第三章燃烧室与燃烧汇总
- 格式:ppt
- 大小:526.50 KB
- 文档页数:81
燃烧室工作原理
燃烧室是内燃机中的一个重要组成部分,其主要功能是将燃油与空气混合并燃烧产生高温高压气体,驱动活塞运动。
燃烧室通常由气缸体、活塞、气缸盖和喷油喷嘴等部件组成。
燃烧室工作原理可以分为四个基本过程:进气过程、压缩过程、燃烧过程和排气过程。
首先是进气过程。
活塞在下行过程中,通过曲轴的转动带动进气门打开,使混合气体(由燃油和空气组成)进入燃烧室。
进气门关闭后,活塞开始上行,将进气气体压缩。
接下来是压缩过程。
活塞上升时,压缩气体的体积减小,压力增加。
在这个过程中,混合气体被压缩到较小的体积,使其温度和压力升高。
然后是燃烧过程。
在活塞接近顶点位置时,喷油喷嘴向燃烧室内喷射燃油。
燃油与空气混合后点燃,形成火焰。
燃烧产生的高温高压气体迅速膨胀,推动活塞向下运动,从而输出动力。
最后是排气过程。
当活塞接近下行过程的末尾时,排气门打开,将燃烧后的废气排出燃烧室。
然后活塞再次上行,完成一个工作循环。
总的来说,燃烧室是通过控制燃料的喷射、混合和点火,使其在高温高压状态下进行燃烧,转化为机械能。
这一过程是内燃机正常运行的基础,也是产生动力的关键。
第三章着火第三章着火(自燃与引燃)本章重点内容:1. 两种着火机理2. 两种着火类型3. 自燃着火4. 强制着火5. 着火范围(燃烧界限)第三章着火(自燃与引燃)着火是一个从不燃烧到燃烧的自身演变或外界引发的过渡过程,是可燃混合气的燃烧化学反应逐渐加速到反应速度即放热速度极快的、形成火焰或爆炸的过程。
因此,着火过程是一个受到化学反应速度控制的过程。
火焰的熄火过程则与着火过程相反,它是一个从极快的燃烧化学反应到反应速度极慢,以至不能维持火焰的形成或几乎停止化学反应的过程,也是一个化学反应速度控制的过程。
第三章着火(自燃与引燃)除化学动力学控制的燃烧外,实际上不同的燃烧过程受控于不同的物理或化学过程。
在实际的燃烧中,需进行可燃混合气的制备,可燃混合气的预热,激化分子的传输以及化学反应等一系列的相互关联的过程,其中进行得慢的环节决定着燃烧速度。
第三章着火(自燃与引燃)3.1 燃烧反应过程中浓度与温度的关系反应速度与温度的关系常用Arrhenius指数项或简单的指数T m的关系式表示。
反应速度只受初始反应物浓度影响的反应为简单反应或热反应;反应速度受中间产物或最终产物浓度影响的为复杂反应或自催化反应。
研究链反应的最常见的方法是保持体系在反应时的恒定以消除热反应对反应发展的影响,其反应速度式则是以初始反应、中间反应及最终反应中参与反应的各种组分间相互作用的“反应机构”来分析,并且是经实验验证决定的。
/E RTe−第三章着火(自燃与引燃) 3.1 燃烧反应过程中浓度与温度的关系图3-1 简单等温反应速度的衰减情况第三章着火(自燃与引燃)3.1燃烧反应过程中浓度与温度的关系对于绝热火焰温度,设火焰最高温度为,也可推导出式(3.6)。
由于能量损失,较绝热火焰温度Tf为低。
式(3.5)可写成这就是说显焓与化学焓之和在整个过程中始终不变,与热力学第一定律相吻合。
T∞V A V0A0V Ac T+H C c T H C c H Cρρρ∞∞Δ⋅=+Δ⋅=+Δ⋅T∞第三章着火(自燃与引燃) 3.1 燃烧反应过程中浓度与温度的关系图3-2 温升与反应物消耗间的关系第三章着火(自燃与引燃)3.2 着火条件3.2.1 热着火可燃混合剂在某一条件下由外界加热,如火花塞、热容器壁、压缩等,到达某一特定温度时,反应物在此温度下的放热速度大于散热损失的速度,则多余的热量使混合剂温度增高,然后又使反应速度增加,从而混合剂的温度得以连续加速地增高知道放热速度达到很高的数值,于是就发生“着火”燃烧。
第3章着火和灭火理论3.1 着火分类和着火条件3.1.1 着火分类可燃物的着火方式,一般分为下列几类:1)化学自燃:例如火柴受摩擦而着火;炸药受撞击而爆炸;金属钠在空气中的自燃;烟煤因堆积过高而自燃等。
这类着火现象通常不需要外界加热,而是在常温下依据自身的化学反应发生的,因此习惯上称为化学自燃。
2)热自燃:如果将可燃物和氧化剂的混合物预先均匀地加热,随着温度的升高,当混合物加热到某一温度时便会自动着火(这时着火发生在混合物的整个容积中),这种着火方式习惯上称为热自燃。
3)点燃(或称强迫着火):是指由于从外部能源,如电热线圈、电火花、炽热质点、点火火焰等得到能量,使混气的局部范围受到强烈的加热而着火。
这时火焰就会在靠近点火源处被引发,然后依靠燃烧波传播到整个可燃混合物中,这种着火方式习惯称为阴燃。
大部分火灾都是因为阴燃所致。
必须指出,上述三种着火分类方式,并不能十分恰当地反映出它们之间的联系和差别。
例如,化学自燃和热自燃都是既有化学反应的作用,又有热的作用;而热自燃和点燃的差别只是整体加热和局部加热的不同而已,决不是“自动”和“受迫”的差别。
