以能够被整体放入正方体内,故D 正确;故选:ABD.三、填空题:本题共4小题,每小题5分,共20分.13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).【答案】64【解析】分类讨论选修2门或3门课,对选修3门,再讨论具体选修课的分配,结合组合数运算求解.(1)当从8门课中选修2门,则不同的选课方案共有144116C C =种;(2)当从8门课中选修3门,①若体育类选修课1门,则不同的选课方案共有1244C C 24=种;②若体育类选修课2门,则不同的选课方案共有2144C C 24=种;综上所述:不同的选课方案共有16242464++=种.故答案为:64.14.在正四棱台1111ABCD A B C D -中,1112,1,2AB A B AA ===,则该棱台的体积为________.【答案】766【解析】结合图像,依次求得111,,AO AO A M ,从而利用棱台的体积公式即可得解.如图,过1A 作1A M AC ⊥,垂足为M ,易知1A M 为四棱台1111ABCD A B C D -的高,因为1112,1,2AB A B AA ===则11111111112,22222222AO AC B AO AC ======,故()111222AM AC AC =-=,则221116222A M A A AM =-=-=,所以所求体积为1676(4141)326V =⨯++⨯⨯=.故答案为:766.15.已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是________.【答案】[2,3)【解析】令()0f x =,得cos 1x ω=有3个根,从而结合余弦函数的图像性质即可得解.因为02x π≤≤,所以02x πωω≤≤,令()cos 10f x x ω=-=,则cos 1x ω=有3个根,令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈,结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<,故答案为:[2,3).16.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上,11222,3F A F B F A F B ⊥=-,则C 的离心率为________.【答案】355【解析】依题意,设22AF m =,则2113,22BF m BF AF a m ===+,在1Rt ABF 中,2229(22)25m a m m ++=,则(3)()0a m a m +-=,故a m =或3a m =-(舍去),所以124,2AF a AF a ==,213BF BF a ==,则5AB a =,故11244cos 55AF a F AF ABa ∠===,所以在12AF F △中,2221216444cos 2425a a c F AF a a +-∠==⨯⨯,整理得2259c a =,故355c e a ==.故答案为:355.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知在ABC 中,()3,2sin sin A B C A C B +=-=.(1)求sin A ;(2)设5AB =,求AB 边上的高.【答案】(1)31010;(2)6.【解析】(1)3A B C += ,π3C C ∴-=,即π4C =,又2sin()sin sin()A C B A C -==+,2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+,sin cos 3cos sin A C A C ∴=,sin 3cos A A ∴=,即tan 3A =,所以π02A <<,310sin10A ∴==.(2)由(1)知,10cos 10A ==,由sin sin()B A C =+23101025sin cos cos sin (210105A C A C =+=+=,由正弦定理,sin sin c bC B=,可得255522b ⨯==,11sin 22AB h AB AC A ∴⋅=⋅⋅,310sin 610h b A ∴=⋅==.18.如图,在正四棱柱1111ABCD A B C D -中,12,4AB AA ==.点2222,,,A B C D 分别在棱111,,AA BB CC ,1DD 上,22221,2,3AA BB DD CC ====.(1)证明:2222B C A D ∥;(2)点P 在棱1BB 上,当二面角222P A C D --为150︒时,求2B P .【答案】(1)证明见解析;(2)1.【解析】(1)以C 为坐标原点,1,,CD CB CC 所在直线为,,x y z 轴建立空间直角坐标系,如图,则2222(0,0,0),(0,0,3),(0,2,2),(2,0,2),(2,2,1)C C B D A ,2222(0,2,1),(0,2,1)B C A D ∴=-=- ,2222B C A D ∴ ∥,又2222B C A D ,不在同一条直线上,2222B C A D ∴∥.【小问2详解】设(0,2,)(04)P λλ≤≤,则22222(2,2,2)(0,2,3),=(2,0,1),A C PC D C λ=--=---,设平面22PA C 的法向量(,,)n x y z = ,则22222202(3)0n A C x y z n PC y z λ⎧⋅=--+=⎪⎨⋅=-+-=⎪⎩,令2z =,得3,1y x λλ=-=-,(1,3,2)n λλ∴=--,设平面222A C D 的法向量(,,)m a b c = ,则2222222020m A C a b c m D C a c ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩,令1a =,得1,2==b c ,(1,1,2)m ∴=,3cos ,cos1502n m n m n m ⋅∴==︒= ,化简可得,2430λλ-+=,解得1λ=或3λ=,(0,2,1)P ∴或(0,2,3)P ,21B P ∴=.19.已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+.【答案】(1)答案详见解析;(2)证明详见解析【解析】(1)因为()()e xf x a a x =+-,定义域为R ,所以()e 1xf x a '=-,当0a ≤时,由于e 0x >,则e 0x a ≤,故()0e 1xf x a -'=<恒成立,所以()f x 在R 上单调递减;当0a >时,令()e 10xf x a '=-=,解得ln x a =-,当ln x a <-时,()0f x '<,则()f x 在(),ln a -∞-上单调递减;当ln x a >-时,()0f x ¢>,则()f x 在()ln ,a -+∞上单调递增;综上:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,()f x 在()ln ,a -+∞上单调递增.(2)由(1)得,()()()ln min 2ln ln ln e 1af a a x a f a a a --+=++=+=,要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立,令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=,令()0g a '<,则02a <<;令()0g a '>,则2a >;所以()g a在2⎛⎫⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min2212ln 02222g a g ⎛⎫⎛==--= ⎪ ⎪ ⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.20.设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .【答案】(1)3n a n =;(2)5150d =.【解析】(1)21333a a a =+ ,132d a d ∴=+,解得1a d =,32133()6d d S a a =+==∴,又31232612923T b b b d d d d =++=++=,339621S T d d∴+=+=,即22730d d -+=,解得3d =或12d =(舍去),1(1)3n a a n d n ∴=+-⋅=.(2){}n b 为等差数列,2132b b b ∴=+,即21312212a a a =+,2323111616()d a a a a a ∴-==,即2211320a a d d -+=,解得1a d =或12a d =,1d > ,0n a ∴>,又999999S T -=,由等差数列性质知,5050999999a b -=,即50501a b -=,505025501a a ∴-=,即2505025500a a --=,解得5051a =或5050a =-(舍去)当12a d =时,501495151a a d d =+==,解得1d =,与1d >矛盾,无解;当1a d =时,501495051a a d d =+==,解得5150d =.综上,5150d =.21.甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .【答案】(1)0.6;(2)1121653i -⎛⎫⨯+ ⎪⎝⎭;(3)52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【解析】(1)记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B ,所以()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+()0.510.60.50.80.6=⨯-+⨯=.(2)设()i i P A p =,依题可知,()1i i P B p =-,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+,即()()10.610.810.40.2i i i i p p p p +=+-⨯-=+,构造等比数列{}i p λ+,设()125i i p p λλ++=+,解得13λ=-,则1121353i i p p +⎛⎫-=- ⎪⎝⎭,又11111,236p p =-=,所以13i p ⎧⎫-⎨⎬⎩⎭是首项为16,公比为25的等比数列,即11112121,365653i i i i p p --⎛⎫⎛⎫-=⨯=+ ⎪ ⎪⎝⎭⎝⎭.(3)因为1121653i i p -⎛⎫=⨯+ ⎪⎝⎭,1,2,,i n =⋅⋅⋅,所以当*N n ∈时,()122115251263185315nnnn n E Y p p p ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=+++=⨯+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- ,故52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.22.在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫ ⎪⎝⎭的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD的周长大于【答案】(1)214y x =+;(2)见解析.