第17讲_简单随机事件的概率
- 格式:doc
- 大小:150.50 KB
- 文档页数:3
初中数学知识点总结简单事件的概率初中数学中,简单事件的概率是一个重要的知识点。
简单事件指的是只有一个结果的事件,概率则是指一些事件发生的可能性。
在简单事件中,概率的计算可以通过统计频数来得出。
下面将对初中数学中的简单事件的概率进行总结。
首先,我们需要了解一些基本概念。
在概率中,我们常用的概念有样本空间、事件和概率。
样本空间是指一个试验中所有可能结果的集合。
在投掷一枚骰子的例子中,样本空间为{1,2,3,4,5,6}。
事件是指样本空间中的一个子集。
例如,投掷一枚骰子得到偶数的事件可以表示为{2,4,6}。
概率是指一些事件发生的可能性,通常用P(A)表示。
在投掷一枚骰子的例子中,得到偶数的概率可以表示为P(A)=3/6=1/2在计算概率时,有几个重要的概念和方法可以帮助我们进行计算。
1.等可能原则:在样本空间中,所有的结果都是等可能发生的。
在投掷一枚均匀的骰子的例子中,每个数字出现的概率都是1/62.频率和概率的关系:频率是指一个事件在试验中出现的次数除以总的试验次数。
当试验次数足够大时,频率会逐渐趋近于概率。
因此,我们可以通过实验的频率来估计概率。
3.概率的性质:-对于任意事件A,0≤P(A)≤1,即概率的取值范围在0到1之间。
-对于样本空间S,P(S)=1,即样本空间中的所有结果发生的概率之和为1-对于两个互斥事件A和B(即A和B不可能同时发生),P(A∪B)=P(A)+P(B)。
4.互斥事件的概率计算:两个事件A和B不可能同时发生,即A和B 是互斥事件。
在这种情况下,我们可以直接计算事件A和事件B的概率,并将它们相加。
例如,在投掷一枚骰子的例子中,得到偶数的事件A和得到奇数的事件B是互斥事件,因此P(A∪B)=P(A)+P(B)=1/2+1/2=15.非互斥事件的概率计算:当两个事件A和B可能同时发生时,我们需要使用概率的加法原理来计算它们的概率。
根据加法原理,P(A∪B)=P(A)+P(B)-P(A∩B)。
高二数学随机事件的概率【本讲主要内容】随机事件的概率事件的定义、随机事件的概率、概率的性质、基本事件、等可能性事件、等可能性事件的概率【知识掌握】【知识点精析】1. 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件。
随机现象的两个特征⑴结果的随机性:即在相同的条件下做重复的试验时,如果试验的结果不止一个,则在试验前无法预料哪一种结果将发生。
⑵频率的稳定性:即大量重复试验时,任意结果(事件)A出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这一常数的偏差大的可能性越小。
这一常数就成为该事件的概率。
2. 随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率mn总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作()P A。
理解:需要区分“频率”和“概率”这两个概念:(1)频率具有随机性,它反映的是某一随机事件出现的频繁程度,它反映的随机事件出现的可能性。
(2)概率是一个客观常数,它反映了随机事件的属性。
大量重复试验时,任意结果(事件)A出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这一常数的偏差大的可能性越小。
这一常数就成为该事件的概率。
3. 概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率。
4. 概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A≤≤,必然事件和不可能事件看作随机事件的两个极端情形。
5. 基本事件:一次试验连同其中可能出现的每一个结果(事件A)称为一个基本事件。
例如:投掷硬币出现2种结果叫2个基本事件,通常试验中的某一事件A由几个基本事件组成(例如:投掷一枚骰子出现正面是3的倍数这一事件由“正面是3”、“正面是6”这两个基本事件组成)。
6. 等可能性事件:如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n,这种事件叫等可能性事件。
掌握简单事件的概率计算概率计算是数学中的一个重要分支,用于描述和解决随机事件发生的可能性。
掌握简单事件的概率计算对于我们了解和应用概率理论具有重要意义。
本文将介绍简单事件的概念、概率计算的基本原理以及一些常见的概率计算方法。
一、简单事件的概念在概率计算中,简单事件指的是不可再分解成更小事件的基本事件。
比如,投掷一个公正六面骰子,每个面的点数都是一个简单事件。
简单事件通常用字母表示,比如事件A、B、C等。
二、概率计算的基本原理1. 概率的定义:概率是指某个事件发生的可能性。
概率的取值范围在0到1之间,其中0表示不可能事件,1表示必然事件。
2. 概率的计算方法:(1)古典概率方法:适用于等可能的试验,通过计算事件发生的次数与总次数的比值来估计概率。
(2)几何概率方法:适用于连续型事件,通过计算事件所占的面积或长度与整个样本空间的面积或长度的比值来估计概率。
(3)统计概率方法:适用于根据统计数据推断出的概率,通过频率估计法来计算概率。
(4)条件概率方法:适用于依赖于其他事件发生与否的事件,通过计算给定条件下事件发生的概率来估计条件概率。
(5)加法法则和乘法法则:用于计算多个事件的概率。
三、常见的概率计算方法1. 单一事件的概率计算:对于单一事件A,可以使用古典概率方法、几何概率方法或统计概率方法来计算。
2. 多个事件的概率计算:(1)互斥事件的概率计算:当多个事件是互斥的(即不可能同时发生)时,可以使用加法法则来计算这些事件中至少发生一个事件的概率。
(2)独立事件的概率计算:当多个事件是独立的(即一个事件的发生不影响其他事件的发生)时,可以使用乘法法则来计算同时发生这些事件的概率。
(3)非互斥事件的概率计算:当多个事件既非互斥又非独立时,可以使用条件概率方法和乘法法则来计算这些事件的概率。
