小学五年级奥数类型题及解答
- 格式:doc
- 大小:26.02 KB
- 文档页数:3
小学五年级奥数试题(含答案)一、选择题1. 小明有8个苹果,小红有6个苹果,小明比小红多几个苹果?A. 2个B. 4个C. 6个D. 8个答案:B. 4个2. 一只小狗每天晨跑2公里,晚跑3公里,一周跑多少公里?A. 10公里B. 12公里C. 14公里D. 16公里答案:D. 16公里3. 一个月有30天,一个星期有7天,那么3个星期有多少天?A. 19天B. 20天D. 22天答案:C. 21天4. 小红拿了25个苹果,她和小明一共有38个苹果,请问小明拿了几个苹果?A. 10个B. 12个C. 13个D. 15个答案:B. 12个5. 一盒牛奶有900毫升,小明喝了1/4盒,还剩多少毫升?A. 200毫升B. 300毫升C. 450毫升D. 600毫升答案:C. 450毫升二、填空题1. 36 ÷ 6 = ____2. 54 - __ = 42答案:123. 78 + __ = 100答案:224. 3 × 5 - __ = 7答案:85. 72 ÷ __ = 8答案:9三、解答题1. 用算术法解答:小明和小红一起买了15颗苹果,小明买了3颗苹果,那么小红买了几颗苹果?答案:小红买了12颗苹果。
2. 用绘图法解答:平行四边形ABCD的周长是24cm,边长AB是4cm,请画出平行四边形ABCD。
答案:(请自行绘图)3. 用列式解答:一个数加上3等于10,这个数是多少?答案:这个数是7。
总结:通过以上的奥数试题,我们可以锻炼和提高我们的数学技能。
不仅需要掌握基本的运算规则和运算方法,还需要灵活运用解题思路和方法。
希望大家能够通过不断的练习和思考,提高自己的数学水平。
小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。
答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。
第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。
此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。
题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。
每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。
题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。
一楼到六楼走5 层楼梯,用时5×9 = 45 秒。
小学五年级奥数题及答案解析(五篇)篇一油库里有6桶油,分别装着汽油、柴油和机油。
油桶上只标明15公升、16公升、18公升、19公升、20公升和31公升,却没有注明是哪一种油。
只知道柴油是机油的2倍,汽油只有一桶。
请你分析一下,各个油桶里装的是什么油?【答案解析】根据“柴油是机油的2倍”这一条件可知,这两种油之和一定是3的倍数。
而六桶油的和为15+16+18+19+20+31=119(公升),119除以3得到的余数为2,说明汽油量是3的倍数还多2公升。
又知“汽油只有一桶”,在油桶上标明的六个数中,只有20是3的倍数多2的数,所以标明20公升这一桶装的是汽油。
从而可求出机油量为(15+16+18+19+31)÷3=33(公升),柴油量为33×2=66(公升)通过观察可知,标明15公升与18公升的两桶装的是机油,标明16公升、19公升与31公升的三桶装的是柴油。
篇二甲、乙、丙三个桶内各装了一些油,先将甲桶内三分之一的油倒入乙桶,再将乙桶内五分之一的油倒入丙桶,这时三个桶内的油一样多,如果最初丙桶内有油48千克,那么最初甲桶内有油_____千克。
乙桶内有油_____千克。
【答案解析】甲桶里面应该有96千克,乙桶里有48千克。
假设甲桶往乙桶倒过油之后乙桶的油是5份,那么它将五分之一给了丙桶,结果两桶一样多,说明丙桶原来有3份,那么三桶都一样的时候都是4份,可以知道,甲桶倒出去三分之一之后还有4份,那么原来就有6份,甲桶往乙桶倒过2份油之后乙桶的油是5份,说明原来乙桶也是3份,那么丙桶的3份相当于48千克,一份就是16千克,最初的甲桶里面应该有96千克,乙桶里有48千克。
篇三学校参加体操表演的学生人数在60~100之间。
把这些同学按人数平均分成8人一组,或平均分成12人一组都正好分完。
参加这次表演的同学至少有()人。
【答案解析】考点:公因数和公倍数应用题。
分析:按人数平均分成8人一组,或平均分成12人一组都正好分完,那么总人数就是8和12的公倍数,再根据总人数在60~100之间进行求解。
【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。
以下是为⼤家整理的《五年级⼩学奥数题及答案【五篇】》供您查阅。
【第⼀篇:社会调查】⼀次数学⼩组到安华⼩区去做社会调查。
数学⼩组同学问街道主任:“您这个⼩区有多少⼈⼝?”,街道主任风趣地说:“51995 的末四位数字就是我这个⼩区的⼈⼝数!”原来这位主任是⼀位退休的数学教师。
⼩组同学很快算出了安华⼩区的⼈⼝数。
同学们你也算算看。
答案与解析: 从55 开始,积为四位数字。
55=3125 56 的末四位数字为5625 57 的末四位数字为8125 58 的末四位数字为0625 59 的末四位数字为3125…… 观察上⾯的计算结果2,很快发现,从55 开始,5n 的末四位数字的变化是有规律的,每隔3 个就重复出现:3125、5625、8125、0625、3125、5625、8125、0625、3125、…… 1995÷4=498……3所以,51995 的末四位数字是8125,安华⼩区⼈⼝为8125 ⼈【第⼆篇:100⾯彩旗】某街道从东往西按照五⾯红旗、三⾯黄旗、四⾯绿旗、两⾯粉旗的规律排列,共悬挂1995 ⾯彩旗,你能算出从西往东数第100 ⾯彩旗是什么颜⾊的吗?答案与解析: 从西往东倒数第100 ⾯彩旗,是从东往西正数第⼏⾯彩旗呢? 这是正确解答本题的关键。
从西往东倒数第100 ⾯彩旗相当于从东往西正数第1896 ⾯彩旗,因为1995—100+1=1896已知按“五红、三黄、四绿、两粉”的规律排列,即每14 ⾯彩旗⼜重复出现。
1896÷(5+3+4+2)=135……6余数为6,所以正数第1896 ⾯彩旗为黄⾊。
【第三篇:存折上的钱】某⼈去银⾏取款,第⼀次取了存款的⼀半多50元,第⼆次取了余下的⼀半少100元,这时他的存折卡上还剩1350元。
问:他存折卡上原有多少钱?答案与解析:我们可以倒过来推,第⼆次取了余下⼀半少100元,可知"余下的⼀半多100元"是1350,从⽽"余下的⼀半"是1350-100=1250(元) 余下的钱是:1250×2=2500(元) 同样的道理,第⼀次去了余下⼀半多50元,可知"余下⼀半少50元"是2500,从⽽"余下⼀半"是2500+50=2550(元) 存折卡上原有2550×2=5100(元) 这道题主要是运⽤的还原的思想。
