2017-2018学年江苏省扬州市仪征市八年级(下)期中数学试卷
- 格式:doc
- 大小:413.50 KB
- 文档页数:28
2018-2019学年江苏省扬州市仪征市八年级(下)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个2.下列代数式是分式的是()A. x2B. yπC. x2+y3D. 2x−y3.下列调查中,最适宜采用全面调查(普查)的是()A. 调查国内外观众对影片《流浪地球》的观影感受B. 调查春节期间各大超市所售腊肉的品质状况C. 调查某班同学的数学寒假作业完成情况D. 调查某批次疫苗的质量4.为了准确反映某车队5名司机3月份耗去的汽油费用,且便于比较,那么选用最合适、直观的统计图是()A. 统计表B. 条形统计图C. 扇形统计图D. 折线统计图5.为了解参加运动会的2000名运动员的年龄情况,从中抽查了100名运动员的年龄.就这个问题来说,下面说法中正确的是()A. 抽取的100名运动员的年龄是样本B. 2000名运动员是总体C. 100名运动员是抽取的一个样本容量D. 每个运动员是个体6.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28∘B.38∘C.62∘D. 72∘7.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证,根据图形可知他得出的这个推论指()A.S矩形ABMN=S矩形MNDCB.S矩形EBMF=S矩形AEFNC. S矩形AEFN=S矩形MNDCD. S矩形EBMF=S矩形NFGD8.定义:如果一个关于x的分式方程ax =b的解等于1a−b,我们就说这个方程叫差解方程.比如:2x=43就是个差解方程.如果关于x的分式方程mx=m-2是一个差解方程,那么m的值是()A. 2B. 12C. −12D. −2二、填空题(本大题共10小题,共30.0分)9.分式b4a3与16abc的最简公分母是______.10.在一次数学测试中,将某班50名学生的成绩分为六组,第一组到第五组的频数分别为6,8,9,12,10,则第六组的频率是______.11.某同学期中考试数学考了150分,则他期末考试数学______考150分,(选填“不可能”“可能”或“必然”)12.若分式|x|−1x+1的值为零,则x的值为______.13.若ab=23,则aa+b=______.14.如图,△ABC中,AB=7cm,BC=6cm,AC=5cm,D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长等于______cm.15.如图,在菱形ABCD中,过点C作CE⊥BC交对角线BD于点E,若∠ECD=20°,则∠ADB=______°.16.如图,在△ABC中,D是BC上一点,AB=AD,E,F分别是AC,BD的中点,EF=2,则AC的长是______.17.如图,在矩形ABCD中,F是BC边上的一点,BC=6BF=6,E是AB边的中点,DE平分∠ADF,则DF的长是______.18.如图,正方形ABCD边长为3,点E、F是对角线AC上的两个动点(点E在点F的左侧),且EF=1,则DE+BF的最小值是______.三、计算题(本大题共2小题,共18.0分)19.(1)计算:xx2−1÷(1-1x+1)(2)解方程:22x−1=120. 老师在黑板上书写了一个代数式的正确计算结果,随后用字母A 代替了原代数式的一部分,如下:(A -x 2−1x 2−2x+1)÷x x+1=x+1x−1(1)求代数式A ,并将其化简;(2)原代数式的值能等于-1吗?请说明理由.四、解答题(本大题共8小题,共78.0分)21. 某班从三名男生(含小强)和五名女生中选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n 名.(1)当n 为何值时,男生小强参加是确定事件? (2)当n 为何值时,男生小强参加是随机事件?22. 小亮与小明做投骰子(质地均匀的正方体)的实验与游戏.(1)在实验中他们共做了50次试验,试验结果如下:朝上的点数 1 2 3 4 5 6 出现的次数1096988①填空:此次实验中,“1点朝上”的频率是______;②小亮说:“根据试验,出现1点朝上的概率最大.”他的说法正确吗?为什么?(2)小明也做了大量的同一试验,并统计了“1点朝上”的次数,获得的数据如下表: 试验总次数 100 200 500 1000 2000 5000 10000 1点朝上的次数 18 34 82 168 330 835 1660 1点朝上的频率0.1800.1700.1640.1680.1650.1670.166“1点朝上”的概率的估计值是______.23. 某校八年级学生全部参加“初二生物地理会考”,从中抽取了部分学生的生物考试成绩,将他们的成绩进行统计后分为A ,B ,C ,D 四等级,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题(说明:测试成绩在总人数的前30%考生为A 等级,前30%至前70%为B 等级,前70%至前90%为C 等级,90%以后为D 等级)(1)抽取了______名学生成绩; (2)请把频数分布直方图补充完整;(3)扇形统计图中A 等级所在的扇形的圆心角度数是______;(4)若测试成绩在总人数的前90%为合格,该校初二年级有800名学生,求全年级生物合格的学生共约多少人.24. 如图,平行四边形ABCD 的边AB 长为4cm ,DE 平分∠ADC ,若∠B =80°,∠DAE =50°,求平行四边形ABCD 的周长?25. 为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种13,结果提前4天完成任务,原计划每天种多少棵树?26. 如图,在矩形ABCD 中,E 是AD 上一点,PQ 垂直平分BE ,分别交AD ,BE ,BC 于点P ,O ,Q ,连接BP ,EQ . (1)求证:四边形BPEQ 是菱形;(2)F 为AB 的中点,则线段OF 与线段AE 有什么位置关系和数量关系,并说明理由; (3)在(2)的条件下,若AB =6,OF =4,求PQ 的长.27. 通常情况下,a +b 不一定等于ab ,但我们数学上存在这样一些特殊的数对,观察:2+2=2×2,3+32=3×32,4+43=4×43,…,我们把符合a +b =ab 的两个数叫做“和积数对”,已知m 、n (m >1,n >1)是一对“和积数对”.(1)请举出一对m 、n 是“和积数对”,并验证其正确性; (2)求代数式3m 2n 2−2(m+n)2(2m+2n)2的值;(3)小明发现了一个关于m 、n 的结论:n m +mn +2=mn ;你认为小明发现的结论正确吗?请说明理由.28. 知识再现:已知,如图1,四边形ABCD 是正方形,点M 、N 分别在边BC 、CD 上,连接AM 、AN 、MN ,∠MAN =45°,延长CB 至G 使BG =DN ,连接AG ,根据三角形全等的知识,我们可以证明MN =BM +DN . 知识探究:(1)在图1中,作AH ⊥MN ,垂足为点H ,猜想AH 与AB 有什么数量关系?并证明; 知识应用:(2)如图2,已知∠BAC =45°,AD ⊥BC 于点D ,且BD =2,AD =6,则CD 的长为______;知识拓展:(3)如图3,四边形ABCD 是正方形,E 是边BC 的中点,F 为边CD 上一点,∠FEC =2∠BAE ,AB =24,求DF 的长.答案和解析1.【答案】B【解析】解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B.根据轴对称图形与中心对称图形的概念判断即可.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】D【解析】解:,,+的分母中均不含有字母,因此它们是整式,而不是分式.故A、B、C选项错误;的分母中含有字母,因此是分式.故D选项正确.故选:D.判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.3.【答案】C【解析】解:A.调查国内外观众对影片《流浪地球》的观影感受适合抽样调查;B.调查春节期间各大超市所售腊肉的品质状况适合抽样调查;C.调查某班同学的数学寒假作业完成情况适合全面调查;D.调查某批次疫苗的质量适合抽样调查;故选:C.普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.4.【答案】B【解析】解:根据题意,要求清楚地比较5名司机的汽油费用,而条形统计图能清楚地表示出每个项目的具体数目,符合要求,故选:B.根据题意的要求,结合统计图的特点作出判断即可.考查了统计图的选择,解决此类问题,需要明确题意的要求,根据统计图的特点选择合适的统计图.5.【答案】A【解析】解:A.抽取的100名运动员的年龄是样本,此选项正确;B.2000名运动员的年龄情况是总体,此选项错误;C.100是抽取的一个样本容量,此选项错误;D.每个运动员的年龄情况是个体,此选项错误;故选:A.根据样本、总体、个体的定义,进行分析即可.总体:我们把所要考察的对象的全体叫做总体;个体:把组成总体的每一个考察对象叫做个体;样本:从总体中取出的一部分个体叫做这个总体的一个样本.此题主要考查了样本、总体、个体,关键是掌握样本、总体、个体的定义.6.【答案】A【解析】解:∵四边形ABCD是平行四边形,∴∠B=180°-∠A=180°-118°=62°,∵CE⊥AB,∴∠BCE=90°-∠B=28°.故选:A.由在平行四边形ABCD中,∠A=118°,可求得∠B的度数,又由CE⊥AB,即可求得答案.此题考查了平行四边形的性质以及直角三角形的性质.注意平行四边形的邻角互补.7.【答案】D【解析】证明:∵S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(S△AEF+S△FCM)又∵S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,∴S矩形NFGD=S矩形EBMF.故选:D.根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型.8.【答案】D【解析】解:由关于x 的分式方程=m-2是一个差解方程,得到x=,把x=代入方程得:2m=m-2,解得:m=-2,故选:D.利用差解方程定义确定出方程的解,代入方程计算即可求出m的值.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.9.【答案】12a3bc【解析】解:分式与的最简公分母是12a3bc,故答案为:12a3bc.找出各个因式的最高次幂,乘积就是分母的最简公分母.此题主要考查了最简公分母,关键是掌握找最简公分母的一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里;②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.10.【答案】0.1【解析】解:∵一个容量为50的样本,把它分成6组,第一组到第五组的频数分别为6,8,9,12,10,∴第六组的频数是50-6-8-9-10-12=5,∴第六组的频率是:5÷50=0.1,故答案为:0.1.一个容量为50的样本,把它分成6组,第一组到第五组的频数分别为6,8,9,12,10,用样本容量减去前五组的频数,得到第六组的频数,进而求出频率即可.此题考查频数与频率问题,关键是利用频数、频率和样本容量三者之间的关系进行分析.11.【答案】可能【解析】解:某同学期中考试数学考了150分,则他期末考试数学可能考150分,故答案为:可能.据必然事件、不可能事件、随机事件的概念可区别各类事件.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.【答案】1【解析】解:,则|x|-1=0,即x=±1,且x+1≠0,即x≠-1.故x=1.故若分式的值为零,则x的值为1.分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.13.【答案】25【解析】解:由,得a=,∴=.故答案为:.由,得a=,代入所求的式子化简即可.解题关键是用到了整体代入的思想.14.【答案】12【解析】解:∵D,E分别是AB,BC的中点,∴DE∥AC,DE=AC=2.5cm,同理,EF∥AB,EF=AB=3.5cm,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2×(2.5+3.5)=12(cm),故答案为:12.根据三角形中位线定理得到DE∥AC,DE=AC,EF∥AB,EF=AB,得到四边形ADEF是平行四边形,计算即可.本题考查的是三角形中位线定理、平行四边形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.15.【答案】35【解析】解:∵菱形ABCD,∴AD∥BC,BC=CD,∵CE⊥BC,∠ECD=20°,∴∠BCD=90°+20°=110°,∴∠DBC=,∴∠ADB=∠DBC=35°,故答案为:35°根据菱形的性质和三角形的内角和以及平行线的性质解答即可.此题考查菱形的性质,关键是根据菱形的性质和三角形的内角和以及平行线的性质解答.16.【答案】4【解析】解:如图,连结AF.∵AB=AD,F是BD的中点,∴AF⊥BD.∵在Rt△ACF中,∠AFC=90°,E是AC的中点,EF=2,∴AC=2EF=4.故答案为:4.连结AF.由AB=AD,F是BD的中点,根据等腰三角形三线合一的性质得出AF⊥BD.再根据直角三角形斜边上的中线等于斜边的一半求得AC=2EF=4.