通过掌握简单事件的概率计算,我们可以在日常生活中应用概率理论,例如在赌场玩牌时计算获胜的概率,或者在投资股市时计算盈利的概率。
第十七讲概率初步知识点1、确定事件与随机事件2、事件发生的可能性大小3、频率的稳定性4、频率与概率5、等可能事件概率的定义6、等可能事件概率的应用教学目标1、通过具体问题,感受什么是不可能事件、必然事件、确定事件与不确定事件,知道事件发生的可能性是有大小的;2、学会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力;3、通过对问题的分析,理解用频率来估计概率的方法.4、了解计算一类事件发生可能性的方法,会求等可能事件的概率,体会概率的意义;5、通过具体问题,感受什么是不可能事件、必然事件、确定事件与不确定事件,知道事件发生的可能性是有大小的;6、学会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力;7、通过对问题的分析,理解用频率来估计概率的方法.8、了解计算一类事件发生可能性的方法,会求等可能事件的概率,体会概率的意义;知识点1 事件发生的可能性1、必然事件、不可能事件、确定事件:有些事情我们事先能肯定它一定发生,这些事情称为必然事件.有些事情我们事先能肯定它一定不会发生,这些事情称为不可能事件.必然事件与不可能事件统称为确定事件.2、随机事件:有许多事情我们事先无法肯定它会不会发生,这些事情称为不确定事件,也称为随机事件. 一般地,不确定事件发生的可能性是有大有小的.知识点2 频率与概率称为事件A发生的频率. 1.在n次重复试验中,不确定事件A发生了m次,则比值mn在试验次数很大时,事件发生的频率都会在一个常数附近摆动,这就是频率的稳定性.p A. 2.我们把刻画事件A发生的可能性大小的数值,称为事件A发生的概率,记为()一般地,大量重复的试验中,我们常用不确定事件A发生的频率来估计事件A发生的概率.p A 3.必然事件发生的概率为1,;不可能事件发生的概率为0;不确定事件A发生的概率()是0与1之间的一个常数.4.设一个试验的所有可能的结果有n种,每次试验有且只有其中的一种结果出现.如果每种结果出现的可能性相同,那么我们就称这个试验的结果是等可能的.一般地,如果有一个试验有n种等可能的结果,事件A包含其中的m种结果,那么事件A 发生的概率为:().m=p An例一:【题干】下列事件是不可能事件是()A.明天会下雨B.小明数学成绩是99分C.一个数与它的相反数的和是0D.明年一年共有367天例二:【题干】初一(8)班共有学生54人,其中男生有30人,女生24人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性____(填“大”或“小”).例三:【题干】如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分.谁先累积到10分,谁就获胜.你认为________获胜的可能性更大.例四:【题干】色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如下表:抽取的体检表数n 50 100 200 400 500 800 1000 1200 1500 2000 色盲患者的频数m 3 7 13 29 37 55 69 85 105 138 色盲患者的频率m/n0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069根据上表,估计在男性中,男性患色盲的频率为.(结果精确到0.01)例五:【题干】在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此大量摸球实验后,小明发现其中摸出的红球的频率稳定于20%,由此可以估计布袋中的黑色小球有个.一.选择题1.(2019秋•常熟市期末)在一个不透明的袋子中共装有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有3个红球,5个黄球,若随机摸出一个红球的概率为,则这个袋子中蓝球的个数是()A.3个B.4个C.5个D.12个2.(2019秋•霍林郭勒市期末)下列事件中,是随机事件的是()A.射击运动员射击一次,命中靶心B.任意画一个三角形,其内角和是360°C.掷一次骰子,向上一面的点数大于6D.通常加热到100℃,水沸腾3.(2019秋•萧山区期末)已知一个不透明的袋子里有2个白球,3个黑球,1个红球.现从中任意取出一个球,()A.恰好是白球是必然事件B.恰好是黑球是不确定事件C.恰好是红球是不可能事件D.摸到白球、黑球、红球的可能性一样大4.(2019秋•延庆区期末)下列事件中,属于必然事件的是()A.任意掷一枚硬币,落地后正面朝上B.小明妈妈申请北京小客车购买指标,申请后第一次摇号时就中签C.随机打开电视机,正在播报新闻D.地球绕着太阳转5.(2019秋•福州期末)下列说法正确的是()A.可能性很大的事情是必然发生的B.可能性很小的事情是不可能发生的C.“掷一次骰子,向上一面的点数是6”是不可能事件D.“任意画一个三角形,其内角和是180°”6.(2019秋•延庆区期末)一个不透明的盒子中装有3个白球、9个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()A.B.C.D.7.(2019秋•鼓楼区期末)一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为,则袋中应再添加红球个(以上球除颜色外其他都相同).8.(2019秋•锡山区期末)如图,转动转盘一次,当转盘停止后(指针落在线上重转),指针停留的区域中的数字为偶数的概率是.9.(2019秋•门头沟区期末)某商场为消费者设置了购物后的抽奖活动,总奖项数量若干,小红妈妈在抽奖的时候,各个奖项所占的比例如图,则小红妈妈抽到三等奖以上(含三等奖)的可能性为.10.(2019秋•虹口区期末)袋中有形状大小相同的8个红球,2个白球,从袋中任取一只,取到红球的可能性大小为.11.