抽屉原理典型习题
- 格式:doc
- 大小:31.50 KB
- 文档页数:2
抽屉原理十个例题抽屉原理(也称为鸽笼原理)是数学中的一个基本概念,它在解决许多问题时发挥了重要作用。
抽屉原理的核心思想是,如果有n+1个物体放置在n个容器中,那么至少有一个容器中会有两个或更多的物体。
在这篇文档中,我们将介绍十个关于抽屉原理的例题。
1. 抽屉宝藏假设有10个宝箱和11个宝藏,我们要将宝藏放入宝箱中。
根据抽屉原理,我们可以得出结论:至少有一个宝箱中会有两个或更多的宝藏。
2. 课程选择某所大学有30门课程供学生选择,每位学生需要选择至少一门课程。
如果学校有100名学生,我们可以使用抽屉原理来得出结论:至少有一个课程被超过3名学生选择。
3. 生日相同班级里有30个学生,我们假设每个人的生日在1月1日至12月31日之间。
根据抽屉原理,我们可以得出结论:至少有两个学生生日相同。
4. 电话号码某个城市有10000个家庭,每个家庭都有一个电话号码。
如果每个电话号码只有4位数字,那么按照抽屉原理,至少有两个家庭有相同的电话号码。
5. 钥匙串一个钥匙串上有11把钥匙,这些钥匙开启了12扇门。
根据抽屉原理,我们可以得出结论:至少有两把钥匙可以开启同一扇门。
6. 信件一天,一位邮递员需要将101封信投递给100个信箱。
根据抽屉原理,我们可以得出结论:至少有一个信箱会收到两封或更多的信件。
7. 纸牌游戏一副标准扑克牌有52张牌。
如果我们从这副牌中随机抽取53张牌,根据抽屉原理,至少会有一张重复的牌。
8. 电子邮件一家公司有100个员工,每个员工都有自己的邮箱。
如果员工们相互发送邮件,根据抽屉原理,至少有两个员工的收件箱中会有相同的邮件。
9. 书籍分类一家图书馆有1000本书,这些书分为10个不同的类别。
如果每个类别中都至少有101本书,根据抽屉原理,至少有一个类别中会有两本或更多的书。
10. 时区时间考虑世界上的24个时区,如果我们考虑每个时区的时间精确到分钟级别,抽屉原理告诉我们:在某个时刻,至少两个时区的时间是一样的。
例1正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同.证明:把颜两种色当作两个抽屉,把正方体六个面当作物体,那么6=2×2+2,根据原理二,至少有三个面涂上相同的颜色.例2:17个科学家中每个人与其余16个人通信,他们通信所讨论的仅有三个问题,而任两个科学家之间通信讨论的是同一个问题。
证明:至少有三个科学家通信时讨论的是同一个问题。
解:不妨设A是某科学家,他与其余16位讨论仅三个问题,由鸽笼原理知,他至少与其中的6位讨论同一问题。
设这6位科学家为B,C,D,E,F,G,讨论的是甲问题。
若这6位中有两位之间也讨论甲问题,则结论成立。
否则他们6位只讨论乙、丙两问题。
这样又由鸽笼原理知B至少与另三位讨论同一问题,不妨设这三位是C,D,E,且讨论的是乙问题。
若C,D,E中有两人也讨论乙问题,则结论也就成立了。
否则,他们间只讨论丙问题,这样结论也成立。
例3 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。
分析与解答我们用题目中的15个偶数制造8个抽屉:此抽屉特点:凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。
现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数可以在同一个抽屉中(符合上述特点).由制造的抽屉的特点,这两个数的和是34。
例4:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。
分析与解答共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、…、n-2,还是后一种状态1、2、3、…、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。