小学五年级奥数题试题及解答一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成.如果两队合作,由于彼此施工有影响,他们(de)工作效率就要降低,甲队(de)工作效率是原来(de)五分之四,乙队工作效率只有原来(de)十分之九.现在计划16天修完这条水渠,且要求两队合作(de)天数尽可能少,那么两队要合作几天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成.现在先请甲、丙合做2小时后,余下(de)乙还需做6小时完成.乙单独做完这件工作要多少小时4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天.已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成5.师徒俩人加工同样多(de)零件.当师傅完成了1/2时,徒弟完成了120个.当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵.单份给男生栽,平均每人栽几棵7.一个池上装有3根水管.甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完.现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天9.两根同样长(de)蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛(de)长是细蜡烛(de)2倍,问:停电多少分钟二.鸡兔同笼问题1.鸡与兔共100只,鸡(de)腿数比兔(de)腿数少28条,,问鸡与兔各有几只三.数字数位问题2.A和B是小于100(de)两个非零(de)不同自然数.求A+B分之A-B(de)最小值...4.一个三位数(de)各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数(de)百位数字与个位数字对调,得到一个新(de)三位数,则新(de)三位数比原三位数大198,求原数.5.一个两位数,在它(de)前面写上3,所组成(de)三位数比原两位数(de)7倍多24,求原来(de)两位数.6.把一个两位数(de)个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数(de)平方,这个和是多少7.一个六位数(de)末位数字是2,如果把2移到首位,原数就是新数(de)3倍,求原数.8.有一个四位数,个位数字与百位数字(de)和是12,十位数字与千位数字(de)和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数. 10.如果现在是上午(de)10点21分,那么在经过28799...99(一共有20个9)分钟之后(de)时间将是几点几分四.排列组合问题1.有五对夫妇围成一圈,使每一对夫妇(de)夫妻二人都相邻(de)排法有()A 768种B 32种C 24种D 2(de)10次方中2 若把英语单词hello(de)字母写错了,则可能出现(de)错误共有 ( )A 119种B 36种C 59种D 48种五.容斥原理问题1.有100种赤贫.其中含钙(de)有68种,含铁(de)有43种,那么,同时含钙和铁(de)食品种类(de)最大值和最小值分别是( )A 43,25B 32,25 C32,15 D 43,112.在多元智能大赛(de)决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题(de)学生中,解出第二题(de)人数是解出第三题(de)人数(de)2倍:(3)只解出第一题(de)学生比余下(de)学生中解出第一题(de)人数多1人;(4)只解出一道题(de)学生中,有一半没有解出第一题,那么只解出第二题(de)学生人数是( )A,5 B,6 C,7 D,83.一次考试共有5道试题.做对第1、2、3、、4、5题(de)分别占参加考试人数(de)95%、80%、79%、74%、85%.如果做对三道或三道以上为合格,那么这次考试(de)合格率至少是多少六.抽屉原理、奇偶性问题1.一只布袋中装有大小相同但颜色不同(de)手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色(de)2.有四种颜色(de)积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出(de)球中至少包含有7只同色(de)球,问:最少必须从袋中取出多少只球4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中(de)三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子(de)个数都相同(如果能请说明具体操作,不能则要说明理由)七.路程问题1.狗跑5步(de)时间马跑3步,马跑4步(de)距离狗跑7步,现在狗已跑出30米,马开始追它.问:狗再跑多远,马可以追上它2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米3.在一个600米(de)环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车(de)车尾到完全超过慢车需要多少时间5.在300米长(de)环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒米,两人起跑后(de)第一次相遇在起跑线前几米6.一个人在铁道边,听见远处传来(de)火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直(de)),声音每秒传340米,求火车(de)速度(得出保留整数)7.猎犬发现在离它10米远(de)前方有一只奔跑着(de)野兔,马上紧追上去,猎犬(de)步子大,它跑5步(de)路程,兔子要跑9步,但是兔子(de)动作快,猎犬跑2步(de)时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子.8. AB两地,甲乙两人骑自行车行完全程所用时间(de)比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟9.甲乙两车同时从AB两地相对开出.第一次相遇后两车继续行驶,各自到达对方出发点后立即返回.第二次相遇时离B地(de)距离是AB全程(de)1/5.已知甲车在第一次相遇时行了120千米.AB两地相距多少千米10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时.如果水流速度是每小时2千米,求两地间(de)距离11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程(de)七分之四,已知慢车行完全程需要8小时,求甲乙两地(de)路程.12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米八.比例问题1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分快快快2.一种商品,今年(de)成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品(de)成本占售价(de)几分之几3.甲乙两车分别从两地出发,相向而行,出发时,甲.乙(de)速度比是5:4,相遇后,甲(de)速度减少20%,乙(de)速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么两地相距多少千米4.一个圆柱(de)底面周长减少25%,要使体积增加1/3,现在(de)高和原来(de)高度比是多少5、某市举行小学数学竞赛,结果不低于80分(de)人数比80分以下(de)人数(de)4倍还多2人,及格(de)人数比不低于80分(de)人数多22人,恰是不及格人数(de)6倍,求参赛(de)总人数6、有7个数,它们(de)平均数是18.去掉一个数后,剩下6个数(de)平均数是19;再去掉一个数后,剩下(de)5个数(de)平均数是20.求去掉(de)两个数(de)乘积.7、小明参加了六次测验,第三、第四次(de)平均分比前两次(de)平均分多2分,比后两次(de)平均分少2分.如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分小学五年级奥数题答案一、工程问题1、解:1/20+1/16=9/80表示甲乙(de)工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要(de)进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满.2、解:由题意得,甲(de)工效为1/20,乙(de)工效为1/30,甲乙(de)合作工效为1/204/5+1/309/10=7/100,可知甲乙合作工效>甲(de)工效>乙(de)工效.