本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.利用等腰三角形三线合一的性质得出AF⊥BD是解题的关键.17.【答案】7【解析】解:如图所示:作DF的中点为点H,连接EH,EF,设∠ADE=α,CD=2x,则AE=BE=x.∵E、H 分别是AB、DH的中点‘∴EH∥AD,∴∠ADE=∠DEH=α,又∵ED是∠ADF的角平分线,∴∠ADE=∠FDE=α,∴∠EDH=∠HED=α,∴EH=HD,又∵H是DF的中点,∴DH=FH,∴EH=FH,∴∠HEF=∠HFE,又∵∠EHF=∠HDE+∠HED,∴∠EHF=2α,∴∠HEF=90°-α,∴△DEF是直角三形.又∵∠DEF=∠DEH+∠HEF,∴∠DEF=90°-α+α=90°.又∵BC=6BF=6,∴BF=1,FC=5,AD=BC=6,∴在Rt△BEF,Rt△AED,Rt△DCF中有:EF2=BE2+BF2=x2+1,ED2=AD2+AE2=62+x2=36+x2,DF2=DC2+FC2=52+(2x)2=25+4x2;又∵在Rt△DEF中有:DF2=DE2+EF2,∴25+4x2=36+x2+x2+1,解得:∴===7.故答案为7.由矩形ABCD,可得到四边形ABFD是梯形.已知点E为AB的中点,作梯形的中位线EH,得EH∥AD;ED是∠ADF角平分线,连接EF,从计算等腰三角形DHE和等腰三角形FHE的内角关系,证明∠DEF=90°;结合线段BC=6BF=6的长度,在几个直角三角形中多次用勾股定理并找出线段之间的数量和位置关系,建立等量关系求出AB或CD,即可求出DF的长.本题考查了矩形性质,梯形的中位线,角平分线,勾股定理,直角三角形,等腰三角形及平行线等相关知识;难点是找DF的中点及梯形的中位线,以及构建Rt△DEF及证明.18.【答案】√19【解析】解:如图,作DM∥AC,使得DM=EF=1,连接BM交AC于F,∵DM=EF,DM∥EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是正方形,AB=3,∠BAD=90°∴AD=AB,∴△ABD是等腰直角三角形,∴BD=AB=3,在Rt△BDM中,BM==∴DE+BF的最小值为.故答案为.如图,作DM∥AC,使得DM=EF=1,连接BM交AC于F,得到DM=EF,DM∥EF,根据平行四边形的性质得到DE=FM,求得DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB 最短,根据勾股定理即可得到结论.本题考查了正方形的性质、平行四边形的判定和性质、两点之间线段最短、勾股定理等知识,解题的关键是学会添加常用辅助线,把问题转化为两点之间线段最短解决,属于中考填空题中的压轴题.19.【答案】解:(1)原式=x(x+1)(x−1)•x+1x=1x−1;(2)去分母得:2=2x-1,解得:x=1.5,经检验x=1.5是分式方程的解.【解析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,以及分式的混合运算,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)∵(A -x 2−1x 2−2x+1)÷xx+1=x+1x−1 ∴[A -(x+1)(x−1)(x−1)2]⋅x+1x=x+1x−1∴(A -x+1x−1)⋅x+1x=x+1x−1∴A -x+1x−1=x+1x−1÷x+1x∴A =x+1x−1⋅xx+1+x+1x−1 ∴A =xx−1+x+1x−1 ∴A =2x+1x−1;(2)原代数式的值不能等于-1,理由:若原代数式的值等于-1, 则x+1x−1=-1,得x =0,当x =0时,原代数式中的除式等于0,原代数式无意义, 故原代数式的值不能等于-1. 【解析】(1)根据题目中的等式可以求得代数式A ,并将其化简;(2)先判断,然后根据判断说明理由即可.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.【答案】解:(1)当女生选1名时,三名男生都能选上,男生小强参加是必然事件,确定事件,当女生选4名时,三名男生都不能选上,男生小强参加是不可能事件,确定事件,综上所述,当n =1或4时,男生小强参加是确定事件; (2)当n =2或3时,男生小强参加是随机事件. 【解析】(1)根据确定事件包括必然事件和不可能事件两种情况解答; (2)根据随机事件的定义解答.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 22.【答案】0.2 0.166【解析】解:(1)①此次实验中,“1点朝上”的频率是:=0.2,故答案为:0.2; ②不正确,因为在一次实验中频率并不等于概率,只有当实验中试验 次数很大时,频率才趋近于概率.(2)根据图表中数据可得出:“1点朝上”的概率的估计值是0.166. 故答案为:0.166.(1)①利用频数除以总数=频率进而得出答案; ②利用频率与概率的区别进而得出答案; (2)利用频率估计概率的方法得出概率的估计值.此题主要考查了利用频率估计概率,正确理解频率与概率的区别与联系是解题关键.23.【答案】50 72° 【解析】解:(1)抽取的学生总人数为23÷46%=50(名), 故答案为:50;(2)D 等级人数为50-(10+23+12)=5(名), 补全频数分布直方图如下:(3)扇形统计图中A 等级所在的扇形的圆心角度数是360°×=72°,故答案为:72°;(4)根据题意得:800×90%=720(人),则全年级生物合格的学生共约720人.(1)根据B等级的人数除以占的百分比确定出学生总数即可;(2)求出D等级的人数,补全频数分布直方图即可;(3)求出A等级的百分比,乘以360即可得到结果;(4)由学生总数乘以90%即可得到结果.此题考查了频数分布直方图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.24.【答案】解:∵四边形ABCD是平行四边形,∴AB=CD=4cm,且AD∥BC,∴∠ADE=∠CED,又∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CED=∠CDE,∴CE=CD=4cm,∵AD∥BC,∴∠DAE=∠AEB=50°,又∵∠B=80°,∴∠BAE=50°=∠AEB,∴AB=BE=4cm,∴BC=8cm,∴▱ABCD的周长=2(4+8)=24(cm).【解析】依据平行线的性质以及角平分线的定义,即可得到∠CED=∠CDE,进而得出CE=CD=4cm,依据平行线的性质以及三角形内角和定理,即可得到∠BAE=50°=∠AEB,进而得到AB=BE=4cm,即可得出▱ABCD的周长.本题主要考查了平行四边形的性质、平行线的性质以及等腰三角形的判定,证出CE=CD,BE=AB是解题的关键.25.【答案】解:设原计划每天种x棵树,据题意得,480 x −48043x=4,解得x=30,经检验得出:x=30是原方程的解.答:原计划每天种30棵树.【解析】根据:原计划完成任务的天数-实际完成任务的天数=4,列方程即可.此题主要考查了分式方程的应用,合理地建立等量关系,列出方程是解题关键.26.【答案】(1)证明:∵PQ垂直平分BE,∴PB=PE,OB=OE,∵四边形ABCD是矩形,∴AD∥BC,∴∠PEO=∠QBO,在△BOQ与△EOP中,{∠PEO=∠QBOOB=OE∠POE=∠QOB,∴△BOQ≌△EOP(ASA),∴PE=QB,又∵AD∥BC,∴四边形BPEQ是平行四边形,又∵QB=QE,∴四边形BPEQ是菱形;(2)解:OF∥AE且OF=12AE.理由如下:∵四边形BPEQ是菱形,∴OB=OE.又∵F是AB的中点,∴OF是△BAE的中位线,∴AE∥OF且OF=12AE.(3)解:∵AB=6,F是AB的中点,∴BF=3.∵OF∥AE,∴∠BFO=90°.在Rt△FOB中,OB=√BF2+OF2=5,∴BE=10.设菱形的边长为x,则AP=8-x.在Rt△APB中,BP2=AB2+AP2,即x2=62+(8-x)2,解得:x=254,由菱形的面积公式可知:254×6=12×10×PQ,解得:PQ=152.【解析】(1)先根据线段垂直平分线的性质证明PB=PE,由ASA证明△BOQ≌△EOP,得出PE=QB,证出四边形ABGE 是平行四边形,再根据菱形的判定即可得出结论;(2)先证明OF 为△BAE 的中位线,然后依据三角形的中位线定理进行解答即可;(3)先求得OB 的长,则可得到BE 的长,设菱形的边长为x ,则AP=8-x ,在Rt △APB 中依据勾股定理可列出关于x 的方程,然后依据菱形的面积公式可求得PQ 的长.本题考查了菱形的判定与性质、矩形的性质,平行四边形的判定与性质、线段垂直平分线的性质、勾股定理等知识,列出关于x 的方程是解题的关键. 27.【答案】解:(1)答案不唯一.如5,54,验证:∵5+54=254,5×54=254, ∴5+54=5×54; (2)∵m 、n (m >1,n >1)是一对“和积数对”,∴m +n =mn ,∴3m 2n 2−2(m+n)2(2m+2n)2=3m 2n 2−2(mn)2(2mn)2=3m 2n 2−2m 2n 24m 2n 2=m 2n 24m 2n2=14. (3)小明发现的结论正确,理由是:去分母得:m 2+n 2+2mn =m 2n 2,即(m +n )2=m 2n 2, ∵m >1,n >1, ∴m +n =mn . ∴结论正确. 【解析】(1)由已知条件的规律可得:5+=5×; (2)根据“和积数对”的定义将代数式变形得到原式=,再化简后约分计算即可求解;(3)结论正确,把结论去分母,再开平方,就可以得到“和积数对”:m+n=mn .本题考查了“和积数对”的定义,以及分式的化简,熟知“和积数对”的定义是解答此题的关键. 28.【答案】3【解析】解:知识探究:(1)∵BG=DN ,∠ABG=∠ADN=90°,AB=AD , ∴△ABG ≌△ADN (SAS ), ∴∠GAB=∠NAD ,AG=AN ,∵∠MAN=45°, ∴∠BAM+∠NAD=45°, ∴∠GAB+∠BAM=45°, ∴∠GAM=∠MAN , ∵AM=AM ,AG=AN , ∴△AGM ≌△ANM (SAS ), ∴∠ABG=∠AMN , ∵AB ⊥BM ,AH ⊥MH , ∴AH=AB .知识应用:(2)如图1所示,将△ABD 和△ADC 翻折,延长EB 、GC 交于点F ,∵△ABE ≌△ABD ,∴EB=BD=2,AE=AD=6,∠E=∠ADB=90°, ∵△ACD ≌△ACG ,∴AD=AG=6,∠ADC=∠G=90°, ∵∠BAG=45°, ∴∠EAG=2∠BAC=90°, ∴四边形AEFG 为矩形, ∵AE=AG=6,∴四边形AEFG 为正方形, 设CD=CG=x ,∴CF=6-x ,BF=4,BC=2+x , ∴42+(6-x )2=(2+x )2, 解得x=3,∴CD=3, 故答案为:3.知识拓展:(3)如图2所示,连接AF,过点A作AM⊥EF,∵∠FEC=2∠BAE,设∠BAE=α,则∠FEC=2α,∴∠BEA=90°-α,∴∠AEM=90-α,∴∠AEB=∠AEM,∵AB⊥BE,AM⊥EM,∴AB=AM=AD,∵AF=AF,∴△AMF≌△AFD(HL),∵AB=24,点E为BC边上的中点,∴BE=EC=EM=12,设FM=FD=x,则CF=24-x,EF=12+x,∴122+(24-x)2=(12+x)2,解得x=8,∴DF=8.(1)根据已知条件可证出△AGB≌△ADN,再证明△AGM≌△ANM,可得AM为∠GMN的角平分线,则AB=AH.(2)还原(1)图形,同理设未知数,根据勾股定理列方程即可.(3)连接AF,过点A作AM⊥EF,根据∠FEC=2∠BAE,可得∠AEB=∠AEM,可推出△AMF≌△AFD,设FM=FD=x,则CF=24-x,EF=12+x,可列式为122+(24-x)2=(12+x)2,解得x=8,即DF=8.此题考查了正方形的性质,全等三角形的判定及勾股定理,根据全等三角形对应边之间的关系,设未知数利用勾股定理列方程为解题关键.第11页,共11页。
江苏省扬州市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017九上·启东开学考) 在下列函数关系式:①y=x;②y=2x+1;③y=x2﹣x+1;④y= .其中,一次函数的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分)(2017·通辽) 空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是()A . 折线图B . 条形图C . 直方图D . 扇形图3. (2分)(2017·锡山模拟) 下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A . y=﹣x+1B . y=x2﹣1C .D .4. (2分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB与E,交AC于F,过点O作OD⊥AC于D,下列四个结论:其中正确的结论是()①EF=BE+CF;②∠BOC=90°+∠A;③设OD=m,AE+AF=n,则S△AEF=mn.④EF不能成为△ABC的中位线.A . 1个B . 2个C . 3个D . 4个5. (2分)(2017·深圳模拟) 如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A . (2a2+5a)cm2B . (3a+15)cm2C . (6a+9)cm2D . (6a+15)cm26. (2分) (2017八下·卢龙期末) 下列命题正确的是()A . 对角线相等的四边形是矩形B . 对角线垂直的四边形是菱形C . 对角线互相垂直平分的四边形是矩形D . 对角线相等的菱形是正方形7. (2分)一次函数y=mx-n的图象如图所示,则下面结论正确的是()A . m<0,n<0B . m<0,n>0C . m>0,n>0D . m>0,n<08. (2分)如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A .B .C .D .9. (2分)下列函数中,当x>0时,y的值随x的值增大而增大的是()A . y=-x2B . y=x-1C . y=-x+1D . y=10. (2分)在直角坐标平面内的机器人接受指令“[a,A]”(a≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A后,再向正前方沿直线行走a个单位长度.若机器人的位置在原点,正前方为y轴的负半轴,则它完成一次指令[2,60°]后位置的坐标为()A . (-1,)B . (-1,-)C . (-, -1)D . (-, 1)二、填空题 (共8题;共8分)11. (1分)如图,直线y=-2x+2与x轴交于A点,与y轴交于B点.过点B作直线BP与x轴交于P点,若△ABP 的面积是3,则P点的坐标是________12. (1分) (2020八上·青山期末) 某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是________元。