抽屉原理十个例题抽屉原理,又称鸽巢原理,是数学中一个非常重要的概念。
它指的是如果有n+1个或更多的物体放入n个抽屉中,那么至少有一个抽屉中会有两个或更多的物体。
这个原理在数学证明和计算概率等领域中有着广泛的应用。
下面我们来看看抽屉原理在实际问题中的应用,通过十个例题来深入理解这一概念。
例题1,班上有30名学生,其中有29名学生的生日不在同一天,那么至少有两名学生的生日在同一天。
例题2,某个班级有25名学生,其中有23名学生的身高不相同,那么至少有两名学生的身高相同。
例题3,在一个班级里,有10名男生和9名女生,那么至少有一个班级有两名同性别的学生。
例题4,某公司有36名员工,其中每个员工的年龄都不相同,那么至少有两名员工的年龄相差不超过1岁。
例题5,一家商店有40件商品,其中有39件商品的价格都不相同,那么至少有两件商品的价格相同。
例题6,在一个班级里,有15名学生,每个学生都选修了2门不同的课程,那么至少有一门课程有两名学生选修。
例题7,某个班级有20名学生,他们每个人的体重都不相同,那么至少有两名学生的体重相差不超过1千克。
例题8,某个班级的学生参加了一次考试,考试成绩都不相同,那么至少有两名学生的成绩相差不超过5分。
例题9,在一个班级里,有12名男生和13名女生,那么至少有一名学生和另一名学生同性别并且同年龄。
例题10,某公司的40名员工中,每个员工的工作经验都不相同,那么至少有两名员工的工作经验相差不超过1年。
通过以上十个例题的分析,我们可以看到抽屉原理在实际问题中的应用。
无论是生日、身高、性别、价格还是其他属性,只要物体的数量超过抽屉的数量,就一定会存在重复的情况。
这个原理在解决排列组合、概率统计等问题时都有着重要的作用,希望通过这些例题的学习,大家能更加深入地理解抽屉原理的应用。
抽屉原则练习题抽屉原则,也被称为鸽笼原理,是数学中的一个重要原理。
它指的是,如果有 n+1 个物体放入 n 个抽屉中,那么至少有一个抽屉中必定放入了两个或以上的物体。
这个原理在现实生活中也有很多应用,例如物品分类、待办事项等。
下面是一些抽屉原则的练习题,帮助你更好地理解和应用这个原理。
练习题一:假设某个班级有 40 名学生,每位学生喜欢各异的运动项目,包括足球、篮球、乒乓球和羽毛球。
根据抽屉原则,如果每个学生只能选择一种运动项目,并且任意两个学生不选择相同的项目,那么必然有至少一种运动项目被至少两名学生选择。
请你利用抽屉原理,解答以下问题:1. 最少有几个学生选择足球?2. 最多有几个学生选择羽毛球?3. 如果有 27 名学生选择了篮球,那么至少还有几名学生选择了乒乓球?练习题二:某个班级的学生总数为 n,假设每位学生参加了 m 个俱乐部活动,并且每个俱乐部活动至少有两名学生参加。
请你回答以下问题:1. 如果 n=30,m=4,那么俱乐部活动的总数最多是多少?2. 如果只有两个俱乐部活动的总数达到最大值,那么 n 至少有多少个学生?3. 如果 n=25,俱乐部活动的总数为 40,那么 m 至少是多少?练习题三:某个超市有 n 种商品,每种商品的库存量不同。
根据抽屉原则,如果每个商品的库存量都不超过 m 个,那么必然存在至少一个商品的库存量超过了 m 个。
请你运用抽屉原理,回答以下问题:1. 如果有 15 种商品,每种商品的库存量都不超过 6 个,那么至少有几种商品的库存量是相同的?2. 如果有 20 种商品,每种商品的库存量都不超过 10 个,那么至多有几种商品的库存量是相同的?3. 如果有 12 种商品,至少有 8 种商品的库存量超过 5 个,那么最多有几种商品的库存量不超过 5 个?以上是关于抽屉原理的练习题,通过解答这些题目,相信你对抽屉原理的应用有了更深入的理解。
抽屉原理在数学、计算机科学以及日常生活中都具有广泛的应用价值。
抽屉原理练习题一、选择题1. 抽屉原理是指,如果有n+1个或更多的物品放入n个抽屉中,至少有一个抽屉中会有2个或更多的物品。