【解析】(1)设(,)P x y ,则y =,两边同平方化简得214y x =+,故21:4W y x =+.(2)设矩形的三个顶点222111,,,,,444A a a B b b C c c ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在W 上,且a b c <<,易知矩形四条边所在直线的斜率均存在,且不为0,则1,AB BC k k a b b c =⋅-+<+,令2240114AB k b a b a b am ⎛⎫+-+ ⎪⎝=+⎭==<-,同理令0BC k b c n =+=>,且1mn =-,则1m n=-,设矩形周长为C ,由对称性不妨设||||m n ≥,1BC AB k k c a n m n n-=-=-=+,则11||||(((2C AB BC b a c b c a n n ⎛=+=-+-≥-=+ ⎝.0n >,易知10n n ⎛+> ⎝则令()222111()1,0,()22f x x x x f x x x x x x '⎛⎫⎛⎫⎛⎫=++>=+- ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()0f x '=,解得22x =,当20,2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x '<,此时()f x 单调递减,当2,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭,()0f x '>,此时()f x 单调递增,则min 227()24f x f ⎛⎫== ⎪ ⎪⎝⎭,故13322C ≥=,即C ≥.当C =时,,2n m ==,且((b a b a -=-m n =时等号成立,矛盾,故C >得证.。
高考理科数学普通高等学校招生全国统一考试(附答案)注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()(1)18.下图是某地区2000年至环境基础设施投资额y(单位:亿元)的折现图。
高考数学高三模拟考试试卷压轴题高三上学期期末考试数学理试题分类汇编三角函数一、选择题1、(潮州市高三上期末)函数()sin()(0,)2f x x πωϕωϕ=+><||的部分图象如图所示,如果12,(,)63x x ππ∈-,且12()()f x f x =,则12()2x x f +等于 A 、12B 、22C 、32D 、1 2、(潮州市高三上期末)已知3cos()6πθ+=-,则sin(2)6πθ-= A 、13 B 、23 C 、-13 D 、-233、(佛山市高三教学质量检测(一))已知30π=x 是函数)2sin()(ϕ+=x x f 的一个极大值点,则)(x f 的一个单调递减区间是( ) A .)32,6(ππ B .)65,3(ππ C .),2(ππ D .),32(ππ4、(广州市高三1月模拟考试)已知3sin 5ϕ=,且2ϕπ⎛⎫∈π ⎪⎝⎭,,函数()sin()(0)f x x ωϕω=+>的图像的相邻两条对称轴之间的距离等于2π,则4f π⎛⎫⎪⎝⎭的值为(A )35- (B )45- (C )35 (D )455、(惠州市高三第三次调研考试)已知34cos sin =+θθ)40(πθ<<,则θθcos sin -的值为() A .32 B .32- C .31 D .31- 6、(揭阳市高三上期末)函数24()cos cos f x x x =-的最大值和最小正周期分别为 (A )1,4π (B )1,42π (C )1,2π (D )1,22π7、(茂名市高三第一次高考模拟考试)已知()=-παcos 12, 0πα-<<,则tan α= ( )A.3B.33C.3-D. -338、(茂名市高三第一次高考模拟考试)将函数⎪⎭⎫⎝⎛-=32sin )(πx x f 的图像向右平移3π个单位得到函数)(x g 的图像,则)(x g 的一条对称轴方程可以为( ) A. 43π=x B.76x π= C. 127π=x D. 12π=x 9、(汕头市高三上期末)将函数sin()()6y x x R π=+∈的图象上所有点的纵坐标不变横坐标缩小到原来的倍,再把图象上各点向左平移4π个单位长度,则所得的图象的解析式为( ) A .)652sin(π+=x y B .)621sin(π+=x yC .)322sin(π+=x yD .)12521sin(π+=x y10、(汕尾市高三上期末)下列选项中是函数的零点的是()11、(韶关市高三1月调研)22cos 165sin 15-=( )A .12B .22C 3312、(湛江市普通高考测试(一))已知2sin 3α=,则cos(2)πα-= A 5 B 、-19 C 、19D 513、(肇庆市高三第二次统测(期末))已知函数()2sin 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为π,则函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值分别是 (A )2和2- (B )2和0 (C )2和1- (D )32和32-14、(珠海市高三上期末)03tan153tan151-=+( ) A .1- B .3C .1D .3 15、(佛山市高三教学质量检测(一))已知21tan =x ,则)4(sin 2π+x =( ) A .101B .51 C .53 D .10916、16、(汕头市高三上期末)已知1sin()63πα+=,则2cos(2)3πα-的值是( ) A .97 B .31 C .31- D .97- 17、(韶关市高三1月调研)已知函数()sin()(0,0)f x x ωϕωπϕ=+>-<<的最小正周期是π,将函数()f x 图象向左平移3π个单位长度后所得的函数图象过点(0,1)P ,则函数()sin()f x x ωϕ=+ ( )A.在区间[,]63ππ-上单调递减 B.在区间[,]63ππ-上单调递增 C.在区间[,]36ππ-上单调递减 D.在区间[,]36ππ-上单调递增 18、(珠海市高三上期末)如图是函数()cos()f x A x ωϕ=+的一段图像,则函数()f x 图像上的最高点坐标为( ) A .(2)2k k Z π∈,, B .(2)k k Z π∈,, C .(22)6k k Z ππ-∈,, D .(2)12k k Z ππ-∈,,选择题答案:1、D2、C3、B4、B5、B6、B7、A8、A9、C 10、D 11、C 12、B 13、C 14、C 15、D 16、D 17、B 18、D 二、填空题1、(潮州市高三上期末)在△ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c ,若sin 3cos 0b A a B -=,且2b ac =,则a cb+的值为____ (第5题图) 2-23π6π2、(东莞市高三上期末)在平面内,已知四边形ABCD ,CD ⊥AD ,∠CBD =12π,AD=5,AB =7,且cos2∠ADB +3cos ∠ADB =1,则BC 的长为3、(佛山市高三教学质量检测(一))在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,M 是BC 的中点,2=BM ,b c AM -=,则ABC ∆面积的最大值为.4、(广州市高三1月模拟考试)已知()1cos 3θ+π=-,则sin 22θπ⎛⎫+= ⎪⎝⎭.5、(茂名市高三第一次高考模拟考试)CD CB AD AC AD AB ,AB D ABC 3,,3,===∆且的一个三等分点为中在,则B cos =6、(汕头市高三上期末)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且.sin )2(sin )2(sin 2C b c B c b A a +++=则A 的大小是.7、(肇庆市高三第二次统测(期末))在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且3cos cos 2sin ca Bb A C+=,2c =,角C 是锐角,则a b c ++的取值范围为.8、(珠海市高三上期末)如右下图,四边形ABCD 中,0135BAD ∠=,0120ADC ∠=,045BCD ∠=,060ABC ∠=,2BC =,则线段AC 长度的取值范围是.填空题答案 1、2 2、3、34、-795、1867BCDA(第16题6、,32π或 120 7、(]4,6 8、[32),三、解答题1、(惠州市高三第三次调研考试)如图所示,在四边形ABCD 中,D ∠=2B ∠,且1AD =,3CD =,3cos B =. (Ⅰ)求△ACD 的面积;(Ⅱ)若23BC =,求AB 的长.2、(揭阳市高三上期末)已知a,b,c 分别是△ABC 内角A ,B ,C 的对边,且3sin cos c A a C =(Ⅰ)求C 的值(Ⅱ)若2,23c a b ==,求△ABC 的面积3、(清远市高三上期末)已知函数)(21cos 2sin 23)(2R x x x x f ∈--=,设ABC ∆的内角C B A ,,的对应边分别为c b a ,,,且0)(,3==C f c .(1)求C 的值.(2)若向量)sin ,1(A m =与向量)sin ,2(B n =共线,求ABC ∆的面积.4、(汕尾市高三上期末)在锐角△ABC 中,角 A,B,C 的对边分别是a,b,c ,若(1) 求角A 的大小;(2) 若a =3,△ABC 的面积 S=,求b +c 的值.5、(肇庆市高三第二次统测(期末))在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2a b =,又sin ,sin ,sin A C B 成等差数列.(Ⅰ)求cos()B C +的值;ABCD(Ⅱ)若3ABC S ∆=,求c 的值.解答题参考答案1、解:(Ⅰ)311cos 22cos cos 2-=-==B B D ………………………(2分)因为()0,D π∠∈,所以sin 3D =,…………………………(4分)所以△ACD 的面积1sin 2S AD CD D =⋅⋅⋅=………………(6分) (Ⅱ)解法一:在△ACD 中,12cos 2222=⋅⋅-+=D DC AD DC AD AC ,所以AC =……………………………………………………(8分)在△ABC 中,12cos 2222=⋅⋅-+=B BC AB BC AB AC ……………(10分)把已知条件代入并化简得:042=-AB AB 因为0AB ≠,所以4AB =……(12分) 解法二:在△ACD 中,在△ACD 中,12cos 2222=⋅⋅-+=D DC AD DC AD AC ,所以AC =…………………………………………………………(8分)因为BC =sin sin AC ABB ACB=∠,所以 ()sin sin 2AB B B π=-,………(10分) 得4AB =.