山东省临沂市2016届高三下学期教学质量检测(一模)数学(理)试题_Word版含答案
- 格式:doc
- 大小:3.16 MB
- 文档页数:11
2016年高三模拟考试理科数学2016.03本试卷分第I 卷和第Ⅱ卷两部分,共5页。
满分150分。
考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2,第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.集合(){}lg 10M x x =-<,集合{}11N x x =-≤≤,则M N ⋂=A.()0,1 B.[)0,1C.[]1,1-D.[)1,1-2.已知复数z 满足2,z i i i ⋅=-为虚数单位,则z 的共轭复数z 为A.12i --B.12i + C. 2i - D. 12i -+3.已知平面向量()(()2,,a m b a b b =-=-⊥r r r r r且,则实数m 的值为A.-B.C.D.4.设曲线sin y x =上任一点(),x y 处切线斜率为()g x ,则函数()2y x g x =的部分图象可以为5.“2a=”是“函数()222f x x ax =+-在区间(],2-∞-内单调递减”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.将函数sin 26y x π⎛⎫=- ⎪⎝⎭图象向左平移4π个单位,所得函数图象的一条对称轴的方程是A.3x π=B.6x π=C.12x π=D.12x π=-7.执行如图所示的程序框图,输出的i 为 A.4B.5C.6D.78.已知抛物线28y x =的准线与双曲线222116x y a -=相交于A,B 两点,点F为抛物线的焦点,ABF ∆为直角三角形,则双曲线的离心率为 A.3B.2C.D.9.若实数x y 、满足0xy >,则22x yx y x y+++的最大值为A.2B.2C.4+D.4-10.若实数,,,a b c d 满足()()2223ln 20b a a c d +-+-+=,则()()22a cb d -+-的最小值为A. B.8C.D.2第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.()()52132x x --的展开式中,含x 次数最高的项的系数是_________(用数字作答).12.设,x y 满足约束条件24,,0,0,x y x y m x y +≤⎧⎪+≤⎨⎪≥≥⎩当35m ≤≤时,目标函数32z x y =+的最大值的取值范围是________.13.某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为_______.14.36的所有正约数之和可按如下方法得到:因为223623=⨯,所以36的所有正约数之和为()()()()()22222222133223232232312213391++++⨯+⨯++⨯+⨯=++++=,参照上述方法,可求得200的所有正约数之和为________.15.在锐角ABC ∆中,已知,23BAB AC π∠=-=uu u r uuu r ,则AB AC ⋅uu u r uuu r的取值范围是______.三、解答题:本大题共6小题,共75分. 16.(本小题满分12分)在ABC ∆中,角A,B,C 的对边分别为,,a b c ,且满足()2cos cos 0a b C c B --=.(I )求角C 的值;(II )若三边,,a b c 满足13,7a b c +==,求ABC ∆的面积.17. (本小题满分12分)为落实国务院“十三五”规划中的社会民生建设,某医院到社区检查老年人的体质健康情况.从该社区全体老年人中,随机抽取12名进行体质健康测试,测试成绩(百分制)以茎叶图形式如下:根据老年人体质健康标准,成绩不低于80的为优良.(I )将频率视为概率.根据样本估计总体的思想,在该社区全体老年人中任选3人进行体质健康测试,求至少有1人成绩是“优良”的概率;(II )从抽取的12人中随机选取3人,记ξ表示成绩“优良”的人数,求ξ的分布列及期望. 18. (本小题满分12分)在三棱柱111ABC A B C -中,侧面11ABB A 为矩形,12,AB AA ==D 是1AA 的中点,BD 与1AB 交于点O ,且CO ⊥平面11ABB A .(I )证明:1BCAB ⊥;(II )若OC OA =,求直线CD 与平面ABC 所成角的正弦值.19. (本小题满分12分) 已知数列{}n a 前n 项和n S 满足:21n n S a +=. (I )求数列{}n a 的通项公式;(II )设()()11211n n n n a b a a ++=++,数列{}n b 的前n 项和为n T ,求证:14n T <.20. (本小题满分13分) 已知函数()ln xf x x=. (I )记函数()()21,22Fx x x f x x ⎛⎫⎡⎤=-⋅∈ ⎪⎢⎥⎣⎦⎝⎭,求函数()F x 的最大值; (II )记函数()(),,2,0xx s e H x f x x s ⎧≥⎪=⎨⎪<<⎩,若对任意实数k ,总存在实数0x ,使得()0=H x k 成立,求实数s 的取值集合.21. (本小题满分14分)已知椭圆()222210x y C a b a b+=>>:的上顶点M 与左、右焦点12,F F 构成三角形12MF F,又椭圆C. (I )求椭圆C 的方程; (II )直线l 与椭圆C 交于()()1122,,,A x y B x y 两点,且122x x +=,又直线11:l y k x m =+是线段AB 的垂直平分线,求实数m 的取值范围; (III )椭圆C 的下顶点为N ,过点()(),20Tt t ≠的直线TM ,TN 分别与椭圆C 交于E ,F 两点.若TMN ∆的面积是TEF ∆的面积的k 倍,求k 的最大值.2016年高三模拟考试理科数学答案2016.03 第Ⅰ卷(共50分) ADBCA,CCADB1.答案A 解析:由题意知{|01}{|01}.Mx x M N x x =<<∴=<< 故选A.2.答案D 解析:由i 2i z ⋅=-,得i 211i)i)(2(i i 2--=--=-=z ,i 21+-=∴z .故选D. 3.答案B 解析:b b a ⊥-)(,由b b a ⊥-)(,得,)(0=⋅-bb a 即 063333)3,1()33-=-=-+-=⋅-m m m ,(,解得32=m ,故选:B.4.答案C 解析:由题意知,cos )(x x g =所以函数x x x g x y cos )(22==,显然该函数为偶函数,且过)0,0(点,故选C.5.答案A . 解析:若函数2()22f x x ax =+-在区间(,2]-∞-内单调递减,则有222a-≥-,即2a ≤,所以“2a =”是“函数2()22f x x ax =+-在区间(,2]-∞-内单调递减”的充分且不必要条件,所以选A.6.答案C 解析:,左移)3π2sin()6π)4π(2sin()6π2sin(4+=-+=−−→−-=x x y x y π当12π=x 时,函数取最大值1,故答案C.7.答案C 解析:开始S=0,i=1;第一次循环S=1,i=2;第二次循环S=4,i=3;第三次循环S=11,i=4;第四次循环S=26,i=5;第五次循环S=57,i=6;故输出i=6.选C. 8.答案A ,解:由题意知抛物线的准线2x=-,代入双曲线方程得4ya =±不妨设4(2A ABF a- ,是等腰直角三角形,44,p a=求得a =∴双曲线的离心率为e 3c a ====,故选A9.答案D 解析:222222231232422222y xy x xy y xy x y xy x y x y x y x y y x x y x y y x x +++=++++=+++++=+++))(()()(xy y x 2311+++=1≤+=故选D10. 解析 :∵实数,,,a b c d 满足:222(3ln )(2)0b a a c d +-+-+=,23ln 0b a a ∴+-=,设,b y a x ==,则有:23ln y x x =-,且20c d -+=,设,c x d y ==,则有:2y x =+,22()()a c b d ∴-+-就是曲线23ln y x x =-与直线2y x =+之间的最小距离的平方值,对曲线23ln y x x =-求导:32y x x'=-,易知23ln y x x =-在上单调递增,在)+∞上单调递减,与2y x =+平行的切线斜率312k x x==-,解得:1x =或32x =-(舍), 把1x =代入23ln y x x =-,得:1y =-,即切点为(1,1)-,切点到直线2y x =+的距离,22()()a c b d ∴-+-的最小值就是8. 故选:B .第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.64;- 12.[]7,8;13.; 14.465; 15. (0,12). 11.解析:答案-64,所求为52(2)64⨯-=-.12.解析:答案[7,8].,当3m=时,画出可行域,当32z x y =+过24x y +=和3x y +=交点(1,2)时取最大值7;当45m ≤≤时,可行域由0,0,24x y x y ≥≥+≤围成,当32z x y =+过24x y +=和y 轴交点(0,4)时取最大值8,即答案为[7,8].13.AED ⊥平面BCDE , 四棱锥A BCDE -的高为1,四边形BCDE 是边长为1的正方形,则112ABC ABE S S ∆∆==⨯,12ADE S ∆=,所以112ACD S ∆=⨯14.解析:答案465.类比36的所有正约数之和的方法有:200的所有正约数之和可按如下方法得到:因为3220025=⨯,所以200的所有正约数之和为232(1222)(155)465+++++=,所以200的所有正约数之和为465.15.解析:答案(0,12),取BC 的中点M ,可得AB AC ⋅ =2221AM MB AM -=-,AM长度变化的极限位置是ABC ∆为直角三角形时的状态,而成为直角的可能有两种情况,即C ∠为直角和A ∠为直角。
2015-2016学年山东省临沂市高三(上)第一次月考数学试卷(理科)一、选择题(本大题包括10小题,每小题5分,共50分.每小题只有一个选项符合题意) 1.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3"的否命题是()A.若a+b+c≠3,则a2+b2+c2<3 B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3 D.若a2+b2+c2≥3,则a+b+c=32.已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.103.已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1﹣x2,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q4.若函数y=f(x)的定义域是[0,2],则函数g(x)=的定义域是()A.(0,1)B.[0,1)C.[0,1)∪(1,4]D.[0,1]5.若函数f(x)=,则f(log23)=()A.3 B.4 C.16 D.246.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(log2a)+f(a)≤2f(1),则a的取值范围是()A. B.[1,2]C. D.(0,2]7.直线y=kx+b与曲线y=ax2+2+lnx相切于点P(1,4),则b的值为()A.3 B.1 C.﹣1 D.﹣38.若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内9.函数y=的大致图象是()A.B.C.D.10.定义在R上的奇函数f(x)满足:对任意的x1,x2∈(﹣∞,0)(x1≠x2),有.则有()A.f(0.32)<f(20.3)<f(log25) B.C.D.二、填空题(本大题共5小题,每小题5分,共25分.把答案填写在答题纸的相应位置)11.函数y=的定义域为.12.若集合A={x|2x+1>0},B={x||x﹣1|<2},则A∩B=.13.定义在R上的函数f(x)是增函数,则满足f(x)<f(2x﹣3)的取值范围是.14.过点(1,0)作曲线y=e x的切线,则切线方程为.15.已知f(x)是定义在R上的奇函数,且当x>0时f(x)=e x+a,若f(x)在R上是单调函数,则实数a的最小值是.三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.)16.已知集合A={x|3≤x<7},B={2<x<10},C={x|5﹣a<x<a}.(1)求A∪B,(∁R A)∩B;(2)若C⊆(A∪B),求a的取值范围.17.已知命题p:函数y=log0.5(x2+2x+a)的值域为R,命题q:函数y=﹣(5﹣2a)x是R上的减函数.若p或q为真命题,p且q为假命题,则实数a的取值范围是什么?18.某投资公司投资甲、乙两个项目所获得的利润分别是P(亿元)和Q(亿元),它们与投资额t(亿元)的关系有经验公式P=,Q=t,今该公司将5亿元投资这两个项目,其中对甲项目投资x(亿元),投资这两个项目所获得的总利润为y(亿元).求:(1)y关于x的函数表达式:(2)总利润的最大值.19.已知函数f(x)=,x∈[1,+∞).(1)当a=4时,求函数f(x)的最小值;(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.20.设f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)当a=2时,求曲线y=f(x)在x=1处的切线的斜率;(2)如果存在x1,x2∈[0,2],使得g(x1)﹣g(x2)≥M成立,求满足上述条件的最大整数M.21.时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y(单位:千套)与销售价格x(单位:元/套)满足的关系式,其中2<x<6,m为常数.已知销售价格为4元/套时,每日可售出套题21千套.(1)求m的值;(2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x的值,使网校每日销售套题所获得的利润最大.(保留1位小数)2015—2016学年山东省临沂市高三(上)第一次月考数学试卷(理科)参考答案与试题解析一、选择题(本大题包括10小题,每小题5分,共50分。