以下哪项不是抽屉原理的表述?A. 每个抽屉至少有一个物品B. 至少有一个抽屉包含多个物品C. 物品数量总是比抽屉数量多1D. 物品和抽屉的数量关系导致至少一个抽屉有多个物品2. 如果有10个苹果要放入9个抽屉中,根据抽屉原理,至少有几个苹果会放在同一个抽屉里?A. 1B. 2C. 3D. 43. 一个班级有50名学生,如果至少有5名学生在同一天过生日,根据抽屉原理,这个班级至少有多少名学生的生日是在同一个月?A. 5B. C. 6D. 7二、填空题4. 如果有13个球要放入12个盒子中,至少有一个盒子里会有______个或更多的球。
5. 一年有12个月,如果有25个人的生日在一年中的不同月份,根据抽屉原理,至少有______个人的生日在同一个月。
6. 一个学校有100名学生,如果至少有10名学生在同一天参加考试,根据抽屉原理,至少有______名学生的考试日期是在同一天。
三、解答题7. 一个班级有36名学生,他们要参加7个不同的兴趣小组。
请证明至少有一个兴趣小组有6名或更多的学生参加。
解答:设有7个兴趣小组,每个小组最多可以有5名学生。
如果每个小组都只有5名学生,那么总共会有7*5=35名学生参加兴趣小组。
但班级有36名学生,这意味着至少有1名学生必须加入到已经满员的小组中,使得至少有一个小组有6名学生。
8. 一个图书馆有10个书架,每个书架最多可以放100本书。
如果图书馆有1000本书需要放置,根据抽屉原理,至少有一个书架上会有多少本书?解答:如果每个书架都放满100本书,那么10个书架可以放1000本书。
但根据抽屉原理,至少有一个书架上会有101本书,因为如果每个书架都只有100本书,那么总共只有1000本书,而实际上有1001本书需要放置。
9. 一个学校有365名学生,他们的生日分布在一年中的不同天。
抽屉原理十个例题1.有5个红球和7个蓝球放在一个抽屉里,如果随机取出3个球,那么至少会拿到两个是同色球的概率是多少?解析:使用反面计算。
首先,计算取出3个球都是不同色球的概率。
当第一个球被取出后,有5个红球和7个蓝球剩下。
那么取出第二个球时就只剩下4个红球和7个蓝球,概率为(5/12)*(7/11)。
同理,取出第三个球时只剩下3个红球和7个蓝球,概率为(5/12)*(4/11)。
因此,取出3个球都是不同色球的概率为(5/12)*(7/11)*(4/11)。
所以,至少会拿到两个是同色球的概率为1-(5/12)*(7/11)*(4/11)。
2.一组音乐会有10个乐手,其中3个会弹钢琴,4个会吹号,2个会弹吉他,1个会敲鼓。
从中随机选出4个人组成一个小号乐队,求至少会有一位会弹钢琴和一位会吹号的概率是多少?解析:首先,计算四个人都不弹钢琴的概率。
在10个乐手中,只能选出7个人(除去3个弹钢琴的乐手),然后从这7个人中选出4个组成小号乐队,概率为(7选择4)/(10选择4)。
同理,计算四个人都不会吹号的概率为(6选择4)/(10选择4)。
然后计算四个人都不弹钢琴且不会吹号的概率为(4选择4)/(10选择4)。
所以,至少会有一位会弹钢琴和一位会吹号的概率为1-[(7选择4)/(10选择4)+(6选择4)/(10选择4)-(4选择4)/(10选择4)]。
3.有一个箱子里有10双袜子,其中5双是黑色的,3双是蓝色的,2双是灰色的。
如果从箱子中随机取出3只袜子,那么至少会拿到一双是蓝色的概率是多少?解析:计算没有蓝色袜子的概率。
当从箱子中取出第一只袜子后,有10只袜子剩下,其中3只是蓝色的。
所以,没有蓝色袜子的概率为(7/10)*(6/9)*(5/8)。
所以,至少会拿到一双是蓝色的概率为1-(7/10)*(6/9)*(5/8)。
4.一个袋子里有20个糖果,其中3个是巧克力的,7个是草莓味的,10个是薄荷味的。
如果从袋子中随机取出5个糖果,那么至少会拿到两个是草莓味的概率是多少?解析:计算没有草莓味糖果的概率。