另外,火灾有时也称爆炸,热自燃也称热爆炸。
这是因为此时着火的特点与爆炸相类似,其化学反应速率随时间激增,反应过程非常迅速,因此,在燃烧学中所谓“着火”、“自燃”、“爆炸”其实质都是相同的,只是在不同场合叫法不同而已。
3.1.2 着火条件通常所谓的着火是指直观中的混合物反应自动加速,并自动升温以至引起空间某个局部最终在某个时间有火焰出现的过程。
这个过程反映了燃烧反应的一个重要标志,即由空间的这一部分到另一部分,或由时间的某一瞬间到另一瞬间化学反应的作用在数量上有突跃的现象,可用图3-1表示。
上图3-1表明,着火条件是:如果在一定的初始条件下,系统将不能在整个时间区段保持低温水平的缓慢反应态,而将出现一个剧烈的加速的过度过程,使系统在某个瞬间达到高温反应态,即达到燃烧态,那么这个初始条件就是着火条件。
燃烧机工作原理引言概述:燃烧机是一种常见的热能转换设备,广泛应用于工业生产和生活中。
其工作原理主要是利用燃料的燃烧产生的热能来驱动机械设备或产生热水蒸汽等。
下面将详细介绍燃烧机的工作原理。
一、燃料供给1.1 燃料的选择:燃烧机使用的燃料种类多样,包括燃油、天然气、煤等,根据不同的应用场景和需求选择合适的燃料。
1.2 燃料的输送:燃料需要通过管道输送到燃烧机内部,通常通过泵或者压力系统将燃料送入燃烧室。
1.3 燃料的混合:燃料需要与空气混合才能进行燃烧,通常通过喷嘴或者喷嘴系统将燃料喷入燃烧室内。
二、空气供给2.1 空气的进入:空气是燃烧的必要条件之一,通过空气进入燃烧机的空气滤清器和风扇等设备,确保空气的质量和流量。
2.2 空气的调节:空气的流量和比例需要根据燃烧机的工作状态进行调节,通常通过风门或者风量调节器来实现。
2.3 空气的预热:为了提高燃烧效率和减少污染物排放,通常会对空气进行预热处理,通过预热器或者换热器来实现。
三、点火和燃烧3.1 点火系统:燃烧机通常采用电火花或者火焰点火系统来点燃混合气体,确保燃烧的稳定和可靠。
3.2 燃烧室:燃烧室是燃烧机内部进行燃烧的空间,通过点燃混合气体产生高温高压的燃烧气体。
3.3 燃烧过程:燃烧过程是燃烧机的核心部分,燃料和空气在燃烧室内燃烧产生热能,驱动机械设备或者产生热水蒸汽等。
四、热能传递4.1 热能的产生:燃烧产生的热能通过燃烧室内壁和热交换器传递给工作介质,如水或者空气。
4.2 热交换器:热交换器是燃烧机内部的重要组成部分,用于将热能传递给工作介质,并提高热能利用率。
4.3 热能利用:通过热交换器将热能传递给工作介质,实现热能的利用和转换,满足工业生产和生活需求。
五、排放处理5.1 烟气处理:燃烧产生的烟气中含有大量的污染物,需要通过烟气处理系统进行处理,减少对环境的影响。
5.2 排放控制:燃烧机的排放需要符合国家和地方的排放标准,通过排放控制设备来控制和监测排放。
绪论1、燃烧的定义:燃烧是一种激烈的氧化还原反应过程,放出大量的热和气体,同时伴有发热、发光的或者火焰。
本质:氧化还原反应做功物质:热和气体现象:发热、发光的或者火焰2、燃烧三要素:可燃物、氧、达到一定的发火温度(着火点)3、燃烧形式、区别与联系:三种化学反应形式:热分解、燃烧、爆轰主要不同点:(1) 过程传播机理不同(2) 过程传播速度不同(3) 受外界影响不同(4)产物质点运动方向不同本质特征:化学键断裂的程度不同联系:在一定条件下,三种形式可发生相互转化4、燃烧与国民经济、国防建设的关系①燃料燃烧是主要能源大多数国家90%以上的能源来自于燃料的燃烧。
②国防热兵器的发射能源主要来自于火药的燃烧(发射药)。
③其他日常生活燃烧与安全(火灾防止等)燃烧与环境(温室效应、保护臭氧层)5、研究燃烧理论的意义①从理论上讲,研究理论用于指导实践。
揭示燃烧现象的本质和规律。
用于研究燃烧过程。
(工业,武器中)②提高能量利用率。
(柴油添加剂)③安全生产④环境保护(作为理论基础)⑤特殊燃烧规律的应用6、燃烧学的研究方法①实验研究研究燃烧的现象和规律,获得经验公式反复观察—总结规律—经验公式②理论研究(模型化)推导—结论—验证—修正—(反复多次)—理论③综合研究实验研究和理论研究结论历史资料,经验和亲自实践的经验不同学科,专业的知识,理论的综合第一章1、热力学第一定律:体系吸收的热量dQ分别用于增加体系的内能dU和对外界做功dW本质:能量守恒2|、热力学第二定律本质:不可能从单一热源吸热而不引起其他变化。
(高温到低温)在化学反应中的本质:表明化学反应的方向。
(表征:熵S)3、化学反应类型简单反应:经过一步反应完成的复杂反应:经过许多中间阶段完成的典型复杂反应:连续反应:由许多基元反应组成,前一反应生成物是后一反应的反应物反应连续进行。
平行反应:一个反应进行的同时还进行着其它反应。
共轭反应:一个反应仅当另一个反应存在时才能发生,而两个反应的反应物又是不同的,其中一个反应是另一个反应发生的条件。