新沪科版七年级数学下册《8章 整式乘法与因式分解 8.4 因式分解 分组分解法》教案_0
- 格式:doc
- 大小:993.50 KB
- 文档页数:2
2.公式法【知识与技能】1.能运用完全平方公式和平方差公式分解因式.2.能运用分组分解法分解因式.【过程与方法】有意识地引导学生参与到数学活动中,培养学生观察、分析、运用知识的能力,掌握公式法和分组分解法.【情感态度】通过参与数学活动,培养学生独立思考及与他人合作交流的学习习惯,体验运用知识解决问题的喜悦,增强学生学好数学的自信心.【教学重点】运用公式法、分组分解法分解因式.【教学难点】熟练地运用公式法、分组分解法分解因式.一、情境导入,初步认识问题计算:(1)(x+5)(x-5);(2)(x-2)2.【教学说明】教师给出问题,学生根据前面所学的平方差公式、完全平方公式进行计算.二、思考探究,获取新知公式法问题将上面的式子和结果交换位置,你有什么样的发现呢?观察:x2-25=(x+5)(x-5)x2-4x+4=(x-2)2【教学说明】教师提出问题,学生观察、分析、相互交流,发表各自的见解,可以得出从左到右的变形也是因式分解.【归纳结论】运用公式(完全平方公式和平方差公式)进行因式分解的方法叫做公式法.三、典例精析,掌握新知例1把下列各式分解因式:(1)x2+14x+49; (2)9a2-30ab+25b2;(3)x2-81; (4)36a2-25b2.【解】(1)x2+14x+49=x2+2·x·7+72=(x+7)2.(2)9a2-30ab+25b2=(3a)2-2×3a×5b+(5b)2=(3a-5b)2.(3)x2-81=x2-92=(x+9)(x-9).(4)36a2-25b2=(6a)2-(5b)2=(6a+5b)(6a-5b).例2把下列多项式分解因式:(1)ab2-ac2; (2)3ax2+24axy+48ay2.【解】(1)ab2-ac2=a(b2-c2)(提取公因式)=a(b+c)(b-c).(用平方差公式)(2)3ax2+24axy+48ay2=3a(x2+8xy+16y2)(提取公因式)=3a(x+4y)2.(用完全平方公式)【教学说明】教师给出例题,学生独立完成,教师可让几个学生上台展示自己的答案,交流各自的心得,积累解决问题的经验.【归纳结论】在因式分解的过程中,有时提取公因式与利用公式两种方法要同时使用.有公因式要先提取公因式,因式分解一定要分解到各因式不能再分解为止.例3把下列各式分解因式:(1)x2-y2+ax+ay;(2)a2+2ab+b2-c2.【解】(1)x2-y2+ax+ay=(x2-y2)+(ax+ay)=(x+y)(x-y)+a(x+y)=(x+y)(x-y+a).(2)a2+2ab+b2-c2=(a2+2ab+b2)-c2=(a+b)2-c2=(a+b+c)(a+b-c).【教学说明】教师给出例题,学生相互交流,分组讨论,教师也可适当点拨,让学生掌握分组分解法.【归纳结论】当多项式项数较多(项数大于3)时,因式分解时需先分组,分组后再利用提公因式或运用公式进行分解.四、运用新知,深化理解1.把下列各式写成完全平方的形式.2.把下列各式分解因式.3.把下列多项式分解因式.(1)2x3-32x;(2)9a3b3-ab;(3)mx2-8mx+16m;(4)-x4+256;(5)-a+2a2-a3;(6)27x2y2-18x2y+3x2.4.把下列各式分解因式.(1)4a2-b2+4a-2b;(2)x2-2xy+y2-1;(3)9x2+6x+2y-y2;(4)x2-y2+a2-b2+2ax+2by.5.利用因式分解的方法计算.(1)3.14×562-3.14×442;(2)184.52+184.5×31+15.52.【教学说明】教师给出习题,学生独立自主完成,教师巡视,对有困难的同学进行点拨.5. (1)原式=3.14×(562-442)=3.14×(56+44)(56-44)=3.14×100×12=3768. (2)原式=(184.5+15.5)2=2002=40000.五、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?请与同伴交流.【教学说明】学生相互交流,回顾公式法、分组分解法,加深对所得新知的理解和应用.完成练习册中本课时练习.从了解公式法,分组分解法到运用这两种方法分解因式,学生表现出极大的学习热情,但训练强度仍显不足,在后面的学习中这部分内容还应该加强训练.。
沪科版数学七年级下册《分组分解法》教学设计2一. 教材分析沪科版数学七年级下册《分组分解法》是学生在学习了整式的乘法、因式分解等知识的基础上进行的一节内容。
本节课的主要内容是让学生掌握分组分解法,并能够运用分组分解法进行因式分解。
本节课的内容在初中数学中占据着重要的地位,是学生进一步学习分式、二次函数等知识的基础。
二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法、因式分解等知识,具备了一定的数学基础。
但是,对于分组分解法这种新的因式分解方法,学生可能还比较陌生,需要通过实例讲解和练习来逐渐理解和掌握。