抽屉原理练习题(打印版)# 抽屉原理练习题## 一、基础题目1. 题目一:有5个苹果,要分给4个孩子,至少有一个孩子能得到至少几个苹果?2. 题目二:一个班级有35名学生,如果他们每人至少参加一个兴趣小组,那么至少有多少名学生参加的是同一个兴趣小组?3. 题目三:有7个不同的球,要放入6个相同的盒子中,至少有一个盒子里至少有几个球?## 二、进阶题目4. 题目四:一个篮子里有100个鸡蛋,需要将它们分成9组,每组至少有几个鸡蛋?5. 题目五:有24个不同的球,要放入5个不同的盒子中,每个盒子至少有一个球,那么至少有一个盒子里至少有几个球?6. 题目六:有36个不同的球,要放入10个相同的盒子中,至少有一个盒子里至少有几个球?## 三、应用题目7. 题目七:一个学校有365名学生,如果他们每人至少参加一个课外活动,那么至少有多少名学生参加的是同一个课外活动?8. 题目八:一个图书馆有1000本书,要将它们平均分配给10个书架,每个书架至少有100本书,那么至少有一个书架上至少有多少本书?9. 题目九:有50个不同的球,要放入4个不同的盒子中,每个盒子至少有一个球,那么至少有一个盒子里至少有几个球?## 四、拓展题目10. 题目十:一个班级有40名学生,如果他们每人至少参加一个兴趣小组,那么至少有多少名学生参加的是同一个兴趣小组?11. 题目十一:有31个不同的球,要放入4个相同的盒子中,至少有一个盒子里至少有几个球?12. 题目十二:一个篮子里有200个鸡蛋,需要将它们分成5组,每组至少有几个鸡蛋?## 五、挑战题目13. 题目十三:有49个不同的球,要放入7个不同的盒子中,每个盒子至少有一个球,那么至少有一个盒子里至少有几个球?14. 题目十四:一个学校有400名学生,如果他们每人至少参加一个课外活动,那么至少有多少名学生参加的是同一个课外活动?15. 题目十五:有56个不同的球,要放入8个相同的盒子中,至少有一个盒子里至少有几个球?解题提示:抽屉原理,又称鸽巢原理,是数学中的一个基本概念,它指出如果有更多的物品(鸽子)需要放入较少的容器(巢穴)中,那么至少有一个容器必须包含多于一个的物品。
初中抽屉原理试题及答案一、选择题1. 如果有n+1个苹果放进n个抽屉中,那么至少有一个抽屉里至少有()个苹果。
A. 1B. 2C. 3D. 4答案:B2. 一个班级有45名学生,如果每个学生至少参加一项兴趣小组,那么至少有()名学生参加了相同的兴趣小组。
A. 5B. 6C. 7D. 8答案:B二、填空题1. 有10个苹果,要放入3个抽屉中,那么至少有一个抽屉里至少有______个苹果。
答案:42. 一个学校有36个学生,如果每个学生至少参加一个社团,那么至少有______个学生参加了同一个社团。
答案:4三、解答题1. 有15个不同的球,要放入4个不同的盒子中,证明至少有一个盒子里至少有5个球。
答案:根据抽屉原理,如果有15个球放入4个盒子中,那么每个盒子至少有3个球,因为15除以4等于3余3。
这意味着至少有一个盒子里会有3个球加上余下的3个球中的至少1个,即至少有4个球。
由于我们有15个球,至少有一个盒子里会有4个球加上余下的1个球,即至少有5个球。
2. 一个班级有50名学生,每个学生至少参加了一个兴趣小组,兴趣小组有5种不同的类型。
证明至少有11名学生参加了同一个兴趣小组。
答案:根据抽屉原理,如果有50名学生参加5种不同的兴趣小组,那么每个兴趣小组至少有10名学生,因为50除以5等于10。
这意味着每个兴趣小组至少有10名学生。
由于我们有50名学生,至少有一个兴趣小组会有10名学生加上余下的0名学生中的至少1名,即至少有11名学生参加了同一个兴趣小组。
抽屉原理例:把22名“三好学生”的名额分配给4个班级,那么至少一个班级分得的名额多于5名。
为什么?练习:把15人安排在7个房间里休息,那么肯定总有一个房间里至少有3人。
为什么?例:给一个正方体木块的6个面分别涂上蓝、黄两种颜色。
无论怎么涂至少有3个面涂的颜色相同.为什么?例:从2、4、6、8、。
.。
.24,26这13个连续偶数中,任取8个不同的数,其中必有两个数的和为28。
