28.2 解直角三角形(第1课时)
- 格式:ppt
- 大小:742.00 KB
- 文档页数:17
28.2解直角三角形教学设计第1课时一、教学任务分析二、教学流程安排三、教学过程设计教学程序及教学内容师生行为设计意图 活动一:复习引入1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系a bA b aA c bA c a A ====cot ;tan ;cos ;sin b aB abB c aB c b B ====cot ;tan ;cos ;sin(2)三边之间关系a 2 +b 2 =c 2 (勾股定理)(3)锐角之间关系∠A+∠B=90°.3.通过课本中“比萨斜塔”倾斜的问题,引出结直角三角形。
教师引导学生进行锐角三角形相关知识回顾与复习。
要求学生了解解直角三角形的依据,通过复习,使学生便于应用。
活动二:探究新知通过课本中“比萨斜塔”倾斜的问题,引出结直角三角形,详见书本P85页. 进行探究1:(1)在直角三角形中,除直角外的5个元素之间有哪些关系?(2)知道5个元素中的几个,就可以求其余元素?思考与提问:我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?例题1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b=2, a=6,解这个三角形. 解 ∵tanA=a b =62=3 ∴ 60B ∠=∴ 9030A B ∠=-∠=∴C=2b=22详见P86-88页,例2,例3,例4;教师提问,学生互动; (1)三边之间关系a 2 +b 2 =c 2 (勾股定理)(2)锐角之间关系∠A+∠B=90°. (3)边角之间的关系如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成.引导学生思考分析完成后,让学生独立完成教师组织学生比较各种方法中哪些较好,选一种板演。
28.2解直角三角形(第1课时)C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?sinA=cacosA=cbtanA=ba(2)三边之间关系a2 +b2 =c2 (勾股定理)(3)锐角之间关系∠A+∠B=90°.(3)揭示并板书本节课题。
(4)关注并适时评价学生的表现。
【学生活动】学生思考回答问题.【设计意图】复习直角三角形中,各元素之间的关系,为新知探索做好知识准备,活动二问题诱导,探索新知问题3:出示课本章前引言中的问题:意大利比萨斜塔在1350年落成时就已倾斜,其塔顶中心点偏离垂直中心线2.1米,1972年比萨地区发生地震,这座高54.5米的斜塔在大幅度摇摆后仍巍然屹立,但塔顶中心点偏离垂直中心线增至5.2米,而且还以每年增加1厘米的速度继续倾斜,随时都有倒塌的危险。
为此,意大利当局从1990年起对斜塔进行维修纠偏,2001年竣工,使塔顶中心点偏离垂直中心线的距离比纠偏前减少了43.8厘米.(1)根据上述信息你能用角度来描述比萨斜塔的倾斜程度吗?(2)你能求出2001年纠偏后塔身中心线与垂直中心线的夹角吗?小结“已知一边一角,如何解直角三角形?”先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.【教师活动】1、出示问题3,提一名学生读题,提醒其他学生思考:①题中提供了哪些信息?哪些是已知量?要求是什么?②如果把这些信息集中到一个三角形中,那么其解决问题的本质是什么?用哪个关系式求解最简单最直接?2、引导学生口述解题过程,结合学生口述相机用课件展示解题过程。
3、谈话:我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.4、提名让学生说出问题1解题过程:课件演示解题过程。
28.2.1 解直角三角形本节是在学习锐角三角函数之后,结合已学过的三角形内角和定理和勾股定理,研究解直角三角形的问题,既能加深对锐角三角函数概念的理解,又为后续解决与其相关的实际问题打下基础.解直角三角形是结合三角形内角和定理、勾股定理等知识,利用锐角三角函数对直角三角形的三条边以及两锐角这五个要素进行求解,在解直角三角形时注意借助相应的直角三角形来寻找已知元素与未知元素的关系式.【情景导入】要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足50°≤α≤75°(见教材第85页第10题图),现有一架长6 m 的梯子.(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1 m)?(2)当梯子底端距离墙面2.4 m 时,梯子与地面所成的角α等于多少(精确到1°)?这时人是否能够安全使用这架梯子?【说明与建议】 说明:用来源于学生身边的问题吸引他们的注意力,激发他们的好奇心,体会解直角三角形来源于生活,并服务于生活,诱发学生对新知识的渴求.建议:教师引导学生思考,为本节课学习解直角三角形做好铺垫. 