(2019秋•苏州期末)抛掷一枚质地均匀的正方体骰子1次(骰子的六个面分别标有数字1,2,3,4,5,6),朝上的点数为6的概率为.12.(2019秋•拱墅区期末)一个布袋里放有5个红球,3个球黄球和2个黑球,它们除颜色外其余都相同,则任意摸出一个球是黑球的概率是.13.(2019秋•密云区期末)小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:五星四星三星及三星以下合计评价条数等级酒店A412 388 x1000B420 390 190 1000C405 375 220 1000(1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?14.(2019秋•自贡期末)如图为一个封闭的圆形装置,整个装置内部为A、B、C三个区域(A、B两区域为圆环,C区域为小圆),具体数据如图.(1)求出A、B、C三个区域三个区域的面积:S A=,S B=,S C=;(2)随机往装置内扔一粒豆子,多次重复试验,豆子落在B区域的概率P B为多少?(3)随机往装置内扔180粒豆子,请问大约有多少粒豆子落在A区域?15.(2019秋•淮安区期末)一个不透明口袋中装有6个红球、9个黄球、3个绿球,这些球除颜色外没有任何区别.从中任意摸出一个球.(1)求摸到绿球的概率;(2)求摸到红球或绿球的概率.16.(2019秋•回民区期末)盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.(1)从盒中随机取出一枚棋子,如果它是黑棋的概率是,写出表示x和y关系的表达式.(2)往盒中再放进10枚黑棋,取得黑棋的概率变为,求x和y的值.17.(2018秋•嘉陵区期末)如图,是一个被等分成8个扇形的转盘.请在扇形内写上“红、黑”表示涂上相应的颜色,未写表示白色,使得自由转动停止后,指针落在红色区域的概率等于落在黑色区域的概率,且小于落在白色区域的概率.填出两种,再指出“红、黑,白”分别是多少个?一.选择题1.(2019秋•下城区期末)掷一枚质地均匀的硬币6次,下列说法正确的是()A.必有3次正面朝上B.可能有3次正面朝上C.至少有1次正面朝上D.不可能有6次正面朝上2.(2019秋•朝阳区期末)下列事件中,随机事件是()A.通常温度降到0℃以下,纯净的水结冰B.随意翻到一本书的某页,这页的页码是偶数C.明天太阳从东方升起D.三角形的内角和是360°3.(2019春•宜昌期中)在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同,小明通过多次摸球试验后发现,其中摸到白色球的频率稳定在85%左右,则口袋中红色球可能有()A.34个B.30个C.10个D.6个4.(2019秋•莲湖区期末)在不透明的袋子里装有16个红球和若干个白球,这些球除颜色不同外无其它差别.每次从袋子里摸出一个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的频率稳定在0.6,则袋中白球有()A.12个B.20个C.24个D.40个5.(2018秋•南山区期末)一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是()A.红球比白球多B.白球比红球多C.红球,白球一样多D.无法估计6.(2019秋•鼓楼区校级期中)袋子中有2019个黑球、1个白球,他们除颜色外无其它差别.随机从袋子中摸出一个球,则()A.摸到黑球、白球的可能性大小一样B.这个球一定是黑球C.事先能确定摸到什么颜色的球D.这个球可能是白球二.填空题7.(2019秋•博罗县期末)在一个有15万人的小镇,随机调查了1000人,其中200人会在日常生活中进行垃圾分类,那么在该镇随机挑一个人,会在日常生活中进行垃圾分类的概率是.8.(2019秋•仪征市期末)某车间生产的零件不合格的概率为.如果每天从他们生产的零件中任取10个做试验,那么在大量的重复试验中,平均来说,天会查出1个次品.9.(2019秋•官渡区期末)在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.10.(2018秋•普陀区期末)掷一枚骰子,掷出点数是6的素因数的可能性大小是.11.(2019秋•长兴县期中)为了解某校九年级学生每周的零花钱情况,随机抽取了该校100名九年级学生,他们每周的零花钱x(元)统计如下:组别(元)x<40 40≤x<60 60≤x<80 80≤x<100 人数 6 37 40 17根据以上结果,随机抽查该校一名九年级学生,估计他每周的零花钱不低于80元的概率是.12.(2019秋•太原期中)对某种品牌的一批酸奶进行质量检验,检验员随机抽取了200瓶该批次的酸奶,经检验有198瓶合格,若在这批酸奶中任取一瓶,恰好取到合格品的概率约为.三.解答题13.(2019春•秦淮区期中)某商场有一种游戏,规则是:在一只装有8个红球和若干个白球(每个球除颜色外都相同)的不透明的箱子中,随机摸出1个球,摸到红球就可获得一瓶饮料.工作人员统计了参加游戏的人数和获得饮料的人数(见表).参加游戏的人数200 300 400 500获得饮料的人数39 63 82 99获得饮料的频率(1)计算并完成表格;(2)估计获得饮料的概率为;(3)请你估计袋中白球的数量.14.(2019春•雁塔区校级期末)某市“半程马拉松”的赛事共有两项:A“半程马拉松”、B“欢乐跑”.小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到两个项目组.(1)小明被分配到“半程马拉松”项目组的概率为.(2)为估算本次赛事参加“半程马拉松″的人数,小明对部分参赛选手作如下调查:调查总人数20 50 100 200 500参加“半程马拉15 33 72 139 356松”人数0.750 0.660 0.720 0.695 0.712参加“半程马拉松”频率①估算本次赛事参加“半程马拉松”人数的概率为.(精确到0.1)②若参加“欢乐跑”的人数大约有300人,估计本次参赛选手的人数是多少?15.