侧(左)视图俯视图正(主)视(第3题图)数学理本试卷分第Ⅰ卷和第Ⅱ卷两部分,共 4 页.满分150分.考试用时120分钟.答题前,请务必将班级、姓名和考试号填写(或填涂)在答题卡的规定位置.注意事项:1. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案写在试卷上的无效.2. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目的指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合要求的.1、已知集合{|21}xA x =>,{|1}B x x =<,则A B = ( )A .{|01}x x <<B .{|0}x x >C .{|1}x x >D .{|1}x x <2. 复数=-+i i123 ( ) A .i 2521+ B .i 2521-C .i 2521+-D .i 2521--3. 某几何体的三视图如图所示,其俯视图是由一个半圆与其直径 组成的图形,则此几何体的体积是( )A .20π3B .6πC .10π3D .16π3 4.设函数()sin(2)3f x x π=+,则下列结论正确的是( )①()f x 的图象关于直线3x π=对称; ②()f x 的图象关于点(,0)4π对称;③()f x 的图象向左平移12π个单位,得到一个偶函数的图象; ④()f x 的最小正周期为π,且在[0,]6π上为增函数.A. ①③ B . ②④ C. ①③④ D . ③5. 甲乙两名运动员在某项测试中的8次成绩如茎叶图所示,1x ,2x 分别表示甲乙两名运动员这项测试成绩的平均数,1s ,2s 分别表示甲乙两名运动员这项测试成绩的标准差,则有( ) A .1212,x x s s >< B . 1212,x x s s == C .1212,x x s s =< D .1212,x x s s <>6.函数cos ln xy x=的图象是( ) 3275538712455698210乙甲7.若在231(3)2nx x -的展开式中含有常数项,则正整数n 取得最小值时的常数项为( ) A .1352- B . 135- C .1352D .1358.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的两焦点,以线段12F F 为边作正12MF F ∆,若边1MF 的中点在双曲线上,则此双曲线的离心率是 ( )A.4+1C.D. 1 9. 已知实数y x ,满足⎪⎩⎪⎨⎧≥--≥-≥02200y x y x y ,则11+-=x y z 的取值范围是( )A . ]31,1[- B. )1,21[-C. ]31,21[-D. ),21[+∞- 10. 已知函数()y f x =是定义在R 上的奇函数,且当()0x ∈-∞,时,()()0f x xf x '+<(其中()f x '是()f x 的导函数),若()()0.30.333a f =⋅,()()log 3log 3b f ππ=⋅,3311log log 99c f ⎛⎫⎛⎫=⋅⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系是( )A . a b c >>B .c b a >>C . c a b >>D .a c b >>第II 卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.若等比数列}{n a 的首项是32,且dx x a )21(414+⎰=,则公比等于 .12.执行右边的程序框图,输出的结果是 . 13.在边长为2的菱形ABCD 中,60BAD ∠=,点E 为线段CD 上的任意一点,则AE BD ⋅的最大值为 . 14. 已知函数)0( log )(2>=x x x f 的反函数为)(1x f-,且有,8)()(11=⋅--b fa f若0>a 且0>b ,则ba 41+的最小值为 .15. 给出下列四个命题:① 命题“2,13x R x x ∃∈+>”的否定是“2,13x R x x ∀∈+≤”;② “2m =-”是“直线(2)10m x my +++=与直线(2)(2)30m x m y -++-=相互垂直”的必要不充分条件;③ 设圆22220(40)x y D x E yF D E F ++++=+->与坐标轴有4个交点,分别为1212(,0),(,0),(0,),(0,)A x B x C y D y ,则12120x x y y -=;④ 关于x 的不等式13x x m ++-≥的解集为R ,则4m ≤. 其中所有真命题的序号是 .三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤.16(本题满分12分)已知函数n m x f ⋅=)(,且(sin cos )m x x x ωωω=+,(cos sin ,2sin )n x x x ωωω=-,其中0>ω,若函数)(x f 相邻两对称轴的距离大于等于2π. (1)求ω的取值范围;(2)在锐角三角形ABC ∆中,c b a ,,分别是角C B A ,,的对边,当ω最大时,1)(=A f ,且3=a ,求b +c 的取值范围.17(本题满分12分)为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是:[)[)[)[)[]45,40,40,35,35,30,30,25,25,20. (I)求图中x 的值并根据频率分布直方图估计这500名志愿者中年龄在[)40,35岁的人数; (II)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为X ,求X 的分布列及数学期望. 18(本题满分12分)已知四棱锥P ABCD -,底面A B C D 是菱形,60=∠ABC ,2==PC AB ,2==PD PA .(I )求证:ABCD PAD 平面平面⊥; (II )求二面角A PC B --的余弦值. 19. (本题满分12分)岁0.0.0.0.数列{}n a 的通项n a 是关于x 的不等式2x x nx -<的解集中正整数的个数,111()12n n n f n a a a n=++++++…. (1)求数列{}n a 的通项公式; (2)若2nn n a b =,求数列{}n b 的前n 项和n S ; (3)求证:对2n ≥且*n N ∈恒有7()112f n ≤<. 20(本题满分13分)已知椭圆)0(12222>>=+b a by a x 的离心率为21,长轴12A A ,短轴12B B ,四边形1122A B A B 的面积为(1)求椭圆的方程;(2)过椭圆的右焦点F 的直线l 交椭圆于P Q 、,直线12,A P A Q M 与交于 12AQ A P N 与交于.(i) 证明:MN x ⊥轴,并求直线MN 的方程; (ii )证明:以MN 为直径的圆过右焦点F .21(本题满分14分) 已知函数()()ln 1x f x x +=.(1)当0x >时,求证: ()22f x x >+;(2)当10x x >-≠且时,()11kxf x x+<+恒成立,求实数k 的值.三、解答题16、详细分析:(1)x x x x x f ωωωωcos sin 32sin cos )(22+-=⋅= )62sin(22sin 32cos πωωω+=+=x x x ……………………2分22π≥Tπ≥∴T 10≤<∴ω…………………………4分 (2)当ω最大时,即1=ω,此时)62sin(2)(π+=x x f ……………………5分1)(=A f 1)62s i n (2=+∴πA 3π=∴A …………………………7分由正弦定理得23sin 3sin sin sin ====πC c B b A aB b sin 2=∴,C c sin 2= B C b c sin 2sin 2+=+∴B C B B sin 3cos 3sin 2)32sin(2+=+-=π)6sin(32π+=B …………………………9分在锐角三角形ABC ∆中,⎪⎪⎩⎪⎪⎨⎧<<<<2020ππC B 即⎪⎪⎩⎪⎪⎨⎧<-<<<232020πππB B 得26ππ<<B …………10分3263πππ<+<∴B 1)6s i n (23≤+<∴πB 32)6s i n (323≤+<∴πB c b +∴的取值范围为]32,3(…………………………12分17、解:(I)∵小矩形的面积等于频率,∴除[)40,35外的频率和为0.70,06.0570.01=-=∴x ………………2分 500名志愿者中,年龄在[)40,35岁的人数为150500506.0=⨯⨯(人). …………4分(II)用分层抽样的方法,从中选取20名,则其中年龄“低于35岁”的人有12名, “年龄不低于35岁”的人有8名. ……………………6分 故X 的可能取值为0,1,2,3,B()28514032038===C C X P ,()9528132028112===C C C X P , ()9544232018212===C C C X P ,()57113320312===C C X P , ………………10分 故X所以5739529512850⨯+⨯+⨯+⨯=EX 18、解:(1)取AD 的中点O ,连接,PO CO0,60PA PD ABCD ABC =∠=为菱形,,ABC ACD ∆∆都是正三角形 ,PO AD CO AD ⊥⊥------------2分POC ∠是二面角P AD C --的平面角21,PA PD AD AC CD PO CO =====∴==222PC PO OC PO OC =+∴⊥,090AOD ∠=所以 ,PAD ABCD ⊥面平面-------------------5分 (2)建系{,,}OC OD OP ,所以 ()())()0,1,0,0,1,0,,0,0,1AD CP -()()(3,0,1),0,2,0,3,1,0CP BC AD CA =-===--设平面APC 的法向量为()1,,n x y z=(101,0z n y ⎧+=⎪⇒=⎨-=⎪⎩ (8)分 设平面BPC 的法向量为()2,,n x y z =(2020z n y ⎧+=⎪⇒=⎨=⎪⎩,-------------------------------------------10分 设二面角A PC B --的大小为θ,12cos |cos ,|7n n θ=<>==-----12分(3)111111()1212n n n f n a a a n n n n n=+++=+++++++++ (111)1n n n n<+++=项………………………………9分 由111111()1212n n n f n a a a n n n n n=+++=+++++++++…… 知11111(+1)++2322122f n n n n n n =+++++++… 于是111111(1)()021********f n f n n n n n n n +-=+->+-=++++++故(1)()f n f n +>()f n ∴当2n ≥且*n N ∈时为增函数7()(2)12f n f ∴≥=……………………………………11分 综上可知7()112f n ≤<……………………12分 20、解(1)2213,24bb e a a=∴==即1122A B A B S ab ==------------------------------------2分 2,a b ==,椭圆方程为22143x y +=----------------------3分同理可得:4N x =, MN x ⊥轴,直线MN 的方程为4x =………………10分 (ii)1212664,,4,22y y M N x x ⎛⎫⎛⎫⎪ ⎪++⎝⎭⎝⎭()()()()121212123636992233y y y y FM FN x x my my ⋅=+=+++++()212221212222229363634999639393434369909182736y y m m m m y y m y y m m m m m m -⨯+=+=+--+++++++⨯=-=--++………………12分 FM FN ⊥,以MN 为直径的圆过定点F . ……………………13分21、解: (1)0x >, ()()22ln 122x f x x x x >⇔+>++--------------1分 ()()()()()()222214ln 1'021212x x g x x g x x x x x x =+-∴=-=>+++++-------3分()g x 递增,所以()()00g x g >=,所以()2ln 12xx x +>+-------------------4分 (2)当10x -<<不等式()()()211ln 11kxf x x x x kx x+<⇔++->+ ()()()21ln 1x x x x kx =++--设h()()()1'ln 12,''2+1h x x kx h x k x =+-=-, 因为110,011,11x x x -<<<+<∴>+ 若1212k k ≤≤即,()''0h x >,()'h x ↑,所以()()'00h x h <= ()h x ↓,()()00h x h >=----------------------------------------------7分若21k >,存在()01,0x ∈-,使得 ()001''20+1h x k x =-= 当()0,0x x ∈,()''0h x <,()'h x ↓,所以()()'00h x h >=()h x ↑,()()00h x h <=这与()()21ln 1x x x kx ++->矛盾-------------9分当0x >不等式()()()211ln 11kxf x x x x kx x+<⇔++-<+ ()()()21ln 1x x x x kx =++--设h()()()1'ln 12,''2+1h x x kx h x k x =+-=-, 10,11,011x x x >+>∴<<+ 若1212k k ≥≥即,()''0h x <,()'h x ↓,所以()()'00h x h >=()h x ↑,()()00h x h <=,所以不等式成立---------------------------12分若21k <,存在()00,x ∈+∞,使得 ()001''20+1h x k x =-= 当()00,x x ∈,()''0h x >,()'h x ↑,所以()()'00h x h >=()h x ↑,()()00h x h >=这与()()21ln 1x x x kx ++-<矛盾综上所述:()()111110,;0,1212kx kx x f x k x f x k x x ++-<<<⇒≥><⇒≤++ 1,0x x ∀<-≠且,()11kx f x x +<+恒成立时 ,12k =----------------------14分。
数学文一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知全集{}{}{}0,1,2,3,4,0,1,2,3,2,3,4U A B ===,那么()A B =ðU(A) {}0,1(B) {}2,3 (C) {}0,1,4 (D) {}0,1,2,3,4(2)i 是虚数单位,若11z i =-,则z = (A)12(B) 2(C)(D) 2(3)某算法的程序框图如图所示,如果输出的结果为26,则判断框内的条件应为(A) 5?k ≤ (B) 4?k > (C) 3?k > (D) 4?k ≤ (4)若“﹁p ∨q ”是假命题,则 (A) p 是假命题 (B) ﹁q 是假命题 (C) p ∨q 是假命题 (D) p ∧q 是假命题 (5)已知向量2(2,1),(1,1)a a b k =+=-,则“2k =”是“a b ⊥”的(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件 (6)沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为(A)(B)(C)(D)(7)过抛物线24y x =焦点的直线交抛物线于,A B 两点,若10AB =,则AB 的中点到y 轴的距离等于(A) 1 (B) 2 (C) 3 (D) 4(8)函数()sin x xy e e x -=-的图象(部分)大致是(A)(B)(C)(D)(9)过双曲线22221(0,0)x y C a b a b-=>>:的右顶点作x 轴的垂线与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过,A O 两点(O 为坐标原点),则双曲线C的方(第3题图)(第6题图)程为8(A) 112422=-y x (B) 19722=-y x(C) 18822=-y x (D) 141222=-y x(10)己知定义在R 上的函数()f x 的导函数为()f x ',满足()()f x f x '<,()()22f x f x +=-,()41f =,则不等式()x f x e <的解集为(A) ()2,-+∞(B) ()0,+∞(C) ()1,+∞(D) ()4,+∞第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.(11)在等差数列{}n a 中,1533a =,2566a =,则35a = ________.(12)在△ABC 中,角A ,B ,C 所对的边分别为,,a b c ,若222s i n s i n s i n s i n A C B A C +-=,则角B 等于 .(13)若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴都相切,则该圆的标准方程是________. (14)设,x y 满足约束条件210,0,0,0,x y x y x y --≤⎧⎪-≥⎨⎪≥≥⎩若目标函数()0,0z ax by a b =+>>的最大值为1,则14a b+的最小值为_________. (15)给出定义:设()f x '是函数()y f x =的导数,()f x ''是函数()f x '的导数,若方程()0f x ''=有实数解0x ,则称点()()00,x f x 为函数()y f x =的“拐点”.对于三次函数()()320=+++≠f x ax bx cx d a ,有如下真命题:任何一个三次函数都有唯一的“拐点”,且该“拐点”就是()f x 的对称中心.给定函数()3211533212f x x x x =-+-,请你根据上面结论,计算12201420152016201620162016f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅++=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.三、解答题:本大题共6小题,共75分. (16)(本小题满分12分)某网站针对“2015年春节放假安排”开展网上问卷调查,提出了A ,B 两种放假方案,调查结果(Ⅱ)从参与调查的“老年人”中,用分层抽样的方法抽取6人,在这6人中任意选取2人,求恰好有1人“支持B 方案”的概率.(17)(本小题满分12分)已知函数()f x =22sin cos x x x ωωω+-0ω>)的最小正周期是π.(Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)将函数()f x 的图象向左平移3π个单位,再向上平移1个单位,得到函数()y g x = 的图象,求()y g x =的解+析+式及其在02π⎡⎤⎢⎥⎣⎦,上的值域.(18)(本小题满分12分)在如图所示的几何体中,四边形ABED 是矩形,四边形ADGC 是 梯形,AD ⊥平面,DEFG EF //DG ,120EDG ︒∠=, 1AB AC EF ===,2DG =. (Ⅰ)求证:AE //平面BFGC ; (Ⅱ)求证:FG ⊥平面ADF .(19)(本小题满分12分)已知数列{}n a 中,111,()3nn n a a a n a *+==∈+N . (Ⅰ)求证:112n a ⎧⎫+⎨⎬⎩⎭是等比数列,并求{}n a 的通项公式n a ; (Ⅱ)设(31)2n n n n nb a =-⋅⋅,记其前n 项和为n T ,若不等式1122n n n T n λ--<+ 对一切n *∈N恒成立,求λ的取值范围.(20)(本小题满分14分)已知函数()ln ,()xf x xg x e ==. (Ⅰ)求函数()y fx x =-的单调区间; (Ⅱ)若不等式()g x <在()0,+∞ 上有解,求实数m 的取值菹围; (Ⅲ)证明:函数()y f x =和()y g x =在公共定义域内, .(21)(本小题满分13分)设12,F F 是椭圆C :2222+1x y a b =(0a b >>)的左右焦点,过2F 作倾斜角为π3的直线与椭圆交于,A B 两点,1F 到直线AB 的距离为3,连接椭圆的四个顶点得到菱形面积为4 . (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过椭圆C 的左焦点P 作直线1l 交椭圆C 于另一点Q .(1) 若点(0,t)N 是线段PQ 的垂直平分线上的一点,且满足4NP NQ ⋅= ,求实数t 的值.(第18题图) ()()2g x f x ->(2) 过P 作垂直于1l 的直线2l 交椭圆于另一点G ,当直线1l 的斜率变化时,直线GQ 是否过x轴上一定点?若过定点,求出该定点坐标;若不过定点,请说明理由.(Ⅱ)将函数()f x 的图象向左平移3π个单位,再向上平移1个单位,得到 2sin(2)13y x π=++的图象,所以2sin(2)13y x π=++………………………8分因为02x π≤≤,所以42333x πππ≤+≤ ………………………10分所以当232x ππ+=即12x π=时()y g x =上有最大值3 所以当4233x ππ+=即2x π=时()y g x =上有最小值1所以()02y g x π⎡⎤=⎢⎥⎣⎦在,上的值域为ABC DE GFM]1⎡-⎣…………………………………12分18证明:(Ⅰ)连接CF.因为AC//DG,EF//DG所以AC//EF……………………………2分又=AC EF所以四边形AEFC是平行四边形所以AE//FC………………… 4分又AE⊄平面BFGC,FC⊂平面BFGC所以AE//平面BFGC.………… 6分(Ⅱ)取DG的中点M,连接FM,则EF DM=.又EF//DG,故四边形DEFM是平行四边形.所以112MF DE DG===所以DFG∆是直角三角形,所以FG⊥DF…………8分又,AD DEFG⊥面所以FG⊥AD………………………11分又AD ADF⊂面,DF ADF⊂面,AD DF D=所以FG ADF⊥面………12分19.