2017-2018学年八年级(下)期中数学试卷一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.在代数式、、、a中,分式的个数有()A.2个B.3个C.4个D.5个3.下列根式中,最简二次根式是()A.B.C.D.4.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量5.对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣1)B.图象位于第二、四象限C.当x<0时,y随x增大而增大D.图象是中心对称图形6.已知点(﹣1,y1)、(2,y2)、(π,y3)在双曲线上,则下列关系式正确的是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y27.如图所示,有一张一个角为60°的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是()A.邻边不等的矩形B.等腰梯形C.有一个角是锐角的菱形D.正方形8.已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,则点E的坐标为()A.(5,8)B.(5,10)C.(4,8)D.(3,10)二、填空题9.当x=时,分式的值为零.10.在,,,中与是同类二次根式的是.11.若关于x的方程产生增根,则m=.12.若x、y满足|x﹣4|+=0,则①x+y=;②以x、y的值为二边长的直角三角形的第三边长为.13.已知双曲线与直线y=x﹣相交于点P(a,b),则.14.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若OM=3,AD=8,则BO=.15.一次函数y=kx+b与反比例函数的图象交于A、B两点(如图),则0<<kx+b的解集是.16.在四边形ABCD中,(1)AB∥CD,(2)AD∥BC,(3)AB=CD,(4)AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是.17.如图,正方形ABCD中,CD=5,BE=CF,且DG2+GE2=28,则AE的长.18.如图,由25个点构成的5×5的正方形点阵中,横纵方向相邻的两点之间的距离都是1个单位.定义:由点阵中四个点为顶点的平行四边形叫阵点平行四边形.图中以A,B为顶点,面积为2的阵点平行四边形的个数为个.三、解答题19.2014年全国两会民生话题成为社会焦点.合肥市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了合肥市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m=,n=.扇形统计图中E组所占的百分比为%;(2)合肥市人口现有750万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?20.计算或化简:(1)+(﹣1)0(2)12÷(2)×(a>0,b>0)21.化简求值:,其中a=﹣3.22.解方程:.23.已知如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.24.如图,点B(3,3)在双曲线y=(x>0)上,点D在双曲线y=﹣(x<0)上,点A和点C 分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.(1)求k的值;(2)求点A的坐标.25.某超市规定:凡一次购买大米180kg以上可以按原价打折出售,购买180kg(包括180kg)以下只能按原价出售.小明家到超市买大米,原计划买的大米,只能按原价付款,需要500元;若多买40kg,则按打折价格付款,恰巧需要也是500元.(1)求小明家原计划购买大米数量x(千克)的范围;(2)若按原价购买4kg与打折价购买5kg的款相同,那么原计划小明家购买多少大米?26.如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM=,AP=.(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC=.八年级(下)期中数学试卷参考答案与试题解析一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是轴对称图形,也是中心对称图形,故B正确;C、是中心对称图形,但不是轴对称图形,故C错误;D、是轴对称图形,但不是中心对称图形,故D错误.故选:B.【点评】本题主要考查的是轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的特点是解题的关键.2.在代数式、、、a中,分式的个数有()A.2个B.3个C.4个D.5个【考点】分式的定义.【分析】根据分母中含有字母的式子是分式,可得答案.【解答】解:、a是分式,故选:A.【点评】本题考查了分式的定义,分母中含有字母的式子是分式,注意π是常数不是字母,是整式.3.下列根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、该二次根式符合最简二次根式的定义.故本选项正确;B、因为该二次根式的被开方数中含有能开的尽方的因数.故本选项错误;C、因为该二次根式的被开方数中含有分母,所以它不是最简二次根式.故本选项错误;D、因为该二次根式的被开方数中含有分母,所以它不是最简二次根式.故本选项错误.故选A【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.4.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量【考点】总体、个体、样本、样本容量.【分析】根据总体、个体、样本、样本容量的定义对各选项判断即可.【解答】解:A、1000名考生的数学成绩是样本,故A选项错误;B、4万名考生的数学成绩是总体,故B选项错误;C、每位考生的数学成绩是个体,故C选项正确;D、1000是样本容量,故D选项错误;故选:C.【点评】本题考查了总体、个体、样本和样本容量的知识,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.5.对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣1)B.图象位于第二、四象限C.当x<0时,y随x增大而增大D.图象是中心对称图形【考点】反比例函数的性质.【分析】根据反比例函数的性质对四个选项进行逐一分析即可.【解答】解:A、∵1×(﹣1)=﹣1≠1,∴点(1,﹣1)不在反比例函数y=的图象上,故本选项错误;B、∵k=1>0,∴反比例函数y=的图象在一、三象限,故本选项错误;C、∵k=1>0,∴此函数在每一象限内y随x的增大而减小,故本选项错误;D、∵函数y=是反比例函数,∴此函数的图象是中心对称图形,故本选项正确.故选:D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的性质是解答此题的关键,即反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.6.已知点(﹣1,y1)、(2,y2)、(π,y3)在双曲线上,则下列关系式正确的是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2【考点】反比例函数图象上点的坐标特征;反比例函数的性质.【分析】根据题意,可得这个反比例函数图象所在的象限及每个象限的增减性,比较三个点的纵横坐标,分析可得三点纵坐标的大小,即可得答案.【解答】解:根据题意,在双曲线上,有﹣(k2+1)<0;故这个反比例函数在二、四象限,且在每个象限都是增函数;则y1>0,y2<y3<0;故有y1>y3>y2.故选B.【点评】本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,同学们应重点掌握.7.如图所示,有一张一个角为60°的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是()A.邻边不等的矩形B.等腰梯形C.有一个角是锐角的菱形D.正方形【考点】三角形中位线定理.【分析】可画出图形,令相等的线段重合,拼出可能出现的图形,然后再根据已知三角形的性质,对拼成的图形进行具体的判定.【解答】解:如图:此三角形可拼成如图三种形状,(1)为矩形,∵有一个角为60°,则另一个角为30°,∴此矩形为邻边不等的矩形;(2)为菱形,有两个角为60°;(3)为等腰梯形.故选:D.【点评】这是一道生活联系实际的问题,不仅要用到三角形中位线的性质、菱形、等腰梯形、矩形的性质,还锻炼了学生的动手能力.解答此类题目时应先画出图形,再根据已知条件判断各边的关系.8.已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,则点E的坐标为()A.(5,8)B.(5,10)C.(4,8)D.(3,10)【考点】反比例函数图象上点的坐标特征;菱形的性质.【专题】计算题;反比例函数及其应用.【分析】过点C作CF⊥x轴于点F,由OB•AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D点坐标,用待定系数法可求出双曲线y=(x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标即可.【解答】解:过点C作CF⊥x轴于点F,∵OB•AC=160,A点的坐标为(10,0),∴OA•CF=OB•AC=×160=80,菱形OABC的边长为10,∴CF===8,在Rt△OCF中,∵OC=10,CF=8,∴OF===6,∴C(6,8),∵点D时线段AC的中点,∴D点坐标为(,),即(8,4),∵双曲线y=(x>0)经过D点,∴4=,即k=32,∴双曲线的解析式为:y=(x>0),∵CF=8,∴直线CB的解析式为y=8,∴,解得:,∴E点坐标为(4,8).【点评】此题考查了反比例函数图象上点的坐标特征,菱形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.二、填空题9.当x=2时,分式的值为零.【考点】分式的值为零的条件.【专题】计算题.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子x2﹣4=0⇒x=±2;而x=2时,分母x+2=2+2=4≠0,x=﹣2时分母x+2=0,分式没有意义.所以x=2.故答案为:2.【点评】要注意分母的值一定不能为0,分母的值是0时分式没有意义.10.在,,,中与是同类二次根式的是,.【考点】同类二次根式.【分析】根据同类二次根式的定义解答即可.【解答】解:=2,被开方数是2,与不是同类二次根式.=2,被开方数是3,与是同类二次根式.=3,被开方数是3,与是同类二次根式.=3,被开方数是2,与不是同类二次根式.综上所述,与是同类二次根式的是:,.故答案是:,.【点评】此题主要考查了同类二次根式的定义,即化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.11.若关于x的方程产生增根,则m=2.【考点】分式方程的增根.【专题】计算题.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x﹣1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x﹣1),得x+2=m+1∵原方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.【点评】增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.12.若x 、y 满足|x ﹣4|+=0,则①x+y= 7 ;②以x 、y 的值为二边长的直角三角形的第三边长为 5或.【考点】非负数的性质:算术平方根;非负数的性质:绝对值;勾股定理.【分析】①根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解; ②分较长的边4是直角边和斜边两种情况,利用勾股定理列式计算即可得解. 