(2019春•贵阳期末)为了准备体育艺术节的比赛,某篮球运动员在进行定点罚球训练,如表是部分训练记录:罚球次数20 40 60 80 100 120命中次数15 32 48 65 80 96命中频率0.75 0.8 0.8 0.81 0.8 0.8 (1)根据上表:估计该运动员罚球命中的概率是;(2)根据上表分析,如果该运动员在一次比赛中共获得10次罚球机会(每次罚球投掷2次,每命中一次得1分),估计他罚球能得多少分,请说明理由.16.(2019春•惠山区期末)2018年全国两会期间民生话题成为社会焦点.无锡市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了无锡市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.组别焦点话题频数(人数)A食品安全80B教育医疗mC就业养老nD生态环保120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m=,n=.扇形统计图中E组所占的百分比为%;(2)无锡市人口现有600万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?17.(2019•株洲)某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温T有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)最高气温T(单位:℃)需求量(单位:杯)T<25 20025≤T<30 250T≥30 400(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T满足25≤T<30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?一.选择题1.(2019秋•德惠市期末)下列事件中,属于必然事件的是()A.明天的最高气温将达35℃B.任意购买一张动车票,座位刚好挨着窗口C.掷两次质地均匀的骰子,其中有一次正面朝上D.对顶角相等2.(2019秋•霍林郭勒市期末)下列事件中,是随机事件的是()A.射击运动员射击一次,命中靶心B.任意画一个三角形,其内角和是360°C.掷一次骰子,向上一面的点数大于6D.通常加热到100℃,水沸腾3.(2019•市中区二模)下表显示的是某种大豆在相同条件下的发芽试验结果:每批粒数n100 300 400 600 1000 2000 3000 发芽的粒数m96 282 382 570 948 1904 2850 发芽的频率0.960 0.940 0.955 0.950 0.948 0.952 0.950 下面有三个推断:①当n为400时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是0.955;②随着试验时大豆的粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95;③若大豆粒数n为4000,估计大豆发芽的粒数大约为3800粒.其中推断合理的是()A.①②③B.①②C.①③D.②③4.(2019•江西模拟)在一个不透明的袋子中装有20个蓝色小球、若干个红色小球和10个黄色小球,这些球除颜色不同外其余均相同,小李通过多次摸取小球试验后发现,摸取到红色小球的频率稳定在0.4左右,若小明在袋子中随机摸取一个小球,则摸到黄色小球的概率为()A.B.C.D.5.(2018秋•通州区期末)在一个不透明的布袋中,共有30个小球,除颜色外其他完全相同.若每次将球搅匀后摸一个球记下颜色再放回布袋.通过大量重复摸球试验后发现,摸到红色球的频率稳定在0.2左右,则口袋中红色球的个数应该是()A.6个B.15个C.24个D.12个6.(2019春•市北区期末)我国南方地区冬至的传统习俗是吃汤圆,其寓意团团圆圆冬至这一天,小红家煮了30个汤圆,其中有12个黑芝麻馅的,14个枣泥馅的,4个豆沙馅的,煮完之后的汤圆看起来都一样,小红盛了1个汤圆,下列各种描述正确的是()A.她吃到黑芝麻馅汤圆和枣泥馅汤圆可能性一样大B.她吃到枣泥馅汤圆比豆沙馅汤圆的可能性大很多C.她不可能吃到豆沙馅汤圆D.她一定能吃到枣泥馅汤圆二.填空题7.(2019•嘉祥县三模)袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.8.(2018秋•常州期末)某市农科院通过试验发现蚕豆种子的发芽率为97.1%,在相同条件下请估计1000斤蚕豆种子中不能发芽的大约有斤.9.(2019秋•东丽区期末)投掷一枚质地均匀的骰子,向上一面的点数大于4的概率是.10.(2018秋•黄浦区期末)在一个不透明的袋中,装有3个红球和2个白球,这些球除颜色外其余都相同,搅匀后从中随机摸出一个球,这个球是红球的可能性是.11.(2019春•海淀区校级月考)某水果公司以2.2元/千克的成本价购进10000kg苹果.公司想知道苹果的损坏率,从所有随机拙取若干进行统计,部分结果如表:苹果总质量n(kg)100 200 300 400 500 1000 损坏苹果质量m(kg)10.60 19.42 30.63 39.24 49.54 101.10 苹果损坏的频率(结果0.106 0.097 0.102 0.098 0.099 0.101保留小数点后三位)估计这批苹果损坏的概率为精确到0.1),据此,若公司希望这批苹果能获得利润23000元,则销售时(去掉损坏的苹果)售价应至少定为元/千克.12.(2019秋•杭州期中)一个密码箱的密码,每个位数上的数都是从0到9的自然数,若要使不知道密码的一次就拨对密码的概率小于,则密码的位数至少需要位.三.解答题13.(2019秋•福田区校级期中)2019年女排世界杯中,中国女排以11战全胜且只丢3局的成绩成功卫冕本届世界杯冠军.某校七年级为了弘扬女排精神,组建了排球社团,通过测量同学的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:样本容量为,a=;(2)把频数分布直方图补充完整;(3)随机抽取1名学生,估计这名学生身高高于165cm的概率.14.