…………………………………………………………………………(12分)2、解:(I )∵A 、C 为ABC ∆的内角,sin cos A a C =知sin 0,cos 0A C ≠≠,结合正弦定理可得:sin cos sin A a AC c C==3分⇒tan C =,4分 ∵0C π<<∴6C π=.5分(II )解法1:∵2c a =,b =由余弦定理得:224122a a =+-⨯,7分 整理得:2240a a +-=解得:212a -±==-±(其中负值不合舍去)9分∴1a =,由1sin 2ABC S ab C ∆=得ABC ∆的面积111)1)222ABC S ∆=⨯⨯=.12分 【解法2:由2c a =结合正弦定理得:11sin sin 24A C ==,6分∵a c <, ∴A C <, ∴cos 4A ==,7分 ∴sin sin[()]sin()B AC A C π=-+=+sin cos cos sin A C A C =+=1142428⨯+⨯=,9分由正弦定理得:sin 1sin b Aa B==,10分∴ABC ∆的面积1111)sin 1)2222ABC S ab C ∆==⨯⨯=.12分】3、解:(1)∵12cos 212sin 23)(--=x x x f …………….1分 1)62sin()(--=πx x f …………….2分由0)(=C f 得1)62sin(=-πC ,…………………………..3分又∵611626πππ<-<-C ……………………….4分 ∴262ππ=-C ,……………………….5分即C=3π……………………….6分(2)∵向量)sin ,1(A m =与向量)sin ,2(B n =共线 ∴B A sin sin 2=,………………………7分 ∴a b 2=,①………………………8分由余弦定理,得322=-+ab b a ②……………………….9分 ∴由①②得2,1==b a ……………………….10分 ∴ABC ∆的面积为23sin 21=C ab ……………………….12分 4、5、解:(Ⅰ)∵sin ,sin ,sin A C B 成等差数列,∴sin sin 2sin A B C +=,(1分) 由正弦定理得2a b c +=, (3分) 又2a b =,可得23b c =, (4分)∴2222222416199cos 22423c c cb c a A bc c +-+-===-⨯, (6分)∵A B C π++=, ∴B C A π-+=, ∴1cos()cos()cos 4B C A A π+=-=-=. (8分) (Ⅱ)由1cos 4A =-,得sin A = (9分)∴22112sin 223ABC S bc A c ∆==⨯=, (10分)∴2123c =,解得c =(12分)。
2023年全国甲卷理科高考数学真题试卷广西、贵州、四川、云南、西藏适用. 一、选择题.1. 设集合{31,},{32,}A x x k k Z B x x k k Z ==+∈==+∈∣∣,U 为整数集,则)(B A C U ( ) A. {|3,}x x k k =∈Z B. {31,}x x k k Z =-∈∣ C. {32,}x x k k Z =-∈∣D. ∅2. 若复数()()i 1i 2,R a a a +-=∈,则=a ( ) A. -1B. 0C. 1D. 23. 执行下面的程序框遇,输出的B =( )A.21B. 34C. 55D. 894. 向量1,2a b c ===,且0a b c ++=,则cos ,a c b c 〈--〉=( )A. 15-B. 25-C.25D.455. 已知正项等比数列{}n a 中,11,n a S =为{}n a 前n 项和,5354S S =-,则4S =( ) A. 7B. 9C. 15D. 306. 有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为( ) A. 0.8B. 0.4C. 0.2D. 0.17. 22sin sin 1αβ+=是sin cos 0αβ+=的( )A. 充分条件但不是必要条件B. 必要条件但不是充分条件C. 充要条件D. 既不是充分条件也不是必要条件8. 已知双曲线22221(0,0)x y a b a b-=>>其中一条渐近线与圆22(2)(3)1x y -+-=交于A ,B两点,则||AB =( )A.15B.C.D.9. 有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有1人连续参加两天服务的选择种数为( ) A. 120B. 60C. 40D. 3010. 已知()f x 为函数πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位所得函数,则() y f x =与1122y x =-的交点个数为( ) A. 1B. 2C. 3D. 411. 在四棱锥P ABCD -中,底面ABCD 为正方形,4,3,45AB PC PD PCA ===∠=︒,则PBC ∆的面积为( )A.B.C.D. 12. 己知椭圆22196x y +=,12,F F 为两个焦点,O 为原点,P 为椭圆上一点,123cos 5F PF ∠=,则||PO =( ) A.25B.C.35D.二、填空题.13. 若2π(1)sin 2y x ax x ⎛⎫=-+++⎪⎝⎭为偶函数,则=a ________. 14. 设x ,y 满足约束条件2333231x y x y x y -+≤⎧⎪-≤⎨⎪+≥⎩,设32z x y =+,则z 的最大值为____________.15. 在正方体1111ABCD A B C D -中,E ,F 分别为CD ,11A B 的中点,则以EF 为直径的球面与正方体每条棱的交点总数为____________.16. 在ABC ∆中,2AB =,60,BAC BC ∠=︒=,D 为BC 上一点,AD 为BAC ∠的平分线,则AD =_________.三、解答题.17. 已知数列{}n a 中,21a =,设n S 为{}n a 前n 项和,2n n S na =. (1)求{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .18. 在三棱柱111ABCA B C 中,12AA =,1A C ⊥底面ABC ,90ACB ∠=︒,1A 到平面11BCC B 的距离为1.(1)求证:1AC A C =;(2)若直线1AA 与1BB 距离为2,求1AB 与平面11BCC B 所成角的正弦值.19. 为探究某药物对小鼠的生长抑制作用,将40只小鼠均分为两组,分别为对照组(不加药物)和实验组(加药物).(1)设其中两只小鼠中对照组小鼠数目为X ,求X 的分布列和数学期望; (2)测得40只小鼠体重如下(单位:g ):(已按从小到大排好) 对照组:17.3 18.4 20.1 20.4 21.5 23.2 24.6 24.8 25.0 25.426.1 26.3 26.4 26.5 26.8 27.0 27.4 27.5 27.6 28.3实验组:5.4 6.6 6.8 6.9 7.8 8.2 9.4 10.0 10.4 11.214.4 17.3 19.2 20.2 23.6 23.8 24.5 25.1 25.2 26.0(i )求40只小鼠体重的中位数m ,并完成下面2×2列联表:(ii )根据2×2列联表,能否有95%的把握认为药物对小鼠生长有抑制作用.参考数据:20. 已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,且||AB = (1)求p ;(2)设C 的焦点为F ,M ,N 为C 上两点,0MF NF ⋅=,求MNF ∆面积的最小值. 21. 已知3sin π(),0,cos 2x f x ax x x ⎛⎫=-∈ ⎪⎝⎭(1)若8=a ,讨论()f x 的单调性;(2)若()sin 2f x x <恒成立,求a 的取值范围.四、选做题.22. 已知(2,1)P ,直线2cos :1sin x t l y t αα=+⎧⎨=+⎩(t 为参数),α为l 的倾斜角,l 与x 轴,y 轴正半轴交于A ,B 两点,||||4PA PB ⋅=.(1)求α的值;(2)以原点为极点,x 轴正半轴为极轴建立极坐标系,求l 的极坐标方程. 23. 已知()2,0f x x a a a =-->. (1)求不等式()f x x <的解集;(2)若曲线()y f x =与坐标轴所围成的图形的面积为2,求a .2023年全国甲卷理科高考数学真题解析一、选择题.1. A解:因为整数集{}{}{}|3,|31,|32,x x k k x x k k x x k k ==∈=+∈=+∈Z Z Z Z ,U Z =.所以)(B A C U ={|3,}x x k k =∈Z . 故选:A . 2. C解:因为()()()22i 1i i i 21i 2a a a a a a a+-=-++=+-=所以22210a a =⎧⎨-=⎩,解得:1a =. 故选:C. 3. B解:当1n =时,判断框条件满足,第一次执行循环体123A =+=,325B =+=,112n =+=;当2n =时,判断框条件满足,第二次执行循环体358A =+=,8513B =+=,213n =+=;当3n =时,判断框条件满足,第三次执行循环体81321A =+=,211334B =+=,314n =+=;当4n =时,判断框条件不满足,跳出循环体,输出34B =. 故选:B. 4. D解:因为0a b c ++=,所以→→→-=+c b a即2222a b a b c ++⋅=,即2211=⋅++→→b a ,所以0a b ⋅=. 如图,设,,OA a OB b OC c ===由题知,1,OA OB OC OAB ===是等腰直角三角形AB 边上的高,22OD AD ==所以22CD CO OD =+==1tan ,cos3AD ACD ACD CD ∠==∠= 2cos ,cos cos 22cos 1a c b c ACB ACD ACD 〈--〉=∠=∠=∠-24215=⨯-=. 故选:D. 5.C解:由题知()23421514q q q q q q++++=++-即34244q q q q +=+,即32440q q q +--=,即(2)(1)(2)0q q q -++=.由题知0q >,所以2q .所以4124815S =+++=. 故选:C. 6. A解:报名两个俱乐部的人数为50607040+-=记“某人报足球俱乐部”为事件A ,记“某人报兵乓球俱乐部”为事件B 则505404(),()707707P A P AB ====所以4()7()0.85()7P AB P BA P A ===∣. 故选:A . 7.B解:当22sin sin 1αβ+=时,例如π,02αβ==但sin cos 0αβ+≠ 即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,2222sin sin (cos )sin 1αβββ+=-+=即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件. 故选:B. 8. D解:由e =则222222215c a b b a a a+==+=解得2ba= 所以双曲线的一条渐近线不妨取2y x =则圆心(2,3)到渐近线的距离d ==所以弦长||5AB ===. 故选:D. 9. B解:不妨记五名志愿者为,,,,a b c d e假设a 连续参加了两天社区服务,再从剩余的4人抽取2人各参加星期六与星期天的社区服务,共有24A 12=种方法.同理:,,,b c d e 连续参加了两天社区服务,也各有12种方法. 所以恰有1人连续参加了两天社区服务的选择种数有51260⨯=种. 故选:B.10. C解:因为πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =-而1122y x =-显然过10,2⎛⎫- ⎪⎝⎭与()1,0两点.