2013届高三文科数学模拟试题
- 格式:doc
- 大小:1.24 MB
- 文档页数:12
2013高考数学文科模拟试题(带答案)2013年普通高等学校招生全国统一考试西工大附中第四次适应性训练数学(文科)第Ⅰ卷选择题(共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1.设全集集合集合,则=()A.B.C.D.2.设复数(其中为虚数单位),则z的共轭复数等于()A.1+B.C.D.3.已知条件p:,条件q:,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件4.如右图的程序框图所示,若输入,则输出的值是()A.B.1C.D.25.若抛物线上一点到轴的距离为3,则点到抛物线的焦点的距离为()A.3B.4C.5D.76.公差不为零的等差数列第2,3,6项构成等比数列,则这三项的公比为()A.1B.2C.3D.47.已知是单位向量,且夹角为60°,则等于()A.1B.C.3D.8.已知函数对任意,有,且当时,,则函数的大致图象为()9.设函数,则不等式的解集是()A.B.C.D.10.一个三棱锥的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为()A.B.C.1D.第Ⅱ卷非选择题(共100分)二、填空题(本大题共5小题,每小题5分,满分25分,把答案填写在答题卡相应的位置)11.若函数的图象在处的切线方程是,则.12.若椭圆的短轴为,它的一个焦点为,则满足为等边三角形的椭圆的离心率是.13.已知变量满足约束条件,则的最大值为;14.若则;15.选做题(请考生在以下三个小题中任选一题做答,如果多做,则按所做的第一题评阅记分)A(选修4—4坐标系与参数方程)已知点是曲线上任意一点,则点到直线的距离的最小值是;B(选修4—5不等式选讲)已知则的最大值是.;C(选修4—1几何证明选讲)如图,内接于,,直线切于点C,交于点.若则的长为.三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共75分)16.(本小题满分12分)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(Ⅰ)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(Ⅱ)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.17.(本小题满分12分)在中,角A,B,C的对边分别为,b,c,且满足,.(Ⅰ)求的面积;(Ⅱ)若,求边与的值.18.(本小题满分12分)各项均为正数的等比数列中,.(Ⅰ)求数列通项公式;(Ⅱ)若等差数列满足,求数列的前项和.19.(本小题满分12分)已知是矩形,,分别是线段的中点,平面.(Ⅰ)求证:平面;(Ⅱ)在棱上找一点,使∥平面,并说明理由.20.(本小题满分13分)已知函数.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,判断方程在区间上有无实根.(Ⅲ)若时,不等式恒成立,求实数的取值范围.21.(本题满分14分)已知椭圆的中心在坐标原点,焦点在轴上,离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)已知、为椭圆上的动点,当时,求证:直线恒过一个定点.并求出该定点的坐标.2013年普通高等学校招生全国统一考试西工大附中第四次适应性训练数学(文科)参考答案与评分标准一、选择题:题号12345678910答案DAADBCCCAD二、填空题:11.312.13.1114.15.A;B.;C.三、解答题16.(本小题满分12分)【解】:在100名电视观众中,收看新闻的观众共有45人,其中20至40岁的观众有18人,大于40岁的观众共有27人。
山东省2013届高三高考模拟卷(二)数学(文科)一、选择题:本大题共12个小题;每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.已知集合{2,0}xM y y x ==>,{N y y ==,则M N 等于A .∅B .{1}C .{1}y y >D .{1}y y ≥2.已知复数2ii ia b -=+(a ,b ∈R ,i 为虚数单位),则2a b -= A. 1 B. 2 C. 3 D.43.下列函数中,在其定义域内既是奇函数又是增函数的是A. 3,y x x R =∈B. sin ,y x x R =∈C. lg ,0y x x =>D. 3(),2xy x R =∈ 4.命题“对任意的01,23≤+-∈x x x R ”的否定是 A .不存在01,23≤+-∈x x x R B .存在01,23≤+-∈x x x R C .存在01,23>+-∈x x x RD .对任意的01,23>+-∈x x x R5.向量a ,b 的夹角为60︒,且||1a = ,||2b = ,则|2|a b -等于A.1D.2 6.如图,在边长为2的菱形ABCD 中,∠BAD =60︒,E 为BC 的中点,则AE BD =A .3-B .1-C .0D .17.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为A .13422=+y xB .16822=+y xC .1222=+y xD .1422=+y x 8.等比数列{}n a 的各项均为正数,且21813a a =,则313335319log log log log a a a a +++⋅⋅⋅+=A. 5B. 5-C. 53D.1039.把函数)2,0(),sin(πφωφω<>+=x y 的图像向左平移3π个单位,所得曲线的一部分如图示,则,ωϕ的值分别为 A .3,1π B .3,1π- C .3,2π D . 3,2π-10.已知()f x '是函数()f x 的导函数,如果()f x '是二次函数,()f x '的图象开口向上,顶点坐标为(1,1),那么曲线()f x 上任一点处的切线的倾斜角α的取值范围是A. (1,]4πB. [,)42ππC. 3(,]24ππD.[,)4ππ11.若0,0>>b a 且4=+b a ,则下列不等式恒成立的是A .211>abB .111≤+b aC .2≥abD .81122≤+b a12.已知函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -,且当2x ≠时,其导函数()f x '满足()2()xf x f x ''>,若24a <<,则有A. 2(2)(3)(l o g)af f fa << B. 2(3)(log )(2)a f f a f << C. 2(l o g )(3)(2)af a f f<< D. 2(log )(2)(3)a f a f f << 第二部分 非选择题(共90分)二、填空题:本大题共4个小题,每小题4分,满分16分.13.直线0323=-+y x 截圆422=+y x 所得的弦长是 .14.已知:l m ,是不同的直线,βα,是不同的平面,给出下列五个命题: ①若l 垂直于α内的两条直线,则α⊥l ; ②若α//l ,则l 平行于α内的所有直线; ③若,,βα⊂⊂l m 且,m l ⊥则βα⊥; ④若,β⊂l 且,α⊥l 则βα⊥;⑤若βα⊂⊂l m ,且,//βα则l m //.其中正确命题的序号是15.已知,x y 满足约束条件224200x y x y y ⎧+≤⎪-+≥⎨⎪≥⎩,则目标函数2z x y =+的最大值是 .16.已知偶函数()y f x =(x R ∈),满足:(1)(1)f x f x +=-,且[]0,1x ∈时,()f x x =,则函数()y f x =与函数3|log |y x =图象的交点个数为 .三、解答题:本大题共6小题,共76分.解答须写出文字说明、证明过程或演算步骤.17.(本题满分12分)在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,3cos 5B =,且符合21AB BC ⋅=- .