(2008春•新安县期末)光明中学七(1)班40个同学每10人一组,每人做10次抛掷两枚硬币的实验,想想看“出现两个正面”的频率是否会逐渐稳定下来,得到了下面40个实验结果.第一组学生学101 102 103 104 105 106 107 108 109 110 号两个正面成功 1 2 3 3 3 3 3 6 3 3次数第二组学生学111 112 113 114 115 116 117 118 119 120 号1 1 3234 2 3 3 3 两个正面成功次数121 122 123 124 125 126 127 128 129 130 第三组学生学号1 0 3 1 3 3 32 2 2 两个正面成功次数131 132 133 134 135 136 137 138 139 140 第四组学生学号2 2 1 4 2 43 2 3 3 两个正面成功次数(1)学号为113的同学在他10次实验中,成功了几次?成功率是多少?他是他所在小组同学中成功率最高的人吗?(2)学号为116和136的两位同学在10次实验中成功率一样吗?如果他们两人再做10次实验,成功率依然会一样吗?(3)怎么计算每一组学生的集体成功率?哪一组成功率最高?(4)累计每个学生的实验结果,完成下面的“出现两个正面”的频数、频率随抛掷次数变化统计表,如果把这张表画成相应的图,你会看到什么?抛掷次数50 100 150 200 250 300 350 400 出现两个正面的频数出现两个正面的频率15.(2018春•滨湖区期中)一个不透明的袋中装有黄球、黑球和红球共40个,它们除颜色外都相同,其中红球有22个,且经过大量试验发现摸出一个球为黄球的频率接近0.125.(1)求袋中有多少个黑球;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个球是黄球的概率达到,问取出了多少个黑球?16.(2018•郴州)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m=;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?17.(2019秋•沙坪坝区校级月考)近代统计学的发展起源于二十世纪初,它是在概率论的基础上发展起来的,但统计性质的工作可以追溯到远古的“结绳记事”和《二十四史》中大量的关于我国人口、钱粮、水文、天文、地震等资料的记录.现代数理统计的莫基人是英国数学家和生物学家费希尔,毕业于剑桥大学,长期在农业试验站做生物实验.费尔希在高等植物基因性状研究实验中,从若干紫花与白花中各随机抽取20株测量高度(植株正常高度h的取值范围为35≤h≤43),过程如下:收集数据(单位:cm):紫花:42,42,28,54,29,52,44,36,39,49,33,40,35,52,29,32,51,55,42,38白花植株高度为35≤h≤43的数据有:35,37,37,38,39,40,42,42整理数据:数据分为六组:25≤h<30,30≤h<35,35≤h<40,40≤h<45,45≤h<50,50≤h ≤55组别25≤h<30 30≤h<35 35≤h<40 40≤h<45 45≤h<50 50≤h≤55 紫花数量 3 2 m 5 1 5白花高度频数分布直方图分析数据:植株平均数众数中位数方差紫花41.1 42 41 8.8白花40.25 46 n7.2应用数据:(1)请写出表中m=,n=;(2)估计500株紫花中高度正常的有多少株?(3)结合上述数据信息,请判断哪种花长势更均匀,并说明理由(一条理由即可).。
随机事件的概率导言:随机事件是指在一定条件下,由于种种因素的不确定性而发生的事件。
生活中的许多事情都是随机事件,无法预测和控制。
我们对于随机事件的发生与否往往抱有一定的期望或预测,这就引出了随机事件的概率。
一、什么是概率?概率(probability)是现代数学中研究事件发生的一种数学方法。
概率既是一种数学工具,同时也是描述随机现象出现“规律”的一种观念。
概率的大小通常用数字来表示,范围在0到1之间,概率越大,表示事件发生的可能性越大。
二、概率的计算方法1. 古典概率:古典概率也叫“理论概率”,它是指当各种结果发生的机会是等可能的时候,可以根据有限的样本空间中可能结果的数目比来计算。
例如投掷均匀的骰子,每一个面都有相同的机会出现,那么每一个面出现的概率就是1/6。
2. 频率概率:频率概率也叫“实验概率”,它是指在实际的重复试验中,事件发生的次数与总的试验次数的比例。
例如,我们可以通过多次投掷骰子的实验来计算每个面出现的概率,通过实验的结果来估计概率。
3. 主观概率:主观概率也叫“人为概率”,它是指个人根据经验、直觉和一些可能的关联性来估计事件发生的概率。
这种概率是主观的,因为它依赖于个人的判断和看法。
三、随机事件的应用随机事件的概率在现实生活中有着广泛的应用,下面举几个例子进行阐述:1. 赌场中的赌博:在赌场中,很多赌博游戏都基于随机事件的概率来决定输赢。
例如,在轮盘赌中,赌徒根据小球停在哪一个数字上来下注,而小球停留在哪个数字上是完全由随机事件决定的。
赌徒可以根据每个数字出现的概率来决定下注的策略。
2. 保险业的风险评估:在保险业中,概率是一个非常重要的概念。
保险公司需要根据客户的信息以及历史数据来评估风险,并计算出合理的保险费用。
例如,在车险中,保险公司需要根据客户的驾驶记录和车辆信息来评估客户发生车祸的概率,并根据概率来决定保险费用的高低。
3. 股票市场:在股票市场中,投资者根据股票的历史数据和一些基本面分析来预测股票的未来涨跌。