作出()f x 与1122y x =-的部分大致图像如下考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系当3π4x =-时,3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭; 当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,13π13π412428y -=⨯-=<;当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,17π17π412428y -=⨯-=>;所以由图可知,()f x 与1122y x =-的交点个数为3. 故选:C. 11. C解:连结,AC BD 交于O ,连结PO ,则O 为,AC BD 的中点,如图因为底面ABCD 为正方形,4AB =,所以AC BD ==则DO CO == 又3PC PD ==,PO OP =,所以PCO PDO ∆≅∆,则PDO PCO ∠=∠又3PC PD ==,AC BD ==所以PDB PCA ≅,则PA PB =在PAC △中,3,45PC AC PCA ==∠=︒则由余弦定理可得2222cos 32923172PA AC PC AC PC PCA =+-⋅∠=+-⨯⨯=故PA =则PB故在PBC ∆中,43,P PB C C B ===所以222916171cos 22343PC BC PB PCB PC BC +-+-∠===⋅⨯⨯又0πPCB <∠<,所以sin 3PCB ∠==所以PBC 的面积为11sin 34223S PC BC PCB =⋅∠=⨯⨯⨯= 故选:C. 12. B解:设12π2,02F PF θθ∠=<<,所以122212tantan 2PF F F PF S b b θ∠== 由22212222cos sin 1tan 3cos cos 2cos +sin 1tan 5F PF θθθθθθθ--∠====+,解得:1tan 2θ= 由椭圆方程可知,222229,6,3a b c a b ===-=所以,12121116222PF F p p SF F y y =⨯⨯=⨯=⨯,解得:23p y =即2399162p x ⎛⎫=⨯-= ⎪⎝⎭,因此2OP ===. 故选:B .二、填空题.13. 2解:因为()()()22π1sin 1cos 2y f x x ax x x ax x ⎛⎫==-+++=-++ ⎪⎝⎭为偶函数,定义域为R ,所以ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即22ππππππ222222s 1co 1cos a a ⎛⎫⎛⎫⎛⎫-+=-+ ⎪ -⎪ ⎪⎝⎭⎝⎭--⎝+⎭ 则22πππ2π1212a -⎛⎫⎛⎫=+- ⎪⎪⎭⎝⎭= ⎝,故2a =.此时()()2212cos 1cos f x x x x x x =-++=++所以()()()()221cos s 1co f x x x x x f x -=-++++-== 又定义域为R ,故()f x 为偶函数. 所以2a =. 故答案为:2. 14. 15解:作出可行域,如图由图可知,当目标函数322zy x =-+过点A 时,z 有最大值.由233323x y x y -+=⎧⎨-=⎩可得33x y =⎧⎨=⎩,即(3,3)A所以max 332315z =⨯+⨯=. 故答案为:15. 15. 12解:不妨设正方体棱长为2,EF 中点为O ,取AB ,1BB 中点,G M ,侧面11BB C C 的中心为N ,连接,,,,FG EG OM ON MN ,如图由题意可知,O 为球心,在正方体中,EF ==即R =.则球心O 到1BB的距离为OM == 所以球O 与棱1BB 相切,球面与棱1BB 只有1个交点.同理,根据正方体的对称性知,其余各棱和球面也只有1个交点. 所以以EF 为直径的球面与正方体每条棱的交点总数为12. 故答案为:12. 16. 2 解:如图所示:记,,AB c AC b BC a ===方法一:由余弦定理可得,22222cos606b b +-⨯⨯⨯= 因为0b >,解得:1b =由ABCABDACDSSS=+可得1112sin 602sin 30sin 30222b ADAD b ⨯⨯⨯=⨯⨯⨯+⨯⨯⨯ 解得:1212AD+===+. 故答案为:2.三、解答题.17. 1)1n a n =-(2)()1222nn T n ⎛⎫=-+ ⎪⎝⎭【小问1详解】 因为2n n S na =当1n =时,112a a =,即10a =; 当3n =时,()33213a a +=,即32a =当2n ≥时,()1121n n S n a --=-,所以()()11221n n n n n S S a na n a ---==-- 化简得:()()121n n n a n a --=-,当3n ≥时,131122n n a aa n n -====--,即1n a n =- 当1,2,3n =时都满足上式,所以()*1N n a n n =-∈.【小问2详解】因为122n n n a n +=,所以12311111232222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2311111112(1)22222n n n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭两式相减得123111111111222222111222211n n nn n n n T ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+-⎝=-⎭⨯-⨯ 11122nn ⎛⎫⎛⎫=-+ ⎪⎪⎝⎭⎝⎭,即()1222nn T n ⎛⎫=-+ ⎪⎝⎭,*N n ∈.18. (1)证明见解析 (2)13【小问1详解】 如图1A C ⊥底面ABC ,BC ⊂面ABC1AC BC ∴⊥,又BC AC ⊥,1,AC AC ⊂平面11ACC A ,1AC AC C ⋂= BC ∴⊥平面ACC 1A 1,又BC ⊂平面11BCC B∴平面11ACC A ⊥平面11BCC B过1A 作11A O CC ⊥交1CC 于O ,又平面11ACC A 平面111BCC B CC =,1AO ⊂平面11ACC A 1A O ∴⊥平面11BCC B1A 到平面11BCC B 的距离为1,11∴=AO 在11Rt ACC △中,111112,ACAC CC AA ⊥== 设CO x =,则12C O x =-11111,,AOC AOC ACC △△△为直角三角形,且12CC =22211CO A O A C +=,2221111A O OC C A +=,2221111AC AC C C += 2211(2)4x x ∴+++-=,解得1x =.111AC AC AC ∴===1AC A C ∴=.【小问2详解】111,,AC AC BC AC BC AC =⊥⊥ 1Rt Rt ACB ACB ∴△≌△ 1BA BA ∴=过B 作1BD AA ⊥,交1AA 于D ,则D 为1AA 中点由直线1AA 与1BB 距离为2,所以2BD =11A D =,2BD =,1A B AB ∴=在Rt ABC △,BC ∴==延长AC ,使AC CM =,连接1C M由1111,CM AC CM AC =∥知四边形11ACMC 为平行四边形11C M AC ∴∥,1C M ∴⊥平面ABC ,又AM ⊂平面ABC 1C M AM ∴⊥则在1Rt AC M △中,112,AM AC C M AC ==,1AC ∴=在11Rt AB C △中,1AC =,11BC BC ==1AB ∴==又A 到平面11BCC B 距离也为1所以1AB 与平面11BCC B=. 19. (1)分布列见解析,()1E X = (2)(i )23.4m =;列联表见解析,(ii )能 【小问1详解】依题意,X 的可能取值为0,1,2则022020240C C 19(0)C 78P X ===,120224010C C 20(1)C 39P X ===,202020240C C 19(2)C 78P X === 所以X 的分布列为:故192019()0121783978E X =⨯+⨯+⨯=. 【小问2详解】(i )依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数由于原数据已经排好,所以我们只需要观察对照组第一排数据与实验组第二排数据即可.可得第11位数据为14.4,后续依次为17.3,17.3,18.4,19.2,20.1,20.2,20.4,21.5,23.2,23.6,故第20位为23.2,第21位数据为23.6 所以23.223.623.42m +==故列联表为:(ii )由(i )可得,240(661414) 6.400 3.84120202020K ⨯⨯-⨯==>⨯⨯⨯所以能有95%的把握认为药物对小鼠生长有抑制作用. 20. (1)2p =(2)12-【小问1详解】 设()(),,,A A B B A x y B x y由22102x y y px-+=⎧⎨=⎩可得,2420y py p -+=,所以4,2A B A B y y p y y p +== 所以A B AB y y ==-==即2260p p --=,因为0p >,解得:2p =.【小问2详解】因为()1,0F ,显然直线MN 的斜率不可能为零 设直线MN :x my n =+,()()1122,,,M x y N x y由24y x x my n⎧=⎨=+⎩可得,2440y my n --=,所以,12124,4y y m y y n +==- 22161600m n m n ∆=+>⇒+>因为0MF NF ⋅=,所以()()1212110x x y y --+= 即()()1212110my n my n y y +-+-+=亦即()()()()2212121110m y y m n y y n ++-++-=将12124,4y y m y y n +==-代入得22461m n n =-+,()()22410m n n +=->所以1n ≠,且2610n n -+≥,解得3n ≥+3n ≤- 设点F 到直线MN 的距离为d ,所以d =12MN y y ==-=1==-所以MNF的面积()2111122S MN d n =⨯⨯=-=- 而3n ≥+3n ≤-所以当3n =-,MNF的面积(2min 212S =-=-21.(1)答案见解析 (2)(,3]-∞ 【小问1详解】326cos cos 3sin cos sin ()cos x x x x xf x a x'+=- 22244cos 3sin 32cos cos cos x x xa a x x+-=-=- 令2cos x t =,则(0,1)t ∈则2223223()()t at t f x g t a t t '-+-==-=当222823(21)(43)8,()()t t t t a f x g t t t'+--+==== 当10,2t ⎛⎫∈ ⎪⎝⎭,即ππ,,()042x f x '⎛⎫∈< ⎪⎝⎭. 当1,12t ⎛⎫∈⎪⎝⎭,即π0,,()04x f x '⎛⎫∈> ⎪⎝⎭. 所以()f x 在π0,4⎛⎫ ⎪⎝⎭上单调递增,在ππ,42⎛⎫⎪⎝⎭上单调递减. 【小问2详解】 设()()sin 2g x f x x =-()22222323()()2cos 2()22cos 12(21)24at t g x f x x g t x t a t t t t''+-=-=--=--=+-+-设223()24t a t t tϕ=+-+-322333264262(1)(22+3)()40t t t t t t t t t tϕ'--+-+=--+==-> 所以()(1)3t a ϕϕ<=-.1︒若(,3]a ∈-∞,()()30g x t a ϕ'=<-≤即()g x 在0,2π⎛⎫⎪⎝⎭上单调递减,所以()(0)0g x g <=. 