(Ⅰ)求ABC ∆的面积; (Ⅱ)若7a =,求角C .18.(本小题满分12分)从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(Ⅰ)求第七组的频率;(Ⅱ)估计该校的800名男生的身高的中位数以及身高在180cm 以上(含180cm )的人数; (Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,x y ,事件=E {5x y -≤},事件F ={15->x y },求() P E F .19.(本小题满分12分)数列}{n a 是首项14a =的等比数列,且3S ,2S ,4S 成等差数列. (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)若2log n n b a =,设n T 为数列⎭⎬⎫⎩⎨⎧+11n n b b 的前n 项和,若1n n T b λ+≤对一切*n ∈N 恒成立,求实数λ的最小值.20.(本题满分12分)如图,四边形ABCD 中,AB ⊥AD ,AD ∥BC ,AD =6,BC =4,AB =2,E 、F 分别在BC 、AD 上,EF ∥AB .现将四边形ABEF 沿EF 折起,使得平面ABEF ⊥平面EFDC .(Ⅰ) 当1BE =,是否在折叠后的AD 上存在一点P ,且AP PD λ=,使得CP ∥平面ABEF ?若存在,求出λ的值;若不存在,说明理由;(Ⅱ) 设BE =x ,问当x 为何值时,三棱锥A -CDF 的体积有最大值?并求出这个最大值.21.(本题满分13分)已知椭圆2222:1(0)x y C a b a b+=>>.(Ⅰ)设椭圆的半焦距1c =,且222,,a b c 成等差数列,求椭圆C 的方程;(Ⅱ)设(1)中的椭圆C 与直线1y kx =+相交于P Q 、两点,求OP OQ的取值范围.22.(本小题满分13分)已知函数2()8ln f x x x =-,2()14g x x x =-+. (Ⅰ) 求函数()f x 在点(1,(1))f 处的切线方程;(Ⅱ) 若函数()f x 与()g x 在区间(),1a a +上均为增函数,求a 的取值范围; (Ⅲ) 若方程()()f x g x m =+有唯一解,试求实数m 的值.数学(文科)参考答案一、选择题:AB CDEFEFABCD1.A 2.C 3. A 4.C 5. D 6. C 7. A 8 .B 9. D10. B 11. D 12. C二、填空题:13. 2 14.④ 15.16. 3 三、解答题:17.【解析】(Ⅰ)21cos()21AB BC AB BC B π⋅=-⇒⋅⋅-=- ………………2分 cos 21c a B ⇒⋅⋅=. …………………………………………………………… 3分又3cos 5B =,故35ac =. ………………………………………………4分由3cos 5B =可推出4sin 5B == ………………………………………5分1sin 14.2ABC S ac B ∆∴== ………………………………………6分(Ⅱ)7,35a ac ==由,可得5c =, ………………………………………7分又2223cos 2cos 325B b a c ac B b =∴=+-=⇒= ………………8分cos C ∴== ………………10分 又(0,)C π∈ ,4C π∴=. ………………12分 18.【解析】(Ⅰ)第六组的频率为40.0850=,所以第七组的频率为 10.085(0.00820.0160.0420.06)0.06--⨯⨯++⨯+=; ……………………………4分 (Ⅱ)身高在第一组[155,160)的频率为0.00850.04⨯=, 身高在第二组[160,165)的频率为0.01650.08⨯=, 身高在第三组[165,170)的频率为0.0450.2⨯=, 身高在第四组[170,175)的频率为0.0450.2⨯=,由于0.040.080.20.320.5++=<,0.040.080.20.20.520.5+++=> 估计这所学校的800名男生的身高的中位数为m ,则170175<<m 由0.040.080.2(170)0.040.5+++-⨯=m 得174.5=m所以可估计这所学校的800名男生的身高的中位数为174.5 …………………………6分由直方图得后三组频率为0.060.080.00850.18++⨯=,所以身高在180cm 以上(含180cm )的人数为0.18800144⨯=人. ………………8分(Ⅲ)第六组[180,185)的人数为4人,设为,,,a b c d ,第八组[190,195]的人数为2人, 设为,A B ,则有,,,,,,ab ac ad bc bd cd ,,,,,,,,aA bA cA dA aB bB cB dB AB 共15种情况,因事件=E {5x y -≤}发生当且仅当随机抽取的两名男生在同一组,所以事件E 包含的基本事件为,,,,,,ab ac ad bc bd cd AB 共7种情况,故7()15P E =. ……………………10分 由于max 19518015x y -=-=,所以事件F ={15->x y }是不可能事件,()0P F =, 由于事件E 和事件F 是互斥事件,所以7()()()15P E F P E P F =+=………12分 19.【解析】(Ⅰ)当1q =时,32412816S S S ===,,,不成等差数列……………1分当1q ≠时,234111(1)(1)(1)2111a q a q a q q q q---=+--- ,∴2342q q q =+ ,…………3分 ∴220q q +-=,∴2q =-, …………………………………………………………4分∴114(2)(2)n n n a -+=-=-.………………………………………………………………5分(Ⅱ)122log log (2)1n n n b a n +==-=+,………………………………………… 6分 11111(1)(2)12n n b b n n n n +==-++++, ………………………………………… 7分 11111111233412222(2)n nT n n n n =-+-+⋅⋅⋅⋅⋅⋅+-=-=++++, ………………8分 1n n T b λ+≤,∴(2)2(2)n n n λ≤++,∴22(2)nn λ≥+, …………………… 10分 又211142(2)2(44)162(4)n n n n=≤=++++,∴λ的最小值为116. ……… 12分 20.【解析】(Ⅰ)存在P 使得满足条件CP ∥平面ABEF ,且此时32λ=.…………… 2分下面证明:当32λ=时,即此时32AP PD = ,可知35AP AD =,过点P 作MP ∥FD ,与AF 交于点M ,则有 35MP FD =,又FD =5,故MP =3,又因为EC =3,MP ∥FD ∥EC ,故有MP //=EC ,故四边形MPCE 为平行四边形,所以PC ∥ME ,又CP ⊄平面ABEF ,ME ⊂平面ABEF ,故有CP ∥平面ABEF 成立.……………………… 6分(Ⅱ)因为平面ABEF ⊥平面EFDC ,平面ABEF 平面EFDC =EF ,又AF ⊥EF ,所以AF ⊥平面EFDC .由已知BE =x ,,所以AF =x (0<x …4),FD =6-x .故222111112(6)(6)[(3)9](3)332333A C D F V x x x x x x -=⋅⋅⋅-⋅=-=--+=--+.所以,当x =3时,A CDF V -有最大值,最大值为3. ……………………… 12分21.