【归纳导入】在Rt △ABC 中,∠C =90°,∠A =20°,c =10 cm. (1)根据“直角三角形两锐角互余”得∠B =70°. (2)由sinA =ac ,得a =c ·sinA =10sin20°cm.(3)由cosA =bc,得b =c ·cosA =10cos20°cm.通过以上填空,Rt △ABC 的三条边长及三个角全部知道了,这种由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.【说明与建议】 说明:通过解答此题说明已知直角三角形的一个锐角,可以求出另一个锐角,选择恰当的边角关系,还可以求出其他的边长.建议:让学生先自主探究,然后交流解题的方法并比较从中选择最合适的方法.命题角度1 在直角三角形中解直角三角形这类题目一般已知一边一角或两边求其他元素.注意以下知识和技巧的总结及运用: 理论依据:在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c. (1)三边之间的关系:a 2+b 2=c 2. (2)锐角之间的关系:∠A +∠B =90°.(3)边角之间的关系:sinA =a c =cosB ,cosA =b c =sinB ,tanA =a b =1tanB .(4)面积公式:S △ABC =12ab =12ch(h 为斜边上的高).提示:当所求的元素既可用乘法又可用除法求解时,一般用乘法,不用除法;既可用已知数据又可用中间数据求解时,最好用已知数据.技巧方法:1.(宜昌中考)如图,△ABC 的顶点是正方形网格的格点,则cos ∠ABC 的值为(B) A.23B.22C.43D.2232.(巴中中考)如图,点A ,B ,C 在边长为1的正方形网格格点上,下列结论错误的是(A)A .sinB =13B .sinC =255C .tanB =12D .sin 2B +sin 2C =1命题角度2 构造直角三角形再解直角三角形这类问题一般和三角形或圆的相关知识结合命题,题目没有直接告诉是直角三角形,通过条件或添加辅助线,可以证明或构造直角三角形,再根据解直角三角形的方法解答问题.3.(黑龙江中考)如图,在△ABC 中,sinB =13,tanC =2,AB =3,则AC 的长为(B)A. 2B.52C. 5D .24.如图,点A ,B 是以CD 为直径的⊙O 上的两点,分别在直径的两侧,其中点A 是CDB ︵的中点.若tan ∠ACB =2,AC =5,则BC 的长为(D)A. 5B .2 5C .1D .2命题角度3 分类讨论解不定三角形在解直角三角形问题时,如遇到直角或者某个锐角不确定时,特别是在没有给出图形的情况下,要注意分类讨论,防止漏解.5.(内江中考)已知,在△ABC 中,∠A =45°,AB =42,BC =5,则△ABC 的面积为2或14.双直角三角形所谓“双直角三角形”是指一条直角边重合,另一条直角边共线的两个直角三角形.其位置关系有两种:如图1,公共直角边为AD ,则AD =BC ·tan α·tan βtan β-tan α,我们把它叫做公式1.图1 图2 如图2,公共直角边为AD ,则AD =BC ·tan α·tan βtan β+tan α,我们把它叫做公式2.课题28.2.1 解直角三角形授课人素养目标1.了解解直角三角形的意义和条件.2.帮助学生理解直角三角形中五个元素(直角除外)的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形.3.发展学生的数学应用意识,提高归纳能力,感受解直角三角形的策略.教学重点解直角三角形的意义以及一般方法.教学难点选择恰当的边角关系解直角三角形.授课类型新授课课时教学步骤师生活动设计意图回顾如图,在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别是a,b,c,那么除直角∠C外的两个锐角和三条边之间有如下关系:两锐角之间的关系:∠A+∠B=90°.三边之间的关系:a2+b2=c2.边角之间的关系:sinA=ac,cosA=bc,tanA=ab.回顾以前所学内容,为本节课的教学内容做好准备.活动一:创设情境、导入新课【课堂引入】意大利比萨斜塔在落成时就已倾斜,其塔顶中心点为B,塔身中心线与垂直中心线的夹角为∠A,过点B向垂直中心线引垂线,垂足为C,如图.在Rt△ABC中,∠C=90°,BC=5.2 m,AB=54.5 m,求∠A的度数.师生活动:教师呈现问题并引导学生结合图形,观察已知条件和所求角之间的关系,分析得到通过求∠A的正弦来求∠A的度数.通过实际问题,激发学生的学习兴趣,把实际问题转化为数学问题,并一般化:已知直角三角形斜边和直角边,求它的锐角的度数,通过求解的过程,初步体会解直角三角形的内涵,引入课题.活动二:实践探究、交流新知【探究新知】1.解直角三角形的定义问题:将比萨斜塔问题推广为一般的数学问题该如何求解?师生活动:已知直角三角形的斜边和一条直角边,求它的锐角的度数,利用锐角的正弦(或余弦)的概念直接求解.问题:在活动一所述的Rt△ABC中,你还能求出其他未知的边和角吗?师生活动:学生思考并说明求解思路,教师把问题一般化,给出解直角三角形的内涵:一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.2.