污泥厌氧发酵产酸研究
- 格式:doc
- 大小:542.00 KB
- 文档页数:9
污泥热处理及其强化污泥厌氧消化的研究进展污泥是城市污水处理过程中产生的固体废弃物,由于其高水分含量和有机物质的含量较高,使得传统的污泥处理方法相对较为困难。
然而,随着技术的发展,污泥热处理和强化污泥厌氧消化等新方法逐渐受到关注,并在理论研究和工程应用中取得了一定的进展。
污泥热处理是指将污泥在高温条件下进行干化、热解和燃烧等处理的一种方法。
通过提高污泥温度,可以减少其水分含量,使得污泥体积减小,便于后续处理和处置。
同时,在高温下,污泥中的有机物质发生分解和转化,释放出热能等,为生物甲烷发酵等过程提供了热源。
研究表明,污泥热处理可以有效提高污泥的可处理性和资源化利用水平。
当前,常用的污泥热处理技术包括干化、热解和燃烧。
干化是通过加热和蒸发等方式将污泥中的水分脱除,降低污泥的含水率。
热解是指在高温条件下,将污泥中的有机物质分解为可燃气体和固体炭等。
而燃烧是将污泥中的有机物质完全氧化,释放出热能。
这些方法可以单独使用,也可以组合使用,根据污泥的特性和处理目标选择合适的处理方式。
近年来,强化污泥厌氧消化也成为研究的热点之一。
污泥厌氧消化是指利用厌氧菌群将有机物质转化为甲烷气的过程。
在传统污泥厌氧消化中,有机物质的降解速率较慢,产气率较低。
为了提高污泥厌氧消化的效率和产甲烷气的质量,研究者提出了强化污泥厌氧消化方法。
这些方法主要包括热处理、超声波处理、化学处理和厌氧菌增加等。
热处理是强化污泥厌氧消化的一种常用方法。
研究表明,在适当的温度和时间条件下,污泥经过热处理后,厌氧消化的降解速率和产气率都得到了显著提高。
这是因为热处理可以破坏污泥中的细胞结构,释放出更多的有机物质,提高厌氧反应的活性。
同时,热处理还可以破坏污泥中的抗生物降解物质,增加污泥的可降解性。
超声波是利用高频声波在液体中产生的物理效应,可以在短时间内产生局部高温和高压,从而破坏污泥细胞结构,促进有机物质的释放。
研究表明,超声波处理可以显著提高污泥厌氧消化的降解速率和产气率。
废水厌氧生物处理原理一、厌氧消化过程中的主要微生物主要介绍其中的发酵细菌(产酸细菌)、产氢产乙酸菌、产甲烷菌等。
1、产甲烷菌产甲烷细菌的主要功能是将产氢产乙酸菌的产物——乙酸和H2/CO2转化为CH4和CO2,使厌氧消化过程得以顺利进行;主要可分为两大类:乙酸营养型和H2营养型产甲烷菌,或称为嗜乙酸产甲烷细菌和嗜氢产甲烷细菌;一般来说,在自然界中乙酸营养型产甲烷菌的种类较少,只有Methanosarcina(产甲烷八叠球菌)Methanothrix(产甲烷丝状菌),但这两种产甲烷细菌在厌氧反应器中居多,特别是后者,因为在厌氧反应器中乙酸是主要的产甲烷基质,一般来说有70%左右的甲烷是来自乙酸的氧化分解。
典型的产甲烷反应:产甲烷菌有各种不同的形态,常见的有:①产甲烷丝菌;等等。
产甲烷菌都是严格厌氧细菌,要求氧化还原电位在-150~-400mv,氧和氧化剂对其有很强的毒害作用;产甲烷菌的增殖速率很慢,繁殖世代时间长,可达4~6天,因此,一般情况下产甲烷反应是厌氧消化的限速步骤。
②产甲烷球菌;③产甲烷杆菌;④产甲烷八叠球菌;2、产氢产乙酸菌:产氢产乙酸细菌的主要功能是将各种高级脂肪酸和醇类氧化分解为乙酸和H2;为产甲烷细菌提供合适的基质,在厌氧系统中常常与产甲烷细菌处于共生互营关系。