【解析】(Ⅰ)由已知:221a b =+,且2221b a =+,解得223,2a b ==, ……4分所以椭圆C 的方程是22132x y +=. …………………………5分 (Ⅱ)将1y kx =+代入椭圆方程,得22(1)132x kx ++=, …………………………6分 化简得,()2232630k x kx ++-= …………………………7分E FAB C D M P设()()1122,,,P x y Q x y ,则12122263,3232k x x x x k k +=-=-++, …………………8分 所以,()()()()21212121212121111OP OQ x x y y x x kx kx k x x k x x =+=+++=++++()22222223166131232323232k k k k k k k -+--=-+==-+++++, ………………………10分 由222233310,322,0,22322322k k k k ≥+≥<≤-<-+≤-++,…………………12分 所以OP OQ 的取值范围是1(2,]2--. …………………………13分22.【解析】(Ⅰ)因为8()2f x xx'=-,所以切线的斜率(1)6k f '==- …………2分又(1)1f =,故所求切线方程为16(1)y x -=--,即67y x =-+ …………4分 (Ⅱ)因为2(2)(2)()x x f x x+-'=,又x >0,所以当x >2时,()0f x '>;当02x <<时, ()0f x '<.即()f x 在(2,)+∞上递增,在(0,2)上递减 ……………………………………………5分又2()(7)49g x x =--+,所以()g x 在(,7)-∞上递增,在(7,)+∞上递减 ………6分欲()f x 与()g x 在区间(),1a a +上均为增函数,则217a a ≥⎧⎨+≤⎩,解得26a ≤≤ ……8分(Ⅲ) 原方程等价于228ln 14x x x m --=,令2()28ln 14h x x x x =--,则原方程即为()h x m =. ……………………9分 因为当0>x 时原方程有唯一解,所以函数()y h x =与y m =的图象在y 轴右侧有唯一的交点……………………10分又82(4)(21)()414x x h x x x x-+'=--=,且0x >, 所以当4x >时,()0h x '>,函数()h x 单调递增;当04x <<时, ()0h x '<,函数()h x 单调递减. 故()h x 在4x =处取得最小值. ……………12分 从而当0>x 时原方程有唯一解的充要条件是(4)16ln 224m h ==--. ………13分0z =。
天材教育2013届高三文科数学模拟试题一、选择题:本大题共12小题,每小题5分,共60分,每小题只有一个选项是符合要求的。
1 已知全集={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA )B 为A {1,2,4}B {2,3,4}C {0,2,4}D {0,2,3,4}2.已知复数12(,,)2ia bi ab R i i+=+∈+为虚数单位,那么a b -的值为 ( ) A.12 B.13 C. 14 D. 153.已知命题2:",10";p x R x ∀∈+>命题:",sin 2"q x R x ∃∈=,则下列判断正确的是 ( )A.p q p 或真,非为真B.p q p 或真,非为假C.p q p 且为真,非为真D.p q p 且为真,非为假4.若某多面体的三视图(单位:cm )如图所示,则此多面体的体积是 ( )A.22cmB.24cmC.26cmD.212cm5.某产品的成本费用x 与销售额的统计数据如下表, 根据上表可得回顾方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报成本费用为6万元时销售额为 ( )A.72.0万元B.67.7万元C.65.5万元D.63.6万元6.设双曲线22221(0,0)x y a b a b-=>>的离心率为54,且过点(4,0),则此双曲线的方程为侧视图( )22A.143x y -=22B.134x y -= 22C.1169x y -=22D.1916x y -=7.已知0.90.7 1.1log 0.9,log 0.7, 1.1a b c ===,则,,a b c 的大小关系为( )A.a b c <<B.a c b <<C.b a c <<D.c a b <<8.在ABC ∆中,,a b c 分别为角,,A B C 的对边,若2,sin sin sin a B C A =+=,且ABC ∆的面积为4sin 3A ,则角A =( ) A.6p B.3p C.2p5D.3p9 过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( )(A )4)1()3(22=++-y x (B )4)1()3(22=-+-y x(C )4)1()1(22=-+-y x(D )4)1()1(23=+++y x10 函数x x y cos sin +=的图形的一条对称轴的方程是( )(A )45π=x (B )43π=x (C )4π-=x(D )2π-=x11 若)(x f 、)(x g 都是R 上的单调函数,有如下命题: ①若)(x f 、)(x g 都单调递增,则)()(x g x f -单调递增 ②若)(x f 、)(x g 都单调递减,则)()(x g x f -单调递减 ③若)(x f 、)(x g 都单调递增,则)()(x g x f ⋅单调递增 ④若)(x f 单调递增,)(x g 单调递减,则)()(x g x f -单调递增 ⑤若)(x f 单调递减,)(x g 单调递增,)()(x g x f -单调递减 其中正确的是( ) (A )①②(B )②③④(C )③④⑤(D )④⑤12 已知函数221,()2,0,x x of x x x x ⎧->⎪=⎨--≤⎪⎩,若函数()()g x f x m =-有3个零点,则实数m 的取值范围是( a )A.(0,1)B.(0,2)C.(1,2)D.(2,3)二、填空题:本大题共4小题,每小题5分共20分。
2012届高三模拟试卷数学(文)参考答案一、选择题(本大题共10小题,每小题5分,共50分) 二、填空题(本大题共7小题,每小题4分,共28分)11.50 12.21 13 (,8)(2,)-∞-⋃+∞.14.4或8315.① 三、解答题(本大题共6小题,共75分)16.解:(1)1cos 21()2sin(2)1226x f x x x π+=--=-- …………2分 所以,()f x 的最大值为0,最小正周期为T=2ππ=; …………4分11sin 122222ABC S ab C ∴==⋅⋅⋅=V …………………12分17.解:(1)由题意,记数列的前五项分别为1,2,3,4,5,则抽取两项后剩下的三项有123,124,125,134,135,145,234,235,245,345共10种情况。
……6分(2)记事件A 为“取出的三项分别为{},(,,1,2,3,4,5,a a a p q r p q r ∈,使得()()224f x x a x a a p q r=+++恰有一个零点”,由题意()()201640,f x a a a p q r =⇔∆=-+=a a a p q r =+即2 ……8分所以,,a a a q p r 成等差数列,包含的基本事件有123,135,234,345共4种情况 …10分 所以()42105P A == …..12分 18.(1)证明:∵四边形DCBE 为平行四边形 ∴//CD BE ,//BC DE ∵ DC ⊥平面ABC ,BC ⊂平面ABC ∴DC BC ⊥.…………….….(2分) ∵AB 是圆O 的直径 ∴BC AC ⊥且DC AC C =I∴BC ⊥平面ADC . ∵DE//BC ∴DE ⊥平面ADC…………….….(4分) 又∵DE ⊂平面ADE ∴平面ACD ⊥平面ADE …………………….….(5分)(2)∵DE//BC ∴ADC ∠为异面直线AD 与BE 所成角.即tan ADC ∠=在R t△ADC 中, CD BE ==tan AC ADC CD ∠==∴AC =.….(8分)∵13C ADE A CDE CDE V V S AC --∆== = 33…………………….….(12分)19.