又因为,要求“两队合作(de)天数尽可能少”,所以应该让做(de)快(de)甲多做,16天内实在来不及(de)才应该让甲乙合作完成.只有这样才能“两队合作(de)天数尽可能少”.设合作时间为x天,则甲独做时间为(16-x)天1/20(16-x)+7/100x=1x=10答:甲乙最短合作10天3、由题意知,1/4表示甲乙合作1小时(de)工作量,1/5表示乙丙合作1小时(de)工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时(de)工作量.根据“甲、丙合做2小时后,余下(de)乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共(de)工作量为1.所以1-9/10=1/10表示乙做6-4=2小时(de)工作量.1/10÷2=1/20表示乙(de)工作效率.1÷1/20=20小时表示乙单独完成需要20小时.答:乙单独完成需要20小时.4、解:由题意可知1/甲+1/乙+1/甲+1/乙+……+1/甲=11/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×=1(1/甲表示甲(de)工作效率、1/乙表示乙(de)工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多天)1/甲=1/乙+1/甲×(因为前面(de)工作量都相等)得到1/甲=1/乙×2又因为1/乙=1/17所以1/甲=2/17,甲等于17÷2=天5、答案为300个120÷(4/5÷2)=300个可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5(de)一半是2/5,刚好是120个.6、答案是15棵算式:1÷(1/6-1/10)=15棵7、答案45分钟.1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要(de)分钟数.1/12(18-12)=1/126=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟(de)水,也就是甲18分钟进(de)水.1/2÷18=1/36 表示甲每分钟进水最后就是1÷(1/20-1/36)=45分钟.8、答案为6天解:由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:乙做3天(de)工作量=甲2天(de)工作量即:甲乙(de)工作效率比是3:2甲、乙分别做全部(de)(de)工作时间比是2:3时间比(de)差是1份实际时间(de)差是3天所以3÷(3-2)×2=6天,就是甲(de)时间,也就是规定日期方程方法:[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1解得x=69、答案为40分钟.解:设停电了x分钟根据题意列方程1-1/120x=(1-1/60x)2解得x=40二.鸡兔同笼问题1、解:4100=400,400-0=400 假设都是兔子,一共有400只兔子(de)脚,那么鸡(de)脚为0只,鸡(de)脚比兔子(de)脚少400只.400-28=372 实际鸡(de)脚数比兔子(de)脚数只少28只,相差372只,这是为什么4+2=6 这是因为只要将一只兔子换成一只鸡,兔子(de)总脚数就会减少4只(从400只变为396只),鸡(de)总脚数就会增加2只(从0只到2只),它们(de)相差数就会少4+2=6只(也就是原来(de)相差数是400-0=400,现在(de)相差数为396-2=394,相差数少了400-394=6)372÷6=62 表示鸡(de)只数,也就是说因为假设中(de)100只兔子中有62只改为了鸡,所以脚(de)相差数从400改为28,一共改了372只100-62=38表示兔(de)只数三.数字数位问题1、解:首先研究能被9整除(de)数(de)特点:如果各个数位上(de)数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得(de)余数就是这个数除以9得(de)余数.解题:1+2+3+4+5+6+7+8+9=45;45能被9整除依次类推:1~1999这些数(de)个位上(de)数字之和可以被9整除10~19,20~29……90~99这些数中十位上(de)数字都出现了10次,那么十位上(de)数字之和就是10+20+30+……+90=450 它有能被9整除同样(de)道理,100~900 百位上(de)数字之和为4500 同样被9整除也就是说1~999这些连续(de)自然数(de)各个位上(de)数字之和可以被9整除;同样(de)道理:1000~1999这些连续(de)自然数中百位、十位、个位上(de)数字之和可以被9整除(这里千位上(de)“1”从1000~1999千位上一共999个“1”(de)和是999,也能整除;最后答案为余数为0.2、解:(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 B/(A+B)前面(de) 1 不会变了,只需求后面(de)最小值,此时 (A-B)/(A+B) 最大. 对于 B / (A+B) 取最小时,(A+B)/B 取最大,问题转化为求 (A+B)/B (de)最大值.(A+B)/B = 1 + A/B ,最大(de)可能性是 A/B = 99/1(A+B)/B = 100(A-B)/(A+B) (de)最大值是: 98 / 1003、解:因为A/2 + B/4 + C/16=8A+4B+C/16≈,所以8A+4B+C≈,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103.当是102时,102/16=当是103时,103/16=4、解:设原数个位为a,则十位为a+1,百位为16-2a根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198解得a=6,则a+1=7 16-2a=4答:原数为476.5、解:设该两位数为a,则该三位数为300+a7a+24=300+aa=24答:该两位数为24.6、解:设原两位数为10a+b,则新两位数为10b+a它们(de)和就是10a+b+10b+a=11(a+b)因为这个和是一个平方数,可以确定a+b=11因此这个和就是11×11=121答:它们(de)和为121.7、解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数)再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x 根据题意得,(200000+x)×3=10x+2解得x=85714所以原数就是8571428、答案为3963解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察abcd2376cdab根据d+b=12,可知d、b可能是3、9;4、8;5、7;6、6.再观察竖式中(de)个位,便可以知道只有当d=3,b=9;或d=8,b=4时成立.先取d=3,b=9代入竖式(de)百位,可以确定十位上有进位.根据a+c=9,可知a、c可能是1、8;2、7;3、6;4、5.再观察竖式中(de)十位,便可知只有当c=6,a=3时成立.再代入竖式(de)千位,成立.得到:abcd=3963再取d=8,b=4代入竖式(de)十位,无法找到竖式(de)十位合适(de)数,所以不成立.9、解:设这个两位数为ab10a+b=9b+610a+b=5(a+b)+3化简得到一样:5a+4b=3由于a、b均为一位整数得到a=3或7,b=3或8原数为33或78均可以10、解:(28799……9(20个9)+1)/60/24整除,表示正好过了整数天,时间仍然还是10:21,因为事先计算时加了1分钟,所以现在时间是10:20 四.