主要的产氢产乙酸反应有:注意:上述反应只有在乙酸浓度很低、系统中氢分压也很低时才能顺利进行,因此产氢产乙酸反应的顺利进行,常常需要后续产甲烷反应能及时将其主要的两种产物乙酸和H2消耗掉。
主要的产氢产乙酸细菌多为:互营单胞菌属、互营杆菌属、梭菌属、暗杆菌属等;多数是严格厌氧菌或兼性厌氧菌。
3、发酵细菌(产酸细菌):发酵产酸细菌的主要功能有两种:①水解——在胞外酶的作用下,将不溶性有机物水解成可溶性有机物;②酸化——将可溶性大分子有机物转化为脂肪酸、醇类等;主要的发酵产酸细菌:梭菌属、拟杆菌属、丁酸弧菌属、双岐杆菌属等;水解过程较缓慢,并受多种因素影响(pH、SRT、有机物种类等),有时会成为厌氧反应的限速步骤;产酸反应的速率较快;大多数是厌氧菌,也有大量是兼性厌氧菌;可以按功能来分:纤维素分解菌、半纤维素分解菌、淀粉分解菌、蛋白质分解菌、脂肪分解菌等。
江南大学科技成果——城市污泥厌氧发酵产酸及产酸发酵液强化污水生物脱氮除磷技术成果简介将城市污水处理厂的脱水污泥利用中水调制到适当浓度,然后对污泥进行热碱预处理,使污泥细胞破壁,充分释碳。
在中温条件下进行碱性厌氧发酵生产VFAs(挥发性脂肪酸),发酵后污泥在利用木屑和氯化镁联合调理后通过板框压滤机进行高干脱水实现发酵液的回收并去除发酵液中部分的氮和磷。
回收得到的富含VFAs的发酵液添加到城市污水处理厂的生物处理单元,作为补充碳源,强化污水的生物脱氮除磷,从而达到去除污染物的目的。
具体技术内容包括污泥预处理、污泥厌氧发酵产酸、污泥深度脱水以及有机酸强化污水脱氮除磷技术。
关键技术脱水污泥经过碱性厌氧发酵后酸产率为280-340mgCOD/gVSS。
发酵后的污泥经过高干脱水后泥饼含水率能够降低至56%-70%。
通过前置脱氮除磷技术能够去除污泥发酵液中81%-89%的总磷和24%-32%的总氮,降低后期系统压力。
向城市污水处理厂生物处理单元投加发酵液能增强系统脱氮除磷效果,投加发酵液作为碳源使污水SCOD增量为40-60mg·L-1。
COD、NH4+-N、TN和TP去除率分别达到了78%-85%、86%-94%、61%-69%和86%-91%,相对应的出水浓度均能达到我国《城镇污水处理厂污染物排放标准》GB18918-2002所规定的一级A标准。
知识产权项目组先后申请专利17项,获授权6项,发表相关论文65篇,其中27篇已在SCI收录期刊出版;累计被国内外科技工作者引用超过850次;通过教育部组织的科技成果鉴定1项,科技部组织的课题验收1项,江苏省科技厅组织的项目验收2项。
应用情况本技术已完成示范工程应用,在无锡市高新水务有限公司硕放水处理厂通过工程示范进行运用。
本示范工程从2014年11月开始正式启动,目前已持续运行近4年。
示范工程由污泥碱性厌氧发酵系统、发酵污泥高干脱水系统和污泥发酵液强化污水生物脱氮除磷系统三个部分组成。