解:(1)设等差数列{}n a 的首项为1,a 公差为,d25,a =Q 3416a a +=115,2516,a d a d ∴+=+= ……………………2分解得13,2,a d ∴== ……………………4分221,2.n n a n S n n ∴=+=+ ……………………6分(2)2211(),11n n f x b x a ==--, 21,n a n =+Q 214(1)na n n ∴-=+1111()4(1)41n b n n n n ∴==-++ ……………………8分123111111(1)42231n n T b b b b n n ∴=++++=-+-++-+L L ……………………10分11(1)414(1)n nT n n ∴=-=++ 所以数列{}n b 的前n 项和 4(1)n nT n =+ ……………………12分20解:(Ⅰ)由题意,2222222221b a a b a a c e =⇒=-=⎪⎭⎫ ⎝⎛=, ......1分 又1,2111222==⇒=+=b a b , ......3分所以椭圆C 的方程为1222=+y x ; ......4分 (Ⅱ)由题意知,设直线l 的方程为()1≥+=m m ky x ,()⎩⎨⎧=-+++⇒+==-+022202222222m kmy y k mky x y x ......6分 设A 、B 两点的坐标分别为),)(,(2211y x y x ,则22,222221221+-=+-=+k m y y k km y y ......7分又由l 与圆.1,11||,122222+==+=+k m k m y x 即得相切 ......8分所以2121224)(1||y y y y kAB --+=))2(1688)(1(2222++-+=2k m k k .1||222+=m m......10分又原点O 到直线l 的距离1=d , 所以d AB S OAB .21=∆()11||22≥+=m m m . ......11分 又,22||1||2122≤+=+m m m m 当且仅当时取等号即1,1±==m m m , 所以1±=m 时,OAB ∆的面积的最大值为22。
2013年高考模拟系列试卷(一)数学试题【新课标版】(文科)题 号 第Ⅰ卷第Ⅱ卷总分一二171819202122得 分注意事项:1.本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.作答时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题,共60分)一、本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的 1.复数z=i 2(1+i)的虚部为( ) A .1 B .iC .– 1D .– i2.设全集()()2,{|21},{|ln 1}x x U R A x B x y x -==<==-,则右图中阴影部分表示的集合为( )A .{|1}x x ≥B .{|12}x x ≤<C .{|01}x x <≤D .{|1}x x ≤ 3。
已知各项均为正数的等比数列{na }中,1237895,10,a a aa a a ==则456a a a =( )UA.52B.7 C 。
6 D 。
424.已知0.81.2512,,2log 22a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A.c b a <<B. c a b <<C 。
b c a <<D .b ac <<5.已知某几何体的三视图如图,其中正(主)视图中半圆的半径为1,则该几何体的体积为( )A .3242π- B .243π- C .24π-D .242π-6.设,m n 是空间两条直线,α,β是空间两个平面,则下列选项中不正确...的是( )A .当n ⊥α时,“n ⊥β”是“α∥β"成立的充要条件B .当α⊂m 时,“m ⊥β”是“βα⊥"的充分不必要条件C .当α⊂m 时,“//n α”是“n m //”的必要不充分条件D .当α⊂m 时,“α⊥n "是“n m ⊥"的充分不必要条件7。
山东省2013届高三最新文科模拟试题精选(26套含一、二模)分类汇编2:函数一、选择题错误!未指定书签。
.(山东省日照市2013届高三第一次模拟考试数学(文)试题)函数()()lg 1f x x =-的大致图象是【答案】B 解析:答案B .易知()f x 为偶函数,故只考虑0x >时()lg(1)f x x =-的图象,将函数lg y x =图象向x 轴正方向平移一个单位得到()lg(1)f x x =-的图象,再根据偶函数性质得到()f x 的图象错误!未指定书签。
.(山东省临沂市2013届高三3月教学质量检测考试(一模)数学(文)试题)函数121xf (x )ln x x =+-的定义域为( )A .(0,+∞)B .(1,+∞)[来源:] C .(0,1) D .(0,1) (1,+∞)【答案】要使函数有意义,则有001x x x ≥⎧⎪⎨>⎪-⎩,即0(1)0x x x ≥⎧⎨->⎩,所以解得1x >,即定义域为(1,]+∞,选B . [来源:]错误!未指定书签。
.(山东省淄博市2013届高三3月第一次模拟考试数学文试题)设定义在R 上的奇函数)(x f y =,满足对任意R t ∈都有)1()(t f t f -=,且]21,0[∈x 时,2)(x x f -=,则)23()3(-+f f 的值等于 ( )A .21-B .31-C .41-D .51-【答案】C错误!未指定书签。
.(山东省烟台市2013届高三3月诊断性测试数学文)函数f(x)=1nx-212x 的图像大致是【答案】【答案】B 函数的定义域为{0}x x >,函数的导数微微211'()x f x x x x -=-=,由21'()0x f x x -=>得,01x <<,即增区间为(0,1).由21'()0x f x x -=<得,1x >,即减区间为(1,)+∞,所以当1x =时,函数取得极大值,且1(1)02f =-<,所以选 B .错误!未指定书签。
2013届全国名校高三模拟调研考试(一)文科数学(新课标)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数21ia i++是纯虚数,则实数a = A .1B .-1C .-2D.2.定义集合运算*{|,,}A B z z xy x y x A y B ==++∈∈,已知{|sin ,}2k P x x k Z π==∈,{1,2}Q =,则*P Q =A .{}1,1,2,3,5-B .{}1,0,1,2-C .{}1,1,2-D .{}0,1,2,33.已知向量,a b 均为单位向量,它们的夹角为60°,那么|3|a b +等于ABCD .44.为得到函数cos(2)3y x π=+的图像,只需要将函数sin 2y x =的图像A .向左平移512π个单位 B .向右平移512π个单位 C .向左平移56π个单位D .向右平移56π个单位5.实数,x y 满足24,1,0,x y x y x +≤⎧⎪+≥⎨⎪≥⎩则35x y +的最大值为A .12B .9C .8D .36.已知等比数列{}n a 中,各项均为正数,前n 项和为n S ,且34a ,5a ,42a 成等差数列,若11a =,则4S =A .7B .8C .15D .167.定义在R 上的偶函数()f x ,对任意x R ∈都有(2)()f x f x +=,且当[]0,1x ∈时,3()f x x =,则方程4()log ||f x x =的根的个数是A .2B .4C .6D .无数多8.已知过抛物线26y x =焦点的弦长为12,则此弦所在直线的倾斜角是A .6π或56πB .4π或34πC .3π或23πD .2π9.函数sin cos y x x =+的其中一条对称轴方程为A .34x π=B .2x π=C .4x π=-D .4x π=10.下面四个命题:①“直线a ∥直线b ”的充分条件是“直线a 平行于直线b 所在的平面”; ②“直线l ⊥平面α”的充要条件是“直线l ⊥平面α内无数条直线”; ③“直线,a b 不相交”的必要不充分条件是“直线,a b 为异面直线”;④“平面α∥平面β”的必要不充分条件是“平面α内存在不共线三点到平面β的距离相等”. 