所以当(,3],()sin 2a f x x ∈-∞<,符合题意.2︒若(3,)a ∈+∞当22231110,333t t t t ⎛⎫→-=--+→-∞ ⎪⎝⎭,所以()t ϕ→-∞. (1)30a ϕ=->.所以0(0,1)t ∃∈,使得()00t ϕ=,即00,2x π⎛⎫∃∈ ⎪⎝⎭,使得()00g x '=.当()0,1,()0t t t ϕ∈>,即当()00,,()0,()x x g x g x '∈>单调递增.所以当()00,,()(0)0x x g x g ∈>=,不合题意. 综上,a 的取值范围为(,3]-∞.四、选做题.22. (1)3π4(2)cos sin 30ραρα+-= 【小问1详解】因为l 与x 轴,y 轴正半轴交于,A B 两点,所以ππ2α<< 令0x =,12cos t α=-,令0y =,21sin t α=- 所以21244sin cos sin 2PA PB t t ααα====,所以sin 21α=±即π2π2k α=+,解得π1π,42k k α=+∈Z 因为ππ2α<<,所以3π4α=.【小问2详解】由(1)可知,直线l 的斜率为tan 1α=-,且过点()2,1 所以直线l 的普通方程为:()12y x -=--,即30x y +-=由cos ,sin x y ραρα==可得直线l 的极坐标方程为cos sin 30ραρα+-=.23. (1),33a a ⎛⎫⎪⎝⎭(2)3【小问1详解】若x a ≤,则()22f x a x a x =--< 即3x a >,解得3a x >,即3ax a <≤. 若x a >,则()22f x x a a x =--< 解得3x a <,即3a x a <<综上,不等式的解集为,33a a ⎛⎫ ⎪⎝⎭. 【小问2详解】2,()23,x a x af x x a x a -+≤⎧=⎨->⎩.画出()f x 的草图,则()f x 与坐标轴围成ADO △与ABCABC ∆的高为3,(0,),,0,,022a a a D a A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,所以||=AB a所以21132224OAD ABCSSOA a AB a a +=⋅+⋅==,解得a =.。
全国统一高考数学试卷(理科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数的共轭复数是()A.B. C.﹣i D.i2.(5分)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3 B.y=|x|+1 C.y=﹣x2+4 D.y=2﹣|x|3.(5分)执行如图的程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.50404.(5分)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.5.(5分)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x 上,则cos2θ=()A.﹣B.﹣C.D.6.(5分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.7.(5分)设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B 两点,|AB|为C的实轴长的2倍,则C的离心率为()A.B.C.2 D.38.(5分)的展开式中各项系数的和为2,则该展开式中常数项为()A.﹣40 B.﹣20 C.20 D.409.(5分)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A. B.4 C.D.610.(5分)已知与均为单位向量,其夹角为θ,有下列四个命题P1:|+|>1⇔θ∈[0,);P2:|+|>1⇔θ∈(,π];P3:|﹣|>1⇔θ∈[0,);P4:|﹣|>1⇔θ∈(,π];其中的真命题是()A.P1,P4 B.P1,P3 C.P2,P3 D.P2,P411.(5分)设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增12.(5分)函数y=的图象与函数y=2sinπx(﹣2≤x≤4)的图象所有交点的横坐标之和等于()A.2 B.4 C.6 D.8二、填空题(共4小题,每小题5分,满分20分)13.(5分)若变量x,y满足约束条件则z=x+2y的最小值为.14.(5分)在平面直角坐标系xOy,椭圆C的中心为原点,焦点F1F2在x轴上,离心率为.过Fl的直线交于A,B两点,且△ABF2的周长为16,那么C的方程为.15.(5分)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的体积为.16.(5分)在△ABC中,B=60°,AC=,则AB+2BC的最大值为.三、解答题(共8小题,满分70分)17.(12分)等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=log3a1+log3a2+…+log3an,求数列{}的前n项和.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.19.(12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110] 频数8 20 42 22 8B配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110] 频数 4 12 42 32 10 (Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)20.(12分)在平面直角坐标系xOy中,已知点A(0,﹣1),B点在直线y=﹣3上,M 点满足∥,=•,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.21.(12分)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)如果当x>0,且x≠1时,f(x)>+,求k的取值范围.22.(10分)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.24.设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(•新课标)复数的共轭复数是()A.B. C.﹣i D.i【分析】复数的分子、分母同乘分母的共轭复数,复数化简为a+bi(a,b∈R)的形式,然后求出共轭复数,即可.【解答】解:复数===i,它的共轭复数为:﹣i.故选C2.(5分)(•新课标)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3 B.y=|x|+1 C.y=﹣x2+4 D.y=2﹣|x|【分析】由函数的奇偶性和单调性的定义和性质,对选项一一加以判断,即可得到既是偶函数又在(0,+∞)上单调递增的函数.【解答】解:对于A.y=2x3,由f(﹣x)=﹣2x3=﹣f(x),为奇函数,故排除A;对于B.y=|x|+1,由f(﹣x)=|﹣x|+1=f(x),为偶函数,当x>0时,y=x+1,是增函数,故B正确;对于C.y=﹣x2+4,有f(﹣x)=f(x),是偶函数,但x>0时为减函数,故排除C;对于D.y=2﹣|x|,有f(﹣x)=f(x),是偶函数,当x>0时,y=2﹣x,为减函数,故排除D.故选B.3.(5分)(•新课标)执行如图的程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.5040【分析】执行程序框图,写出每次循环p,k的值,当k<N不成立时输出p的值即可.【解答】解:执行程序框图,有N=6,k=1,p=1P=1,k<N成立,有k=2P=2,k<N成立,有k=3P=6,k<N成立,有k=4P=24,k<N成立,有k=5P=120,k<N成立,有k=6P=720,k<N不成立,输出p的值为720.故选:B.4.(5分)(•新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.【分析】本题是一个古典概型,试验发生包含的事件数是3×3种结果,满足条件的事件是这两位同学参加同一个兴趣小组有3种结果,根据古典概型概率公式得到结果.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件数是3×3=9种结果,满足条件的事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到P=,故选A.5.(5分)(•新课标)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣B.﹣C.D.【分析】根据直线的斜率等于倾斜角的正切值,由已知直线的斜率得到tanθ的值,然后根据同角三角函数间的基本关系求出cosθ的平方,然后根据二倍角的余弦函数公式把所求的式子化简后,把cosθ的平方代入即可求出值.【解答】解:根据题意可知:tanθ=2,所以cos2θ===,则cos2θ=2cos2θ﹣1=2×﹣1=﹣.故选:B.6.(5分)(•新课标)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.【分析】由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,根据组合体的结构特征,得到组合体的侧视图.【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选D.7.(5分)(•新课标)设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于 A,B两点,|AB|为C的实轴长的2倍,则C的离心率为()A.B.C.2 D.3【分析】不妨设双曲线C:,焦点F(﹣c,0),由题设知,,由此能够推导出C的离心率.【解答】解:不妨设双曲线C:,焦点F(﹣c,0),对称轴y=0,由题设知,,∴,b2=2a2,c2﹣a2=2a2,c2=3a2,∴e=.故选B.8.(5分)(•新课标)的展开式中各项系数的和为2,则该展开式中常数项为()A.﹣40 B.﹣20 C.20 D.40【分析】给x赋值1求出各项系数和,列出方程求出a;将问题转化为二项式的系数和;利用二项展开式的通项公式求出通项,求出特定项的系数.【解答】解:令二项式中的x为1得到展开式的各项系数和为1+a∴1+a=2∴a=1∴==∴展开式中常数项为的的系数和∵展开式的通项为Tr+1=(﹣1)r25﹣rC5rx5﹣2r令5﹣2r=1得r=2;令5﹣2r=﹣1得r=3展开式中常数项为8C52﹣4C53=40故选D9.(5分)(•新课标)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A. B.4 C.D.6【分析】利用定积分知识求解该区域面积是解决本题的关键,要确定出曲线y=,直线y=x﹣2的交点,确定出积分区间和被积函数,利用导数和积分的关系完成本题的求解.