解:(Ⅰ)由111,()3nnnaa a n Na*+==∈+知,11111322n na a+⎛⎫+=+⎪⎝⎭…………… 3分又111322a+=,所以112na⎧⎫+⎨⎬⎩⎭是以32为首项,3为公比的等比数列…… 4分所以111333222nnna-+=⨯=故231n na=-…… 6分(Ⅱ)1(31)22nn nn nn nb a-=-⋅⋅=……………………………… 7分所以0122111111123(1)22222n n nT n n--=⨯+⨯+⨯++-⨯+⨯1231111111123(1)222222n n nT n n-=⨯+⨯+⨯++-⨯+⨯……………… 8分两式相减得0121111111222222222n n n nnT n-+=++++-⨯=-所以1242n nnT-+=-…………………………………………………… 9分由1122n nnT nλ--<+对一切n N*∈恒成立,即12n nnTλ-<+对一切n N*∈恒成立,所以2142nλ-<-对一切n N*∈恒成立……………………………… 10分设21()42ng n-=-,易知()g n是递增函数………………………………11分所以(1)2gλ<=,即2λ<. ………………………………12 分设()h x x e -=,()11x x h x ee '=-=-………………6分1≥=>,且(0,)x ∈+∞时,1x e >,所以10xe -<,即()0h x '<,故()h x 在区间[0,)+∞上单调递减,所以()(0)0h x h <=, …………………………………………8分 因此0m <﹒ …………………………………………9分 (Ⅲ)方法一:()f x 与()g x 的公共定义域为(0,)+∞,()()ln (ln )x x g x f x e x e x x x -=-=---,……………………………………10分设()x m x e x =-,(0,)x ∈+∞,因为()10xm x e '=->,()m x 在区间(0,)+∞上单调递增,()(0)1m x m >=, ………………………12分又设()ln n x x x =-,(0,)x ∈+∞,由(Ⅰ)知1x =是()n x 的极大值点, 即()(1)1n x n <=-,所以()()m()()1(1)2g x f x x n x -=->--=,在函数()y f x =和()y g x =公共定义域内, ()()2g x f x ->﹒ …………………13分方法二:()f x 与()g x 的公共定义域为(0,)+∞,令()()()ln xG x g x f x e x =-=-,则1()x G x e x'=- ……………………10分 设1()0x G x e x'=-=的解为00(0)x x >,则当0(0,)x x ∈时,()0G x '<, ()G x 单调递减, 当0(,)x x ∈+∞时,()0G x '>, ()G x 单调递增; 所以()G x 在0x 处取得最小值000001()ln x G x e x x x =-=+,………………12分 显然00x >且01x ≠,所以0012x x +>,所以0()()2G x G x ≥>, 故在函数()y f x =和()y g x =公共定义域内,()()2g x f x ->﹒…………………13分21.解: (Ⅰ)设焦距为2c ,过右焦点倾斜角为π30y --= ,由题意得222324ab a b c ⎧==⎨⎪=+⎪⎪⎩……….1分解得21a b c ⎧=⎪=⎨⎪=⎩ …………2分 椭圆的方程为2214x y += …………………………….3分 (Ⅱ)(1)设11(,)Q x y (i)当1l 斜率不存在时,(2,0),(2,0),(2,t),(2,t)P Q NP NQ -=--=- 244NP NQ t ⋅=-=,t =±……………………………4分 (ii )当1l 斜率存在时,设1l 的方程为(2)y k x =+ ,则22(2) 440y k x x y =+⎧⎨+-=⎩消去 y 得2222(14)161640k x k x k +++-= ,则212212016214164214k x k k x k ⎧⎪∆>⎪⎪-+=-⎨+⎪⎪--=⎪+⎩,……5分 所以2128214k x k -+=+,1124(2)14ky k x k=+=+ 故222824(,)1414k k Q k k -+++ ………6分. PQ 的中点22282(,)1414k kM k k -++ ……………7分 令0x = ,得2614k t k -=+ , 所以26(0,)14kN k -+………………8分 222268210(2,),(,)141414k k k NP NQ k k k -+=-=+++ 22224166041414k k NP NQ k k-+⋅=+=++ ,解得7k =± ,符合0∆>故5t =±…………………………………9分综上所述t =±5t =±………………………10分(2)设GQ 的方程为y kx m =+ ,设2233(,),(,)G x y Q x y22440y kx m x y =+⎧⎨+-=⎩ 消去x 得222(14)8440k x kmx m +++-= 则23222328144414km x x k m x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩2223232322222222222222()4484414141414y y k x x kb x x b k b k k b k b b b k k k k k =+++-+-=-+=++++ ……12分 因为12l l ⊥ ,所以0PG PQ ⋅=22332323232222222222(2,)(2,)2()44416412165(2)(65)401414141414PG PQ x y x y x x x x y y m km m k k km m k m k m k k k k k⋅=+⋅+=++++----+--=+++===+++++ 解得2m k =(舍) 或65km =所以GQ 的方程为65k y kx =+ ,即6()5y k x =+ ,过定点6(,0)5- ……13分当GQ 的斜率不存在时,经计算知也过6(,0)5-,故过定点6(,0)5-.……14分。
2016年山东省高考数学模拟试卷(理科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,则a的值等于()A.1B.2C.5D.62.已知集合,则集合A的真子集的个数为()A.3B.4C.1D.23.已知函数f(x)=,若f(﹣1)=2f(a),则a的值等于()A.或﹣B. C.﹣D.±4.将800个个体编号为001~800,然后利用系统抽样的方法从中抽取20个个体作为样本,则在编号为121~400的个体中应抽取的个体数为()A.10B.9C.8D.75.“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知直线l的方程为ax+2y﹣3=0,且a∈[﹣5,4],则直线l的斜率不小于1的概率为()A. B. C. D.7.一个空间几何体的三视图如图,其中主视图是腰长为3的等腰三角形,俯视图是边长分别为1,2的矩形,则该几何体的体积等于()A.2B. C. D.8.已知向量,若向量的夹角为φ,则有()A.φ=θB.φ=π﹣θC.φ=θ﹣πD.φ=θ﹣2π9.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.m>﹣10B.m<﹣10C.m>﹣8D.m<﹣810.在三角形ABC中,角A、B、C的对边分别为a,b,c,且满足==,则=()A.﹣B. C.﹣D.﹣二、填空题(每题5分,满分25分,将答案填在答题纸上)11.阅读如图所示的程序框图,运行相应的程序,输出的结果是.12.从0,2,4中选两个数字,从1,3中选一个数字,组成无重复数字的三位数,其中偶数的个数为.13.若不等式|2x+a|<b的解集为{x|1<x<4},则ab等于.14.若函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),则函数g(x)=log n (x2﹣mx+4)的最大值等于.15.已知双曲线=1(a>0,b>0)的一条渐近线与抛物线y2=2px(p>0)的准线的交点坐标为,且双曲线与抛物线的一个公共点M的坐标(x0,4),则双曲线的方程为.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=cosx[sin(x+)﹣sin(x+)]+.(1)若f(+)=,0<θ<,求tanθ的值;(2)求函数f(x)的最小正周期和单调递增区间.17.在2015年8月世界杯女排比赛中,中国女排以11战10胜1负的骄人战绩获得冠军.世界杯女排比赛,采取5局3胜制,即每场比赛中,最先获胜3局的队该场比赛获胜,比赛结束,每场比赛最多进行5局比赛.比赛的积分规则是:3﹣0或者3﹣1取胜的球队积3分,负队积0分;3﹣2取胜的球队积2分,负队积1分.在本届世界杯中,中国队与美国队在第三轮相遇,根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为.(1)在中国队先输一局的情况下,中国队本场比赛获胜的概率是多少?(2)试求中国队与美国队比赛中,中国队获得积分的分布列与期望.18.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(1)求证:AE∥平面DCF;(2)若,且=λ,当λ取何值时,直线AE与BF所成角的大小为600?19.已知数列{a n}的前n项和S n=a n+.(1)求数列{a n}的通项公式;(2)若b n=,且数列{b n}的前n项和为T n,求T2n.20.已知椭圆=1(a>b>0)经过点,且离心率等于.(1)求椭圆的方程;(2)若直线l:y=x+m与椭圆交于A,B两点,与圆x2+y2=2交于C,D两点.①当|CD|=2时,求直线l的方程;②若λ=,试求λ的取值范围.21.已知函数f(x)=ln()+(a∈R).(1)若函数f(x)在定义域上是单调递增函数,求实数a的取值范围;(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f(x2)=3?2016年山东省高考数学模拟试卷(理科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,则a的值等于()A.1B.2C.5D.6【考点】复数的代数表示法及其几何意义.【分析】求出对应点的坐标,代入直线方程,然后求解a的值.【解答】解:复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,可得3=a﹣1+2,解得a=2.故选:B.2.已知集合,则集合A的真子集的个数为()A.3B.4C.1D.2【考点】子集与真子集.【分析】先求出集合A,由此能求出集合A的子集的个数.【解答】解:∵集合={2},∴集合A的真子集只有一个为∅.故选:C.3.已知函数f(x)=,若f(﹣1)=2f(a),则a的值等于()A.或﹣B. C.﹣D.±【考点】分段函数的应用.【分析】利用分段函数的表达式建立方程关系进行求解即可.【解答】解:f(﹣1)=(﹣1)2=1,则由f(﹣1)=2f(a),得1=2f(a),即f(a)=,若a>0,由f(a)=得log3a=,得a=,若a<0,由f(a)=得a2=,得a=﹣或(舍),综上a的值等于或﹣,故选:A.4.将800个个体编号为001~800,然后利用系统抽样的方法从中抽取20个个体作为样本,则在编号为121~400的个体中应抽取的个体数为()A.10B.9C.8D.7【考点】系统抽样方法.【分析】根据题意,求出系统抽样的分组组距,再求编号为121~400的个体中应抽取的个体数即可.【解答】解:把这800个个体编上001~800的号码,分成20组,则组距为=40;所以编号为121~400的个体中应抽取的个体数为=7.故选:D.5.“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】等差关系的确定.【分析】数列{a n}成等比数列,公比为q.若a1<0时,则lga n+1没有意义.由数列{lga n+1}成等差数列,则(lga n+1+1)﹣(lga n+1)=为常数,则为非0常数.即可判断出结论.【解答】解:∵数列{a n}成等比数列,公比为q.∴a n=.若a1<0时,则lga n+1没有意义.由数列{lga n+1}成等差数列,则(lga n+1+1)﹣(lga n+1)=为常数,则为非0常数.∴“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的必要不充分条件.故选:B.6.已知直线l的方程为ax+2y﹣3=0,且a∈[﹣5,4],则直线l的斜率不小于1的概率为()A. B. C. D.【考点】直线的斜率.【分析】先求出直线的斜率的范围,再根据几何概型的概率公式计算即可.【解答】解:由ax+2y﹣3=0得到y=﹣x+,故直线的斜率为﹣,∵直线l的斜率不小于1,∴﹣≥1,即a≤﹣2,∵且a∈[﹣5,4],∴﹣5≤a≤﹣2,∴直线l的斜率不小于1的概率为=,故选:C.7.一个空间几何体的三视图如图,其中主视图是腰长为3的等腰三角形,俯视图是边长分别为1,2的矩形,则该几何体的体积等于()A.2B. C. D.【考点】由三视图求面积、体积.【分析】由三视图易得这个几何体是一个四棱锥,四棱锥的底面是一个边长是1、2的长方形,顶点在底面的射影是长边的中点,短侧棱长为:3,求出棱锥的高,即可求解四棱锥的体积.【解答】解:由三视图知,这是一个四棱锥,四棱锥的底面是一个边长是1、2的长方形,顶点在底面的射影是长边的中点,短侧棱长为3,棱锥的高: =2,∴四棱锥的体积是:×1×2×2=.故选:D.8.已知向量,若向量的夹角为φ,则有()A.φ=θB.φ=π﹣θC.φ=θ﹣πD.φ=θ﹣2π【考点】平面向量数量积的运算.【分析】根据向量的夹角公式和两角和的余弦公式以及诱导公式,再根据向量的夹角的范围即可求出.