其中正确命题的序号是A .①②B .②③C .③④D .④11.已知函数21()log 3xf x x ⎛⎫=- ⎪⎝⎭,若实数0x 是方程()0f x =的解,且100x x <<,则1()f x 的值为A .恒为正值B .等于0C .恒为负值D .不大于012.在双曲线22221(0,0)x y a b a b-=>>上有一点P ,1F ,2F 为双曲线的两个焦点,1290F PF ∠= ,且△12F PF 的三条边长成等差数列,则此双曲线的渐近线方程为A .2y x =± B.y =±C.y =±D.y =±第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. 13.命题[):0,p x ∀∈+∞,3(log 2)1x ≤的否定为 . 14.设,x y R ∈,1,1a b >>,若3xya b ==,a b +=11x y+的最大值为 .15.对于函数()f x ,在使()f x M ≥恒成立的所有常数M 中,我们把M 中的最大值称为函数()f x 的“下确界”,则函数221()(1)x f x x +=+的下确界为 . 16.已知,,O A B 是同一平面内不共线的三点,且OM OA OB λμ=+,则下列命题正确的是 .(写出所有正确命题的编号) ①若11,22λμ==,则点M 是线段AB 的中点; ②若1,2λμ=-=,则,,M A B 三点共线;③若11,||||OA OB λμ==,则点M 在AOB ∠的平分线上; ④若11,33λμ==,则点M 是△OAB 的重心.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,且222823ABC b c a S +-= (其中ABC S 为△ABC 的面积).(1)求2sincos 22B CA ++; (2)若2b =,△ABC 的面积为3,求a .18.(本小题满分12分)如图a 所示,在直角梯形ABCD 中,AB AD ⊥,AD ∥BC ,F 为AD 的中点,E 在BC 上,且EF ∥AB .已知2AB AD CE ===,沿线段EF 把四边形CDEF 折起如图b 所示,使平面CDEF ⊥平面ABEF . (1)求证:AF ⊥平面CDEF ; (2)求三棱锥C ADE -的体积.ABEFC DCEFABD19.(本小题满分12分)某校为了解学生的视力情况,随机抽查了一部分学生的视力,将调查结果分组,分组区间为(]3.9,4.2,(]4.2,4.5,……,(]5.1,5.4,经过数据处理,得到如下频率分布表:(1)求频率分布中未知量,,,n x y z 的值;(2)从样本中视力在(]3.9,4.2和(]5.1,5.4的所有同学中随机抽取两人,求两人视力差的绝对值低于0.5的概率.20.(本小题满分12分)椭圆方程为22221(0)x y a b a b+=>>的一个顶点为(0,2)A,离心率3e =. (1)求椭圆的方程;(2)直线:2(0)l y kx k =-≠与椭圆相交于不同的两点,M N 满足MP PN = ,0AP MN ⋅=,求k .21.(本小题满分12分)已知函数2()ln f x x a x =+. (1)当2a =-时,求函数()f x 的单调区间和极值; (2)若2()()g x f x x=+在[)1,+∞上是单调增函数,求实数a 的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号. 22.(本小题满分10分)【选修4-1:几何选讲】 如图,已知△ABC 的两条角平分线AD 和CE 相交于H ,60B ∠= ,F 在AC 上,且AE AF =.(1)证明:,,,B D H E 四点共圆; (2)证明:CE 平分CEF ∠.A BFECHD23.(本小题满分10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,直线l的参数方程为3,,2x y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C的方程为ρθ=.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点,A B ,若点P的坐标为,求||||PA PB +.24.(本小题满分10分)【选修4-5:不等式选讲】 已知函数()|21|f x x =+,()|4|g x x =-. (1)求不等式()2f x >的解集;(2)不等式()()1f x g x m -≥+的解集为R ,求实数m 的取值范围.数学试题参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力二、填空题.本题考查基础知识,基本概念和基本运算技巧13.14.15.16.三、解答题17.。
2013年高三文科数学模拟试题(附答案)广东省惠州市2013届高三第二次调研考试数学试题(文科)第Ⅰ卷(选择题,共50分)一.选择题:本大题共l0小题,在每小题给出的四个选项中.只有一项是符合题目要求的.每小题5分,满分50分.1.命题“”的否命题是().A.B.C.D.2.为确保信息安全,信息需加密传输,发送方由明文密文(加密),接受方由密文明文(解密),已知加密规则为:明文对应密文,例如,明文对应密文.当接受方收到密文时,则解密得到的明文为().A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,73.已知向量,,若,则实数的值等于().A.B.C.D.4.已知椭圆的长轴长是短轴长的倍,则椭圆的离心率等于().A.B.C.D.5.在一次射击训练中,一小组的成绩如下表:环数已知该小组的平均成绩为环,那么成绩为环的人数是().....6.下列函数为奇函数的是().....7.下列四个几何体中,每个几何体的三视图有且仅有两个视图相同的是().A.①②B.①③C.①④D.②④8.如果执行下面的程序框图,那么输出的().A.2450B.2500C.2550D.26529.将函数的图象先向左平移,然后将所得图象上所有的点的横坐标变为原来的倍(纵坐标不变),则所得到的图象对应的函数解析式为().A.B.C.D.10.已知全集R,集合,若a>b>0,则有().A.B.C.D.第Ⅱ卷(非选择题,共100分)二.填空题:本大题共5小题,其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.每小题5分,满分20分.11.化简:.12.已知是定义在R上的函数,且对任意,都有:,又则.13.若实数满足条件,则目标函数的最大值为_____.14.(坐标系与参数方程选做题)极坐标系中,圆上的动点到直线的距离的最大值是.15.(几何证明选讲选做题)如右图所示,是圆的直径,,,,则.三.解答题:本大题共6小题,满分80分.解答须写出文字说明.证明过程和演算步骤.16.(本小题12分)在△ABC中,是角所对的边,且满足.(Ⅰ)求角的大小;(Ⅱ)设,求的最小值.17.(本小题14分)已知:正方体,,E为棱的中点.(Ⅰ)求证:;(Ⅱ)求证:平面;(Ⅲ)求三棱锥的体积.18.(本小题12分)有朋自远方来,已知他乘火车、轮船、汽车、飞机来的概率分别是.(Ⅰ)求他乘火车或飞机来的概率;(Ⅱ)求他不乘轮船来的概率;(Ⅲ)如果他来的概率为,请问他有可能是乘何种交通工具来的?19.(本小题14分)设函数的图象关于原点对称,的图象在点处的切线的斜率为,且当时有极值.(Ⅰ)求的值;(Ⅱ)求的所有极值.20.(本小题14分)已知圆:和圆,直线与圆相切于点;圆的圆心在射线上,圆过原点,且被直线截得的弦长为.(Ⅰ)求直线的方程(Ⅱ)求圆的方程.21.(本小题14分)已知数列是等差数列,;数列的前n项和是,且.(Ⅰ)求数列的通项公式;(Ⅱ)求证:数列是等比数列;(Ⅲ)记,求的前n项和.广东省惠州市2013届高三第二次调研考试数学试题(文科)参考答案答案1.