【解答】解:联立方程得到两曲线的交点(4,2),因此曲线y=,直线y=x﹣2及y轴所围成的图形的面积为:S=.故选C.10.(5分)(•新课标)已知与均为单位向量,其夹角为θ,有下列四个命题P1:|+|>1⇔θ∈[0,);P2:|+|>1⇔θ∈(,π];P3:|﹣|>1⇔θ∈[0,);P4:|﹣|>1⇔θ∈(,π];其中的真命题是()A.P1,P4 B.P1,P3 C.P2,P3 D.P2,P4【分析】利用向量长度与向量数量积之间的关系进行转化求解是解决本题的关键,要列出关于夹角的不等式,通过求解不等式得出向量夹角的范围.【解答】解:由,得出2﹣2cosθ>1,即cosθ<,又θ∈[0,π],故可以得出θ∈(,π],故P3错误,P4正确.由|+|>1,得出2+2cosθ>1,即cosθ>﹣,又θ∈[0,π],故可以得出θ∈[0,),故P2错误,P1正确.故选A.11.(5分)(•新课标)设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【分析】利用辅助角公式将函数表达式进行化简,根据周期与ω的关系确定出ω的值,根据函数的偶函数性质确定出φ的值,再对各个选项进行考查筛选.【解答】解:由于f(x)=sin(ωx+ϕ)+cos(ωx+ϕ)=,由于该函数的最小正周期为T=,得出ω=2,又根据f(﹣x)=f(x),得φ+=+kπ(k∈Z),以及|φ|<,得出φ=.因此,f(x)=cos2x,若x∈,则2x∈(0,π),从而f(x)在单调递减,若x∈(,),则2x∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选A.12.(5分)(•新课标)函数y=的图象与函数y=2sinπx(﹣2≤x≤4)的图象所有交点的横坐标之和等于()A.2 B.4 C.6 D.8【分析】的图象由奇函数的图象向右平移1个单位而得,所以它的图象关于点(1,0)中心对称,再由正弦函数的对称中心公式,可得函数y2=2sinπx的图象的一个对称中心也是点(1,0),故交点个数为偶数,且每一对对称点的横坐标之和为2.由此不难得到正确答案.【解答】解:函数,y2=2sinπx的图象有公共的对称中心(1,0),作出两个函数的图象如图当1<x≤4时,y1<0而函数y2在(1,4)上出现1.5个周期的图象,在和上是减函数;在和上是增函数.∴函数y1在(1,4)上函数值为负数,且与y2的图象有四个交点E、F、G、H相应地,y1在(﹣2,1)上函数值为正数,且与y2的图象有四个交点A、B、C、D且:xA+xH=xB+xG═xC+xF=xD+xE=2,故所求的横坐标之和为8故选D二、填空题(共4小题,每小题5分,满分20分)13.(5分)(•新课标)若变量x,y满足约束条件则z=x+2y的最小值为﹣6.【分析】在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,把目标函数z=x+2y变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,求出两条直线的交点坐标,代入目标函数得到最小值.【解答】解:在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由y=x﹣9与2x+y=3的交点得到A(4,﹣5)∴z=4+2(﹣5)=﹣6故答案为:﹣6.14.(5分)(•新课标)在平面直角坐标系xOy,椭圆C的中心为原点,焦点F1F2在x轴上,离心率为.过Fl的直线交于A,B两点,且△ABF2的周长为16,那么C的方程为+=1.【分析】根据题意,△ABF2的周长为16,即BF2+AF2+BF1+AF1=16,结合椭圆的定义,有4a=16,即可得a的值;又由椭圆的离心率,可得c的值,进而可得b的值;由椭圆的焦点在x轴上,可得椭圆的方程.【解答】解:根据题意,△ABF2的周长为16,即BF2+AF2+BF1+AF1=16;根据椭圆的性质,有4a=16,即a=4;椭圆的离心率为,即=,则a=c,将a=c,代入可得,c=2,则b2=a2﹣c2=8;则椭圆的方程为+=1;故答案为:+=1.15.(5分)(•新课标)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的体积为8.【分析】由题意求出矩形的对角线的长,结合球的半径,球心到矩形的距离,满足勾股定理,求出棱锥的高,即可求出棱锥的体积.【解答】解:矩形的对角线的长为:,所以球心到矩形的距离为:=2,所以棱锥O﹣ABCD的体积为:=8.故答案为:816.(5分)(•新课标)在△ABC中,B=60°,AC=,则AB+2BC的最大值为2.【分析】设AB=c AC=b BC=a利用余弦定理和已知条件求得a和c的关系,设c+2a=m代入,利用判别大于等于0求得m的范围,则m的最大值可得.【解答】解:设AB=c AC=b BC=a由余弦定理cosB=所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a=,c=符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有====2,所以AB=2sinC,BC=2sinA.所以AB+2BC=2sinC+4sinA=2sin(120°﹣A)+4sinA=2(sin120°cosA﹣cos120°sinA)+4sinA=cosA+5sinA=2sin(A+φ),(其中sinφ=,cosφ=)所以AB+2BC的最大值为2.故答案为:2三、解答题(共8小题,满分70分)17.(12分)(•新课标)等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=log3a1+log3a2+…+log3an,求数列{}的前n项和.【分析】(Ⅰ)设出等比数列的公比q,由a32=9a2a6,利用等比数列的通项公式化简后得到关于q的方程,由已知等比数列的各项都为正数,得到满足题意q的值,然后再根据等比数列的通项公式化简2a1+3a2=1,把求出的q的值代入即可求出等比数列的首项,根据首项和求出的公比q写出数列的通项公式即可;(Ⅱ)把(Ⅰ)求出数列{an}的通项公式代入设bn=log3a1+log3a2+…+log3an,利用对数的运算性质及等差数列的前n项和的公式化简后,即可得到bn的通项公式,求出倒数即为的通项公式,然后根据数列的通项公式列举出数列的各项,抵消后即可得到数列{}的前n项和.【解答】解:(Ⅰ)设数列{an}的公比为q,由a32=9a2a6得a32=9a42,所以q2=.由条件可知各项均为正数,故q=.由2a1+3a2=1得2a1+3a1q=1,所以a1=.故数列{an}的通项式为an=.(Ⅱ)bn=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣2[(1﹣)+(﹣)+…+(﹣)]=﹣,所以数列{}的前n项和为﹣.18.(12分)(•新课标)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.【分析】(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD;(Ⅱ)建立空间直角坐标系,写出点A,B,C,P的坐标,求出向量,和平面PAB的法向量,平面PBC的法向量,求出这两个向量的夹角的余弦值即可.【解答】(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz,则A(1,0,0),B(0,,0),C(﹣1,,0),P(0,0,1).=(﹣1,,0),=(0,,﹣1),=(﹣1,0,0),设平面PAB的法向量为=(x,y,z),则即,因此可取=(,1,)设平面PBC的法向量为=(x,y,z),则,即:可取=(0,1,),cos<>==故二面角A﹣PB﹣C的余弦值为:﹣.19.(12分)(•新课标)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110] 频数8 20 42 22 8B配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110] 频数 4 12 42 32 10 (Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)【分析】(I)根据所给的样本容量和两种配方的优质的频数,两个求比值,得到用两种配方的产品的优质品率的估计值.(II)根据题意得到变量对应的数字,结合变量对应的事件和第一问的结果写出变量对应的概率,写出分布列和这组数据的期望值.【解答】解:(Ⅰ)由试验结果知,用A配方生产的产品中优质的频率为∴用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为∴用B配方生产的产品的优质品率的估计值为0.42;(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间[90,94),[94,102),[102,110]的频率分别为0.04,0.54,0.42,∴P(X=﹣2)=0.04,P(X=2)=0.54,P(X=4)=0.42,即X的分布列为X ﹣2 2 4P 0.04 0.54 0.42∴X的数学期望值EX=﹣2×0.04+2×0.54+4×0.42=2.6820.(12分)(•新课标)在平面直角坐标系xOy中,已知点A(0,﹣1),B点在直线y=﹣3上,M点满足∥,=•,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.【分析】(Ⅰ)设M(x,y),由已知得B(x,﹣3),A(0,﹣1)并代入∥,=•,即可求得M点的轨迹C的方程;(Ⅱ)设P(x0,y0)为C上的点,求导,写出C在P点处的切线方程,利用点到直线的距离公式即可求得O点到l距离,然后利用基本不等式求出其最小值.【解答】解:(Ⅰ)设M(x,y),由已知得B(x,﹣3),A(0,﹣1).所=(﹣x,﹣1﹣y),=(0,﹣3﹣y),=(x,﹣2).再由题意可知()•=0,即(﹣x,﹣4﹣2y)•(x,﹣2)=0.所以曲线C的方程式为y=﹣2.(Ⅱ)设P(x0,y0)为曲线C:y=﹣2上一点,因为y′=x,所以l的斜率为x0,因此直线l的方程为y﹣y0=x0(x﹣x0),即x0x﹣2y+2y0﹣x02=0.则o点到l的距离d=.又y0=﹣2,所以d==≥2,所以x02=0时取等号,所以O点到l距离的最小值为2.21.(12分)(•新课标)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)如果当x>0,且x≠1时,f(x)>+,求k的取值范围.【分析】(I)求出函数的导数;利用切线方程求出切线的斜率及切点;利用函数在切点处的导数值为曲线切线的斜率及切点也在曲线上,列出方程组,求出a,b值.(II)将不等式变形,构造新函数,求出新函数的导数,对参数k分类讨论,判断出导函数的符号,得到函数的单调性,求出函数的最值,求出参数k的范围.【解答】解:由题意f(1)=1,即切点坐标是(1,1)(Ⅰ)由于直线x+2y﹣3=0的斜率为,且过点(1,1),故即解得a=1,b=1.(Ⅱ)由(Ⅰ)知,所以).考虑函数(x>0),则.(i)设k≤0,由知,当x≠1时,h′(x)<0.而h(1)=0,故当x∈(0,1)时,h′(x)<0,可得;当x∈(1,+∞)时,h′(x)<0,可得h(x)>0从而当x>0,且x≠1时,f(x)﹣(+)>0,即f(x)>+.(ii)设0<k<1.由于当x∈(1,)时,(k﹣1)(x2+1)+2x>0,故h′(x)>0,而h(1)=0,故当x∈(1,)时,h(x)>0,可得h(x)<0,与题设矛盾.