gllllfe 知识内容版块一:事件及样本空间1.必然现象与随机现象必然现象是在一定条件下必然发生某种结果的现彖;随机现象是在相同条件下,很难预料哪一种结果会出现的现彖.2.试验:我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验的结果称为试验的结果.一次试验是指事件的条件实现一次.在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件;在每次试验中一定会发生的结果,称为必然事件;在试验中可能发生,也可能不发生的结果称为随机事件.通常用大写英文字母A, C,…来表示随机事件,简称为事件.3.基本事件:在一次试验中,可以用来描绘其它事件的,不能再分的最简单的随机事件,称为基本事件・它包含所有可能发生的基本结果.所有基本事件构成的集合称为基本事件空间,常用G表示.版块二:随机事件的概率计算1.如果事件同时发生,我们记作AC1B,简记为初;2.一般地,对于两个事件A, B,如果有P(AB) = P{A)P(B),就称事件A与B相互独立,简称A 与B独立.当事件A与B独立时,事件刁与B, A与鸟,刁与万都是相互独立的.3.概率的统计定义一般地,在“次重复进行的试验中,事件A发生的频率冬,当"很人时,总是在某个常数附n近摆动,随着"的增加,摆动幅度越来越小,这时就把这个常数叫做事件A的概率,记为P(A)・从概率的定义中,我们可以看出随机事件的概率P(A)满足:OWP(A)WI.当A是必然事件时,P(A) = 1,当A是不可能事件时,P(A) = O.4.互斥事件与事件的并互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件.由事件4和事件B至少有一个发生(即A发生,或B发生,或都发生)所构成的事件C,称为事件A与B的并(或和),记作C = AUB.若C = AUB,则若C发生,则A、B中至少有一个发生,事件AUB是由事件A或B所包含的基本事件组成的集合.5.互斥事件的概率加法公式:若A、B是互斥事件,有P(AUB) = P(A) + P(B)若事件人,4,…,人两两互斥(彼此互斥),有p(人u比u…u A)=P( A)+戸(比)+…+ P(九).事件%U4 U…发生是指审件人,人人中至少有一个发生・全国名校高中数学优质课时训练汇编(优品质)6. 互为对立事件不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A . 有 P(A) = 1-P(A).<教师备案〉1. 概率中的“事件”是指咂机试验的结果=与通常所说的事件不同.基本事件空间是指一 次试验中所有可能发生的基本结果.有时我们提到爭件或随机爭件,也包含不可能事件和必 然事件,将其作为随机事件的特例,需要根据情况作出判断.2. 概率可以通过频率来“测量=或者说是频率的一个近似,此处概率的定义叫做概率的统 计定义.在实践中,很多时候采用这种方法求事件的概率.随机事件的频率是指事件发生的次数与试验总次数的比值,它具有一定的稳定性,总是在某 个常数附近摆,且随着试验次数的增加,摆动的幅度越来越小,这个常数叫做这个随机事件 的概率•概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的 大小,频率在大量重复试验的前提下可近似地看作这个事件的概率.3. 基本事件一定是两两互斥的,它是互斥事件的特殊情形.相乘事件.等可能事件:P(A)=- n 第三步,运用公式|互斥事件:P(A+B)=P(A)+P(B)独立事件:P(A B) = P(A)・P(B)〃次独立重复试验:P n (k) = C" (1-p )>J 'k第四步,答,即给提出的问题有一个明确的答复・ 解决此类问题的关键是会正确求解以下六种事件的概率(尤其是其中的(4).(5)两种概率): (1)随机事件的概率,等可能性事件的概率; ⑵互斥事件有一个发生的概率; ⑶相互独立事件同时发生的概率;⑷川次独立重复试验中恰好发生R 次的概率;⑸川次独立重复试验中在第R 次才首次发生的概率; ⑹对立事件的概率.另外:要注意区分这样的语句:“至少有一个发生〃,"至多有一个发生S 〃恰好有一个发生", “都发生”,“不都发生S “都不发生〃,"第R 次才发生〃等.gm 医 典例分析题型一概率与频率求概率的步骤是:■等可能事件 第一步,确定事件性质<互斥事件,即所给的问题归结为四类事件中的某一种.独『事件n 次独立重复试验 主要方法:解决概率问题要注意“四个步骤,一个结合”: 第二步,判断事件的运算 ,即是至少有一个发生,还是同时发生,分别运用相加或和事件枳事件求解【例1】下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性的大小;②做“次随机试验,事件A发生的频率仪就是事件的概率;n③百分率是频率,但不是概率;④频率是不能脱离具体的…次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;⑤频率是概率的近似值,概率是频率的稳定值.其中正确的是()A.①④©B.②④⑤C.①③④D.①③⑤【例2】对某工厂所生产的产品质量进行调查,数据如下:根据上表所提供的数据,估计合格品的概率约为多少?若要从该厂生产的此种产品中抽到950件合格品,大约需要抽查多少件产品?【例3】某篮球运动员在最近几场大赛中罚球投篮的结果如下:(1)在表中直接填写进球的频率;(2)这位运动员投篮一次,进球的概率为多少?【例4】下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性的大小;②做〃次随机试验,事件A发生加次,则事件A发生的概率为仝;n③频率是不能脱离…次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确命题的序号为___________ ・【例5】盒中装有4只相同的白球与6只相同的黄球.从中任取一只球.试指出下列事件分别属于什么事件?它们的概率是多少?⑴A = 〃取岀的球是白球〃;⑵B = 〃取岀的球是蓝球〃;〃取岀的球是黄球〃;⑷£) = 〃取出的球是白球或黄球〃•题型二独立与互斥【例6】(2010辽宁高考)两个实习生每人加工•个零件•加工为•等品的概率分别为-^11 --两个零件是否 3 4加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为A.丄B. —C. -D.-2 12 4 6【例7】掷两枚均匀的骰子,记人=“点数不同笃3 = “至少有一个是6点笃判断A与B是否为独立事件.【例8】设M和N是两个随机事件,表示事件M和事件N都不发生的是()A. M + NB.