解析:命题“”的否命题是:“”,故选C.2.解析:由已知,得:,故选.3.解析:若,则,解得.故选.4.解析:由题意得,又.故选.5.解析:设成绩为环的人数是,由平均数的概念,得:.故选.6.解析:是偶函数;是指数函数;是对数函数.故选.7.解析:①的三视图均为正方形;②的三视图中正视图.侧视图为相同的等腰三角形,俯视图为圆;④的三视图中正视图.侧视图为相同的等腰三角形,俯视图为正方形.故选.8.解析:程序的运行结果是,选.9.解析:的图象先向左平移,横坐标变为原来的倍.答案:.10.解析:特殊值法:令,有.故选.题号1112131415答案11.解析:.12.解析:令,则,令,则,同理得即当时,的值以为周期,所以.13.解析:由图象知:当函数的图象过点时,取得最大值为2.14.(坐标系与参数方程选做题)解析:将极坐标方程转化成直角坐标方程,圆上的动点到直线的距离的最大值就是圆心到直线的距离再加上半径.故填.15.(几何证明选讲选做题)解析:连结,则在和中:,且,所以,故.三.解答题:本大题共6小题,满分80分.解答须写出文字说明.证明过程和演算步骤.16.析:主要考察三角形中的边角关系、向量的坐标运算、二次函数的最值.解:(Ⅰ)∵,∴,………………3分又∵,∴.……………………………………………5分(Ⅱ)……………………………………………6分,………………………8分∵,∴.……………10分∴当时,取得最小值为.…………12分17.析:主要考察立体几何中的位置关系、体积.解:(Ⅰ)证明:连结,则//,…………1分∵是正方形,∴.∵面,∴.又,∴面.………………4分∵面,∴,∴.…………………………………………5分(Ⅱ)证明:作的中点F,连结.∵是的中点,∴,∴四边形是平行四边形,∴.………7分∵是的中点,∴,又,∴.∴四边形是平行四边形,//,∵,,∴平面面.…………………………………9分又平面,∴面.………………10分(3).……………………………11分.……………………………14分18.析:主要考察事件的运算、古典概型.解:设“朋友乘火车、轮船、汽车、飞机来”分别为事件,则,,,,且事件之间是互斥的.(Ⅰ)他乘火车或飞机来的概率为………4分(Ⅱ)他乘轮船来的概率是,所以他不乘轮船来的概率为.………………8分(Ⅲ)由于,所以他可能是乘飞机来也可能是乘火车或汽车来的.…………………12分19.析:主要考察函数的图象与性质,导数的应用.解:(Ⅰ)由函数的图象关于原点对称,得,………………1分∴,∴.…………2分∴,∴.……………………………4分∴,即.........................6分∴. (7)0+0↘极小↗极大↘∴.………………………14分20.析:主要考察直线.圆的方程,直线与圆的位置关系.解:(Ⅰ)(法一)∵点在圆上,…………………………2分∴直线的方程为,即.……………………………5分(法二)当直线垂直轴时,不符合题意.……………………………2分当直线与轴不垂直时,设直线的方程为,即.则圆心到直线的距离,即:,解得,……4分∴直线的方程为.……………………………………………5分(Ⅱ)设圆:,∵圆过原点,∴.∴圆的方程为.…………………………7分∵圆被直线截得的弦长为,∴圆心到直线:的距离:.…………………………………………9分整理得:,解得或.……………………………10分∵,∴.…………………………………………………………13分∴圆:.……………………………………14分21.析:主要考察等差、等比数列的定义、式,求数列的和的方法.解:(Ⅰ)设的公差为,则:,,∴.…………………………………………4分(Ⅱ)当时,,由,得.…………………5分当时,,,∴,即.…………………………7分∴.……………………………………………………………8分∴是以为首项,为公比的等比数列.…………………………………9分(Ⅲ)由(2)可知:.……………………………10分∴.…………………………………11分∴.…14分。
开始 0k =k =k +131n n =+150?n >输出k ,n结束是 否输入n2013年高考数学模拟试卷(文)第I 卷一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1.1.已知集合{}0 1 2A =,,,集合{}2B xx =>,则A B =A .B .{}0 1 2,,C .{}2x x >D .∅ 2.已知i 为虚数单位,则212ii-++的值等于 ( )A. i -B.12i -C. 1-D.2.定义{|,,}x A B z z x y x A y B y⊗==+∈∈.设集合{0,2}A =,{1,2}B =3.如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( ) A.增函数且最小值为-5 B.减函数且最小值是-5 C.增函数且最大值为-5 D.减函数且最大值是-5 4.如果实数x,y 满足等式(x -2)2+y 2=3,那么xy的最大值是( ) A .21 B .33 C .23 D .35.阅读图1的程序框图. 若输入5n =, 则输出k 的值为. A .2 B .3 C .4 D .56.函数tan()42y x ππ=-的部分图象如图所示,则()O AO BA B +⋅=( )A.6B.4C.4-D.6-7.在纪念中国人民抗日战争胜利六十周年的集会上,两校各派3名代表,校际间轮流发言,对日本侵略者所犯下的滔天罪行进行控诉,对中国人民抗日斗争中的英勇事迹进行赞颂,那么不同的发言顺序共有( ) A.72种 B.36种 C.144种 D.108种O xyAB第6题图图18.已知函数()y f x =的定义域为2(43,32)a a --, 且(23)y f x =-为偶函数,则实数a 的值为( )A .3或-1B .-3或1C .1D .-19.农民收入由工资性收入和其它收入两部分构成。
山东省济南市2013届高三高考模拟考试文科数学试题本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页. 考试时间120分钟,满分150分,考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:1.锥体的体积公式:1V S 3h =,其中S 是锥体的底面积,h 是锥体的高; 2.方差],)()()[(1222212x x x x x x ns n -++-+-=其中x 为n x x x ,,,21 的平均数. 第I 卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1. 已知全集}6,5,4,3,2,1,0{=U ,集合{1,2}A =,}5,2,0{=B ,则集合=B A C U )(A .{3,4,6}B .{3,5}C .{0,5}D .{0,2,4}【答案】C{0,3,4,5,6}U A =ð,所以(){0,5}U A B = ð,选C.2. 设复数(34)(12)z i i =-+(i 是虚数单位),则复数z 的虚部为 A .2- B. 2 C. i 2- D. i 2【答案】B由(34)(12)52z i i i =-+=-+,所以复数z 的虚部为2,选B. 3. 若6.03=a ,2.0log 3=b ,36.0=c ,则A .b c a >> B. c b a >> C. a b c >> D. a c b >>【答案】A0.6331,log 0.20><,300.61<<,所以a c b >>。