【解答】解:①由题意得,x ﹣4=0,y ﹣3=0, 解得x=4,y=3, 所以,x+y=4+3=7;②若4是直角边,则第三边==5,若4是斜边,则第三边==,所以,第三边长为5或.故答案为:①7;②5或.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,勾股定理,易错点在于②要分情况讨论.13.已知双曲线与直线y=x ﹣相交于点P (a ,b ),则﹣2.【考点】反比例函数与一次函数的交点问题. 【专题】计算题.【分析】由两函数图象交于P 点,将P 坐标分别代入两函数解析式,得到ab 与a ﹣b 的值,将所求式子通分并利用同分母分式的减法法则计算,把ab 与a ﹣b 的值代入即可求出值.【解答】解:∵双曲线与直线y=x ﹣相交于点P (a ,b ),∴b=,b=a ﹣2,∴ab=1,a ﹣b=2,则﹣===﹣2.故答案为:﹣2【点评】此题考查了反比例函数与一次函数的交点问题,利用了待定系数法,熟练掌握待定系数法是解本题的关键.14.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若OM=3,AD=8,则BO=5.【考点】矩形的性质.【分析】已知OM是△ADC的中位线,再结合已知条件则DC的长可求出,所以利用勾股定理可求出AC的长,由直角三角形斜边上中线的性质则BO的长即可求出.【解答】解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴OM是△ADC的中位线,∴OM=3,∴DC=6,∵AD=8,∴AC==10,∴BO=AC=5,故答案为:5.【点评】本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC的长.15.一次函数y=kx+b与反比例函数的图象交于A、B两点(如图),则0<<kx+b的解集是x<﹣1.【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】结合函数图象,直接可得0<<kx+b的解集.【解答】解:由图象可知,只有x<﹣1时,y=kx+b的图象在y=的图象的上方,且函数值都大于0,即0<<kx+b.所以0<<kx+b的解集是:x<﹣1.故填:x<﹣1.【点评】解决此类问题的关键是认真观察图形,根据函数图象的特点直接确定不等式的解集.16.在四边形ABCD中,(1)AB∥CD,(2)AD∥BC,(3)AB=CD,(4)AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是.【考点】列表法与树状图法;平行四边形的判定.【专题】计算题.【分析】列表得出所有等可能的情况数,找出能判定四边形ABCD是平行四边形的情况数,即可求出所求的概率.【解答】解:列表如下:所有等可能的情况有12种,其中能判定出四边形ABCD为平行四边形的情况有8种,分别为(2,1);(3,1);(1,2);(4,2);(1,3);(4,3);(2,4);(3,4),则P==.故答案为:【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.如图,正方形ABCD中,CD=5,BE=CF,且DG2+GE2=28,则AE的长.【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【分析】连接DE,由正方形的性质得出AB=BC=CD=DA=5,∠A=∠BCD=∠B=90°,由SAS证明△BCE≌△CDF,得出对应角相等∠BEC=∠CFD,再由角的互余关系证出△DGE是直角三角形,由勾股定理求出DE2,AE2,即可得出AE的长.【解答】解:连接DE,如图所示:∵四边形ABCD是正方形,∴AB=BC=CD=DA=5,∠A=∠BCD=∠B=90°,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠BEC=∠CFD,∵∠BEC+∠BCE=90°,∴∠CFD+∠BCE=90°,∴∠DGE=∠CGF=90°,∴DE2=DG2+GE2=28,∴AE2=DE2﹣AD2=28﹣25=3,∴AE=;故答案为:.【点评】本题考查了正方形的性质、全等三角形的判定与性质、直角三角形的判定、勾股定理;熟练掌握正方形的性质,并能进行推理计算是解决问题的关键.18.如图,由25个点构成的5×5的正方形点阵中,横纵方向相邻的两点之间的距离都是1个单位.定义:由点阵中四个点为顶点的平行四边形叫阵点平行四边形.图中以A,B为顶点,面积为2的阵点平行四边形的个数为9个.【考点】平行四边形的判定.【分析】根据平行四边形的判定,两组对边边必须平行,可以得出上下各两个平行四边形符合要求,以及特殊四边形矩形与正方形即可得出答案.【解答】解:如图所示:∵矩形AD4C1B,平行四边形ACDB,平行四边形AC1D1B,上下完全一样的各有3个,还有正方形ACBC3,还有两个以AB为对角线的平行四边形AD4BD2,平行四边形C2AC1B.∴一共有9个面积为2的阵点平行四边形.故答案为:9.【点评】此题主要考查了平行四边形的性质,以及正方形与矩形的有关知识,找出特殊正方形,是解决问题的关键.三、解答题19.2014年全国两会民生话题成为社会焦点.合肥市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了合肥市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m=40,n=100.扇形统计图中E组所占的百分比为15%;(2)合肥市人口现有750万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?【考点】频数(率)分布表;用样本估计总体;扇形统计图;概率公式.【分析】(1)求得总人数,然后根据百分比的定义即可求得;(2)利用总人数100万,乘以所对应的比例即可求解;(3)利用频率的计算公式即可求解.【解答】解:(1)总人数是:80÷20%=400(人),则m=400×10%=40(人),C组的频数n=400﹣80﹣40﹣120﹣60=100,E组所占的百分比是:×100%=15%;(2)750×=225(万人);(3)随机抽查一人,则此人关注C 组话题的概率是=.故答案为40,100,15,.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力,以及列举法求概率.20.计算或化简:(1)+(﹣1)0(2)12÷(2)×(a >0,b >0)【考点】二次根式的混合运算;零指数幂. 【专题】计算题.【分析】(1)根据零指数幂的意义和二次根式的性质计算; (2)根据二次根式的乘除法则运算.【解答】解:(1)原式=3+1+﹣1=4;(2)原式=12××× =8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.21.化简求值:,其中a=﹣3.【考点】分式的化简求值. 【专题】计算题.【分析】先把原式化为式÷的形式,然后约分,化为最简后,把a 的值代入即可解得.【解答】解:原式=÷=×=×=,把a=﹣3代入原式得:===.故答案为.【点评】本题考查了分式的化简求值,解题的关键是通过约分,把原式化为最简,再代入数值计算,计算时一定要细心才行,不然很容易算错数.22.解方程:.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:1﹣2x=2x﹣4﹣3,移项合并得:4x=8,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.已知如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.【考点】菱形的性质;矩形的判定.【分析】(1)先判断出四边形AODE是平行四边形,再根据菱形的对角线互相垂直可得AC⊥BD,然后根据有一个角是直角的平行四边形是矩形证明;(2)根据两直线平行,同旁内角互补求出∠ABC=60°,判断出△ABC是等边三角形,然后根据等边三角形的性质求出OA、OB,然后得到OD,再根据矩形的面积公式列式计算即可得解.【解答】(1)证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵在菱形ABCD中,AC⊥BD,∴平行四边形AODE是菱形,故,四边形AODE是矩形;(2)解:∵∠BCD=120°,AB∥CD,∴∠ABC=180°﹣120°=60°,∵AB=BC,∴△ABC是等边三角形,∴OA=×6=3,OB=×6=3,∵四边形ABCD是菱形,∴OD=OB=3,∴四边形AODE的面积=OA•OD=3×3=9.【点评】本题考查了菱形的性质,矩形的判定,平行四边形的判定,主要利用了有一个角是直角的平行四边形是矩形,熟练掌握矩形,菱形与平行四边形的关系是解题的关键.24.如图,点B(3,3)在双曲线y=(x>0)上,点D在双曲线y=﹣(x<0)上,点A和点C 分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.(1)求k的值;(2)求点A的坐标.【考点】正方形的性质;反比例函数图象上点的坐标特征;全等三角形的判定与性质.【专题】综合题.【分析】(1)把B的坐标代入求出即可;(2)设MD=a,OM=b,求出ab=4,过D作DM⊥x轴于M,过B作BN⊥x轴于N,证△ADM≌△BAN,推出BN=AM=3,MD=AN=a,求出a=b,求出a的值即可.【解答】解:(1)∵点B(3,3)在双曲线y=上,∴k=3×3=9;(2)∵B(3,3),∴BN=ON=3,设MD=a,OM=b,∵D在双曲线y=﹣(x<0)上,∴ab=4,过D作DM⊥x轴于M,过B作BN⊥x轴于N,则∠DMA=∠ANB=90°,∵四边形ABCD是正方形,∴∠DAB=90°,AD=AB,∴∠MDA+∠DAM=90°,∠DAM+∠BAN=90°,∴∠ADM=∠BAN,在△ADM和△BAN中,,∴△ADM≌△BAN(AAS),∴BN=AM=3,DM=AN=a,∴0A=3﹣a,即AM=b+3﹣a=3,a=b,∵ab=4,∴a=b=2,∴OA=3﹣2=1,即点A的坐标是(1,0).【点评】本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的性质和判定的应用,主要考查学生运用性质进行推理和计算的能力,题目比较好,难度适中.25.某超市规定:凡一次购买大米180kg以上可以按原价打折出售,购买180kg(包括180kg)以下只能按原价出售.小明家到超市买大米,原计划买的大米,只能按原价付款,需要500元;若多买40kg,则按打折价格付款,恰巧需要也是500元.(1)求小明家原计划购买大米数量x(千克)的范围;(2)若按原价购买4kg与打折价购买5kg的款相同,那么原计划小明家购买多少大米?【考点】分式方程的应用.【专题】应用题.【分析】(1)小明家买的大米没有打折,所以一定没有超过180kg,再添40千克就能打折了,那么一定超过了140千克;(2)关键描述语是:原价购买4kg与打折价购买5kg的款相同,相对应的等量关系为:原价千克数:打折千克数=4:5.【解答】解:(1)由题意可得不等式140<x≤180,即小明家原计划购买大米的数量范围是140<x≤180;(2)设小明家原来准备买大米x千克,根据题意,由对应成比例得解之得x=160.经检验:x=160是原方程的解,∴x=160,答:小明家原计划购买大米是160千克.法二:(2)设小明家原来准备买大米x千克,原价为元;折扣价为元.据题意列方程为:,解之得:x=160.经检验x=160是方程的解.答:小明家原来准备买160千克大米.【点评】本题需多读题,读懂题意,耐心加以分析.不够打折的条件,说明少于180千克,再加40千克就够打折,以180为标准,说明超过了140千克.等量关系需先找到关键描述语.26.如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM=8﹣2t,AP=2+t.(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC=8.【考点】四边形综合题.【分析】(1)由DM=2t,根据AM=AD﹣DM即可求出AM=8﹣2t;先证明四边形CNPD为矩形,得出DP=CN=6﹣t,则AP=AD﹣DP=2+t;(2)根据四边形ANCP为平行四边形时,可得6﹣t=8﹣(6﹣t),解方程即可;(3))①由NP⊥AD,QP=PK,可得当PM=PA时有四边形AQMK为菱形,列出方程6﹣t﹣2t=8﹣(6﹣t),求解即可,②要使四边形AQMK为正方形,由∠ADC=90°,可得∠CAD=45°,所以四边形AQMK为正方形,则CD=AD,由AD=8,可得CD=8,利用勾股定理求得AC即可.【解答】解:(1)如图1.∵DM=2t,∴AM=AD﹣DM=8﹣2t.∵在直角梯形ABCD中,AD∥BC,∠ADC=90°,NP⊥AD于点P,∴四边形CNPD为矩形,∴DP=CN=BC﹣BN=6﹣t,∴AP=AD﹣DP=8﹣(6﹣t)=2+t;故答案为:8﹣2t,2+t.(2)∵四边形ANCP为平行四边形时,CN=AP,∴6﹣t=8﹣(6﹣t),解得t=2,(3)①存在时刻t=1,使四边形AQMK为菱形.理由如下:∵NP⊥AD,QP=PK,∴当PM=PA时有四边形AQMK为菱形,∴6﹣t﹣2t=8﹣(6﹣t),解得t=1,②要使四边形AQMK为正方形.∵∠ADC=90°,∴∠CAD=45°.∴四边形AQMK为正方形,则CD=AD,∵AD=8,∴CD=8,∴AC=8.故答案为:8.【点评】本题是四边形综合题,其中涉及到直角梯形的性质,矩形的判定与性质,等腰直角三角形的性质,轴对称的性质,等腰三角形的性质,正方形的性质等知识,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.。