莎帀C. M-N + M-ND.【例9】判断下列各对事件是否是相互独立事件(1)甲组3名男生、2名女生;乙组2名男生、3名女生,今从甲、乙两组中各选1名同学参加演讲比赛,”从甲组中选岀1名男生〃与"从乙组中选岀1名女生〃•⑵容器内盛有5个白乒乓球和3个黄乒乓球,〃从8个球中任意取岀1个,取出的是白球〃与〃从剩下的7个球中任意取出1个,取岀的还是白球〃.【例10】⑴某县城有两种报纸甲、乙供居民订阅,记事件A为“只订甲报冷事件B为“至少订一种报",事件C为“至多订一种报”,事件D为“不订甲报”,事件E为“一种报也不订”.判断下列每对事件是不是互斥事件,再判断它们是不是对立事件.①A与C;②B与E;③B与D;④B与C;⑤C与【例11】抛掷一枚骰子,记事件A为“落地时向上的数是奇数=事件B为嚅地时向上的数是偶数”,事件C为“落地时向上的数是3的倍数”,事件D为“落地时向上的数是6或4”,则下列每对事件是互斥事件但不是对立事件的是()A. A 与B B・B 与C C. A 与£> D. C 与D【例12】每道选择题都有4个选择支,其中只有1个选择支是正确的.某次考试共有12道选择题,某人说:“每个选择支正确的概率是丄,我每题都选择第一个选择支,4则一定有3题选择结果正确”.对该人的话进行判断,其结论是()A.正确的B.错误的C.模棱两可的D.有歧义的题型三随机事件的概率计算【例13】(2010丰台二模)一个正三角形的外接圆的半径为1,向该圆内随机投一点P,点P恰好落在正三角形外的概率是__________ ・【例14】(2010崇文一模)从52张扑克牌(没仃人小王)屮随机的抽•张牌,这张牌是八戈0或K的概率为【例15】(2010朝阳一模)一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行・若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不人于10.则就有可能撞到玻 璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行 是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置町能性相同,那么蜜蜂飞 j •是安全的概率是( ,.丄B.丄8 16【例16】(2010东城二模)在直角坐标系xOy lb 设集合C = {(x,刃|0WxWl,0WyWl},在区域G 内任取… 点P (x,y ),则满足x+ y W1的概率等于 ___________________ ・【例17】(2010朝阳一模)在区间[-兀,兀|内随机取两个数分别记为a,b ,则使得函数f (x ) = x 2+2ax-b 2+ n (i 零点的概率为()【例18】(2010东城一模)某人向 个半径为6的圆形标靶射击,假设他每次射击必定会中靶,且射中靶内各 点是随机的,则此人射击中靶点与靶心的距离小于2的概率为( ) A. -L B ・丄 C ・丄 D ・丄 13942【例19】(2010西城一模)在边长为1的」F 方形ABCD 内任取•点、P 为) C.—271 - 4D.1 - 2C3 -4 B.7 - 8A.P A 订的全国名校高中数学优质课时训练汇编(优品质)【例20】(2010丰台二模)已知Q = {(x , y)|x+y W6 , xMO , y MO} , A = {(x,y)|x W 4 , y M 0 , x-2y M 0}.若向区域C I:随机投•点P 则点P落入区域A的概率是 _______________ ・【例21】(2010朝阳一模)袋子中装有编号为a上的2个黑球和编号为c,d,e的3个红球,从中任意摸出2个坪.⑴写出所有不同的结果;⑵求恰好摸出1个照球和1个红球的概率;⑶求至少摸出1个照球的概率.【例22】(2010崇文二模)在平面直角坐标系xOy中,平面区域W屮的点的坐标(x,y)满足疋+ b W5 ,从区域W中随机取点M(x,y).(1)若xwZ, yeZ,求点M位「•第四象限的概率:⑵已知直线/:y = _x+b(b>0)与圆O:x2 + r =5相交所截得的弦长为JTT,求y^-x+b的概率.全国名校高中数学优质课时训练汇编(优品质)【例23】(2010西城一模)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4 .现从盒子中随机抽取卡片.⑴若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;⑵若第一次抽1张k片•放回后再抓収1张卡片,求两次抽取屮至少一次抽到数字3 的概率.【例24】(2010海淀一模)某商场为吸引顾客消费推If, -JW优忠活动.活动规则如下:消费每满WO兀町以转动如图所示的圆盘一次,其屮O为閲心,且标有20元、10兀、0兀的一部分区域面积相等.假定指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券.(例如:某顾客消费了218兀・第一次转动获得了20元,第二次获得了10兀,则其共获得了30元.优惠券.)顾客甲和乙都到商场进行了消费,并按照规则参与了活动.⑴若顾客甲消费了128兀,求他获得优惠券面额人于0元的概率?⑵若顾客乙消费了280元•求他总■获得优惠券金额不低F2(H的概率?【例25】(2010石景山一模〉为援助汶川灾厉反建,対某项I卫M行竟标,共仃6家企业参号竞标.”中4企业來口辽宁省,B、C两家企业来自福建省,D、E、F[家企业來自河南省.此项工程需要两家企业联合施工,假设每家企业中标的概率相同.⑴企业E卩标的概率是多少?⑵在中标的企业中,至少有一家来自河南省的概率是多少?【例26】(2010湖北高考)投掷一枚均匀硕币和一枚均匀骰子各一次,记"硬币正面向上"为爭件A “骰于向上的点数是3”为Mff B,则M件A , B中至少有•件发生的概率是A. 2B. -C. —D.-12 2 12 4【例27】盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是___________________【例28】(2010江西高考)一位国王的铸币人臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑人臣作弊, 他用两种方法来检测.方法一:在100箱中各任意检查一枚:方法二:在5箱中各—'「吗枚•国「13;.「、旌发现至◊刁币的槪.「别为刃,必.则()A. I" =B・p x < p2C・> p2D・以上二种情况都右川•能【例29】(2010陕西卷高考)铁矿石A和B的含f a‘ ;• '如每丿j吨铁矿右的CO2的排放量b及每万吨恢矿石的价格C如卜表:某冶炼厂至少要T产1・9 (万吨)铁,若要求C。