排列组合问题1、解:根据乘法原理,分两步:第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同(de)排法,但是因为是围成一个首尾相接(de)圈,就会产生5个5个重复,因此实际排法只有120÷5=24种.第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种综合两步,就有24×32=768种.2、解:5全排列54321=120有两个l所以120/2=60原来有一种正确(de)所以60-1=59五.容斥原理问题1、解:根据容斥原理最小值68+43-100=11最大值就是含铁(de)有43种2、解:根据“每个人至少答出三题中(de)一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题.分别设各类(de)人数为a1、a2、a3、a12、a13、a23、a123由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①由(2)知:a2+a23=(a3+ a23)×2……②由(3)知:a12+a13+a123=a1-1……③由(4)知:a1=a2+a3……④再由②得a23=a2-a3×2……⑤再由③④得a12+a13+a123=a2+a3-1⑥然后将④⑤⑥代入①中,整理得到a2×4+a3=26由于a2、a3均表示人数,可以求出它们(de)整数解:当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22又根据a23=a2-a3×2……⑤可知:a2>a3因此,符合条件(de)只有a2=6,a3=2.然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符.故只解出第二题(de)学生人数a2=6人.3、答案:及格率至少为71%.假设一共有100人考试100-95=5100-80=20100-79=21100-74=26100-85=155+20+21+26+15=87(表示5题中有1题做错(de)最多人数)87÷3=29(表示5题中有3题做错(de)最多人数,即不及格(de)人数最多为29人)100-29=71(及格(de)最少人数,其实都是全对(de))及格率至少为71%六.抽屉原理、奇偶性问题1、解:可以把四种不同(de)颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色(de),就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套.这时拿出1副同色(de)后4个抽屉中还剩3只手套.再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色(de),以此类推.把四种颜色看做4个抽屉,要保证有3副同色(de),先考虑保证有1副就要摸出5只手套.这时拿出1副同色(de)后,4个抽屉中还剩下3只手套.根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色(de).以此类推,要保证有3副同色(de),共摸出(de)手套有:5+2+2=9(只)答:最少要摸出9只手套,才能保证有3副同色(de).2、解:每人取1件时有4种不同(de)取法,每人取2件时,有6种不同(de)取法.当有11人时,能保证至少有2人取得完全一样:当有21人时,才能保证到少有3人取得完全一样.3、解:需要分情况讨论,因为无法确定其中黑球与白球(de)个数.当黑球或白球其中没有大于或等于7个(de),那么就是:64+10+1=35(个)如果黑球或白球其中有等于7个(de),那么就是:65+3+1=34(个)如果黑球或白球其中有等于8个(de),那么就是:65+2+1=33如果黑球或白球其中有等于9个(de),那么就是:65+1+1=324、解:不可能.因为总数为1+9+15+31=5656/4=14.14是一个偶数,而原来1、9、15、31都是奇数,取出1个和放入3个也都是奇数,奇数加减若干次奇数后,结果一定还是奇数,不可能得到偶数(14个).七.路程问题1、解:根据“马跑4步(de)距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米.根据“狗跑5步(de)时间马跑3步”,可知同一时间马跑37x米=21x米,则狗跑54x=20米.可以得出马与狗(de)速度比是21x:20x=21:20根据“现在狗已跑出30米”,可以知道狗与马相差(de)路程是30米,他们相差(de)份数是21-20=1,现在求马(de)21份是多少路程,就是 30÷(21-20)×21=630米2、解:由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份.又因为两车在中点40千米处相遇,说明两车(de)路程差是(40+40)千米.所以算式是(40+40)÷(10-8)×(10+8)=720千米.3、解:600÷12=50,表示哥哥、弟弟(de)速度差600÷4=150,表示哥哥、弟弟(de)速度和(50+150)÷2=100,表示较快(de)速度,方法是求和差问题中(de)较大数(150-50)/2=50,表示较慢(de)速度,方法是求和差问题中(de)较小数600÷100=6分钟,表示跑(de)快者用(de)时间600/50=12分钟,表示跑得慢者用(de)时间4、解:算式是(140+125)÷(22-17)=53秒可以这样理解:“快车从追上慢车(de)车尾到完全超过慢车”就是快车车尾上(de)点追及慢车车头(de)点,因此追及(de)路程应该为两个车长(de)和.5、解:300÷()=500秒,表示追及时间5×500=2500米,表示甲追到乙时所行(de)路程2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线(de)前方100米处相遇.6、解:算式:1360÷(1360÷340+57)≈22米/秒关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音(de)地方行出1360÷340=4秒(de)路程.也就是1360米一共用了4+57=61秒.7、答案是猎犬至少跑60米才能追上.解:由“猎犬跑5步(de)路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米.由“猎犬跑2步(de)时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a3=5/3a米.从而可知猎犬与兔子(de)速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差(de)10米刚好追完8、解:设全程为1,甲(de)速度为x乙(de)速度为y列式40x+40y=1x:y=5:4得x=1/72 y=1/90走完全程甲需72分钟,乙需90分钟故得解答案:18分9、解:通过画线段图可知,两个人第一次相遇时一共行了1个AB(de)路程,从开始到第二次相遇,一共又行了3个AB(de)路程,可以推算出甲、乙各自共所行(de)路程分别是第一次相遇前各自所走(de)路程(de)3倍.即甲共走(de)路程是1203=360千米,从线段图可以看出,甲一共走了全程(de)(1+1/5).因此360÷(1+1/5)=300千米10、解:(1/6-1/8)÷2=1/48表示水速(de)分率2÷1/48=96千米表示总路程11、解:相遇是已行了全程(de)七分之四表示甲乙(de)速度比是4:3时间比为3:4所以快车行全程(de)时间为8/43=6小时633=198千米12、解:把路程看成1,得到时间系数去时时间系数:1/3÷12+2/3÷30返回时间系数:3/5÷12+2/5÷30两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=(千米)八.