解直角三角形的方法问题:回想一下,刚才解直角三角形的过程中,用到了哪些知识?你能梳理一下直角三角形各个元素之间的关系吗?师生活动:如图,引导学生结合图形,梳理五个元素(直角除外)之间的关系,学生展示:(1)三边之间的关系:a2+b2=c2(勾股定理).(2)两锐角之间的关系:∠A+∠B=90°.(3)边角之间的关系:sinA=ac,cosA=bc,tanA=ab,sinB=ba,cosB=ac,tanB=ba.问题:从上述问题来看,在直角三角形中,知道斜边和一条直角边这两个元素,可以求出其余的三个元素.一般地,已知五个元素(直角除外)中的任意两个元素,可以求其余元素吗?教师给出结论:在直角三角形中,知道除直角外的五个元素中的两个元素(至1.有条理地梳理直角三角形除直角外的五个元素之间的关系,明确各自的作用,便于应用.2.在讨论解直角三角形的方法过程中,明确解直角三角形的条件,培养学生的逻辑思维能力.少有一个是边),就可以求出其余三个未知元素.活动三:开放训练、体现应用【典型例题】例1(教材第73页例1)如图,在Rt△ABC中,∠C=90°,AC=2,BC=6,解这个直角三角形.解:AB=22,∠B=30°,∠A=60°.师生活动:学生在教师的引导下,思考如何求出所有未知元素.先让学生找出所有未知元素:∠A,∠B和AB,然后让学生逐一说明求每一个未知元素的方法和依据,教师引导学生选择简便的解题途径.最后给出简洁、规范的解题步骤.例2(教材第73页例2)如图,在Rt△ABC中,∠C=90°,∠B=35°,b=20,解这个直角三角形(结果保留小数点后一位).解:∠A=90°-∠B=90°-35°=55°.∵tanB=ba,∴a=btanB=20tan35°≈28.6.∵sinB=bc,∴c=bsinB=20sin35°≈34.9.师生活动:由学生代表参照例1的解题思路,分析本题的解题思路;然后由学生独立完成,再小组交流;最后由学生代表展示解题步骤.对于求c,如果学生采取不同方法,让他们展示不同方法;如果学生没有采取不同方法,教师注意引导他们思考其他解法.【变式训练】1.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=43,则CD的值为(D)1.通过解特殊的直角三角形,训练学生解直角三角形的思路和方法,提高学生分析和解决问题的能力.2.进一步训练解一般直角三角形的思路和方法,并体会从计算简便的角度选用适当的关系式求解.3.变式训练拓展学生思维,同时增强学生对所学知识的灵活应用能力.A .2 B.45 C.43 D.65提示:延长AD ,BC ,两线交于点O ,得到两个直角三角形,解直角三角形即可. 2.在△ABC 中,若AB =10,AC =15,∠BAC =150°,则△ABC 的面积为(A) A .37.5 B .75 C .100 D .150提示:过点C 作CD ⊥AB ,交BA 的延长线于点D.在Rt △ADC 中利用特殊角求出高CD ,再计算三角形的面积.3.在Rt △ABC 中,∠C =90°,b =3,S △ABC =923,解这个直角三角形.解:如图:∵在Rt △ABC 中,∠C =90°,b =3,S △ABC =923,∴12ab =92 3. ∴a =3 3.∴tanA =a b =333= 3.∴∠A =60°.∴∠B =180°-∠A -∠C =180°-60°-90°=30°. ∴c =2b =6. 活动四:课堂检测【课堂检测】1.如图,在Rt △ABC 中,∠C =90°,AB =4,sinA =12,则BC 的长为(A)A .2B .3 C. 3 D .2 3通过设置课堂检测,进一步巩固所学新知,同时检测学习效果,做到“堂堂清”.2.在Rt △ABC 中,∠C =90°,∠B =40°,BC =3,则AC =(C) A .3sin40° B .3sin50° C .3tan40° D .3tan50°3.在Rt △ABC 中,∠C =90°,斜边中线是3 cm ,sinA =13,则S △ABC =(D)A. 2 cm 2B .2 2 cm 2C .3 2 cm 2D .4 2 cm 2提示:由中线长可以求出斜边,解直角三角形求出两直角边,再计算三角形面积.4.如图,在△ABC 中,BD ⊥AC 于点D ,AB =6,AC =53,∠A =30°.(1)求BD 和AD 的长. (2)求tanC 的值. 解:(1)∵BD ⊥AC , ∴∠ADB =90°.在Rt △ADB 中,AB =6,∠A =30°, ∴BD =12AB =3.∴AD =BDtanA=3BD =3 3. (2)CD =AC -AD =53-33=23, 在Rt △BCD 中,tanC =BD CD =323=32.学生进行当堂检测,完成后,教师进行批阅、点评、讲解. 课堂小结1.课堂总结:(1)什么叫解直角三角形?(2)两个直角三角形全等要具备什么条件?为什么在直角三角形中,已知一边和一个锐角或两边就能解直角三角形呢?教学说明:教师提问并引导学生总结归纳解直角三角形的定义以及直角三角形五元素之间的关系. 2.布置作业:教材第77页习题28.2第1题.引导学生从知识和方法两个方面总结自己的收获,理清解直角三角形的目的、条件、依据、方法,提升综合运用知识的能力.。