【解答】解:∵向量,∴||==1,||=1, =﹣cosθcos2θ﹣sinθsin2θ=﹣cosθ=cos(π﹣θ),∴cosφ==cos(π﹣θ)=cos(θ﹣π),∵θ∈(π,2π),∴θ﹣π∈(0,π),∴φ=θ﹣π,故选:C.9.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.m>﹣10B.m<﹣10C.m>﹣8D.m<﹣8【考点】基本不等式.【分析】不等式2x+m+>0化为:2(x﹣1)+>﹣m﹣2,利用基本不等式的性质可得2(x﹣1)+的最小值,即可得出.【解答】解:不等式2x+m+>0化为:2(x﹣1)+>﹣m﹣2,∵x>1,∴2(x﹣1)+≥2×=8,当且仅当x=3时取等号.∵不等式2x+m+>0对一切x∈(1,+∞)恒成立,∴﹣m﹣2<8,解得m>﹣10,故选:A.10.在三角形ABC中,角A、B、C的对边分别为a,b,c,且满足==,则=()A.﹣B. C.﹣D.﹣【考点】正弦定理;余弦定理.【分析】由题意设===k,可得a=6k,b=4k,c=3k,由余弦定理可得cosA,再由正弦定理可得=,代值化简可得.【解答】解:由题意设===k,(k>0),则a=6k,b=4k,c=3k,∴由余弦定理可得cosA===﹣,∴由正弦定理可得====﹣,故选:A.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.阅读如图所示的程序框图,运行相应的程序,输出的结果是11 .【考点】循环结构.【分析】按照循环结构的流程,列举出每个循环的变量的取值,与循环条件对比即可得结果【解答】解:依此程序框图,变量a的变化依次为1,12+2=3,32+2=11不满足循环条件a<10,故输出11故答案为1112.从0,2,4中选两个数字,从1,3中选一个数字,组成无重复数字的三位数,其中偶数的个数为20 .【考点】计数原理的应用.【分析】根据0的特点,分三类进行,当0在个为和十位时,当没有0参与时,根据分类计数原理可得.【解答】解:若三位数的个位为0,则有2×2×A22=8个;若十位为0,则有C21•C21=4个;若这个三位数没有0,则有C21•C21A22=8个.综上,要求的三位偶数的个数为 8+8+4=20个,故答案为:20.13.若不等式|2x+a|<b的解集为{x|1<x<4},则ab等于﹣15 .【考点】绝对值不等式的解法.【分析】解出不等式|2x+a|<b,得到关于a,b的不等式组,求出a,b的值,从而求出ab 即可.【解答】解:∵|2x+a|<b,∴﹣b<2x+a<b,∴﹣a﹣b<2x<b﹣a,∴﹣<x<,由不等式的解集为{x|1<x<4},则,解得:a=﹣5,b=3则ab=﹣15,故答案为:﹣15.14.若函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),则函数g(x)=log n(x2﹣mx+4)的最大值等于﹣1 .【考点】函数与方程的综合运用;函数的最值及其几何意义.【分析】求出m、n,然后利用对数函数的性质,以及二次函数的性质求解函数的最值.【解答】解:函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),可知m=﹣2,n=,函数g(x)=log n(x2﹣mx+4)=log(x2+2x+4)=log [(x+1)2+3]≤﹣1.函数g(x)=log n(x2﹣mx+4)的最大值:﹣1.故答案为:﹣1.15.已知双曲线=1(a>0,b>0)的一条渐近线与抛物线y2=2px(p>0)的准线的交点坐标为,且双曲线与抛物线的一个公共点M的坐标(x0,4),则双曲线的方程为\frac{{x}^{2}}{5}﹣\frac{{y}^{2}}{20}=1 .【考点】双曲线的简单性质.【分析】求得双曲线的渐近线方程和抛物线的准线方程,由题意可得p=, =2,求得M (3,4)代入双曲线的方程,解方程可得a,b,进而得到双曲线的方程.【解答】解:双曲线=1的渐近线方程为y=±x,抛物线y2=2px的准线方程为x=﹣,由题意可得=,即p=,=2,即b=2a①又M的坐标(x0,4),可得16=2px0=x0,解得x0=3,将M(3,4)代入双曲线的方程可得﹣=1②由①②解得a=,b=2,即有双曲线的方程为﹣=1.故答案为:﹣=1.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=cosx[sin(x+)﹣sin(x+)]+.(1)若f(+)=,0<θ<,求tanθ的值;(2)求函数f(x)的最小正周期和单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x﹣),由f(+)=,可解得cosθ,又0<θ<,可由同角三角函数关系式即可求sinθ,tanθ的值.(2)由f(x)=sin(2x﹣),根据周期公式可求T,由2kπ﹣≤2x﹣≤2kπ+,k∈Z可解得单调递增区间.【解答】解:(1)∵f(x)=cosx[sin(x+)﹣sin(x+)]+ =cosx(sinx﹣cosx)+=sin2x﹣cos2x=sin(2x﹣),∵f(+)=,故有: sin[2(+)﹣]=sin(θ+﹣)=sin (θ+)=cosθ=,∴可解得:cosθ=,∵0<θ<,si nθ==,∴tanθ===.(2)∵f(x)=sin(2x﹣),∴T==π.∴由2kπ﹣≤2x﹣≤2kπ+,k∈Z可解得:x∈[kπ﹣,kπ+],k∈Z∴函数f(x)的最小正周期是π,单调递增区间是:x∈[kπ﹣,kπ+],k∈Z.17.在2015年8月世界杯女排比赛中,中国女排以11战10胜1负的骄人战绩获得冠军.世界杯女排比赛,采取5局3胜制,即每场比赛中,最先获胜3局的队该场比赛获胜,比赛结束,每场比赛最多进行5局比赛.比赛的积分规则是:3﹣0或者3﹣1取胜的球队积3分,负队积0分;3﹣2取胜的球队积2分,负队积1分.在本届世界杯中,中国队与美国队在第三轮相遇,根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为.(1)在中国队先输一局的情况下,中国队本场比赛获胜的概率是多少?(2)试求中国队与美国队比赛中,中国队获得积分的分布列与期望.【考点】离散型随机变量的期望与方差;互斥事件的概率加法公式;离散型随机变量及其分布列.【分析】(1)在中国队先输一局的情况下,中国队本场比赛获胜的可能性有两种:连胜3局或前3局两胜1负,第五局胜,由此能求出在中国队先输一局的情况下,中国队本场比赛获胜的概率.(2)中国队与美国队比赛中,中国队获得积分X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出中国队获得积分X的分布列和数学期望EX.【解答】解:(1)∵根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为,∴在中国队先输一局的情况下,中国队本场比赛获胜的概率:p=+=.(2)中国队与美国队比赛中,中国队获得积分X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)=()=,∴中国队获得积分X的分布列为:X 0 1 2 3PEX==.18.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(1)求证:AE∥平面DCF;(2)若,且=λ,当λ取何值时,直线AE与BF所成角的大小为600?【考点】异面直线及其所成的角;直线与平面平行的判定.【分析】(1)推导出面ABE∥面CDF,由此能证明AE∥面CDF.(2)以C为坐标原点,以CB,CD,CF分别为x,y,z轴建系,利用向量法能求出当λ取1时,直线AE与BF所成角的大小为60°.【解答】证明:(1)∵BE∥CF,AB∥CD,且BE∩AB=B,FC∩CD=C,∴面ABE∥面CDF,又AE⊂面ABE,∴AE∥面CDF.解:(2)∵∠BCF=,且面ABCD⊥面BEFC,∴FC⊥面ABCD以C为坐标原点,以CB,CD,CF分别为x,y,z轴建系,∵,且=λ,∴AB=()λ,∴A(,()λ,0),E(,0,),F(0,0,),B(,0,0),=(0,(1﹣)λ,),=(﹣,0,),∵直线AE与BF所成角的大小为60°,∴cos60°==,由λ>0,解得λ=1,∴当λ取1时,直线AE与BF所成角的大小为60°.19.已知数列{a n}的前n项和S n=a n+.(1)求数列{a n}的通项公式;(2)若b n=,且数列{b n}的前n项和为T n,求T2n.【考点】数列的求和;数列递推式.【分析】(1)由于数列{a n}的前n项和S n=a n+,可得a1+a2=a2+﹣2,解得a1.当n≥2时,S n﹣1=a n﹣1+﹣2,可得:a n=a n﹣a n﹣1+n﹣2﹣[﹣2],化简整理即可得出.(2)b n=,可得b2n﹣==.b2n=.即可得出.1【解答】解:(1)∵数列{a n}的前n项和S n=a n+,∴a1+a2=a2+﹣2,解得a1=3.当n≥2时,S n﹣1=a n﹣1+﹣2,可得:a n=a n﹣a n﹣1+n﹣2﹣[﹣2],解得a n﹣1=n+1.∴a n=n+2,当n=1时也成立.∴a n=n+2.(2)b n=,∴b2n﹣===.1b2n==.∴数列{b n}的前2n项和T2n=+=﹣﹣.20.已知椭圆=1(a>b>0)经过点,且离心率等于.(1)求椭圆的方程;(2)若直线l:y=x+m与椭圆交于A,B两点,与圆x2+y2=2交于C,D两点.①当|CD|=2时,求直线l的方程;②若λ=,试求λ的取值范围.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率公式和点M满足椭圆方程,结合a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(2)①求出O到直线的距离,由圆的弦长公式可得2,解方程可得m的值,进而得到直线的方程;②将直线y=x+m代入椭圆方程,运用判别式大于0,运用韦达定理和弦长公式,再由直线和圆相交的条件和弦长公式,化简整理,即可得到所求范围.【解答】解:(1)由题意可得e==,a2﹣b2=c2,将M的坐标代入椭圆方程,可得+=1,解得a=2,b=c=2,即有椭圆的方程为+=1;(2)①O到直线y=x+m的距离为d=,由弦长公式可得2=2,解得m=±,可得直线的方程为y=x±;②由y=x+m代入椭圆方程x2+2y2=8,可得3x2+4mx+2m2﹣8=0,由判别式为△=16m2﹣12(2m2﹣8)>0,化简可得m2<12,由直线和圆相交的条件可得d<r,即有<,即为m2<4,综上可得m的范围是(﹣2,2).设A(x1,y1),B(x2,y2),可得x1+x2=﹣,x1x2=,即有弦长|AB|=•=•=•,|CD|=2=,即有λ==•=•,由0<4﹣m2≤4,可得≥2,即有λ≥.则λ的取值范围是[,+∞).21.已知函数f(x)=ln()+(a∈R).(1)若函数f(x)在定义域上是单调递增函数,求实数a的取值范围;(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f(x2)=3?【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求得函数的定义域和导函数f′(x),依题意可知f′(x)≥0,在(0,+∞)上恒成立,即a≤在(0,+∞)上恒成立,构造辅助函数,g(x)=,求导,利用导数法求得g(x)的单调区间及最小值,即可求得a的取值范围;(2)由题意可知:函数在定义域上有两个极值点x1,x2,即方程f′(x)=0在(1,+∞)上由两个不同的实根,根据二次函数性质求得a的取值范围,利用韦达定理,求得x1+x2和x1•x2表达式,写出f(x1)+f(x2),根据对数的运算性质求得a的值,判断是否满足a的取值范围.【解答】解:(1)由函数f(x)的定义域为(0,+∞),f′(x)=﹣,依题意可知:f′(x)≥0,在(0,+∞)上恒成立,即a≤在(0,+∞)上恒成立,令g(x)=,g′(x)==,令g′(x)=0,解得x=4,且1<x<4时,g′(x)<0,当x>4时,g′(x)>0,所以g(x)在x=4时取极小值,也为最小值,g(4)=12,故实数a的取值范围是a≤12;(2)f′(x)=﹣=,函数在定义域上有两个极值点x1,x2,即方程f′(x)=0在(1,+∞)上由两个不同的实根,即方程x2+(4﹣a)x+(4+a)=0,在(1,+∞)上由两个不同的实根,∴解得:a≥12,由韦达定理:x1+x2=a﹣4,x1•x2=a+4,于是,f(x1)+f(x2)=ln()++ln()+,=ln[]+a[],=ln[]+a[],=ln()+a(),=,=3,解得a=9,但不满足a>12,所以不存在实数a,使得f(x1)+f(x2)=3.。
高三年级期末教学质量抽测试题数学(理科)2016.注意事项:1.本试题分第I 卷和第II 卷两部分,第I 卷为选择题,共60分;第II 卷为非选择题,共90分,满分150分。