比例问题1、解:“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元.又因为“甲钓了三条”,相当于甲吃之前已经出资36=18元,“乙钓了两条”,相当于乙吃之前已经出资26=12元.而甲乙两人吃了(de)价值都是10元,所以甲还可以收回18-10=8元乙还可以收回12-10=2元刚好就是客人出(de)钱.2、解:最好画线段图思考:把去年原来成本看成20份,利润看成5份,则今年(de)成本提高1/10,就是22份,利润下降了2/5,今年(de)利润只有3份.增加(de)成本2份刚好是下降利润(de)2份.售价都是25份.所以,今年(de)成本占售价(de)22/25.3、解:原来甲.乙(de)速度比是5:4现在(de)甲:5×(1-20%)=4现在(de)乙:4×(1+20%)甲到B后,乙离A还有:=总路程:10÷×(4+5)=450千米4、答案为64:27解:根据“周长减少25%”,可知周长是原来(de)3/4,那么半径也是原来(de)3/4,则面积是原来(de)9/16.根据“体积增加1/3”,可知体积是原来(de)4/3.体积÷底面积=高现在(de)高是4/3÷9/16=64/27,也就是说现在(de)高是原来(de)高(de)64/27或者现在(de)高:原来(de)高=64/27:1=64:275、解:设不低于80分(de)为A人,则80分以下(de)人数是(A-2)/4,及格(de)就是A+22,不及格(de)就是A+(A-2)/4-(A+22)=(A-90)/4,而6(A-90)/4=A+22,则A=314,80分以下(de)人数是(A-2)/4,也即是78,参赛(de)总人数314+78=3926、解: 718-619=126-114=12619-520=114-100=14去掉(de)两个数是12和14它们(de)乘积是1214=1687、解:第三、四次(de)成绩和比前两次(de)成绩和多4分,比后两次(de)成绩和少4分,推知后两次(de)成绩和比前两次(de)成绩和多8分.因为后三次(de)成绩和比前三次(de)成绩和多9分,所以第四次比第三次多9-8=1(分).。
小学五年级精选奥数题及解析1、算薪水有两个人在一家工地做工,由于一个是学徒,一个是技工,所以他们的薪水是不一样的。
技工的薪水比学徒的薪水多20美元,但两人的薪水之差是21美元。
你觉得他俩的薪水各是多少?2、100面彩旗某街道从东往西按照五面红旗、三面黄旗、四面绿旗、两面粉旗的规律排列,共悬挂1995面彩旗,你能算出从西往东数第100面彩旗是什么颜色的吗?3、时钟表盘时钟的表盘上按标准的方式标着1, 2, 3,…,11, 12这12个数,在其上任意做n 个120°的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同. 如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n的最小值.4、两头猪有4头猪,这4头猪的重量都是整千克数,把这4头猪两两合称体重,共称5次,分别是99、113、125、130、144,其中有两头猪没有一起称过。
那么,这两头猪中重量较重那头有多重?5、三张卡片有三张卡片,它们上面各写着数字2, 3, 4,从中抽出一张、二张、三张, 按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.6、数学竞赛要求的三个自然数分别是32、35和38。
9、答案与解析:此题需要求抽屉的数量,反用抽屉原理和最”坏”情况的结合,最坏的情况是只有10个同学来自同一个学校,而其他学校都只有9名同学参加,那么(1123-10)4-9=123......6 ,因此最多有:123+1=124个学校(处理余数很关键,如果有125个学校那么不能保证至少有10名同学来自同一个学校)10、答案与解析:120:2=60, 90:2=45,每两棵树之间的距离是它们的最大公约数。
(120, 60, 90, 45)=15, 一共要:(120+90)x24-15=28(棵)。
11、答案与解析:方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42, 48]=336的倍数.因为乙班的平均成绩高于80分,所以总成绩应高于48x80=3840分.乂因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42x100=4200分.在3840〜4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032 分.那么甲班的平均分为40324-42=96分,乙班的平均分为4032+48=84分.所以甲班的平均分比乙班的平均分高96-84=12分.方法二:甲班平均分x42=乙班平均分x48,即甲班平均分x7二乙班平均分x8, 因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,乂因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.所以甲班的平均分比乙班的平均分高12x(8-7)=12分.12、答案与解析:小于20的质数有2, 3, 5, 7, 11, 13, 17, 19,其中5+19=7+17=11+13.每个木块掷在地上后向上的数可能是六个数中的任何一个,三个数的和最小是5+5+5=15,最大是19+19+19=57,经试验,三个数的和可以是从15到57的所有奇数,所有可能的不同值共有22个。
小学五年级奥数题30道(附答案)1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,求一张桌子和一把椅子的价钱分别是多少元。
设一把椅子的价钱为x元,则一张桌子的价钱为10x元。
根据题意,有10x - x = 288,解得x = 32,因此一把椅子的价钱为32元,一张桌子的价钱为320元。
2.3箱苹果重45千克,一箱梨比一箱苹果多5千克,求3箱梨的重量是多少千克。
设一箱苹果的重量为x千克,则3箱苹果的重量为3x千克。
根据题意,有3x = 45,解得x = 15,因此一箱苹果的重量为15千克,一箱梨的重量为20千克,因此3箱梨的重量为60千克。
3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快10千米,求甲、乙两人的速度分别是多少千米每小时。
设甲的速度为x千米每小时,则乙的速度为x - 10千米每小时。
根据题意,有4x = (4 + 4) * 2,解得x = 4,因此甲的速度为4千米每小时,乙的速度为(4 - 10)千米每小时,即-6千米每小时(表示向相反方向行驶)。
4.XXX和XXX同样多的钱买了同一种铅笔,XXX要了13支,XXX要了7支,XXX又给XXX0.6元钱。
求每支铅笔的价格是多少元。
设每支铅笔的价格为x元,则李军和XXX分别付出的钱数为13x元和7x元。
根据题意,有13x = 7x + 0.6,解得x = 0.1,因此每支铅笔的价格为0.1元。
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,求两地相距多少千米。
设两地相距为x千米,则甲车和乙车相遇时,它们共行驶了(x/2)千米。
根据题意,甲车和乙车共用了6个小时,因此它们共行驶了2x千米。
五年级奥数题及答案通用13篇五年级小学生奥数题篇一1、某厂有一批煤,原计划每天烧5吨,可以烧45天。
实际每天少烧0.5吨,这批煤可以烧多少天?2、学校买来150米长的塑料绳,先剪下7.5米,做3根同样长的跳绳。
照这样计算,剩下的塑料绳还可以做多少根?3、修一条水渠,原计划每天修0.48千米,30天修完。
实际每天多修0.02千米,实际修了多少天?4、王老师看一本书,如果每天看32页,15天看完。
现在每天看40页,可以提前几天看完?5、一辆汽车4小时行驶了260千米,照这样的速度,又行了2.4小时,前后一共行驶了多少千米?(用两种方法解答)五年级小学生奥数题篇二1、快车和慢车同时从两个城市相对开出,2.5小时后相遇。