随机事件的概率
一、选择题(每小题6分,共24分)
1.(2014·梅州)下列事件中是必然事件的是( C )
A .明天太阳从西边升起
B .篮球队员在罚球线投篮一次,未投中
C .实心铁球投入水中会沉入水底
D .抛出一枚硬币,落地后正面向上
2.(2014·宜宾)一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率是( B ) A .19 B .13 C .12 D .23
3.(2013·恩施)如图,在平行四边形纸片上作随机扎针试验,针头扎在阴影区域内的概率为( B )
A .13
B .14
C .15
D .16
4.(2013·内江)同时抛掷A ,B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x ,y ,并以此确定点P(x ,y),那么点P 落在抛物
线y =-x 2+3x 上的概率为( A )
A .118
B .112
C .19
D .16
二、填空题(每小题6分,共24分)
5.(2014·孝感)下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是__①③__.(填序号)
6.(2014·邵阳)有一个能自由转动的转盘如图,盘面被分成8个大小与形状都相同的扇形,颜色分为黑白两种,将指针的位置固定,让转盘自由转动,当它停止后,指针指向白
色扇形的概率是__12
__.
7.(2013·河北)如图,A 是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水
平桌面上,则A 与桌面接触的概率是__12
__. 8.(2013·泸州)在一个不透明的口袋中放入红球6个,黑球2个,黄球n 个.这些球
除颜色不同外,其他无任何差别,搅匀后随机从中摸出一个恰好是黄球的概率为13
,则放入口袋中的黄球总数n =__4__.
三、解答题(共52分)
9.(12分)(2014·湘潭)有两个构造完全相同(除所标数字外)的转盘A ,B ,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?
解:选择A 转盘.画树状图得
∵共有9种等可能的结果,A 大于B 的有5种情况,A 小于B 的有4种情况,∴P (A 大于B )=59,P (A 小于B )=49
,∴选择A 转盘
10.(12分)(2012·无锡)在1,2,3,4,5这五个数中,先任意取一个数a ,然后在余下的数中任意取出一个数b ,组成一个点(a ,b).求组成的点(a ,b)恰好横坐标为偶数且纵坐标为奇数的概率.(请用“画树状图”或“列表”等方法写出分析过程)
列表得:
∴组成的点横坐标为偶数,且纵坐标为奇数的概率P =20=10
11.(14分)(2013·遵义)一个不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红
球的概率为12
. (1)求口袋中黄球的个数;
(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;
(3)现规定:摸到红球得5分,摸到蓝球得2分,摸到黄球得3分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球,第二次又随机摸到一个蓝球,若随机再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.
(1)设口袋中黄球的个数为x 个,根据题意得22+1+x =12
,解得x =1,经检验x =1是原分式方程的解,∴口袋中黄球的个数为1个
(2)∵共有12种等可能的结果,两次摸出都是红球的有2种情况,∴两次摸出都是红球
的概率为212=16
(3)∵摸到红球得5分,摸到黄球得3分,而乙同学在一次摸球游戏中,第一次随机摸到一个红球,第二次又随机摸到一个蓝球,∴乙同学已经得了7分,∴若随机再摸一次,乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果.∴若随
机再摸一次,乙同学三次摸球所得分数之和不低于10分的概率为34
12.(14分)(2014·成都)第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.
(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;
(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.
(1)∵现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人,∴从这
20人中随机选取一人作为联络员,选到女生的概率为1220=35
(2)如图所示:
牌面数字之和为5,6,7,5,7,8,6,7,9,7,8,9,∴偶数为4个,得到偶数的概率为412=13,∴得到奇数的概率为23
,∴甲参加的概率<乙参加的概率,∴这个游戏不公平
2015年名师预测
1.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球( A )
A .12个
B .16个
C .20个
D .30个
2.有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第
二组卡片上的数字,差为负数的概率为__23
__.。