考试时间为120分钟.2.答第I 卷前,考生务必将姓名、准考证号、考试科目填写清楚,并用2B 铅笔涂写在答题卡上,将第I 卷选择题的答案涂在答题卡上.3.答第II 卷时须将答题纸密封线内的项目填写清楚,第II 卷的答案用中性笔直接答在答题纸指定的位置上.考试结束后,只收答题卡和第II 卷答题纸.一、选择题:(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.已知全集为R ,集合{}11,2,2xR A x B x x A C B ⎧⎫⎪⎪⎛⎫=≤=≥⋂=⎨⎬ ⎪⎝⎭⎪⎪⎩⎭A.[]0,2B.[)0,2C.()1,2D.(]1,22.复数2iz i +=的共轭复数是A. 2i +B. 2i -C. 12i +D. 12i -3.下列说法中正确的是A.命题“若,x y x y >-<-则”的逆命题是“若x y ->-,则x y <”B.若命题2:,10p x R x ∀∈+>,则2:,10p x R x ⌝∃∈+> C.设l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβD.设,x y R ∈,则“()20x y x -⋅<”是“x y <”的必要而不充分条件 4.设随机变量X 服从正态分布()2,N μσ,若()()40P X P X >=<,则μ=A.2B.3C.9D.15.已知()1,4a b a b a ==⋅-=-r r r r r,则向量a b r r与的夹角为A. 56πB. 23πC. 3πD. 6π6.为了得到函数3cos 2y x =图象,只需把函数3sin 26y x π⎛⎫=+ ⎪⎝⎭图象上所有点 A.向右平行移动12π个单位长度B. 向右平行移动6π个单位长度 C.向左平行移动12π个单位长度D. 向左平行移动6π个单位长度7.周期为4的奇函数()[]02f x 在,上的解析式为()22,01l o g 1,12x x f x x x ⎧≤≤=⎨+<≤⎩,则()()20142015f f+= A.0 B.1C.2D.38.函数()()23cos ln 1f x x x =⋅+的部分图像可能是9.抛物线()220y px p =>的焦点为F ,准线为l ,A,B 是抛物线上的两个动点,且满足23AFB π∠=.设线段AB 的中点M 在l 上的投影为N ,则MNAB的最大值是A.B.C.D.10.已知函数()321132f x x ax bx c=+++在1x 处取得极大值,在2x 处取得极小值,满足()()121,0,0,1x x ∈-∈,则242a b a +++的取值范围是A.()0,2B.()1,3C.[]0,3D.[]1,3二、填空题:本大题共5小题,每小题5分,共25分.请将答案填写到答题卡的相应位置.11.函数52sin 22y x x ππ⎛⎫=≤≤⎪⎝⎭的图象和直线2y =围成一个封闭的平面图形的面积为________.12.如图给出的是计算11112462014+++⋅⋅⋅+的值的程序框图,其中判断框内应填入的是_______.13.将边长为2的正ABC ∆沿BC 边上的高AD 折成直二面角B AD C --,则三棱锥B ACD -的外接球的表面积为________. 14.若多项式()()()91031001910111x x a a x a x a x +=+++⋅⋅⋅++++,则9a =_______.15.已知函数()2ln 2x kf x x e x x =--+有且只有一个零点,则k 的值为_______.三、解答题:(本大题共6小题,满分75分.解答应写出文字说明证明过程或演算步骤)16. (本小题满分12分)已知向量)()2,1,sin ,cos m x n x x =-=u r r,函数()12f x m n =⋅+u r r . (1)若()0,,4x f x π⎡⎤∈=⎢⎥⎣⎦,求cos 2x 的值; (2)在ABC ∆中,角A,B,C 对边分别是,,a b c ,且满足2cos 2b A c ≤,求()f B 的取值范围.17. (本小题满分12分)甲、乙、丙三班进行知识竞赛,每两班比赛一场,共赛三场.每场比赛胜者得3分,负者得0分,没有平局,在每一场比赛中,甲班胜乙班的概率为23,甲班胜丙班的概率为14,乙班胜丙班的概率为15.(1)求甲班获第一名且丙班获第二名的概率;(2)设在该次比赛中,甲班得分为ξ,求ξ的分布列和数学期望.18. (本小题满分12分)在如图所示的空间几何体中,平面ACD ⊥平面ABC ,ACD ACB ∆∆与是边长为2的等边三角形,2BE BE =,和平面ABC 所成的角为60°,且点E 在平面ABC 上的射影落在ABC ∠的平分线上. (1)求证:DE//平面ABC ; (2)求二面角E BC A --.19. (本小题满分12分)已知数列{}n a 是首项为正数的等差数列,数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为21n n S n =+. (1)求数列{}n a 的通项公式;(2)设()()121nn n n b a +=-,求数列{}n b 的前2n 项和2n T .20. (本小题满分13分)已知函数()()()2111ax bf x f x +=--+,的切线方程为30x y ++=.(1)求函数()f x 的解析式;(2)设()ln g x x=,当[)1,x ∈+∞时,求证:()()g x f x ≥;(3)已知0a b <<,求证:22ln ln 2b a ab aa b ->-+.21. (本小题满分14分)已知椭圆的焦点在x 轴上,它的一个顶点恰好是抛物线24x y =的焦点,离心率e =右焦点F 作与坐标轴不垂直的直线l ,交椭圆于A 、B 两点。
高三教学质量检测考试理科数学2017. 2 本试题分为选择题和非选择题两部分,共5页,满分150分,考试时间120分钟.注意事项:1.答题前,考生务必用直径0.5毫米黑色签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上.2 .第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无戏。
第I卷(共50分)一、选择题:本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有个选项符合题目要求.1.已知2 m +2i m为实数,i为虚数单位,若m • m-4 i・0,则2-2i(A)i(B)1 (C) - i (D) - 12.已知集合A={x X —2兰1},且A c B =0,则集合B可能是(B) 、XX2乞d (C) 1,2 (D)3 .传承传统文化再掀热潮,在刚刚过去的新春假期中,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏,下面的茎叶图是两位选手在个人追逐赛中的比赛得分,则下列说法正确的是(A) 甲的平均数大于乙的平均数(B) 甲的中位数大于乙的中位数(C) 甲的方差大于乙的方差(D) 甲的平均数等于乙的中位数4. 下列说法正确的是甲乙51438 230 46 420 578 4 2 112(A) ‘251。
山东省临沂市2016届高三教学质量检测考试(共8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--山东省临沂市2016届高三教学质量检测考试本试卷分第I卷(选择题)和第II卷(非选择题)。
第一卷1至10页,第二卷10至12页。
考试结束后.将本试卷和答题卡一并交回。
第I卷第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题分。
满分分)1.Where are the speaker?A.On a bus. B.On a plane. C.In a ear.2.How many people will go to the tennis game?A.2. B.3. C.4.3.What does the woman ask the boy to do after school?A.Put away his school bag. B.Move the kitchen table. C.Hang up his coat.4.What do we know about Linda Rivera?A.She went traveling. B.She started a company. C.She was fired.5.When will the man meet the woman tomorrow?A.At 1:00 a.m. B.At 11:00 a.m. C.At 2:00 p.m.第二节(共15小题;每小题分。
满分分)听第6段材料,回答第6、7题。
6.What are the speakers talking about?A.How to choose music for the party.B.What music to play at the party.C.When to start the party.7.What is the woman going to do?A.Help prepare for the party.B.tell the in all a phone number.C.Ask Sonia for some information.听第7段材料,回答第8、9题。
学必求其心得,业必贵于专精2016年普通高考模拟考试理科综合能力测试2016.5本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,第I卷l 至5页,第Ⅱ卷6至16页.共300分.考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目"与考生本人准考证号、姓名是否一致。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回。
第I卷(选择题共126分)本卷共21小题,每小题6分,共126分。
可能用到的相对原子质量:H 1 O 16 F 19 Na 23S 32 C1 35。
5 Fe 56 Cu 64 I 127一、选择题:本题共13小题.每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列对生物大分子的叙述.错误的是A.蛋白质区别于脂质的特有元素是氮B.碳是组成核酸的基本骨架C.蓝藻在细胞质中合成淀粉D.垂体细胞分泌生长激素需要消耗ATP2.关于细胞呼吸的叙述,正确的是A.有氧呼吸过程中,葡萄糖进入线粒体分解为CO2和H2OB.有氧呼吸过程中,O2和H2O的利用不在同一阶段C.人体剧烈运动时,无氧呼吸增强、有氧呼吸减弱D.等质量脂肪和糖类进行有氧呼吸产生CO2与吸收O2的比值前者高3.下图为某单基因遗传病的家系图。
由第I代至第III代的生育过程中没有发生基因突变。
如果III1患有该遗传病的概率是1/8,下列哪一条件不需要A.该病致病基因为核基因B.I1为该致病基因的携带者C.Ⅱ3为正常男子D.Ⅱ3将X染色体传给III14.关于基因控制蛋白质合成过程的叙述,正确的是学必求其心得,业必贵于专精A.基因的空间结构发生不可逆性改变B.RNA聚合酶降低了某些化学反应的活化能C.遗传信息由mRNA流向tRNAD.基因的两条链分别作模板进行转录,可提高翻译的效率5.关于人体内环境稳态的叙述,错误的是A.一次性大量饮水可导致抗利尿激素分泌减少B.抗原与抗体的结合发生在内环境中C.组织液渗透压高于血浆渗透压可引起组织水肿D.内环境是一个主要由H2PO42-/HPO2-构成的缓冲体系6.研究人员对某林区猕猴种群数量和性别比例进行调查,结果如下图(注:4—12岁为猕猴的生育年龄)。