快车每小时行42千米,慢车每小时行35千米。
两个城市相距多少千米?2、甲、乙二位同学合打一份资料,甲每分打18个字,乙每分打22个字,两人用了30分打完这份资料,这份资料一共有多少个字?3、甲乙两车分别从两地同时出发,相对开来,甲车每小时行40千米,乙车每小时行50千米,3小时后两车还相距25千米,两地相距多少千米?4、两地相距628千米,甲车每小时行60千米,乙车每小时行80千米。
两车同时从两地相向而行,4小时后两车相遇了吗?两车相距多少千米?5、甲乙两人合做一批零件。
甲每小时做124个,乙每小时做136个。
他们合做了8小时,超额完成120个。
他们原来打算合做多少个零件?6、上午10时一只货船从甲港开往乙港,下午1小时一只客船从乙港开往甲港。
客船开出4小时与货船相遇。
货船每小时行18千米,客船每小时行27千米。
两港相距多远?参考答案1、(42+35)×2.5=192.5(千米)2、(18+22)×30=12003、(50+40)×3+25=295(千米)4、没相遇。
(60+80)×4=560(千米)628-560=68(千米)5、(124+136)×8-120=1960(个)6、18×3+(18+27)×4=234(千米)五年级小学生奥数题篇三1、甲、乙、丙三人赛跑,同时从A地出发向B地跑,当甲跑到终点时,乙离B还有30米,丙离B还有70米;当乙跑到终点时,丙离B还有45米。
小学五年级奥数题50道及答案1、设这个数为x,则25=2x*3+1,解得x=4.2、设去年绿化面积为x,则1800=2x+40,解得x=880.3、设去年平均日产洗衣机为x,则260=2.5x-40,解得x=120.4、设小汽车每次运x吨,则8*4+6x=47,解得x=1.5、布裁剪后剩余的长度为36-10*2.4-8x=36-24-8x,即12-8x,因为剩余长度等于0,所以12-8x=0,解得x=1.5.6、设两车行驶t小时后相遇,则48t+56t=12+272,解得t=4.7、设公鸡的数量为x,则母鸡的数量为1.5x+300,因为公鸡和母鸡的数量之和为4800,所以x+1.5x+300=4800,解得x=1200,1.5x+300=2100.8、设弟弟的年龄为x,则哥哥的年龄为x+3,因为两人年龄之和为35,所以x+x+3=35,解得x=16,哥哥的年龄为19.9、设甲车每小时行x千米,则乙车每小时行x-6千米,因为两车相向而行,所以6(x+x-6)=528,解得x=57,甲车每小时行57千米,乙车每小时行51千米。
10、设橘子的价格为x元/kg,则XXX的价格为7.4/2-0.6=3.1元/kg,因为1kg苹果的价格为3.1元,所以1kg橘子的价格为3.1/x元,解得x=5.11、设科技书的本数为x,则文艺书的本数为x+156,因为文艺书的本数比科技书的3倍还多12本,所以x+156=3x+12,解得x=72,文艺书买了228本,科技书买了72本。
12、设甲有书的本数为3x,则乙有书的本数为x,因为甲、乙两人平均每人有82本书,所以4x/2=82,解得x=41,甲有123本书,乙有41本书。
13、设下层有x本书,则上层有3x本书,因为两层的书一样多,所以3x-60=x+60,解得x=40,上层有120本书,下层有40本书。
14、设乙缸原有金鱼x条,则甲缸原有金鱼2x条,因为从乙缸里取出9条金鱼放入甲缸后,两缸鱼的条数相等,所以2x+9=x/2,解得x=18,甲缸原有36条金鱼。
小学五年级奥数题及答案一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少? 2.A和B是小于100的两个非零的不同自然数。
五年级奥数题100题(附答案)1. 765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002. (9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000 (500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。
6、计算:8.4 + 5 + 8五年级典型奥数题及答案详解2、计算:7736-473+733、计算:3.71-2.74+4.7+5.29-0.26+6.34、计算:34X25X65、计算:8.25X188、计算:(5.25+0.125+5.75) X81、计算: 7.93+(2.8-1.93)模块一:7、计算:49000+125 9、计算下面各题(1)2.56- (1.65-0.97)(2)4.74+ (1.26-0.77)(3)5.47- (1.47+0.84)(4)9.9X9.9+0.99(5)1.25X2.5X32009、计算:75X4.7+159X2.510、计算:4.25X5.24+1.52X2.5111、计算:7142.85 + 3.7 + 2.7X1.7X0.712、计算:1.25 X 17.6+364-0.8+2.64 X 12.513、计算:176.2+348.3+42.47 + 252.5 + 382.2314、计算:(6.4 X 7.5 X 8.1)4-(3.2 X 2.5 X 2.7)15、计算:15.37 X 7.88-9.37 X7.38+1.537 X 21.2-93.7 X0,262[能力拓展平台]1、C.DEXA.B=A.CDE是用字母表示的一个小数乘法算式,题中每一个字母表示一个数字,如果A.CDEVC.DE,求A.B所表示的数。
2、计算:10—9—0.9—0.09—0.009—0.0009—0.000093、计算:15.37X7.88-9.37X7.88 — 15.37X2.12+9.37X2.124、计算:4.65 X 32+2.5 X 46.5+0.465 X 4305、计算:4.05+4.08+4.11+- + 7.026、不计算,在口中填入“V”或“二”:(1)0.34- 0.03 X 0.003 4- 0.0003 □ 104-100 X 10004-1000(2)32.74-0.25+2.51 X 10Q32.7X4+2.514-0.1(3)282.4+0.999 □282.4 X 0.9997、计算:(().12+0.22+0.32+0.42)2 + (0.13+().23+0.33+().43)38、计算:(1)2.89 X 6.37+4.63 X 2.89(2)327X2.8+17.3X28[全讲综合训练]1、计算:(1)14.529 + (2.471-3);(2)38.68-(4.7-2.32)2、计算:44.8-21.7-24.7+16.43、计算:131 — 68 — 85+534、计算:34.5X8.23-34.5+2.77X34.55、计算:7.9X25 + 33X2.56、计算:23X(63+23+4) + 217、计算:18.3・4 + 5.3X2.5 + 7.13X7.58、计算:243587X 111111、计算:1.25 X 67.875 +125 X 6.7875 + 1250 X 0.053375 9、计算:1J+33+5.5+7.7+9.9+1 LI 1 + 13J3 + 15.15 +17.17+19.191()、计算:(8.4X 2.5+9.7)4-(1.054-1.5+8.44-0.28)12、计算:172.4X6.2+2724X03813、计算:().739X(48.8 + 2().3+51.2+4.7)X8.88 + 73914、计算:6.03+6.06+6.09+6.12 +…+7.9515、计算:41.2 X 8.1 +11 X 9.25+537 X 0.1916、(全奥赛题)计算(1)3.51 X49 + 35.1 X5.1+49X51(2)784070+78407.1 + 7840.72+784.073+78.40717、(全国我爱少年夏令营计算题竞赛)(1)7-4.36+5.378(2)3.5 X [65—( 1.6+3.6+0.9)] + 8418、(全国奥赛题)计算3.6 X 42.3 X3.75-12.5 X 0.423 X 2819 (我爱数学少年夏令营计算竞赛)(1)0.76 + 29.44X1.6模块一小数的巧算[同步巩固演练]1、8.8原式=7.93—1.93+2.8=8.82、7336原式=7736—400=73363、17原式=(3.17+5.29)—(2.74+0.26)+(4.7+6.3)=9-3 + 11=174、5100原式二17X2X25X2X3=51 X 100=51005、14.8原式=8.25X(10+8)=82.5+66=148.56、0.21原式=84+(5 X 8)=8.4+40=0.217、392原式二(49000 X 8) + (125 X 8)=392000 +1000=3928、89原式=(11 + (). 