你能说明这是为什么吗?例:在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。
为什么?例:有50名运动员进行某个项目的单循环赛,如果没有平局也没有全胜,试证明:一定有两个运动员积分相同。
例:一个口袋里有红、白两种颜色的球各10个,取出多少个球才能保证至少有2个球的颜色是相同的?练习:袋子里与红、黄、蓝、绿四种颜色的球各5个,最少要摸多少个球才能保证摸出的球中有两个颜色相同?例:一副扑克牌,拿走大、小王后,还有52张牌。
请你任意抽出其中的5张牌,那么至少有几张牌的花色是相同的?例:六(4)班有40名学生,男、女生人数比是1:1,随机选取,至少选多少人才能保证选出的人中男生和女生都有?例:篮子里有苹果、梨、桃子和桔子,现有81个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?练习:体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿一个球至多拿2个球,问至少有几名同学所拿的球种类是一致的?练习:有4个运动员练习投篮,一共投进了30个球,一定有1个运动员至少投进几个球?例:一个盒子里有黑、白两种颜色的围棋棋子各5枚,至少取出多少枚棋子才能保证有4枚棋子的颜色是相同的?例:某班同学的语文考试成绩都是整数,其中最高分是95分,最低分是82分。
已知全班至少有4人的成绩相同,这个班至少有多少名学生?例:学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(可以不参加)问:至少有多少名学生,才能保证有不少于5名同学参加学习班的情况完全相同。
抽屉原理练习题抽屉原理练习题抽屉原理,又称鸽巢原理,是数学中的一个重要原理。
它的内容是:如果有n+1个物体放入n个抽屉中,那么至少有一个抽屉中会放有两个或更多的物体。
这个原理看似简单,但却有着广泛的应用。
在日常生活中,我们可以通过一些练习题来巩固和应用这个原理。
练习题一:班级生日问题假设一个班级有30个学生,每个学生的生日都是不同的。
那么至少有多少个学生的生日在同一个月份?解析:这道题可以通过抽屉原理来解答。
我们可以将每个月份看作一个抽屉,而学生的生日则是物体。
由于有12个月份和30个学生,根据抽屉原理,至少有一个月份的抽屉中会放有两个或更多的学生的生日。
因此,至少有两个学生的生日在同一个月份。
练习题二:扑克牌问题一副扑克牌共有52张,其中有4种花色(红桃、黑桃、方块、梅花),每种花色有13张牌(A、2、3、4、5、6、7、8、9、10、J、Q、K)。
如果从这副扑克牌中随机选择5张牌,那么至少有两张牌的花色相同吗?解析:我们可以将每种花色看作一个抽屉,而每张牌则是物体。
根据抽屉原理,至少有一个花色的抽屉中会放有两张或更多的牌。
因此,在随机选择5张牌的情况下,至少有两张牌的花色是相同的。
练习题三:桌上的苹果在一张桌子上放置了10个苹果,其中有5个红苹果和5个绿苹果。
如果我们盲目地选择了6个苹果,那么至少有两个苹果的颜色是相同的吗?解析:我们可以将红苹果和绿苹果分别看作两个抽屉,而每个苹果则是物体。
根据抽屉原理,至少有一个抽屉中会放有两个或更多的苹果。
因此,在选择了6个苹果的情况下,至少有两个苹果的颜色是相同的。
练习题四:数字的平方考虑从1到11的11个整数,我们可以计算它们的平方。
如果我们只能选择其中10个整数的平方,那么至少有两个平方是相同的吗?解析:我们可以将平方数看作抽屉,而整数则是物体。
根据抽屉原理,至少有一个抽屉中会放有两个或更多的整数的平方。
因此,在只选择了10个整数的平方的情况下,至少有两个平方是相同的。
抽屉原理
规律:用苹果数除以抽屉数,若除数不为零,则“答案”为商加1;
若除数为零,则“答案”为商
抽屉原则一:把n个以上的苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有两个苹果。