江苏省仪征市2017-2018学年八年级数学下学期单元训练试题一、选择题(每题3分,共24分)1.下列标志中,既是轴对称图形又是中心对称图形的为( )A .B .C .D .2.下列根式: ( ) A .2个 B .3个 C .4个 D .5个3.用两块完全相同的直角三角形拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形,一定能拼成的图形是( ) A .①④⑤ B .②⑤⑥ C .①②③ D .①②⑤4.如图,在□ABCD 中,AD =2AB , CE 平分∠BCD 交AD 边于点E ,且AE =3,则AB 的长( ) A . 4B .3C .52D .25.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )A .B .C .D .6.关于如图所示的统计图中(单位:万元),正确的说法是( ) A .第一季度总产值4.5万元 B .第二季度平均产值6万元 C .第二季度比第一季度增加5.8万元 D .第二季度比第一季度增长33.5%7a b ==,用含a ,b ,则下列表示正确的是 ( ) A .0.3ab B .3ab C .20.1ab D .20.1a b8.如图,在矩形ABCD 中,AB=4 cm ,AD=12 cm ,点P 在AD 边上以每秒1 cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4 cm 的速度从点C 出发,在CB 间往返..运动,两个点同时出发,当点P 到达点D 时停止(同时点Q 也停止),在这段时间内,线段PQ 有( )次平行于AB?A .1B .2C .3D .4二、填空题(每空3分,共30分) 9.=10a = .11..若式子x有意义,则x 的取值范围是 . 12.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是 .13.如图,矩形ABCD 的对角线AC=8cm ,∠AOD=120°,则AB 的长为 cm .14.已知实数x y 、满足40x -=,则以x y 、值为两边长的等腰三角形的周长是 .15.某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是 支.16.如图,在矩形ABCD 中,DE 平分∠ADC 交BC 于点E ,EF⊥AD 交AD 于点F ,若EF=3,AE=5,则AD= .17.如图,P 是平行四边形ABCD 内一点,且S △P AB =5,S △PAD =2,则阴影部分的面积为 .18.19、如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B′处.当△CEB′为直角三角形时,BE 的长为 . 三、解答题(共96分) 19 计算(本题8分)(2)22-20、(本题8分)△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)作△ABC 关于点C 成中心对称的△A 1B 1C 1(2)将△A 1B 1C 1向右平移4个单位,作出平移后的△A 2B 2C 2.(3)在x 轴上求作一点P ,使12PA PC +的值最小,并写出点P 的坐标(不写解答过程,直接写出结果)21.(本题8分)已知a b c 、、满足2(0a c +-=. (1)求a b c 、、的值;(2)判断以a b c 、、为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.22.(本题8分)我校为了迎接体育中考,了解学生的体育成绩,从全校1000名九年级学生中随机抽取了部分学生进行体育测试,其中“跳绳”成绩制作图如下:表(1)根据图表解决下列问题:图2(1)本次共抽取了名学生进行体育测试,表(1)中,a= ,b=c= ;(2)补全图(2);(3)“跳绳”数在180(包括180)以上,则此项成绩可得满分.那么,你估计全校九年级有多少学生在此项成绩中获满分?23.(本题8分)如图,在▱ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于F.(1)若∠F=20°,求∠A的度数;(2)若AB=5,BC=8,CE⊥AD,求▱ABCD的面积.24.(本题10分))如图,E、F分别是□ABCD的边BC、AD上的点,且BE=DF(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.25.(本题10分)已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连接BG 并延长交DE 于F . (1)求证:△BCG≌DCE;(2)将△DCE 绕点D 顺时针旋转90°得到△DAE’,判断四边形E’BGD 是什么特殊四边形?并说明理由.26.(本题12分)知识迁移:当0a >且0x >时,因为2≥0,所以ax x -+≥0,从而a x x +≥(当x =时取等号).记函数(0,0)ay x a x x=+>>,由上述结论可知:当x =,该函数有最小值为直接应用:已知函数1(0)y x x =>与函数21(0)y x x=>, 则当x = 时,12y y +取得最小值为 .变形应用:已知函数11(1)y x x =+>-与函数22(1)4(1)y x x =++>-,求21y y 的最小值,并指出取得该最小值时相应的x 的值.实际应用:问题3:某民办学校每天的支出总费用包含以下三个部分:一是教职工工资4900元;二是学生生活费成本每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)27.(本题12分)如图,在Rt △ABC 中,∠BAC=90°,现在有一足够大的直角三角板,它的直角顶点D 是BC 上一点,另两条直角边分别交AB 、AC 于点E 、F . (1)如图1,若DE ⊥AB ,DF ⊥AC ,求证:四边形AEDF 是矩形;(2)在(1)条件下,若点D 在∠BAC 的 角平分线上,试判断此时四边形AEDF 的形状,并说明理由;(3)若点D在∠BAC的角平分线上,将直角三角板绕点D旋转一定的角度,使得直角三角板的两条边与两条直角边分别交于点E、F(如图2),试证明AE+AF=AD.28.(本题12分)已知:如图,在矩形ABCD 中,AB =6cm ,BC =8cm ,对角线AC ,BD 交于点O .点E 从点A 出发,沿AD 方向匀速运动,速度为1cm/s ;同时,点F 从点C 出发,沿CD 方向匀速运动,速度为1cm/s ;当一个点停止运动时,另一个点也停止运动.连接EO 并延长,交BC 于点G ,.设运动时间为t (s )(0<t <6),解答下列问题:(1)在运动的过程中,四边形EGCD 的面积是否发生变化,请说明理由;如果不变化,并请求出四边形EGCD 的面积;(2)当t 为何值时,△AOE 是等腰三角形?(3)连接EF ,在运动过程中,是否存在某一时刻t ,使EF 与BD 垂直?请说明理由. (4)连接OF ,在运动过程中,是否存在某一时刻t ,使OC 平分∠GOF ?若存在,直接写出t 的值;若不存在,请说明理由.AA。
学校___________ 编号________ 班级_________ 姓名______________ 学号________ …………………………………………密……………………………………………封…………………………………………线……………………………………………2017-2018学年第二学期八年级期中数学试卷三含答案考试范围:苏科版《数学》八年级下册第九、十、十一章内容;考试时间:120分钟;考试题型:选择题、填空题、解答题;考试分值:130分。
一、选择题(本大题共有10小题,每小题3分,共30分) 1.下列函数中,反比例函数是 ( ▲ ) A .25y x=B .25y x =-1 C .245y x =D .25y x =-2.下面对□ABCD 的判断,正确的是 ( ▲ ) A .若AB ⊥BC ,则□ABCD 是菱形;B .若AC ⊥BD ,则□ABCD 是正方形;C .若AC =BD ,则□ABCD 是矩形 ; D .若AB =AD ,则□ABCD 是正方形. 3.对于反比例函数xy 2=,下列说法不正确的是( ▲ ) A .点(21)--,在它的图像上B .它的图像在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小4.分式x--11可变形为( ▲ ) A .11--x B .x +-11 C .x +11 D .11-x 5.若代数式13x +在实数范围内有意义,则实数x 的取值范围是( ▲ )A. 3x =-B. 3x ≠-C. 3x <-D. 3x >-6.下列各点中,在双曲线上12y x=的点是( ▲ ) A .(4,-3) B. (3,-4) C. (-4,3) D.(-3,-4) 7.已知点123(1,),(2,),(3,)A y B y C y -都在反比例函数2y x=-的图像上,则( ) A. 123y y y <<; B. 132y y y >>; C. 123y y y >>; D. 231y y y >> 8.己知,一次函数1y ax b =+与反比例函数2ky x=的图像如图所示,当12y y <时,x 的取值范围是( ▲ )A.2x <; B.5x >; C.25x <<; D.02x <<或5x >第7题第9题9.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( ▲ )A .(3,1)B .(3,)C .(3,)D .(3,2)10.如图所示,在Rt AOB ∆中,90,23AOB OB OA ∠=︒=,点A 在反比例函数2y x=的图象上,若点B 在反比例函数ky x=的图象上,则k 的值为( ▲ ) A .3 ; B. -3; C. 94-; D. 92-。
江苏省扬州市仪征市八年级(下)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列各式、、、+1、中分式有()A.2个B.3个C.4个D.5个2.(3分)下列二次根式中属于最简二次根式的是()A.B.C.D.3.(3分)下列调查中,适合用普查的是()A.了解我省初中学生的家庭作业时间B.了解“嫦娥三号”卫星零部件的状况C.华为公司一批某型号手机电池的使用寿命D.了解某市居民对废电池的处理情况4.(3分)下列事件是确定事件的是()A.射击运动员只射击1次,就命中靶心B.任意一个三角形,它的内角和等于180°C.抛一枚质地均匀的正方体骰子,朝上一面的点数为6D.打开电视,正在播放新闻5.(3分)如果把分式中的m和n都扩大3倍,那么分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍6.(3分)如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2B.3C.4D.57.(3分)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°8.(3分)如图,在▱ABCD中,点E为AB的中点,F为BC上任意一点,把△BEF沿直线EF翻折,点B的对应点B′落在对角线AC上,则与∠FEB一定相等的角(不含∠FEB)有()A.2个B.3个C.4个D.5个二、填空题(本大题共10小题,每小题3分,共30分)9.(3分)当x=时,分式的值是0.10.(3分)函数y=的自变量x的取值范围是.11.(3分)分式,的最简公分母是.12.(3分)若m是的小数部分,则m2+2m+1的值是.13.(3分)若最简二次根式与是同类二次根式,则a=.14.(3分)在一个不透明的口袋中装有1个红球和若干个白球,它们除颜色外其他相同.通过多次摸球试验后发现,摸到红球的频率稳定在0.25附近,则口袋中白球可能有个.15.(3分)一组数据共有50个,分成四组后其中前三组的频率分别是0.10、0.24、0.36,则第四组数据的个数为.16.(3分)已知菱形的周长为40cm,一条对角线长为16cm,则这个菱形的面积为cm2.17.(3分)已知ab=1,t=+,则t2018=.18.(3分)如图,在矩形ABCD中,AD=6,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.三、解答题(共96分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.(8分)计算:(1)﹣6+|1﹣|(2)﹣x+y20.(8分)若x,y为实数,且y<++2,试化简:x2+|y﹣2|﹣.21.(8分)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x值代入求值.22.(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.23.(10分)某学校校园读书节期间,学校准备购买一批课外读物.为使购买的课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从“文学”、“艺术”、“科普”和“其他”四个类别对部分同学进行了抽样调查(每位同学只选一类).下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次抽样调查一共抽查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)如果学校计划购买课外读物6000册,请根据样本数据,估计学校应该购买“科普”类读物多少册?24.