(iii)设k≥1.此时h′(x)>0,而h(1)=0,故当x∈(1,+∞)时,h(x)>0,可得h(x)<0,与题设矛盾.综合得,k的取值范围为(﹣∞,0].23.(•新课标)在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.【分析】(I)先设出点P的坐标,然后根据点P满足的条件代入曲线C1的方程即可求出曲线C2的方程;(II)根据(I)将求出曲线C1的极坐标方程,分别求出射线θ=与C1的交点A的极径为ρ1,以及射线θ=与C2的交点B的极径为ρ2,最后根据|AB|=|ρ2﹣ρ1|求出所求.【解答】解:(I)设P(x,y),则由条件知M(,).由于M点在C1上,所以即从而C2的参数方程为(α为参数)(Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.射线θ=与C1的交点A的极径为ρ1=4sin,射线θ=与C2的交点B的极径为ρ2=8sin.所以|AB|=|ρ2﹣ρ1|=.24.(•新课标)设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【分析】(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.直接求出不等式f(x)≥3x+2的解集即可.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0分x≥a和x≤a推出等价不等式组,分别求解,然后求出a 的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得﹣=﹣1,故a=222.(10分)(•新课标)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC 的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.【分析】(I)做出辅助线,根据所给的AE的长为m,AC的长为n,AD,AB的长是关于x 的方程x2﹣14x+mn=0的两个根,得到比例式,根据比例式得到三角形相似,根据相似三角形的对应角相等,得到结论.(II)根据所给的条件做出方程的两个根,即得到两条线段的长度,取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH,根据四点共圆得到半径的大小.【解答】解:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程x2﹣14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=(12﹣2)=5.故C,B,D,E四点所在圆的半径为5高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.2106.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>97.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||29.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选:A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}【分析】先化简集合A,结合全集,求得∁UA.【解答】解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁UA={2},故选:B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4,∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).故选:D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.4.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数y=sin3x+cos3x=,故只需将函数y=cos3x的图象向右平移个单位,得到y==的图象.故选:C.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.210【分析】由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【解答】解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>9【分析】由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b,代入0<f(﹣1)≤3,即可求出c的范围.【解答】解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,则f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,即6<c≤9,故选:C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=xa(x≥0),g(x)=logax的图象,比照后可得答案.【解答】解:当0<a<1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:此时答案D满足要求,当a>1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:。
高三数学全国统一标准测试(理科A 卷)数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试用时120分钟.第Ⅰ卷(选择题 共60分)参 考 公 式:sin αcos β=21[sin(α+β)+sin(α-β)] cos αsin β=21[sin(α+β)-sin(α-β)]cos αcos β=21[cos(α+β)+cos(α-β)]sin αsin β=-21[cos(α+β)-cos(α-β)]sin α+sin β=2sin 2-+βαβαcos 2 sin α-sin β=2cos 2-2+βαβαsin cos α+cos β=2cos 2-2+βαβαcos cos α-cos β=-2sin 2-2+βαβαsin S 台侧=21(c ′+c )l (c 、c ′分别表示上、下底面周长,l 表示斜高或母线长)V 台体=31(S ′+S S '+S )h (S ′、S 分别表示上、下底面积,h 表示高)如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中恰好发生kP n (k )=k n k k np p --)1(C 一、选择题(本大题共12小题;每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知二次函数f (x )=(x -a )(x -b )-2(a <b ),并且α、β(α<β)是方程f (x )=0的两根,则a 、b 、α、β的大小关系是A.α<a <b <β B .a <α<β<b C.a <α<b <β D.α<a <β<b 2.已知θ∈[0,π],f (θ)=sin(cos θ)的最大值为a ,最小值为b ,g (θ)=cos(sin θ)的最大值为c ,最小值为d ,则a 、b 、c 、d 从小到大的顺序为 A.b <d <a <cB.d <b <c <aC.b <d <c <aD.d <b <a <c 3.设复数z 1=2-i ,已知|z 2|=|z 1|,且arg2=π21z z ,则复数z 2的值为A.1+2iB.1-2iC.-1+2iD.-1-2i4. 某地区高中分三类,A 类校共有学生4000人,B 类校共有学生2000人,C 类校共有学生3000人.现欲抽样分析某次考试的情况,若抽取900份试卷进行分析,则从A 类校抽取的试卷份数应为 A.450 B.400 C.300 D.2005.给定两个向量a =(3,4),b =(2,1),若(a +x b )⊥(a -b ),则x 的值等于 A.-3 B.23C.3D.-236. 已知F 1、F 2为双曲线2222by a x -=1(a >0,b >0)的焦点,过F 2作垂直于x 轴的直线,它与双曲线的一个交点为P ,且∠PF 1F 2=30°,则双曲线的渐近线方程为 A.y =±22xB.y =±3xC.y =±33xD.y =±2x7. 点P 在曲线y =x 3-x +7上移动,过P 点的切线的倾斜角取值范围是 A.[0,π)B.(0,2π)∪[4π3,π)C.[0, 2π)∪(2π,4π3] D.[0, 2π)∪[4π3,π)8. 若某等差数列{a n }中,a 2+a 6+a 16为一个确定的常数,其前n 项和为S n ,则以下也为确定的常数的是 A.S 17 B.S 15 C.S 8D.S 7 9.将一张画了直角坐标系且两轴的长度单位相同的纸折叠一次,使点(2,0)与点(-2,4)重合,若点(7,3)与点(m ,n )重合,则m +n 的值为 A.4 B.-4 C.10 D.-1010.设方程2-x =|lg x |的两根为x 1、x 2,则 A.x 1x 2<0 B.x 1x 2=1 C.x 1x 2>1 D.0<x 1x 2<111. 如上图,正方体ABCD —A 1B 1C 1D 1 中,E 、F 分别是AB 、CC 1的中点,则异面直线A 1C 与EF 所成角的余弦值为 A.33 B.32 C.31D.61 12.设数集M ={x |m ≤x ≤m +43},N ={x |n -31≤x ≤n },且M 、N 都是集合{x |0≤x ≤1}的子集,如果把b -a 叫做集合{x |a ≤x ≤b }的“长度”,那么集合M ∩N 的“长度”的最小值是A.31B.32 C.121D.125 第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4小题;每小题4分,共16分.把答案填在题中的横线上) 13.不等式x 2-(a +1)|x |+a >0的解集为{x |x <-1或x >1,x ∈R },则a 的取值范围为 . 14.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为 .15.某地一种出租车的车费的计算规定如下:基本车费为7元,行程不足3公里时,只收取基本车费;行程不足5公里时,大于等于3公里的那部分,每增加0.5公里,加收车费0.7元,不足0.5公里按0.5公里计算(如:行程为x 公里,在4≤x <4.5时,车费为7+0.7×3=9.1元);行程大于等于5公里时,大于等于5公里的那部分,每增加0.2公里,加收车费0.4元.如果某人从A 地到B 地,共付车费11元,那么从A 地到B 地的行程x 的范围是 .16. 如图所示,在A 、B 间有四个焊接点,若焊接点脱落,则可能导致电路不通. 今发现A 、B 之间线路不通,则焊接点脱落的不同情况有 种.三、解答题(本大题共6小题;共74分.解答过程应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知函数f (x )=a +b sin2x +c cos2x 的图象经过点A (0,1),B (4π, 1),且当x ∈[0, 4π]时,f (x )取得最大值22-1.