高三教学质量检测考试理科数学2015.11本试卷分为选择题和非选择题两部分,共4页,满分150分.考试时间120分钟. 注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第I 卷 (共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}{}2log ,3,,,0A a B a b A B A B ==⋂=⋃=若,则A. {}03,B. {}013,,C. {}023,,D. {}0123,,,2.已知D 是ABC ∆的边AB 的中点,则向量CD uu u r 等于 A. 12BC BA -+uu u r uu r B. 12BC BA --uu u r uu r C. 12BC BA -uu u r uu r D. 12BC BA +uu u r uu r 3.某商场2014年一月份到十二月份销售额呈现先下降后上升的趋势,下列函数模型中能较准确反映该商场月销售额()f x 与月份x 关系的是A. ()()0,1x f x a b b b =⋅>≠且B. ()()log 0,1a f x x b a a =+>≠且C. ()2f x x ax b =++D. ()a f x b x=+ 4.下列说法正确的是 A.命题“,20x x R ∀∈>”的否定是“00,20x x R ∃∈<”B.命题“若sin sin x y x y ==,则”的逆否命题为真命题C.若命题,p q ⌝都是真命题,则命题“p q ∧”为真命题D.命题“若ABC ∆为锐角三角形,则有sin cos A B >”是真命题5.函数21x y e =+在点()0,1处切线的斜率为 A. 2- B.2 C. 12- D. 12 6.已知实数,a b 满足()23,32a b xf x a x b ===+-,则的零点所在的区间是A. ()2,1--B. ()1,0-C. ()0,1D. ()1,27.在ABC ∆中,若()41cos ,tan ,tan 52A A B B =-=-=则 A. 12 B. 13C.2D.3 8.函数2sin 6241x x x π⎛⎫+ ⎪⎝⎭-的图象大致为9.若22log ,a x b x ==,则“a b >”是“1x >”的 A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件10.定义在R 上的奇函数()0f x x ≥,当时,()()[)[)132log 1,0,2147,2,2x x f x x x x ⎧+∈⎪=⎨⎪-+-∈+∞⎩,则关于x 的方程()()01f x a a =<<的所有根之和为A. 31a --B. 13a --C. 31a -D. 13a-第II 卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分.把正确答案填写在答题卡给定的横线上.11.函数cos 23y x π⎛⎫=- ⎪⎝⎭的最小正周期为_________.12.函数y =的定义域为_________. 13.已知等差数列{}n a 满足24354,10a a a a +=+=,则它的前10项和10S =_________.14.已知向量()2,1a =,向量()3,b k =,且a b 在方向上的投影为2,则实数k 的值为_______.15.定义在R 上的函数()f x 满足()11f =,且对任意x R ∈都有()12f x '<,则不等式()3312x f x +>的解集为_________. 三、解答题:本大题共6小题,共75分,解答应写出必要的文字说明,证明过程.16. (本小题满分12分)已知向量()()sin 2,cos ,sin ,cos m n R ααααα=--=-∈,其中.(I )若m n ⊥,求角α;(II )若cos2m n α-=的值.17. (本小题满分12分)在用“五点法”画函数()()sin 0,2f x A x πωϕωϕ⎛⎫=+><⎪⎝⎭在某一周期内的图象时,列表并填入了部分数据,如下表:(I )请将上表空格中处所缺的数据填写在答题卡的相应位置上,并直接写出函数()f x 的解析式;(II )将()y f x =图象上所有点的横坐标缩短为原来的13,再将所得图象向左平移4π个单位,得到()y g x =的图象,求()g x 的单调递增区间.18. (本小题满分12分)数列{}n a 的前n 项和n S 满足12n n S a a =-,且123,1,a a a +成等差数列.(I )求数列{}n a 的通项公式;(II )设11n n n n a b S S ++=,求数列{}n b 的前n 项和n T . 19. (本小题满分12分)在ABC ∆中,内角A,B,C 的对边分别为,,,2a b c C A =,且,,a b c 成公差为1的等差数列. (I )求a 的值;(II )求sin 26A π⎛⎫+ ⎪⎝⎭的值. 20. (本小题满分13分)某市政府欲在如图所示的直角梯形ABCD 的非农业用地中规划出一个休闲娱乐公园(如图中阴影部分),形状为直角梯形DEFG (线段ED 和FG 为两条底边),已知224BC AB AD km ===,其中曲线AC 是以A 为顶点,AD 为对称轴的抛物线的一部分.(I )求曲线AC 与CD ,AD 所围成区域的面积;(II )求该公园的最大面积.21. (本小题满分14分)已知函数()()()32ln 13x f x ax x ax a R =++--∈. (I )若()2x f x =为的极值点,求实数a 的值;(II )若()[)4y f x =+∞在,上为增函数,求实数a 的取值范围;(III )当1a =-时,方程()()3113x b f x x--=+有实根,求实数b 的最大值.。
高三第一轮复习质量检测数学试题(理科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5U =,集合{}1,2,3A =,集合{}3,4B =,则()U C A B ⋃=A. {}4B. {}2,3,4C. {}3,4,5D. {}2,3,4,52.已知11222,12z z t i z i z =+=-,若为实数,则实数t 的值为 A.1B. 1-C. 14D. 14- 3.右图是一个程序框图,则输出S 的值是A.84B.35C.26D.104.下列结论正确的是A.命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”B.已知()y f x =是R 上的可导函数,则“()00f x =”是“0x 是函数()y f x =的极值点”的必要不充分条件C.命题“存在x R ∈,使得210x x ++<”的否定是:“对任意x R ∈,均有210x x ++<”D.命题“角α的终边在第一象限角,则α是锐角”的逆否命题为真命题5.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的A.34B. 14C. 12D. 386.已知点()Q -及抛物线24x y =-上一动点(),P x y ,则y PQ +的最小值是 A. 12 B.1 C.2 D.37.已知()()2,1,0,0A O ,点(),M x y 满足12222x y x y ≤≤⎧⎪≤⎨⎪-≤⎩,则z OA AM =⋅uu r uuu r 的最大值为A. 5-B. 1-C. 0D.18.分别在区间[][]0,01π和,内任取两个实数,x y ,则不等式sin y x ≤恒成立的概率为 A. 1π B. 2π C. 3π D. 129.已知函数()()3sin 206f x x πωω⎛⎫=+-> ⎪⎝⎭的图象向右平移23π个单位后与原图象重合,则ω的最小值是A.3B. 32C. 43D.23 10.奇函数()f x 的定义域为R ,若()1f x +为偶函数,且()12f =,则()()45f f +的值为A.2B.1C. 1-D. 2-二、填空题:本大题共5个小题,每小题5分,共25分,请把答案填写在答题卡相应位置.11.若()1cos 753α+=o ,则()cos 302α-o 的值为__________. 12.随机抽取100名年龄在[)[)10,20,20,30…,[)50,60年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示,从不小于30岁的人中按年龄段分层抽样的方法随机抽取22人,则在[)50,60年龄段抽取的人数为 ▲ .13.设二项式()60a x a x ⎛⎫-≠ ⎪⎝⎭的展开式中2x 的系数为A ,常数项为B ,若B=44,则a = ▲ . 14.已知平面向量,a b r r 满足1b =u r ,且a b a -r r r 与的夹角为120°,则a r 的模的取值范围为▲ .15.若函数()32221f x x tx =-++存在唯一的零点,则实数t 的取值范围为 ▲ . 三、解答题:本大题共6个小题,满分75分,解答应写出文字说明、证明过程或演算步骤.16. (本小题满分12分)已知函数()sin cos 16f x x x π⎛⎫=++ ⎪⎝⎭(I )求函数()f x 的单调递减区间;(II )在ABC ∆中,,,a b c 分别是角A 、B 、C 的对边,()5,4,124f C b AC BC ==⋅=uuu r uu u r ,求c.17. (本小题满分12分)一个袋中装有7个大小相同的球,其中红球有4个,编号分别为1,2,3,4;蓝球3个,编号为2,4,6,现从袋中任取3个球(假设取到任一球的可能性相同).(I )求取出的3个球中,含有编号为2的球的概率;(II )记ξ为取到的球中红球的个数,求ξ的分布列和数学期望.18. (本小题满分12分)已知等比数列{}n a 的公比11,1q a >=,且132,,14a a a +成等差数列,数列{}n b 满足:()1122131n n n a b a b a b n ++⋅⋅⋅+=-⋅+ n N ∈.(I )求数列{}n a 和{}n b 的通项公式;(II )若8n n ma b ≥-恒成立,求实数m 的最小值.19. (本小题满分12分)如图,在三棱锥P ABC -中,AB ⊥平面,PAC APC ∠=90°,1,AB AC ==,E 是AB 的中点,M 是CE 的中点,N 点在PB 上,且4PN PB =.(I )证明:平面PCE ⊥平面PAB ;(II )证明:MN//平面PAC ;(III )若60PAC ∠=o ,求二面角P CE A --的大小.20. (本小题满分13分)如图:A,B,C 是椭圆()222210x y a b a b+=>>的顶点,点(),0F c 为椭圆的右焦点,原点O到直线CF 的距离为12c ,且椭圆过点(). (I )求椭圆的方程;(II )若P 是椭圆上除顶点外的任意一点,直线CP交x 轴于点E ,直线BC 与AP 相交于点D ,连结DE.设直线AP 的斜率为k ,直线DE 的斜率为1k ,问是否存在实数λ,使得112k k λ=+成立,若存在求出λ的值,若不存在,请说明理由.21. (本小题满分14分)已知函数()ln f x x =(I )若函数()()F x tf x =与函数()21g x x =-在点1x =处有共同的切线l ,求t 的值; (II )证明:()()12f x f x x x ->+; (III )若不等式()mf x a x ≥+对所有的230,,1,2m x e ⎡⎤⎡⎤∈∈⎣⎦⎢⎥⎣⎦都成立,求实数a 的取值范围.。
高三教学质量检测考试理科数学2017.5本试题分为选择题和非选择题两部分,共5页,满分150分,考试时间120分钟. 注意事项:1.答题前,考生务必用直径0.5毫米黑色签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.第I 卷 (共50分)一、选择题:本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.全集为实数集R ,集合{}{}()3=2,R M x x N x x C M N =≤<⋂=,集合则 (A){}3x x <- (B) {}32x x -<< (C){}2x x < (D) {}32x x -≤<2.若z 是z 的共轭复数,且满足()13z i i z -=+=,则 (A)1+2i(B)-1+2i(C)1-2i(D) -1-2i3.某地市高三理科学生有30000名,在一次调研测试中,数学成绩()2~100N ξσ,,已知()80=0.45P ξ<≤100,若按分层抽样的方式取200份试卷进行成绩分析,则应从120分以上的试卷中抽取(A)5份 (B)10份 (C)15份 (D)20份4.“125x x -++≤”是“32x -≤≤”的 (A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件5.某几何体的三视图如图所示,俯视图是半径为2的圆,则该几何体的表面积为 (A) 24π (B) 16π (C) 12π(D) 8π6.将函数()2sin 16f x x π⎛⎫=++ ⎪⎝⎭的图象向右平移3π个单位,再把所有点的横坐标缩短到原来的12倍(纵坐标不变),得函数y =g(x )的图象,则g(x )图象的一个对称中心为 (A) ,06π⎛⎫⎪⎝⎭(B) ,012π⎛⎫⎪⎝⎭(C) ,16π⎛⎫⎪⎝⎭(D) ,112π⎛⎫⎪⎝⎭7.已知x ,y 满足220,0,2,x y x y m x +-≥⎧⎪-+≥⎨⎪≤⎩若目标函数2z x y =-+的最大值不超过5,则实数m 的取值范围是(A) ()2,2- (B) []0,2 (C) []2,0- (D) []2,2-8.在平面直角坐标系中,已知点A,B 分别为x 轴、y 轴上的点,且4113AB P ⎛⎫= ⎪⎝⎭,若点,,则AP BP OP ++的取值范围是(A) []5,6 (B) []5,7 (C) []4,6 (D) []6,99.