(10分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,连接CD,过E点作EF∥DC交BC的延长线于点F.(1)求证:四边形CDEF是平行四边形;(2)求四边形CDEF的周长.25.(10分)已知如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.26.(10分)观察下列各式:===﹣1,同理:=…=﹣,…从计算结果中找出规律,并利用这一规律计算:(+++…+)(+1)27.(12分)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称,;(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你直接写出所有以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB的顶点M的坐标;(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连结AD,DC,∠DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.28.(12分)(1)方法回顾在学习三角形中位线时,为了探索三角形中位线的性质,思路如下:第一步添加辅助线:如图1,在△ABC中,延长DE(D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF;第二步证明△ADE≌△CFE,再证四边形DBCF是平行四边形,从而得到DE∥BC,DE=BC.(2)问题解决如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.(3)拓展研究如图3,在四边形ABCD中,∠A=105°,∠D=120°,E为AD的中点,G、F分别为AB、CD边上的点,若AG=3,DF=2,∠GEF=90°,求GF 的长.江苏省扬州市仪征市八年级(下)期中数学试卷参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.A;2.C;3.B;4.B;5.A;6.B;7.B;8.C;二、填空题(本大题共10小题,每小题3分,共30分)9.﹣1;10.x>1;11.6x2y2;12.2;13.4;14.3;15.15;16.96;17.1;18.6或3;三、解答题(共96分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.;20.;21.;22.(,﹣1);23.200;40;60;72;24.;25.;26.;27.长方形;正方形;28.;。
江苏省扬州市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019八下·湖州期中) 要使二次根式有意义,则x的取值范围是()A . x>-2B . x≥-2C . x≠-2D . x≤-22. (2分) (2017八下·高阳期末) 在△ABC中,AB=1,AC=,BC=2,则这个三角形是()A . 等腰直角三角形B . 等腰三角形C . 钝角三角形D . 直角三角形3. (2分) (2020八下·海港期中) 下列函数:① ;② ;③ ,④ 其中一次函数的个数是()A .B .C .D .4. (2分) (2019八下·鹿角镇期中) 下面计算正确的是()A .B .C .D .5. (2分) (2019九上·珠海开学考) 一次函数y=-3x+1的图象一定经过点()A .B .C .D .6. (2分)(2020·宜昌) 能说明“锐角,锐角的和是锐角”是假命题的例证图是().A .B .C .D .7. (2分)(2020·荆州) 在平面直角坐标系中,一次函数的图象是()A .B .C .D .8. (2分)(2017·祁阳模拟) 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是()A . 43B . 45C . 51D . 539. (2分) (2020八下·椒江期末) 如图是一种古代计时器—“漏壶”的示意图,壶内盛有一定量的水,水从壶下的小孔漏出,壶壁上面有刻度,人们可以根据壶中水面的位置计算时间.用x表示漏水时间,y表示壶底到水面的高度.下列图象适合表示y与x的函数关系的是(不考虑水量变化对压力的影响) ()A .B .C .D .10. (2分)在▱ABCD中,对角线AC、BD相交于O,下列说法一定正确的是()A . AC=BDB . AC⊥BDC . AO=DOD . AO=CO11. (2分) (2019八上·芜湖期中) 如图,在中,于D ,且,以AB为底边作等腰直角三角形ABE ,连接ED、EC ,延长CE交AD于点F ,下列结论:① ;② ;③ ;④ ,其中正确的有().A . ①②B . ①③C . ①②③D . ①②③④12. (2分)一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()A . 斜边长为25B . 三角形周长为25C . 斜边长为5D . 三角形面积为20二、填空题 (共6题;共6分)13. (1分) (2019八上·咸阳月考) 在△ABC中,∠C=90°,若a=5,b=12,则c=________.14. (1分)(2018·岳池模拟) 如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是________.15. (1分) (2020八上·马鞍山期末) 如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=________.16. (1分) (2019八下·萝北期末) 已知函数y=-3x的图象经过点A(1,y1),点B(﹣2,y2),则y1________y2(填“>”“<”或“=”)17. (1分) (2020八上·柯桥月考) 在如图所示的三个函数图象中,近似地刻画如下a、b、c三个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.情境c:小芳从家出发,到学校上学,放学回到了家.情境a,b,c所对应的函数图象分别是________(按次序填写a,b,c对应的序号)18. (1分) (2017八下·泰兴期末) 如图,在中,,点为上任意一点,连接,以为邻边作平行四边形,连接,则的最小值为________.三、解答题 (共8题;共74分)19. (10分)计算:(1)(2)(﹣)÷ .20. (5分)当a、b、c为何值时,代数式有最小值?并求出这个最小值和此时以a、b、c值为边的三角形的面积.21. (11分)如图,在四边形ABCD中,AC、BD相交于点O,O是AC的中点,AD∥BC,AC=8,BD=6.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求四边形ABCD的面积.22. (5分)(2020·衢州模拟) 计算:(1)(2)(3)(4)23. (8分) (2019八上·信阳期中) 如图,在平面直角坐标系中,A(−3,2),B(−4,−3),C(−1,−1).(1)在图中作出△ABC关于y轴对称的△ ;(2)写出点△ , , 的坐标(直接写答案): ________; ________; ________;(3)△ 的面积为________;(4)在y轴上画出点P,使PB+PC最小24. (10分)已知一次函数y=x+b,它的图象与两坐标轴所围成的图形的面积等于2.(1)求b的值;(2)若函数y=x+b的图象交y轴于正半轴,则当x取何值时,y的值是正数?25. (10分) (2018八上·重庆期末) 如图,为等边三角形,于点F,于点,点D在AH的延长线上,连接CD,以CD为边作等边,连接AE交CF于点G.(1)若,,求的面积.(2)证明:.26. (15分) (2019八上·滨海期末) 如图,在平面直角坐标系中,直线:与直线:交于点,与y轴交于点,与x轴交于点C.(1)求直线的函数表达式;(2)求的面积;(3)在平面直角坐标系中有一点,使得,请求出点P的坐标;(4)点M为直线上的动点,过点M作y轴的平行线,交于点N,点Q为y轴上一动点,且为等腰直角三角形,请直接写出满足条件的点M的坐标.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共6分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共74分)答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、答案:22-4、考点:解析:答案:23-1、答案:23-2、答案:23-3、答案:23-4、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、答案:26-3、答案:26-4、考点:解析:。
2017-2018学年度第二学期八年级期中考试数学试卷(满分:150分;时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1. 下列调查中,适合用普查方式的是A.了解瘦西湖风景区中鸟的种类B.了解扬州电视台《关注》栏目的收视率C.了解学生对“扬农”牌牛奶的喜爱情况 D .航天飞机发射前的安全检查 2.下列几何图形中,既是轴对称图形,又是中心对称图形的是 A .等腰三角形 B .正三角形 C .平行四边形 D .正方形 3.下列式子①x 2 ②5y x + ③a -21 ④1-πx中,分式的个数有 A.1 B.2 C.3 D.44.矩形具有而菱形不具有的性质是A .两组对边分别平行B .对角线相等C .对角线互相平分D .两组对角分别相等5.分式242x x -+的值为0,则A .x=-2B .x=±2C .x=2D .x=06. 某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x 米,则可得方程153000103000=--xx ,根据此情景,题中用“…”表示的缺失的条件应补为A .每天比原计划多铺设10米,结果延期15天才完成B .每天比原计划少铺设10米,结果延期15天才完成C .每天比原计划多铺设10米,结果提前15天才完成D .每天比原计划少铺设10米,结果提前15天才完成 7. 如图,在菱形ABCD 中,AB =8,点E 、F 分别在AB 、AD 上,且AE =AF ,过点E 作EG ∥AD 交CD 于点G ,过点F 作FH ∥AB 交BC 于点H ,EG 与FH 交于点O ,当四边形AEOF 与四边形CGOH 的周长之差为12时,AE 的值为A.6.5B.6C.5.5D.58.如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为 A .①②B .②③C .①③D .①②③(第7题) (第8题)二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卷相应位置上)9.在平行四边形ABCD 中, ∠A=110°, 则∠D= .10.某校为了解该校500名初二学生的期中数学考试成绩,从中抽查了100名学生的数学成绩.在这次调查中,样本容量是 .11.在一个不透明的布袋中装有2个白球和1个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是 .12. 当x 时,分式22+-x x 有意义. 13. 已知0654≠==ab c ,则a c b +的值为 .14. 若关于x 的分式方程112=--x ax 的解为正数,那么字母a 的取值范围是 . 15. 如图,点E 、F 、G 、H 分别是任意四边形ABCD 中AD 、BD 、BC 、CA 的中点,当四边形ABCD 的边至少满足 条件时,四边形EFGH 是菱形.16. 如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为 .17 .如图,菱形ABCD 和菱形ECGF 的面积分别为2和3,∠A=120°,求图中阴影部分的面积是 .18. 如图,P 是矩形ABCD 内的任意一点,连接PA 、PB 、PC 、PD ,得到△PAB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论:①S 1+S 2=S 3+S 4 ② S 2+S 4= S 1+ S 3 ③若S 3=2 S 1,则S 4=2 S 2 ④若S 1= S 2,则P 点在矩形的对角线上其中正确的结论的序号是_________________ .(第15题) (第16题) (第17题) (第18题)三、解答下列各题(本大题共10小题,共96分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(6分))211(342--⋅--a a a20.解方程:(6分)48122-=--x x x . 21.(本题8分)先化简,4)222(2-÷+--x xx x x x ,再选择一个你喜欢的x 代入求值.22.(本题 8分) 如图,在方格纸中,△ABC 的三个顶点及H G F E D 、、、、、五个点分别位于小正方形的顶点上.(1) 画出△ABC 绕点B 顺时针方向旋转90°后的图形.(2)先从H G F E 、、、四个点中任意取两个不同的点,再和D 点构成三角形,求所得三角形与△ABC 面积相等的概率是 .23.(本题 10分) 某学校开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为 ,其所在扇形统计图中对应的圆心角度数是 度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?A D CB M NPQ24.(本题 10分) 已知A =﹣ (1)化简A ;(2)当x 满足不等式组⎩⎨⎧<-≥-0301x x ,且x 为整数时,求A 的值.25.(本题 12分) 如图,在矩形ABCD 中,M 、N 分别是AD 、BC 的中点,P 、Q 分别是BM 、DN 的中点.(1)求证:△MBA ≌△NDC ; (2)求证四边形MPNQ 是菱形.26.(本题12分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元够进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元。