江华二中2013届高三文科数学模拟试题问 卷本试题卷包括选择题、填空题和解答题三部分.时量120分钟.满分150分.一、选择题:本大题共9小题,每小题5分,共45分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1,2,3,4M N ⋃=,{}1,3N =,则集合M 可能是 A.{}4 B.{}3,4 C.{}2,3,4 D.{}1,3,4 2.复数21ii -=+ A.1322i -B.1322i +C.3322i -D.3322i +3.“1a =”是“直线1y ax =+和直线1y ax =--垂直”的 A.充分不必要条件 B. 必要不充分条件C.充要条件D.既不充分也不必要条件4.一个几何体的三视图如右图所示:(单位:cm ) 则这个几何体的表面积为A. 542cmB. 662cmC. 722cmD. 842cm5.某产品的成本费用x 与销售额y 的统计数据如下表: 成本费用x (万元) 2 3 4 5 销售额y (万元)2639 49 54根据上表得回归方程y b x a ∧∧∧=+,其中b ∧=9.4,据此模型预报成本费用为6万元时销售额为 A. 72.0万元 B. 67.7万元 C. 65.5万元 D. 63.6万元6.ABC ∆的内角,,A B C 的对边分别为,,a b c .若03,3,120c b B ===,则ABC ∆ 的面积为A.32B.334C.338D.3327.已知平面向量a ,b 满足3,2a b == .a 与b 的夹角为060,且(a m b a -⊥ ),则实数m 的值为A.1B.32C.2D.353 俯视图54 侧视图5 3 正视图8.已知双曲线22221xya b-=,过其右焦点且垂直于实轴的直线与双曲线交于,M N 两点,O 是坐标原点,若OM ∙ON =0,则双曲线的离心率为A.122+ B.132+ C.152+ D.172+9.设,P Q 是两个非空集合,定义P *Q ={}(,),a b a P b Q ∈∈,若{}{}0,1,1,2,3P Q ==.则集合P *Q 的子集的个数是A.63个B.32个C.64个D.16个二、填空题:本大题共7小题,考生作答6小题,每小题5分共30分.把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第10、11两题中任选一题作答,如果全做,则按前一题记分)10.若直线:l y kx =与曲线C :2cos (sin x xy x θ=+⎧⎨=⎩为参数),有唯一的公共点,则实数k = . 11.用0.618法确定最佳点时,试验区间为[]2,4,若第一个试点1x 处的结果比第二个试点2x 处的结果好,且1x >2x ,则存优范围是 . (二)必做题12.已知,x y 满足约束条件24004x y x y x +-≥⎧⎪-≥⎨⎪≤⎩则2z x y =+的最大值是 .13.已知定义在R 上的奇函数()f x ,其周期为4,当02x <≤时,()2xf x = 若()n a f n =(n ∈N +),则2011a = .14.已知等差数列{}n a 中,59710a a a +-=,记123...n n S a a a a =++++,则13S = . 15.如图所示的程序框图,该程序运行后输出的结果为 .输出S结束否A=1,S=0 S=S+A是 A ≤9?A=A+2开始16.对于函数()f x ,如果存在函数()g x ax b =+,,a b (为常数).使得对于区间 D 上的任意实 数x 都有()f x ≤()g x 成立,则称()g x 为函数()f x 在区间D 上的一个“覆盖函数”. (1)设()2x f x =,()g x =2x ,若()g x 为函数()f x 在区间[],m n 上的一个“覆盖函数”.则n m -的最大值为 .(2)设()f x =-22ln x x x -,()g x =3ax -+.若()g x 为函数()f x 在区间 ()0,+∞上的一个“覆盖函数”.则实数a 的取值范围是 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 从某学校高三年级800名学生中随机抽取 50名测量身高,据测量被抽取的学生的身高全 部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[155,160).第二组[160,165);…第八组[190,195], 下图是按上述分组方法得到的频率分布直方图.(1)根据已知条件填写下面表格:组 别 1 2 3 4 5 6 7 8 样本数(2)估计这所学校高三年级800名学生中身高在180cm 以上(含180cm )的人数;(3)在样本中,若第二组有1人为男生,其余为女生,第七组有1人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为一男一女的概率是多少?18.(本小题满分12分)已知函数()f x =23sin 22cos x x m ++在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为6. (1)求常数m 的值.(2)求函数()f x 的单调递增区间.(3)将函数()f x 的图象向右平移4π个单位得到函数1()f x 的图象,再将函数1()f x 的图象向下平移2个单位,得到函数2()f x 的图象,写出函数2()f x 的解析式.0.06 0.0080.04 0.016 频率 组距 身高(cm ) 0155 160 165 170 175 180 185 190 19519.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ABCD ⊥底面,PD DC =,E PC 是的中点.(1)证明://PA 平面E D B(2) 求EB 与底面ABCD 所成角的正切值.20.(本小题满分13分)已知抛物线22(0)y Px p =>的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方点,点A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M . (1)求抛物线方程;(2)过M 作MN FA ⊥,垂足为N ,求点N 的坐标;(3)以M 为圆心,MB 为半径作圆M ,当(,0)K m 是x 轴上一动点时,讨论直线AK 与圆M 的位置关系.21.(本小题满分13分)某单位为了职工的住房问题,计划征用一块土地盖一幢总面积为300002m 的宿舍楼(每层的建筑面积相同),已知土地的征用费用为2250元/2m ,土地的征用面积为第一层的1.5倍,经工程技术人员核箅,第一层的建筑费用为400元/2m ,以后每增高一层,该层建筑费用就增加30元/2m .设这幢宿舍楼的楼高层数为n ,总费用为y 万元(总费用为建筑费用和征地费用之和).(1)求总费用y (万元)与楼高层数n 之间的函数关系;(2)这幢宿舍楼的楼髙层数为多少层时,总费用最少?并求出最少费用.22.(本小题满分13分)已知函数()f x 21(1)(1ln )2x a x a x =-+++(1)求曲线()y f x =在点(2,(2))f 处与直线1y x =-+平行的切线方程.(2)当0a >时,求函数()f x 的极值.BE P C A D江华二中2013届高三文科数学模拟试题答 卷一、 选择题:本大题共9小题,每小题5分,共45分.题号 1 2 3 4 5 6 78 9 答案二、 填空题:本大题共7小题,考生作答6小题,每小题5分共30分.10.____________; 11.____________;12.____________; 13.____________; 14.____________;15.____________; 16.(1)_________; (2) ____________; 三、解答题:本大题共6小题,共75分。
解答应写出必要的过程或演算步骤. 17.(本小题满分12分)⊙ ⊙ 姓 名班 级 座位号⊙ ⊙⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙装订线内不要答题,装订线外不要写姓名,考号等。
违者试卷做0分处理。
19.(本小题满分12分)21.(本小题满分13分)22.(本小题满分13分)江华二中2013届高三文科数学模拟试题(参考答案)一、选择题:本大题共9小题,每小题5分,共45分.题号 1 2 3 4 5 6 7 8 9答案 C A A C C B D C C二、填空题:本大题共7小题,考生作答6小题,每小题5分共30分.10.33± 11. (2.754,4)12. 12 13. -2 14. 13015. 25 16. (1) 1 (2) ](,4-∞三、解答题:本大题共6小题,共75分。