已知双曲线()2212210x y C a b a b -=>>:与双曲线222:12y C x -=的离心率相同,双曲线1C 的左、右焦点分别为12,,F F M 是双曲线1C 的一条渐近线上的点,且2OM MF ⊥,若2OMF ∆的面积为1C 的实轴长是(A)32 (B)16 (C)8 (D)410.已知()()()()()2,xf x xeg x f x tf x t R ==-∈⎡⎤⎣⎦又,若方程()2g x =-有4个不同的根,则t 的取值范围为 (A) 1,2e e ⎛⎫-∞-- ⎪⎝⎭ (B) 1,e e ⎛⎫-∞-⎪⎝⎭ (C) 12,e e ⎛⎫++∞ ⎪⎝⎭ (D) 1,e e ⎛⎫++∞ ⎪⎝⎭第1I 卷 (共100分)二、填空题:本大题共5个小题,每小题5分,共25分,把正确答案填写在答题卡给定的横线上.11.已知圆222810x y x y +--+=的圆心到直线10ax y -+=的距离为1,则a =________.12.设()3021a x dx =-⎰,则二项式62a x x ⎛⎫- ⎪⎝⎭展开式中x 2项的系数为____ (用数字作答).13.阅读如图的程序框图,若运行此程序,则输出S 的值为_______.14.三国时代吴国数学家赵爽所著《周髀算经》中用赵爽弦图给出了勾股定理的绝妙证明,如图是赵爽弦图,图中包含四个全等的勾股形及一个小正方形,分别涂成朱色和黄色,若朱色的勾股形中较大的锐角3πα为,现向该赵爽弦图中随机地投掷一枚飞镖,则飞镖落在黄色的小正方形内的概率为________.15.定义:如果函数()y f x =在定义域内给定区间[],a b 上存在()00x a x b <<,满足()()()0f b f a f x b a-=-,则称函数()[],y f x a b =是上的“平均值函数”,0x 而是它的一个均值点. 例如[]22y x =-是,上的“平均值函数”,0就是它的均值点.给出以下命题: ①函数()[]sin 1f x x ππ=--是,上的“平均值函数”; ②若()[],y f x a b =是上的“平均值函数”,则它的均值点02a bx +≤; ③若函数()[]2111f x x mx =+--是,上的“平均值函数”,则实数()2,0m ∈-; ④若()ln f x x =是区间[](),1a b b a >≥上的“平均值函数”,0x 是它的一个均值点, 则0ln x <其中的真命题有_________(写出所有真命题的序号).三、解答题:本大题共6小题,共75分,解答应写出必要的文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知向量()()sin ,1,sin ,,22m x x n x f x m n π⎛⎫⎛⎫==+=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭若. (I)求()f x 的单调递增区间;(II)己知ABC ∆的三内角,,A B C 对边分别为1,,3,2122A a b c a f π⎛⎫=+=⎪⎝⎭,且,sin 2sin ,C B A c b =,求,的值.17.(本小题满分12分) 某校的学生文娱团队由理科组和文科组构成,具体数据如下表所示:学校准备从该文娱团队中选出4人到某社区参加大型公益活动演出,每选出一名男生,给其所在的组记1分;每选出一名女生,给其所在的组记2分,要求被选出的4人中文科组和理科组的学生都有.(I)求理科组恰好得4分的概率;(II)记文科组的得分为X ,求随机变量X 的分布列和数学期望EX .18.(本小题满分12分)如图,已知AB ⊥平面ACD ,DE//AB ,△ACD 是等腰三角形,∠CAD=120°,AD=DE=2AB . (I)求证:平面BCE ⊥平面CDE ;(II)求平面BCE 与平面ADEB 所成锐二面角的余弦值.19.(本小题满分12分)已知数列{}n a 的奇数项成等差数列,偶数项成等比数列,且公差和公比都是2,若对满足5m n +≤的任意正整数,m n ,均有m n m n a a a ++=成立. (I)求数列{}n a 的通项公式;(II)若222211,n n n n na n a ab n a ++⎧⎪⎪=⎨⎪⎪⎩,为奇数,为偶数,求数列{}n b 的前n 项和n T .20.(本小题满分13分) 已知函数()1ln 1xf x x +=-. (I)求函数()f x 的单调区间; (II)若不等式()()1kf x x x>>恒成立,求整数k 的最大值; (III)求证:()()()()()2311212311n n n e n N -*+⨯+⨯⋅⋅⋅+⨯>∈.21.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆()2212210x y C a b a b +=>>:的离心率为,抛物线22:4C x y =的焦点F 是1C 的一个顶点.(I)求椭圆1C 的方程;(II)过点F 且斜率为k 的直线l 交椭圆1C 于另一点D ,交抛物线2C 于A ,B 两点,线段DF 的中点为M ,直线OM 交椭圆1C 于P ,Q 两点,记直线OM 的斜率为k '. (i)求证:14k k '⋅=-; (ii)PDF ∆的面积为1S ,QAB ∆的面积为是S 2,若212S S k λ⋅=,求实数λ的最大值及取得最大值时直线l 的方程.高三教学质量检测考试请在各题目的答题区域内作答,超出答题区域的答案无效姓 名_________________ 座号11.____________________ 12. ____________________ 13. ____________________请在各题目的答题区域内作答,超出答题区域的答案无效请在各题目的答题区域内作答,超出答题区域的答案无效高三教学质量检测考试请在各题目的答题区域内作答,超出答题区域的答案无效姓 名_________________ 座号准考证号请在各题目的答题区域内作答,超出答题区域的答案无效21. 请在各题目的答题区域内作答,超出答题区域的答案无效优质文档。
2016年临沂市高三教学质量检测试题
理科数学
本试卷分为选择题和非选择题两部分,共4页,满分150分.考试时间120分钟.
注意事项:
1.答题前,考生务必用直径0.5毫米黑色签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上.
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.
3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.
第I 卷(共50分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.
1.复数z 为纯虚数,若(3)i z a i -⋅=+(i 为虚数单位),则实数a 的值为
A.
13 B. 3 C. 1
3
- D.-3 2.已知集合1{|(),1},{|1,0}2
x x
A y y x
B y y e x ==≥-==+≤,则下列结论正确的是
A. A B =
B. A B R =
C. ()R A C B =∅
D.()R B C A =∅ 3.某防疫站对学生进行身体健康调查,欲采用分层抽样的办法抽取样本.某中学生共有学生2000名,抽取了一个容量为200的样本,样本中男生103人,则该中学生共有女生 A. 1030人 B. 97人 C. 950人 D.970人
4.设(3,1),(,3)a b x ==-
,且a b ⊥,则向量a b - 的b 夹角为
A. 30
B. 60
C. 120
D.150
5.下列四个结论中正确的个数是
(1) 2"20"x x +->是"1"x >的充分不必要条件;
(2)命题:",sin 1"x R x ∀∈≤的否定是00",sin 1"x R x ∀∈>;
(3)"若4
x π
=
则tan 1"x =的逆命题为真命题;
(4)若()f x 是R 上的奇函数,则32(log 2)(log 3)0f f +=
A. 1
B. 2
C. 3
D.4
6.若执行右边的程序框图,输出S 的值为-4,则判断框中应填入的条件是 A. 14k < B.15k < C. 16k < D.17k <
7.在ABC 中,1
cos ,3sin 2sin 3
A B C =
=且ABC 的面积为22,则边BC 的
A.23
B. 3
C.2
D.3 8.已知a 是常数,函数3211
()(1)232
f x x a x ax =
+--+的导函数'()y f x =的图像如右图所示,则函数()|2|x g x a =-的图像可能是
9.若,x y 满足不等式组20510080x y x y x y -+≥⎧⎪
-+≤⎨⎪+-≤⎩
,则|3|2z x y =-+的最小值为
A. 7
B.6
C.
26
5
D.4 10.设双曲线22
221(0,0)x y a b a b
-=>>的两条渐近线分别12,l l ,右焦点F 。
若点F 关于直
线1l 的对称点M 在2l 上则双曲线的离心率为 A. 3 B. 2 C . 3 D.2
第II 卷(共100分)
二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡对应题号的位置位置.答错位置,书写不清,模棱两可均不得分. 11.已知tan 2α=,则sin 2________.α=
12.若()32f x x =-,则|(1)2|3f x ++≤的解集为_________. 13.已知的展开5
(12)x -式中所有项的系数和为m ,则
2
1
m x dx =⎰
_________.
14.在三棱柱111ABC A B C -,侧棱1AA ⊥平面111,1AB C AA =底面ABC 是边长为2的正三角形,则此三棱柱的体积为_________. 15.已知实数,x y 满足0x y >>且1x y +=,则41
3x y x y
+
+-的最
小值是_________.
三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.把答案填在答题卡上的相应位置. 16.(本小题满分12分)
已知函数()sin()(0,0,||)2
f x A x A π
ωϕωϕ=+>><满足下列条件:
①周期T π=;②图像向左平移6
π
个单位长度后关于y 轴对称;③(0) 1.f =
()I 求函数()f x 的解析式;
()II 设106
,(0,),(),()431365
f f πππαβαβ∈-=-+=,求cos(22)αβ-的值.
17.(本小题满分12分)
如图,在四棱锥P ABCD -中,底面ABCD 为菱形,,M N 分别为,PB CD 的中点,二面角P CD A --的大小为60
,60,2,13.ABC AB PC PD ∠====
()I 求证:PA ⊥平面ABCD ;
()II 求直线MN 与平面PGD 所成角的正弦值.
18.(本小题满分12分)
已知正项数列{}n a 的前n 项和n S 满足2
632n n n S a a =++,且2a 是1a 和6a 的等比中
项.
()I 求数列{}n a 的通项公式;
()II 符合[]x 表示不超过实数x 的最大整数,如22[log 3]1,[log 5] 2.==记2
5
[log ]3
n n a b +=,求数列2{2}n n b ⋅的前n 项和.n T
19.(本小题满分12分)
,,a b cd 四名运动员争夺某次赛事的第1,2,3,4名,比赛规则为:通过抽签,将4
人分为甲、乙两个小组,每组两人.第一轮比赛(半决赛):两组各自在组内进行一场比赛,决出各组的胜者和负者;第二轮比赛()决赛:两组中的胜者进行一场比赛争夺1,2名,两组中的负者进行一场比赛争夺第3,4名.四名选手以往交手的胜负情况累计如下表:
若抽签结果为甲组:,a c ;乙组:,b d 。
每场比赛中,双方以往交手各自获胜的频率作为获胜的概率.
()I 求c 获得第1名的概率;
()II 求c 的名次X 的分布列和数学期望.
20.(本小题满分12分)
已知函数2()2,()ln .f x x ax g x x =-=
()I 若()()f x g x ≥对于定义域内的任意x 恒成立,求实数a 的取值范围; ()II 设()()()h x f x g x =+有两个极值点12,x x 且11
(0,)2
x ∈,证明:
123
()()ln 2.4
h x h x ->-
21.(本小题满分12分)
已知椭圆22122:1(0)x y C a b a b +=>>的离心率为2
2
,其短轴的下端点在抛物线
24x y =的准线上.
()I 求椭圆1C 的方程;
()II 设O 为坐标原点,M 是直线:2l x =上的动点,F 为椭圆的右焦点,过点F 作OM 的垂线与以为OM 直径的圆2C 相交于,P Q 两点,与椭圆1C 相交于,A B 两点,
如图所示.
①若6PQ =,求圆2C 的方程;
②设2C 与四边形OAMB 的面积分别为12,S S ,若12S S λ=,求λ的取值范围.。