125) X 8= 11 X 8 + 8 X 0.125=88 +1 =899、(1)1.79原式=2.65 -1.65+0.97= 1.97(2)5.21原式=4.74+1.26—0.77=6—0.77=5.21(3)3.16原式=5.47—1.47—0.84=4-0.84=3.16(4)99原式=9.9 X 9.9+9.9 X 0.1 =9.9 X (9.9+0.1)=99(5)10000原式二(8X 1.25) X (2.5X4) X 10()=10X 10 X 100=1000010、750原式=2.5 X141 + 159X 2.5=2.5 X 300=750 11、26.0852原式=22.27+3.8152=26.085212、850.85原式二7142.85 + (3.7X2.7)义L7X0.7=7142.854-9.99X 1.7X0.7=715X 1.7X0.7=850.8513、100原式=1.25X(17.6+264)+45=1.25X44+45=55+45=10014、1201.7原式:(176.2 + 348.3+252.5)+(42.47+382.23)=777+424.7=1201.715、18原式=(6.4 + 3.2) X (7.5 + 2.5) X (8.1 + 2.7)=2 义 3 X 3= 1816、60原式=15.3X(7.88+2.⑵- 9.37X(7.38+2.62)=153.7—93.7=601、0.1因为C.DE和A.CDE的尾数相同,且A、CDEVC、DE,可知A、B=0.12、0.00001原式=1 - (0.9+0.09+0.009+0.0009+0.00009)= 1 -0.99999=0.000013、34.56原式=7.88 X (15.37-9.37)-2.12X(15.37-9.37)=7.88 X 6 — 21.2 X 6=6 X (7.88-2.12)=6X 5.76=34.564、465原式=4.65 X 32+4.65 X 25+4.65 X 43=4.65 X (32+25+43)=4.65 X 100=4655、553.5(4.05+7.02)X1004-2=553.56、(1)> (2)= (3)>7、90原式二(0.01 + 0.04 + 0.09+0.16) 24-(0.001 + 0.008 + 0.027 + 0.064)3=0.32 + 0.13=0.09 + 0.001=908、(1)31.79原式=2.89 X (6.37+4.63)=31.79(2)1400原式=32.7 X28+17.3+28=28 X (32.7 +173)=28 X 50= 14009、312500000原式二(0.6258 X 2) X 0.625 X 8 X 0.625= 10000000 X3.125=312500000[全讲综合训练]1、(1) 14原式=(14.529+2.471) -3=17-3=14(2)36.3原式=38.68-4.7+2.32=38.68 + 2.32—4.7=41 — 4.7=36.32、14.8原式=44.8 +16.4-21.7-24.7=14.83、31原式二131 — 153+53=314 345原式=34.5 X (8.23+2.77-1)=34.5 X 10=3455、280原式二25 X (7.9 + 33)=25 X 11.2=25 X4X 2.8=2806、0.75原式=(23 4-23)X(634-21)4-4=1X34- 4=0.757、71.3原式=1.83X2.5+ 5.3X2.5 + 7.13 X 7.5 = 25X(1.83 + 5.3) + 7.13 X7.5=2.5X 7.13 + 7.13 X7.5=7.13X10=71.38、2706251579、103.25原式=5.5 X 5 +15.15 X 5=5 X (5.5 +15.15)=5 X 20.65= 103.2510、1原式=(21 +9.7) 4- (0.7 + 30)=30.7 + 30.7= 111、1000原式=125 X 0.67875 + 125 X 6.7875 + 125 X 0.53375=125 X (0.67875 + 6.7875 + 0.53375)=125X8=100012、2104原式二172.4 ><6.2+172.4X3.8+100X3.8=172.4X(6.2 + 3.8) + 380=1724+380=210413、1.11原式=0.739 X 125X8.884- 739=0.739 X 1000 XI.114- 739= 1.1114、454.35原式二(6.03+7.95) X 654-2=454.3515、537.5原式=41.2X8.1+(41.2+12.5) X 1.9 + 11 X 9.25=41.2 X (8.1 + 1.9) + 12.5 X 1.9+11 X9.25=412+1.25 + (19+11)+11 X8=412+88+1.25X30=500+37.5=537.516、(1)2850原式=3.15X49 + 3.51X51+49X51 =3.51 X(49 + 51)+49X51=351+50 + 51-51=300 +2550=2850(2)8711803原式二862477.1 +8703.2=871180.317、(1)8.018原式=7+5.378—4.36=12.378—4.36=8.018(2) 0.05原式=3.5 X 16.8—5.6] + 84=3.5 X1.24- 84=0.0518、(1) 4230原式=4.23X 1.25X 108—1.25X4.23X =4.23X1.25X (108—28) =4.23X1.25X80 =4.23X1000 =423019、(1) 47.864原式=0.76+47.104=47.864(2) 27.25原式二(0.1+0.9) X54-2+ (0.11+0.99) X45 + 2 =2.5+24.75 =27.25思维能力训练专项1 .甲、乙两校平均每人捐款185元,甲校50人,平均每人捐款203元,乙校平均每人捐款170元,乙校有多少人捐款?列方程解这道题。
五年级奥数题及答案1.小学五年级奥数题及答案1、一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成。
如果甲做3时后由乙接着做,那么还需多少时间才能完成?解:甲做2小时的等于乙做6小时的,所以乙单独做需要6*3+12=30(小时)甲单独做需要10小时因此乙还需要(1-3/10)/(1/30)=21天才可以完成。
2、有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时甲比乙多做了20个零件。
这批零件共有多少个?解:甲和乙的工作时间比为4:5,所以工作效率比是5:4工作量的比也5:4,把甲做的看作5份,乙做的看作4份那么甲比乙多1份,就是20个。
因此9份就是180个所以这批零件共180个3、挖一条水渠,甲、乙两队合挖要6天完成。
甲队先挖3天,乙队接着解:根据条件,甲挖6天乙挖2天可挖这条水渠的3/5所以乙挖4天能挖2/5因此乙1天能挖1/10,即乙单独挖需要10天。
甲单独挖需要1/(1/6-1/10)=15天。
2.小学五年级奥数题及答案1、一只野兔逃出80步后猎狗才追它,野兔跑8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。