2017-2018学年江苏省扬州市仪征市八年级(下)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列各式、、、+1、中分式有()A.2个B.3个C.4个D.5个2.(3分)下列二次根式中属于最简二次根式的是()A.B.C.D.3.(3分)下列调查中,适合用普查的是()A.了解我省初中学生的家庭作业时间B.了解“嫦娥三号”卫星零部件的状况C.华为公司一批某型号手机电池的使用寿命D.了解某市居民对废电池的处理情况4.(3分)下列事件是确定事件的是()A.射击运动员只射击1次,就命中靶心B.任意一个三角形,它的内角和等于180°C.抛一枚质地均匀的正方体骰子,朝上一面的点数为6D.打开电视,正在播放新闻5.(3分)如果把分式中的m和n都扩大3倍,那么分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍6.(3分)如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2B.3C.4D.57.(3分)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°8.(3分)如图,在▱ABCD中,点E为AB的中点,F为BC上任意一点,把△BEF 沿直线EF翻折,点B的对应点B′落在对角线AC上,则与∠FEB一定相等的角(不含∠FEB)有()A.2个B.3个C.4个D.5个二、填空题(本大题共10小题,每小题3分,共30分)9.(3分)当x=时,分式的值是0.10.(3分)函数y=的自变量x的取值范围是.11.(3分)分式,的最简公分母是.12.(3分)若m是的小数部分,则m2+2m+1的值是.13.(3分)若最简二次根式与是同类二次根式,则a=.14.(3分)在一个不透明的口袋中装有1个红球和若干个白球,它们除颜色外其他相同.通过多次摸球试验后发现,摸到红球的频率稳定在0.25附近,则口袋中白球可能有个.15.(3分)一组数据共有50个,分成四组后其中前三组的频率分别是0.10、0.24、0.36,则第四组数据的个数为.16.(3分)已知菱形的周长为40cm,一条对角线长为16cm,则这个菱形的面积为cm2.17.(3分)已知ab=1,t=+,则t2018=.18.(3分)如图,在矩形ABCD中,AD=6,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.三、解答题(共96分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.(8分)计算:(1)﹣6+|1﹣|(2)﹣x+y20.(8分)若x,y为实数,且y<++2,试化简:x2+|y﹣2|﹣.21.(8分)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x值代入求值.22.(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.23.(10分)某学校校园读书节期间,学校准备购买一批课外读物.为使购买的课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从“文学”、“艺术”、“科普”和“其他”四个类别对部分同学进行了抽样调查(每位同学只选一类).下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次抽样调查一共抽查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)如果学校计划购买课外读物6000册,请根据样本数据,估计学校应该购买“科普”类读物多少册?24.(10分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,连接CD,过E点作EF∥DC交BC的延长线于点F.(1)求证:四边形CDEF是平行四边形;(2)求四边形CDEF的周长.25.(10分)已知如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.26.(10分)观察下列各式:===﹣1,同理:=…=﹣,…从计算结果中找出规律,并利用这一规律计算:(+++…+)(+1)27.(12分)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称,;(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你直接写出所有以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB的顶点M的坐标;(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连结AD,DC,∠DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.28.(12分)(1)方法回顾在学习三角形中位线时,为了探索三角形中位线的性质,思路如下:第一步添加辅助线:如图1,在△ABC中,延长DE (D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF;第二步证明△ADE≌△CFE,再证四边形DBCF是平行四边形,从而得到DE∥BC,DE=BC.(2)问题解决如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.(3)拓展研究如图3,在四边形ABCD中,∠A=105°,∠D=120°,E为AD的中点,G、F分别为AB、CD边上的点,若AG=3,DF=2,∠GEF=90°,求GF的长.2017-2018学年江苏省扬州市仪征市八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列各式、、、+1、中分式有()A.2个B.3个C.4个D.5个【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:、、的分母中均不含有字母,因此它们是整式,而不是分式.、+1分母中含有字母,因此是分式.故选:A.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.(3分)下列二次根式中属于最简二次根式的是()A.B.C.D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、=2,此选项不符合题意;B、=,此选项不符合题意;C、是最简二次根式,此选项符合题意;D、=9,此选项不符合题意;故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3.(3分)下列调查中,适合用普查的是()A.了解我省初中学生的家庭作业时间B.了解“嫦娥三号”卫星零部件的状况C.华为公司一批某型号手机电池的使用寿命D.了解某市居民对废电池的处理情况【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解我省初中学生的家庭作业时间,适合抽样调查,故此选项错误;B、了解“嫦娥三号”卫星零部件的状况,适合用普查,符合题意;C、华为公司一批某型号手机电池的使用寿命,适合抽样调查,故此选项错误;D、了解某市居民对废电池的处理情况,适合抽样调查,故此选项错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.(3分)下列事件是确定事件的是()A.射击运动员只射击1次,就命中靶心B.任意一个三角形,它的内角和等于180°C.抛一枚质地均匀的正方体骰子,朝上一面的点数为6D.打开电视,正在播放新闻【分析】利用随机事件以及确定事件的定义分析得出答案.【解答】解:A、射击运动员只射击1次,就命中靶心,是随机事件,故选项错误;B、任意一个三角形,它的内角和等于180°,是必然事件,故选项正确;C、抛一枚质地均匀的正方体骰子,朝上一面的点数为6,是随机事件,故选项错误;D、打开电视,正在播放新闻,是随机事件,故选项错误.故选:B.【点评】本题考查了随机事件和确定事件,正确把握相关事件的确定方法是解题关键.5.(3分)如果把分式中的m和n都扩大3倍,那么分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍【分析】根据分式的分子分母都乘以或除以同一个不为0的整式,结果不变,可得答案.【解答】如果把分式中的m和n都扩大3倍,那么分式的值不变,故选:A.【点评】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,结果不变.6.(3分)如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2B.3C.4D.5【分析】根据直角三角形斜边上中线是斜边的一半可得DF=AB=AD=BD=5且∠ABF=∠BFD,结合角平分线可得∠CBF=∠DFB,即DE∥BC,进而可得DE=8,由EF=DE﹣DF可得答案.【解答】解:∵AF⊥BF,∴∠AFB=90°,∵AB=10,D为AB中点,∴DF=AB=AD=BD=5,∴∠ABF=∠BFD,又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠DFB,∴DE∥BC,∴△ADE∽△ABC,∴=,即,解得:DE=8,∴EF=DE﹣DF=3,故选:B.【点评】本题主要考查直角三角形的性质和相似三角形的判定与性质,熟练运用其判定与性质是解题的关键.7.(3分)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°【分析】连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P 为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故选:B.【点评】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.8.(3分)如图,在▱ABCD中,点E为AB的中点,F为BC上任意一点,把△BEF 沿直线EF翻折,点B的对应点B′落在对角线AC上,则与∠FEB一定相等的角(不含∠FEB)有()A.2个B.3个C.4个D.5个【分析】由翻折的性质可知,EB=EB',由E为AB的中点,得到EA=EB',根据三角形外角等于不相邻的两内角之和,找到与∠FEB相等的角,再根据AB∥CD,也可得到∠FEB=∠ACD.【解答】解:由翻折的性质可知:EB=EB',∠FEB=∠FEB';∵E为AB的中点,∴AE=BE=EB',∴∠EAB=∠EBA,∵∠BEB'=∠EAB+∠EB'A,∴2∠FEB=2∠EAB=2∠EB'A,∴∠FEB=∠EAB=∠EB'A,∵AB∥CD,∴∠BAE=∠ACD,∴∠FEB=∠ACD,∴与∠FEB相等的角有∠FEB',∠EAB,∠EB'A,∠ACD,∴故选C.【点评】此题考查翻折的性质,EA=EB'是正确解答此题的关键二、填空题(本大题共10小题,每小题3分,共30分)9.(3分)当x=﹣1时,分式的值是0.【分析】根据分式值为零的条件可得1﹣x2=0,x﹣1≠0,再解即可.【解答】解:由题意得:1﹣x2=0,x﹣1≠0,解得:x=﹣1,故答案为:﹣1.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.10.(3分)函数y=的自变量x的取值范围是x>1.【分析】一般地从两个角度考虑:分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【解答】解:根据题意得到:x﹣1>0,解得x>1.故答案为:x>1.【点评】本题考查了函数式有意义的x的取值范围.判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.11.(3分)分式,的最简公分母是6x2y2.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,的分母分别是3x2、6xy2,故最简公分母是6x2y2;故答案为:6x2y2.【点评】本题考查了最简公分母的知识,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.12.(3分)若m是的小数部分,则m2+2m+1的值是2.【分析】先估算出的大小,从而得到m的值,最后代入计算即可.【解答】解:由题m是的小数部分,≈1.414,所以m=﹣1.∵m2+2m+1=(m+1)2,代入m=﹣1.原式=(﹣1+1)2=2.故答案为:2.【点评】本题主要考查的是估算无理数的大小,求得m的值是解题的关键.13.(3分)若最简二次根式与是同类二次根式,则a=4.【分析】根据最简同类二次根式的被开方数相同可得关于a的方程,解出即可得出答案.【解答】解:由题意得:3a+2=4a﹣2,解得:a=4.