抽屉原则二:把多于m x n 个苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有(m+1)个苹果。
一、基础训练。
1、把98个苹果放到10个抽屉里,无论怎么放,我们一定能找到一个含苹果最多的抽屉,
它里面至少有______个苹果。
2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面
至少有_______只鸽子。
3、从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从
它里面至少拿出______个苹果。
4、从______个抽屉中(填最大数)拿出25个苹果,才能保证一定能找出一个抽屉,从它
当中至少拿出7个苹果。
二、拓展训练。
1、六(1)班有49名学生,数学高老师了解到期中考试该班英语成绩除3人外,均在86分
以上后就说:“我可以断定,本班至少有4人成绩相同”。
王老师说的对吗?为什么?
2、某校六年级学生有31人是四月份出生的,请证明:至少有两人在同一天出生。
3、袋子里有四种不同颜色的小球,每次摸出2个,要保证10次所摸得的结果是一样的,至
少要摸多少次?
4、一副扑克牌共有54张,从中取出多少张,才能保证其中必有3种花色。
5、六年级有男生57人,证明:至少有两名男生在同一个星期过生日。
6、19朵鲜花插入4个花瓶里,证明:至少有一个花瓶里要插入5朵或5朵以上的鲜花。
7、某旅行团一行50人,随意游览甲、乙、丙三地,至少要有多少人游览的地方完全相同?
抽屉原理(答案)
规律:用苹果数除以抽屉数,若除数不为零,则“答案”为商加1;
若除数为零,则“答案”为商
抽屉原则一:把n个以上的苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有两个苹果。
抽屉原则二:把多于m x n 个苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有(m+1)个苹果。
一、基础训练。
1、把98个苹果放到10个抽屉里,无论怎么放,我们一定能找到一个含苹果最多的抽屉,
它里面至少有______个苹果。
98÷10=9 (8)
2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里
面至少有_______只鸽子。
1000÷50=20
3、从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从它里面至少拿出______个苹果。
17÷8=2 (1)
3、从______个抽屉中(填最大数)拿出25个苹果,才能保证一定能找出一个抽屉,从
它当中至少拿出7个苹果。
25÷(4)=6 (1)
二、拓展训练。
1、六(1)班有49名学生,数学高老师了解到期中考试该班英语成绩除3人外,均在86分以上后就说:“我可以断定,本班至少有4人成绩相同”。
王老师说的对吗?为什么
(49-3)÷15=3……1 86,,87,88,89,90,91,92,93,94,95,96,97,98,99,100十五个数
2、某校六年级学生有31人是四月份出生的,请证明:至少有两人在同一天出生。
31÷30=1 (1)
3、袋子里有四种不同颜色的小球,每次摸出2个,要保证10次所摸得的结果是一样的,至少要摸多少次?
(4*3*)÷(2*1)=6
(55)÷6=9 (1)
4、一副扑克牌共有54张,从中取出多少张,才能保证其中必有3种花色。
(9)÷4=2 (1)
9+2=11
5、六年级有男生57人,证明:至少有两名男生在同一个星期过生日。
57÷52=1 (5)
6、19朵鲜花插入4个花瓶里,证明:至少有一个花瓶里要插入5朵或5朵以上的鲜花。
19÷4=4 (3)
7、某旅行团一行50人,随意游览甲、乙、丙三地,至少要有多少人游览的地方完全相同?50÷3=16 (2)。