猎狗至少要跑多少步才能追上野兔?解:狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间。
所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。
2、甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过。
问:(1)火车速度是甲的速度的几倍?(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?解:(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的是行人速度的11倍;(2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485-135)÷2=675(秒)。
小学五年级奥数题大全及答案随着学生数学能力的提高,小学奥数已经成为很多小学生备战中考和高考的必修课程。
为了帮助小学五年级的孩子更好地学习奥数,我们整理了一系列小学五年级奥数题大全及答案,希望对大家有所帮助。
一、数字运算题1、小明有 6 瓶饮料,小国有 3 瓶饮料,他们一共有多少瓶饮料?答案:6+3=9,他们一共有 9 瓶饮料。
2、小丽有 12 这个数字,如果她加上 3,应该是多少?答案:12+3=15。
3、在一个村子里面,有 54 年的老人,12 岁的小孩,和 32 岁的大人,他们一共有多少岁?答案:54+12+32=98 岁。
二、几何题4、请你算一下正方形周长是多少,它的边长是 12 厘米。
答案:正方形的周长是 4×12=48 厘米。
5、圆的直径是 14 厘米,请你算一下圆的周长是多少。
答案:圆的周长是π×直径=3.14×14=43.96(约等于44)厘米。
6、请你算一下一个长方形的面积是多少,它的长是 8 厘米,宽是 5 厘米。
答案:长方形的面积是长×宽=8×5=40 平方厘米。
三、时间相关题7、现在是下午 3 点,如果过了 5 个小时以后,会是几点钟?答案:3+5=8 点钟。
8、小京和小明同时开始跑步,小京用了 16 分钟跑完 400 米,小明用了 15 分钟跑完同样的距离,问谁跑得比较快?答案:小明跑得比较快,因为他的速度要比小京快。
9、如果早上上学需要 30 分钟,下午放学需要 40 分钟,一天上学和放学一共需要多少分钟?答案:一天上学和放学共需要 70 分钟。
四、数学逻辑题10、10 个苹果分给 5 个小朋友,每个小朋友至少能拿到几个苹果?答案:每个小朋友至少能得到 2 个苹果,因为 10÷5=2。
11、请你推算一下:5-4+3-2+1=?答案:5-4+3-2+1=3。
12、请你猜测一下:如果你把一个橙子放在漂浮在水上的一杯子里,橙子会漂浮在水面上还是下面?答案:橙子会漂浮在水面上。
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是⽆忧考整理的《⼩学五年级奥数题及答案6篇》相关资料,希望帮助到您。
1.⼩学五年级奥数题及答案 ⼀排椅⼦只有15个座位,部分座位已有⼈就座,乐乐来后⼀看,他⽆论坐在哪个座位,都将与已就座的⼈相邻。
问:在乐乐之前已就座的最少有⼏⼈? 将15个座位顺次编为1:15号。
如果2号位、5号位已有⼈就座,那么就座1号位、3号位、4号位、6号位的⼈就必然与2号位或5号位的⼈相邻。
根据这⼀想法,让2号位、5号位、8号位、11号位、14号位都有⼈就座,也就是说,预先让这5个座位有⼈就座,那么乐乐⽆论坐在哪个座位,必将与已就座的⼈相邻。
因此所求的答案为5⼈。
2.⼩学五年级奥数题及答案 1、某⼯车间共有77个⼯⼈,已知每天每个⼯⼈平均可加⼯甲种部件5个,或者⼄种部件4个,或丙种部件3个。
但加⼯3个甲种部件,⼀个⼄种部件和9个丙种部件才恰好配成⼀套。
问应安排甲、⼄、丙种部件⼯⼈各多少⼈时,才能使⽣产出来的甲、⼄、丙三种部件恰好都配套? 解:设加⼯后⼄种部件有x个。
3/5X+1/4X+9/3X=77 x=20 甲:0.6×20=12(⼈)⼄:0.25×20=5(⼈)丙:3×20==60(⼈) 2、哥哥现在的年龄是弟弟当年年龄的三倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁? 解:设哥哥现在的年龄为x岁。
x-(30-x)=(30-x)-x/3 x=18 弟弟30-18=12(岁)3.⼩学五年级奥数题及答案 对任意两个不同的⾃然数,将其中较⼤的数换成这两数之差,称为⼀次变换。
如对18和42可进⾏这样的连续变换:18,42→18,24→18,6→12,6→6,6。
小学五年级经典奥数题题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?小学五年级经典奥数题(一)答案答案:1.解:设有1元的x张,1角的(28-x)张x+0.1(28-x)=5.50.9x=2.7x=328-x=25答:有一元的3张,一角的25张。
2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x)x+2(x-2)+5(52-2x)=116x+2x-4+260-10x=1167x=140x=20x-2=1852-2x=12答:1元的有20张,2元18张,5元12张。
3.解:设有7元和5元各x张,3元的(400-2x)张7x+5x+3(400-2x)=192012x+1200-6x=19206x=720x=120400-2x=160答:有3元的160张,7元、5元各120张。
小学五年级奥数类型题及解答
【流水行船问题】已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时。
现在轮船从上游A港到下游B港。
已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?
分析:顺水行速度为:48÷4=12(千米),逆水行速度为:
48÷6=8(千米)。
因为顺水速度是比船的速度多了水的速度,而逆水速度是船的速度再减去水的速度,因此顺水速度和逆水速度之间相差的是“两个水的速度”,因此可求出水的速度为:(12-8)÷2=2(千米)。
现条件为到下游,因此是顺水行驶,从A到B所用时间为:
72÷12=6(小时)。
木板从开始到结束所用时间与船相同,木板随水而飘,所以行驶的速度就是水的速度,可求出6小时木板的路程为:
6×2=12(千米);与船所到达的B地距离还差:72-12=60(千米)。
解:顺水行速度为:48÷4=12(千米)
逆水行速度为:48÷6=8(千米)
水的速度为:(12-8)÷2=2(千米)
从A到B所用时间为:72÷12=6(小时)
6小时木板的路程为:6×2=12(千米)
与船所到达的B地距离还差:72-12=60(千米)。
【奇数偶数】
2,4,6,8,…是连续的偶数,若五个连续的偶数的和是320,这五个数中最小的一个是()。
考点:奇偶性问题。
分析:若五个连续的偶数的和是320,即那么五个数中间的那个数应是这五个数的平均数,320÷5=64,所以这五个数是60、62、64、66、68。
解:五个连续的偶数的和是320,则:
小学五年级奥数题及答案奇数偶数:这五个连续偶数的第三个(即中间的那一个)偶数是320÷5=64。
即这五个数是60、62、64、66、68。
所以,最小的偶数是60。
故答案为:60。
【整除问题】
从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是()号。
分析:第一次报数留下的同学,最初编号都是11的倍数;这些留下的继续报数,那么再留下的学生最初编号就是11×11=121的倍数,依次类推即可得出最后留下的学生的最初编号。
解:第一次报数后留下的同学最初编号都是11倍数;
第二次报数后留下的同学最初编号都是121的倍数;
第三次报数后留下的同学最初编号都是1331的倍数;所以最后留下的只有一位同学,他的最初编号是1331;答:从左边数第一个人的最初编号是1331号。