解答应写出必要的过程或演算步骤.17.解:(1)由频率分布直方图可得第七组的频率为:1-0.0082+0.0162+0.042+0.065=0.06⨯⨯⨯⨯()∴第七组的人数为3人..............................(2分)则可得各组人数如下:..............................(4分)(2)由频率分布直方图可得后三组的频率为:0.0165+0.06+0.0085=0.18⨯⨯..............................(5分)估计这所学校高三年级身高在180cm以上(含180cm)的人数800×0.18=144..............................(6分)(3)第二组四人记为a、b、c、d,其中a为男生,b、c、d为女生,第七组三人记为1、2、3,其中1、2为男生,3为女生,基本事件有:1a, 1b, 1c, 1d, 2a,2b, 2c, 2d,3a, 3b, 3c, 3d共12个.其中恰为一男一女的事件有1b,1c,1d,2b,2c,2d,3a共7个,因此实验小组中,恰为一男一女的概率是712..............(12分)组别1 23 45 6 7 8样本数 2 4 10 10 15 4 3 218.解:(1)()f x =23sin 22cos x x m ++ 2sin(2)16x m π=+++由 02x π≤≤, 得72+666x πππ≤≤. 则 1s i n (2)126x π-≤+≤ .......(3分) ∴ ()3m f x m ≤≤+ ∴36,3m m +==∴()f x =2sin(2)46x π++ ...........................(4分)(2)由 222262k x k πππππ-+≤+≤+ 得 36k x k ππππ-+≤≤+∴函数()f x 的单调递增区间为,36k k ππππ⎡⎤-++⎢⎥⎣⎦k z ∈ .............(8分) (3)由 ()f x =2sin(2)46x π++,可得1()2sin 2()446f x x ππ⎛⎫=-++ ⎪⎝⎭2sin(2)43x π=-+ ............. (10分) 所以 2()2s i n (2)3f x x π=-42+-=2sin(2)23x π-+ .............(12分) 19.(1)证明:连接AC 交BD 于O .连接EO∵底面ABCD 是正方形∴点O 是AC 的中点.在△PAC 中,EO 是中位线∴PA ∥EO而EO ⊂平面EDB 且PA ⊄平面EDB ,所以,PA ∥平面EDB . ...........(4分)(2)解:作EF ⊥DC 交CD 于F .连接BF , 设正方形ABCD 的边长为a .∵PD ⊥底面ABCD ∴PD ⊥DC ∴EF ∥PD ,F 为DC 的中点∴EF ⊥底面ABCD 故∠EBF 为直线EB 与底面ABCD 所成的角 ...........(8分)在Rt △BCF 中,BF=22222a BC CFa +=+=52a∵EF=12PD=2a ∴在Rt △EFB 中, 52tan 552aEF EBF BFa∠===∴直线EB 与底面ABCD 所成的的正切值为55................. (12分)B E PC AD O F20.解:(1)∵抛物线22y px =的准线为2p x =-∴ 452p += 解得 2p =∴抛物线的方程为24y x = ...........................(3分)(2)由(1)可得点A 的坐标为(4,4),(0,4),(0,2),(1,0)B M F , ∴4=3FA k 又∵MN FA ⊥ ∴34M N k =-则直线F A 的方程为:4(1)3y x =-,直线M N 的方程为:324y x -=-由 4(1)3324y x y x ⎧=-⎪⎪⎨⎪-=-⎪⎩ 得 8545x y ⎧=⎪⎪⎨⎪=⎪⎩∴N 点的坐标为84,55⎛⎫⎪⎝⎭...........................(7分) (3)由题意得,圆M 的圆心坐标是M (0,2),半径为2.当4m =时,直线A K 的方程为4x =,此时直线A K 与圆M 相离. (9分) 当4m ≠时,直线A K 的方程为4()4y x m m=--,即4(4)40x m y m ---=则圆心M (0,2)到直线A K 的距离22816(4)m d m +=+-令2,d >解得1m >,∴当1m >时,直线A K 与圆M 相离. 令2,d =解得1m =,∴当1m =时,直线A K 与圆M 相切.令2,d <解得1m <,∴当1m <时,直线A K 与圆M 相交. ............(13分)21.解:(1)设楼高为n 层,则征地面积为21.530000()m n⨯,征地费用为2250 1.53n⨯⨯万元各楼层建筑费用和为 4((总费用为(1)32250 1.53400302n n y n nn -⨯⨯⎡⎤=+⨯⨯+⎢⎥⎣⎦=67515(377)n n⨯++ ................... (7分)(1)3400302n n n n -⎡⎤+⨯⨯⎢⎥⎣⎦万元(2)由 67515(377)y n n=⨯++得 67515(377)y n n =⨯++6751523772505n n ⎛⎫≥⨯+= ⎪ ⎪⎝⎭.............(10分)当且仅当6753n n=,即15n =时上式取等号.所以当这幢宿舍的楼高层数为15层时,总费用最小,最小总费用为2505万元............................(13分) 22.解:(1)函数()f x 的定义域为(0,)+∞, ()(1)+a f x x a x'=-+由题意可知,曲线()y f x =在点(2,(2))f 处切线的斜率为1 ∴(2)=1f ' 即 2(1)12a a -++= 解得 0a =∴ 21()2f x x x =- 此时(2)220f =-=故曲线()y f x =在点(2,(2))f 处与直线1y x =-+平行的切线方程为2y x =-+..........................(4分) (2)()(1)+af x x a x '=-+=2(1)(1)()x a x ax x a x x-++--=当01a << 时,当(0,)x a ∈时,()0f x '>,函数()f x 单调递增;当(,1)x a ∈时,()0f x '<,函数()f x 单调递减; 当(1,)x ∈+∞时,()0f x '>,函数()f x 单调递增; ∴x a =是()f x 的极大值点,1x =是()f x 的极小值点. 故函数()f x 的极大值是21()ln 2f a a a a =-+,极小值1(1)2f =-......(6分)当1a =时,当(0,1)x ∈时,()0f x '>,当1x =时,()0f x '=,当(1,)x ∈+∞时,()0f x '>,所以函数()f x 在(0,1)(1,)+∞及上单调递增.此时()f x 没有极值点,故极值不存在. .................(8分) 当1a >时,当(0,1)x ∈时,()0f x '>,函数()f x 单调递增; 当(1,)x a ∈时,()0f x '<,函数()f x 单调递减; 当(,)x a ∈+∞时,()0f x '>,函数()f x 单调递增. ∴1x =是()f x 的极大值点,x a =是()f x 的极小值点. 故函数()f x 的极大值是1(1)2f =-,极小值是21()ln 2f a a a a =-+ .....(10分)综上,当01a << 时,函数()f x 的极大值是21()ln 2f a a a a =-+,极小值是1(1)2f =-;当1a =时,函数()f x 没有极值; 当1a >时,函数()f x 的极大值是1(1)2f =-,极小值是21()ln 2f a a a a =-+............................(13分)。