28.2.1解直角三角形(第1课时)教学设计一、教材分析本节课内容是新人教版教材九年级下册,第二十八章《锐角三角函数》的第二节《解直角三角形》第一课时,是在学习了勾股定理、锐角三角函数的基础上进行的。
本节课既是前面所学知识的运用,也是高中继续学习三角函数和解斜三角形的重要预备知识。
教材首先从实际生活比萨斜塔入手,创设问题情境,抽象出数学问题,从而引出解直角三角形的概念,归纳解直角三角形的一般方法。
本节课的学习还蕴涵着深刻的数学思想方法:数学建模和转化化归,在本节教学中有针对性的对学生进行这方面的能力培养。
通过本节课的学习,不仅可以巩固勾股定理和锐角三角函数等相关知识,初步获得解直角三角形的方法和经验,而且还让学生进一步体会数学与实际生活的密切联系。
二、教学目标(一)知识与技能1.理解直角三角形中五个元素的关系,什么是解直角三角形;2.运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)过程与方法目标通过探索讨论发现解直角三角形所需的最简条件,了解体会用化归的思想方法将未知问题转化为已知问题去解决,在解决问题的过程中渗透“数学建模”和“转化”思想。
(三)情感、态度和价值观通过学习解直角三角形的应用,认识到数与形相结合的意义和作用,体验到学好知识能应用于社会实践。
并让学生体验到学习是需要付出努力和劳动的。
三、学情分析九年级学生已经牢固掌握了勾股定理,也刚刚学习过锐角三角函数,但锐角三角函数的运用不一定熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都有待提高,因此要在本节课进行有意识的培养。
四、教学重难点教学重点:正确运用直角三角形中的边角关系解直角三角形教学难点:选择适当的关系式解直角三角形五、教法与学法1、教学方法:利用多媒体辅助教学,通过观察,引导学生思考、讨论,通过归纳、概括等方法启发、诱导,帮助学生理解内容的本质,从而突破教学难点。
2、学习方法:观察、归纳、概括和讨论的学习方法,使他们不仅理解和掌握本节课的内容,而且进一步培养和提高他们各方面的能力,从而逐步由“学会”向“会学”迈进。
28.2.1解直角三角形(第1课时)教学目标:知识与技能:使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.渗透数形结合的数学思想,培养学生良好的学习习惯.过程与方法:通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力..情感态度与价值观:渗透数形结合的数学思想,培养学生良好的学习习惯.教学重点:直角三角形的解法教学难点:三角函数在解直角三角形中的灵活运用.教学过程:一、预习导学:1.在直角三角形中,除直角外共有几个元素?什么叫解直角三角形?总结:一般地,直角三角形中,除直角外,共有 个元素,既 条边和 个锐角,由直角三角形中除直角外的已知元素,求出其余 元素的过程,叫做解直角三角形。
2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系: sinA =A a A c∠=∠的对边的斜边;cosA==;tanA==.(注意:A 可以换成B ) (2)三边之间关系:(3)两锐角之间关系:以上三点是解直角三角形的依据.利用这些关系,知道其中2个元素(至少有一个是边),就可以求出其余3个元素.(学生在小组互查“预习导学”,教师引入新课并板书课题)二、合作交流:要想使人安全地攀上斜靠在墙面上的梯子的顶端.梯子与地面所成的角一般要满足, (如图).现有一个长6m 的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(精确到0. 1 m)(2)当梯子底端距离墙面2.4 m 时,梯子与地面所成的角等于多少(精确到1o ) 这时人是否能够安全使用这个梯子例1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且,,解这个直角三角形. A ∠的邻边斜边a c A A ∠∠的对边的邻边ab例2在Rt △ABC 中,∠C=90 o , ∠B =35o ,b=20,解这个直角三角形.(结果保留小数点后一位)三.巩固练习:完成课本87页练习四.课堂小结:1.根据直角三角形的已知_______个元素(至少有一个边),求出其余 个未知元素的过程,叫做解直角三角形.2. 解直角三角形的依据有哪些:(1)(2) (3)3.还有何疑问?五.课堂检测:1、Rt △ABC 中,若sinA=,AB=10,那么BC=_____,tanB=______.2、在△ABC 中,∠C=90°,AC=6,BC=8,那么sinA=________.3、在△ABC 中,∠C=90°,sinA=,则cosA 的值是 、在△ABC 中,∠C 为直角,AC=6,BAC 的平分线AD=43,解此直角三角形。