(Ⅰ)求f (x )的解析式;(Ⅱ)是否存在向量m ,使得将f (x )的图象按向量m 平移后可以得到一个奇函数的图象?若存在,求出满足条件的一个m ;若不存在,说明理由. 18.(本小题满分12分)在袋里装30个小球,其中彩球有:n 个红色、5个蓝色、10个黄色,其余为白球. 求:(Ⅰ)如果已经从中取定了5个黄球和3个蓝球,并将它们编上了不同的号码后排成一排,那么使蓝色小球互不相邻的排法有多少种?(Ⅱ)如果从袋里取出3个都是相同颜色彩球(无白色)的概率是40613,且n ≥2,计算红球有几个?(Ⅲ)根据(Ⅱ)的结论,计算从袋中任取3个小球至少有一个是红球的概率. 19.(本小题满分12分)设数列{a n }满足下列关系式:a 1=2a (a ≠0,a 是常数),a n =2a -12-n a a ;数列{b n }满足关系式b n =aa n -1. (Ⅰ)用数学归纳法证明:a n ≠a ; (Ⅱ)证明数列{b n }是等差数列; (Ⅲ)求∞→n lim a n .20.(本小题满分12分)如图,在正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=21AB ,点E 、M 分别为A 1B 、C 1C 的中点,过点A 1、B 、M 三点的平面A 1BMN 交C 1D 1于点N . (Ⅰ)求证:EM ∥平面A 1B 1C 1D 1;(Ⅱ)求二面角B —A 1N —B 1的正切值. 21. (本小题满分12分)已知函数f (x )=ln(2-x )+ax 在(0,1)上是增函数. (Ⅰ)求实数a 的取值范围;(Ⅱ)若数列{a n }满足a 1=c ∈(0,1)且a n +1=ln(2-a n )+a n (n ∈N *),证明0<a n <a n +1<1; (Ⅲ)已知∞→n lim a n 存在,求其值.22.(本小题满分14分) 已知抛物线y 2=2(x +21)的焦点为F ,准线为l ,试判断:是否存在同时满足以下两个条件的双曲线C :(1)双曲线C 的一个焦点是F ,相应F 的准线为l ;(2)直线m 垂直于x -y =0,双曲线C 截直线m 所得的线段的长为22,并且截得线段的中点恰好在直线x -y =0上.若存在,求出这条双曲线的方程;若不存在,说明理由.参考答案一、选择题1.A (根据二次函数的图象即得)2.A (由正余弦函数的值域和单调性得)3.D (根据复数乘除法的几何意义)4.B5.A6.D (由a 2+b 2=c 2及直角三角形PF 1F 2中的边角关系求得2=ab) 7.D (过P 点的切线的倾斜角正切值的范围即是y =3x 2-1的值域[-1,+∞),由此得答案) 8.B (a 2+a 6+a 16=3a 1+21d =3a 8是一个确定的常数,因此S 15=15a 8是常数)9. C ( 提示:点(7,3)与点(m ,n )关于点(2,0)与点(-2,4)的中垂线对称)10.D (设两根为x 1<x 2,结合图象知⎪⎪⎩⎪⎪⎨⎧><<-==--.1,10,lg 2,lg 2211212x x x x x x 前两个式子相减整理得lg(x 1x 2)=1222x x ---<0,由此易得答案=11.B (设异面直线A 1C 与EF 所成角为θ,正方体棱长为1,A A ++=++=,11得θcos 2631⋅=⋅A =1,所以选B) 12.C (集合M 的长度为43、集合N 的长度为31,因M 、N 都是集合{x |0≤x ≤1}的子集,而{x |0≤x ≤1}的长度为1,由此得集合M ∩N 的“长度”的最小值是(1211)3143=-+)二、填空题13.a ≤0 14.-37 15.5.4≤x <5.6 16.13 三、解答题17. 解: (Ⅰ)由题意知⎩⎨⎧=+=+,1,1b a c a∴b =c =1-a ,∴f (x )=a +2(1-a )sin(2x +4π). 3分∵x ∈[0, 4π], ∴2x +4π∈[4π,4π3].当1-a >0时,由a +2(1-a )=22-1,解得a =-1; 当1-a <0时, a +2(1-a )·22=22-1,无解; 当1-a =0时,a =22-1,相矛盾. 综上可知a =-1. ∴f (x )=-1+22sin(2x +4π). 8分(Ⅱ)∵g (x )=22sin2x 是奇函数,将g (x )的图象向左平移8π个单位,再向下平移一个单位就可以得到f (x )的图象.10分因此,将f (x )的图象向右平移8π个单位,再向上平移一个单位就可以得到奇函数g (x )=22sin2x 的图象. 故m =(8π,1)是满足条件的一个向量. 12分.18.解:(Ⅰ)将5个黄球排成一排只有55A 种排法,将3个蓝球放在5个黄球所形成的6个空上,有36A 种放法 ,∴所求的排法为3655A A =5×4×3×2×6×5×4=14400(种).4分(Ⅱ)取3个球的种数为330C =4060,设“3个球全红色”为事件A ,“3个球全蓝色”为事件B ,“3个球全黄色”为事件C.P (B )=40601204060C )(,406010C C 31033035===C P , ∵A 、B 、C 为互斥事件,∴P (A +B +C )= P (A )+P (B )+P (C ), 即4060120406010)(40613++=A P ⇒=⇒0)(A P 取3个球红球的个数n ≤2.又∵n ≥2,故n = 2 .8分(Ⅲ)记“3个球中至少有一个是红球”为事件D ,则D 为“3个球中没有红球”,P (D )=1-P (D )=1-14528C C 330328=或P (D )=14528C C C C C 3301282222812=⋅+⋅ 12分19.(Ⅰ) 证明:当n =1时,由a 1=2a 得a 1-a =2a -a =a ≠0,∴a 1≠a .即n =1时,结论成立. 1分设n =k 时结论成立,即a k ≠a , 则当n =k +1时,a k +1-a =(2a -k a a 2)-a=a -ka a 2=k k a a a a )(-≠0.∴a k +1≠a .即n =k +1时,结论成立.3分 因此,对所有自然数n ,都有a n ≠a .4分(Ⅱ)证明: ∵a n -a =(2a -12-n a a )-a=11)(---n n a a a a ,∴b n =.)()(11111a a a a a a a a a a a a n n n n n -+-=-=-----即b n =11111--+=-+n n b aa a a . ∴b n -b n -1=a 1是一个常数,即数列{b n }是等差数列.8分(Ⅲ) 解:∵{b n }是等差数列,其通项为: b n =b 1+(n -1)·a1 =aa -11+(n -1)·a 1=a 1+(n -1)·a 1=an, 又a n -a =n b 1=na, ∴a n =a +na , ∴∞→n lim a n =a .12分20.(法一)(Ⅰ) 证明: 取A 1B 1的中点F ,连EF 、C 1F .∵E 为A 1B 中点, ∴EF21BB 1. 2分又∵M 为CC 1中点,∴EF C 1M ,∴四边形EFC 1M 为平行四边形, ∴EM ∥FC 1. 4分 而EM ⊄平面A 1B 1C 1D 1,FC 1⊂平面A 1B 1C 1D 1. ∴EM ∥平面A 1B 1C 1D 1.6分(Ⅱ)解: 由(Ⅰ)EM ∥平面A 1B 1C 1D 1,EM ⊂平面A 1BMN , 平面A 1BMN ∩平面A 1B 1C 1D 1=A 1N ,∴A 1N ∥EM ∥FC 1, ∴N 为C 1D 1中点.过B 1作B 1H ⊥A 1N 于H ,连BH ,根据三垂线定理BH ⊥A 1N , ∠BHB 1即为二面角B —A 1N —B 1的平面角. 8分设AA 1=a ,则AB =2a . ∵A 1B 1C 1D 1为正方形, ∴A 1N =5a .又∵△A 1B 1H ∽△NA 1D 1, ∴B 1H =54522aa a a =⋅. 在Rt △BB 1H 中, tan BHB 1=455411==a a H B BB ,即二面角B —A 1N —B 1的正切值为45. 2分(法二)(Ⅰ) 证明:建立如图所示空间直角坐标系,设AB =2a ,AA 1=a (a >0),则 A 1(2a ,0,a ),B (2a ,2a ,0),C (0,2a ,0),C 1(0,2a ,a ). 2分∵E 为A 1B 的中点,M 为CC 1的中点, ∴E (2a ,a ,2a ),M (0,2a , 2a ). ∴EM ∥A 1B 1C 1D 1.6分(Ⅱ)解:设平面A 1BM 的法向量为n =(x ,y ,z ), 又A 1=(0,2a ,-a ), =(-2a ,0,2a ), 由n ⊥A 1,n ⊥,得⎪⎩⎪⎨⎧=+-=-.022,02azax az ay ∴⎪⎪⎩⎪⎪⎨⎧==.2,4z y z x ∴n =(2,4aa ,a ). 9分而平面A 1B 1C 1D 1的法向量为n 1=(0,0,1). 设二面角为θ,则|cos θ|=214||||||11=⋅n n n n .又二面角为锐二面角, ∴cos θ=214. 11分从而tan θ=45 12分21.解:(Ⅰ)f ′(x )=21-x +a ,2分 由于f (x )在(0,1)上是增函数, ∴21-x +a >0在x ∈(0,1)上恒成立,∴a >-21-x 恒成立.4分 而-2<x -2<-1,∴-1<21-x <-21, ∴21<-21-x <1,∴a ≥1即为所求. 6分 (Ⅱ)(ⅰ)由题设知a 1=c ∈(0,1),(ⅱ)假设0<a k <1,当n =k +1时,由(Ⅰ)知f (x )=ln(2-x )+x 在(0,1)上是增函数,∴a k+1=ln(2-a k )+a k >0,且a k+1=ln(2-a k )+a k <1,得0<a k+1<1.由(ⅰ)(ⅱ)得n ∈N *时,0<a n <1.又∵a n+1-a n =ln(2-a n )>0,∴0<a n <a n+1<1,n ∈N *. 9分 (Ⅲ)设∞→n lim a n =m ,由a n+1=ln(2-a n )+a n ,得到∞→n lim a n+1=∞→n lim [ln(2-a n )+a n ].即m =ln(2-m )+m ,∴m =1,即∞→n lim a n =1.12分22.解:∵y 2=2(x +21),∴焦点为F (0,0),准线l :x =-1. 2分 设双曲线C 存在,其离心率为e ,点(x ,y )为双曲线C 上任意一点, 由条件122++x y x =e ,得(1-e 2)x 2+y 2-2e 2x -e 2=0. 4分 又设与x -y =0垂直的直线m 为y =-x +b ,则双曲线C 应与m 有两个交点,设为A (x 1,y 1)、B (x 2,y 2),且|AB |=22.由⎩⎨⎧+-==--+-.b x y ,e x e y x )e (02122222得(2-e 2)x 2-2(e 2+b )x +b 2-e 2=0.则⎪⎩⎪⎨⎧>++-=∆≠-.e b e b be ,e 0484802222222 (*)成立, 且x 1+x 2=222)(2e b e -+,x 1x 2=2222e e b --. 9分又|AB |=22,所以2[(22222e b e -+)2-4(2222ee b --)]=8, 所以2222222)2(22e b e b e be --++=1.① 11分又AB 的中点M (222222,2ee be b e b e ----+)在直线x -y =0上, ∴2222222e e be b e b e ---=-+.② 由①、②解得⎩⎨⎧=-=.2,2e b 此时(*)成立,所以满足条件的双曲线C 存在,其方程为3x 2-y 2+8x +4=0. 14分。