此外,学生对于如何选择合适的分组方式进行因式分解,还需要进一步的引导和训练。
三. 教学目标1.让学生掌握分组分解法,并能够运用分组分解法进行因式分解。
2.培养学生观察、分析、解决问题的能力。
3.培养学生的合作交流意识,提高学生的数学素养。
四. 教学重难点1.重点:掌握分组分解法,并能够运用分组分解法进行因式分解。
2.难点:如何选择合适的分组方式进行因式分解。
五. 教学方法采用“问题驱动法”和“案例教学法”进行教学。
通过提出问题,引导学生思考和探索,通过案例讲解,让学生理解和掌握分组分解法。
六. 教学准备1.准备相关的案例和练习题。
2.准备PPT,用于展示和讲解。
七. 教学过程1.导入(5分钟)通过提出一个问题,引导学生思考如何进行因式分解。
例如:已知多项式f(x)=x^2+2x+1,请尝试对其进行因式分解。
2.呈现(10分钟)通过PPT展示分组分解法的步骤和案例,让学生理解和掌握分组分解法。
3.操练(10分钟)让学生分组进行练习,每组选一个题目进行因式分解。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生选取一个自己认为比较难的题目,尝试用分组分解法进行因式分解。
教师选取几个学生的答案进行讲解和分析。
5.拓展(10分钟)让学生思考如何选择合适的分组方式进行因式分解,并举例说明。
教师选取几个学生的答案进行讲解和分析。
3.分组分解法
学习目标
1.理解并掌握运用分组分解法分解因式的一般步骤;(重点)
2.能熟练运用分组分解法进行因式分解并解决问题.(难点)
教学过程
一、情境导入
1.因式分解:
(1)a4-18a2+81;(2)a3+6a2+9a;
2.根据1中得到的式子尝试因式分解:a4-a3-12a2+9a+81.
二、合作探究
探究点:分组分解法分解因式
【类型一】运用分组法分解因式
因式分解:
(1)a2+4ab+4b2-2a-4b;
(2)x3+6x2+11x+6.
解析:(1)前三项是完全平方形式,与-2(a+2b)再提取公因式,分解因式即可;(2)把式子化成x3+6x2+9x+2x+6的形式,前三项首先提公因式x,即可利用完全平方公式分解,后边的两项可以提公因式,然后利用提公因式法分解,最后利用十字分解法分解即可.解:(1)原式=(a+2b)2-2(a+2b)=(a+2b)(a+2b-2);
(2)原式=x3+6x2+9x+2x+6=x(x+3)2+2(x+3)=(x+3)[x(x+3)+2]=(x+3)(x2+3x +2)=(x+3)(x+1)(x+2).
方法总结:本题考查了分组分解法分解因式,此题因式分解方法灵活,注意认真观察各项之间的联系.
【类型二】运用分组法分解因式判定三角形的形状
已知a,b,c分别是△ABC三边的长,且a2+2b2+c2-2b(a+c)=0,请判断△ABC 的形状,并说明理由.
解析:首先利用完全平方公式分组进行因式分解,进一步分析探讨三边关系得出结论即可.
解:由a2+2b2+c2-2b(a+c)=0,得a2-2ab+b2+b2-2bc+c2=0,即(a-b)2+(b-c)2=0,∴a-b=0,b-c=0,∴a=b=c,∴△ABC是等边三角形.
方法总结:通过分组并利用完全平方式将原式转化为非负数的和的形式,然后利用非负数性质解答,这是解决此类问题一般的思路.
【类型三】整体代入求值
已知x+y=7,x-y=5,求x2-y2-2y+2x的值.
解析:首先将前两项分组利用平方差公式分解因式,进而再提取公因式得出即可.解:x2-y2-2y+2x=(x+y)(x-y)-2(y-x)=(x+y)(x-y)+2(x-y)=(x-y)(x+y+2),将x+y=7,x-y=5代入上式得原式=(x-y)(x+y+2)=5×9=45.
方法总结:若多项式有四项,且不能直接提公因式时,可考虑分组分解,常用的分组方法有两、两分组,一、三分组,分组应满足各组有公因式或符合公式,且各组之间有公因式
或符合公式.
【类型四】分组分解法的综合应用
若m n满足m+2+(n-4)2=0,分解因式:(x2+y2)-(mxy+n).解析:首先根据非负数的性质求出m、n的值,代入式子,然后利用分组分解法进行分
解.
解:由题意,得m+2=0,n-4=0,解得m=-2,n=4.∴(x2+y2)-(mxy+n)=x2+y2-(-2xy+4)=x2+y2+2xy-4=(x+y)2-4=(x+y+2)(x+y-2).
方法总结:本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.
三、板书设计
1.分组分解法分解因式
某些多项式整体没有公式,也不符合公式,可将多项式进行分组,使各组符合提公因式或可以使用公式分解因式,且各组之间有公因式或符合公式从而将多项式因式分解.2.分组分解法分解因式的应用
教学反思
本节课学生的探究活动比较多,教师既要全局把握,又要顺其自然,千万不可拔苗助长,为了后面多做几道练习而主观裁断时间安排.其实公式的探究活动本身既是对学生能力的培养,又是对公式的识记过程,而且还可以提高他们应用公式的本领。