故答案为:4.【点评】本题考查同类二次根式的知识,属于基础题,关键是掌握同类二次根式的被开方数相同.14.(3分)在一个不透明的口袋中装有1个红球和若干个白球,它们除颜色外其他相同.通过多次摸球试验后发现,摸到红球的频率稳定在0.25附近,则口袋中白球可能有3个.【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【解答】解:设白球个数为:x个,∵摸到红球的频率稳定在0.25附近,∴口袋中得到红球的概率为0.25,∴=0.25,解得:x=3,故白球的个数为3个.故答案为:3.【点评】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.15.(3分)一组数据共有50个,分成四组后其中前三组的频率分别是0.10、0.24、0.36,则第四组数据的个数为15.【分析】首先计算出第四小组的频率,再利用总数×频率可得第四组数据的个数.【解答】解:第四小组的频率为:1﹣0.1﹣0.24﹣0.36=0.3,第四组数据的个数为:50×0.3=15,故答案为:15.【点评】此题主要考查了频数与频率,关键是掌握频率=频数÷数据总数.16.(3分)已知菱形的周长为40cm,一条对角线长为16cm,则这个菱形的面积为96cm2.【分析】画出草图分析.因为周长是40,所以边长是10.根据对角线互相垂直平分得直角三角形,运用勾股定理求另一条对角线的长,最后根据菱形的面积等于对角线乘积的一半计算求解.【解答】解:因为周长是40cm,所以边长是10cm.如图所示:AB=10cm,AC=16cm.根据菱形的性质,AC⊥BD,AO=8cm,∴BO=6cm,BD=12cm.∴面积S=×16×12=96(cm2).故答案为96.【点评】此题考查了菱形的性质及其面积计算.主要利用菱形的对角线互相垂直平分及勾股定理来解决.菱形的面积有两种求法:(1)利用底乘以相应底上的高;(2)利用菱形的特殊性,菱形面积=×两条对角线的乘积.具体用哪种方法要看已知条件来选择.17.(3分)已知ab=1,t=+,则t2018=1.【分析】原式t通分并利用同分母分式的加法法则计算,将已知等式代入计算即可求出值.【解答】解:t==,把ab=1代入得:t==﹣1,则原式=1,故答案为:1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.18.(3分)如图,在矩形ABCD中,AD=6,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为6或3.【分析】要求直线AD上满足△PBC是等腰三角形的点P有且只有3个时的AB 长,则需要分类讨论:①当AB=AD时;②当AB<AD时,③当AB>AD时.【解答】解:①如图,当AB=AD时满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=6.②当AB<AD,且满足△PBC是等腰三角形的点P有且只有3个时,如图,∵满足△PBC是等腰三角形的点P有且只有3个时,∴△P2BC是等边三角形,易知P2是AD的中点,BC=BP1=BP2=CP2=CP3,在Rt△ABP2中,∵AP2=3,∠ABP2=30°,∴AB=3,③当AB>AD时,直线AD上只有一个点P满足△PBC是等腰三角形.故答案为:6或3【点评】本题考查矩形的性质,等腰三角形的性质等知识,解题的关键是理解题意,属于中考常考题型.三、解答题(共96分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.(8分)计算:(1)﹣6+|1﹣|(2)﹣x+y【分析】(1)根据二次根式的运算法则即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=2﹣3+﹣1=﹣1(2)原式=﹣(x﹣y)==【点评】本题考查学生的运算法则,解题的关键是熟练运用运算法则,本题属于基础题型.20.(8分)若x,y为实数,且y<++2,试化简:x2+|y﹣2|﹣.【分析】根据二次根式有意义的条件可得x=2,将x=2代入原不等式可得y<2,根据x=2、y<2依据二次根式的性质化简求值即可.【解答】解:由题意得,3﹣x≥0且x﹣3≥0,所以x=3,y<2,原式=32+(2﹣y)﹣(3﹣y)=9+2﹣y﹣3+y=8.【点评】本题主要考查二次根式有意义的条件及二次根式的性质,熟知二次根式有意义的条件是被开方数为非负数是解题的关键.21.(8分)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x值代入求值.【分析】先化简分式,再把x=2代入进行计算即可.【解答】解:原式=÷=•=,当x=2时,原式==4.【点评】本题考查了分式的化简求值,掌握因式分解是解题的关键.22.(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为(,﹣1).【分析】(1)分别作出点A、B关于点C的对称点,再顺次连接可得;(2)由点A的对称点A2的位置得出平移方向和距离,据此作出另外两个点的对称点,顺次连接可得;(3)连接A1A2、B1B2,交点即为所求.【解答】解:(1)如图所示,△A1B1C即为所求;(2)如图所示,△A2B2C2即为所求;(3)如图所示,点P即为对称中心,其坐标为(,﹣1),故答案为:(,﹣1).【点评】本题主要考查作图﹣旋转变换、平移变换,解题的关键是根据旋转变换和平移变换的定义作出变换后的对应点.23.(10分)某学校校园读书节期间,学校准备购买一批课外读物.为使购买的课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从“文学”、“艺术”、“科普”和“其他”四个类别对部分同学进行了抽样调查(每位同学只选一类).下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次抽样调查一共抽查了200名同学;(2)条形统计图中,m=40,n=60;(3)扇形统计图中,艺术类读物所在扇形的圆心角是72度;(4)如果学校计划购买课外读物6000册,请根据样本数据,估计学校应该购买“科普”类读物多少册?【分析】(1)结合两个统计图,根据条形图得出文学类人数为70,利用扇形图得出文学类所占百分比为35%,即可得出总人数;(2)利用科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,即可得出m的值;(3)利用360°乘以对应的百分比即可求解;(4)根据喜欢科普类读物人数所占的百分比,即可估计6000册中科普读物的数量.【解答】解:(1)本次调查的总人数为70÷35%=200(人),故答案为:200;(2)n=200×30%=60,m=200﹣(70+60+30)=40,故答案为:40、60;(3)扇形统计图中,艺术类读物所在扇形的圆心角是360°×=72°,故答案为:72;(4)6000×30%=1800,答:估计学校应该购买“科普”类读物1800册.【点评】此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题关键.24.(10分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,连接CD,过E点作EF∥DC交BC的延长线于点F.(1)求证:四边形CDEF是平行四边形;(2)求四边形CDEF的周长.【分析】(1)直接利用三角形中位线定理得出DE∥BC,再利用平行四边形的判定方法得出答案;(2)利用等边三角形的性质结合平行四边形的性质得出DC=EF,进而求出答案.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE是△ABC的中位线,∴DE BC,∵EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=,∴四边形CDEF的周长=2(1+)=2+2.【点评】此题主要考查了等边三角形的性质以及平行四边形的判定与性质、三角形中位线定理等知识,正确掌握平行四边形的性质是解题关键.25.(10分)已知如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.【分析】(1)先判断出四边形AODE是平行四边形,再根据菱形的对角线互相垂直可得AC⊥BD,然后根据有一个角是直角的平行四边形是矩形证明;(2)根据两直线平行,同旁内角互补求出∠ABC=60°,判断出△ABC是等边三角形,然后根据等边三角形的性质求出OA、OB,然后得到OD,再根据矩形的面积公式列式计算即可得解.【解答】(1)证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵在菱形ABCD中,AC⊥BD,∴∠AOD=90°,∴四边形AODE是矩形;(2)解:∵∠BCD=120°,AB∥CD,∴∠ABC=180°﹣120°=60°,∵AB=BC,∴△ABC是等边三角形,∴OA=×6=3,OB=×6=3,∵四边形ABCD是菱形,∴OD=OB=3,∴四边形AODE的面积=OA•OD=3×3=9.【点评】本题考查了菱形的性质,矩形的判定,平行四边形的判定,主要利用了有一个角是直角的平行四边形是矩形,熟练掌握矩形,菱形与平行四边形的关系是解题的关键.26.(10分)观察下列各式:===﹣1,同理:=…=﹣,…从计算结果中找出规律,并利用这一规律计算:(+++…+)(+1)【分析】先分母有理化,然后合并后利用平方差公式计算.【解答】解:原式=(﹣1+﹣+﹣)(+1)=(﹣1)(+1)=2018﹣1=2017.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.27.(12分)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称长方形,正方形;(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你直接写出所有以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB的顶点M的坐标;(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连结AD,DC,∠DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.【分析】(1)只要四边形中有一个角是直角,根据勾股定理就有两直角边平方的和等于斜边的平方,即此四边形中存在相邻两边的平方和等于一条对角线的平方,由此可知,正方形、长方形、直角梯形都是勾股四边形.(2)利用勾股定理计算画出即可;(3)首先证明△ABC≌△BDC,得出AC=DE,BC=BE,连接CE,进一步得出△BCE 为等边三角形;利用等边三角形的性质,进一步得出△DCE是直角三角形,问题得解.【解答】解:(1)长方形,正方形;故答案是:长方形,正方形;(2)如图1,点M(3,4)或M(4,3);(3)证明:如图2,连结EC.根据旋转的性质知△ABC≌△DBE,则BC=BE,AC=DE.又∵∠CBE=60°∴△CBE是等边三角形,∴∠BCE=60°,BC=EC又∵∠DCB=30°∴∠BCE+∠DCB=90°即∠DCE=90°,∴DC2+BC2=AC2,即四边形ABCD是勾股四边形.【点评】本题考查勾股定理,及考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.28.(12分)(1)方法回顾在学习三角形中位线时,为了探索三角形中位线的性质,思路如下:第一步添加辅助线:如图1,在△ABC中,延长DE (D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF;第二步证明△ADE≌△CFE,再证四边形DBCF是平行四边形,从而得到DE∥BC,DE=BC.(2)问题解决如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.(3)拓展研究如图3,在四边形ABCD中,∠A=105°,∠D=120°,E为AD的中点,G、F分别为AB、CD边上的点,若AG=3,DF=2,∠GEF=90°,求GF的长.【分析】(1)延长GE、FD交于点H,可证得△AEG≌△DEH,结合条件可证明EF垂直平分GH,可得GF=FH,可求得GF的长;(2)过点D作AB的平行线交GE的延长线于点H,过H作CD的垂线,垂足为P,连接HF,可证明△AEG≌△DEH,结合条件可得到△HPD为等腰直角三角形,可求得PF的长,在Rt△HFP中,可求得HF,则可求得GF的长.【解答】解:(1)如图2,延长GE、FD交于点H,∵E为AD中点,∴EA=ED,且∠A=∠EDH=90°,在△AEG和△DEH中∴△AEG≌△DEH(ASA),∴AG=HD=2,EG=EH,∵∠GEF=90°,∴EF垂直平分GH,∴GF=HF=DH+DF=2+3=5;(2)如图3,过点D作AB的平行线交GE的延长线于点H,过H作CD的垂线,垂足为P,连接HF,同(1)可知△AEG≌△DEH,GF=HF,∴∠A=∠HDE=105°,AG=HD=3,∵∠ADC=120°,∴∠HDF=360°﹣105°﹣120°=135°,∴∠HDP=45°,∴△PDH为等腰直角三角形,∴PD=PH=,∴PF=PD+DF=+2=,在Rt△HFP中,∠HPF=90°,HP=,PF=,∴HF===,∴GF=.【点评】本题为四边形的综合应用,涉及知识点有正方形的性质、全等三角形的判定和性质、等腰三角形的性质、勾股定理等.在(1)中构造三角形全等是解题的关键,在(2)中构造三角形全等,巧妙利用好105°和120°角是解题的关键.本题考查知识点较多,综合性较强,难度较大.。