第 44 卷第 4 期2024年 4 月Vol.44 No.4Apr.,2024工业水处理Industrial Water Treatment DOI :10.19965/ki.iwt.2023-1101Noria-PEI 改性PVA 载体固定化溶菌酶用于污泥发酵产VFAs 研究王昊龙1,张恩泽2,王梓诚1,赵瑜涵3,南军1,孙彦民1,马爱静2,周立山1,刘丽强1,蔡巷1,段兴宇1(1.中海油天津化工研究设计院有限公司,天津300131;2.天津工业大学化学工程与技术学院,分离膜与膜过程国家重点实验室,天津300387;3.河北工业大学化工学院,天津 300401)[摘要]生物酶促进污泥厌氧消化具有反应温和、高效环保等优点,然而回收困难和催化稳定性差严重制约其应用,固定化酶是解决上述问题的关键。
采用水轮酚(Noria )和聚乙烯亚胺(PEI )共沉积法改性聚乙烯醇(PVA )载体,并研究了Noria-PEI 改性PVA 载体固定溶菌酶对污泥厌氧发酵产挥发性脂肪酸(VFAs )效能的影响。
结果表明,固定化溶菌酶可强化污泥发酵提高SCOD ,在36 h 内SCOD 最高浓度达到2 892.4 mg/L ,相比空白组提升3.4倍(第6天),VFAs 质量浓度在第4天达到峰值2 130.8 mg/L ,乙酸和丙酸占比达到61.8%~80.7%。
固定酶系统中污泥的平均粒径为42.957 µm ,比表面积为0.413 m 2/g ,固定化溶菌酶强化了颗粒态污泥水解。
微生物群落结构分析显示,在固定酶系统中Firmicutes 、Proteobacteria 和Bacteroides 等水解产酸菌门占比较高;在属水平上,以Macellibacteroides 、Pet⁃rimonas 、Lactobacillus 和Clostridium_sensu_stricto_1菌属为主,从微观层面上解释了固定酶强化污泥发酵产酸机理。
厌氧发酵产酸微生物种群生态及互营关系研究一、本文概述《厌氧发酵产酸微生物种群生态及互营关系研究》是一篇深入探讨厌氧发酵过程中产酸微生物种群生态及其互营关系的研究文章。
厌氧发酵作为一种重要的生物转化过程,广泛存在于自然环境和工业应用中,如废水处理、生物质能源生产等。
在这个过程中,产酸微生物扮演着至关重要的角色,它们通过分解有机物质产生各种有机酸,进而参与到更为复杂的生物化学反应中。
本文首先介绍了厌氧发酵的基本概念、原理及其在环境保护和能源开发等领域的应用价值。
随后,文章详细阐述了产酸微生物在厌氧发酵过程中的生态学特征,包括它们的种群结构、生长特性、代谢途径等。
通过对产酸微生物种群生态的深入研究,有助于我们理解这些微生物在厌氧发酵中的功能和作用机制。
在此基础上,文章进一步探讨了产酸微生物之间的互营关系。
互营关系是指不同微生物之间通过物质和能量的交换而形成的一种共生关系。
在厌氧发酵过程中,产酸微生物与其他微生物之间存在着复杂的互营关系,这些关系对于整个发酵过程的稳定性和效率具有重要影响。
通过深入研究这些互营关系,我们可以为优化厌氧发酵工艺、提高发酵产物的质量和产量提供理论依据。
《厌氧发酵产酸微生物种群生态及互营关系研究》旨在全面解析厌氧发酵过程中产酸微生物的种群生态和互营关系,以期为提高厌氧发酵技术的应用水平和推动相关领域的发展提供有益参考。
二、厌氧发酵产酸微生物种群生态厌氧发酵产酸过程是一个复杂的微生物群落活动,涉及多种微生物的协同作用。
这些微生物种群生态的研究对于理解和优化厌氧发酵过程至关重要。
在厌氧环境中,微生物通过分解有机物质产生能量和生物质,其中一部分微生物专门负责产酸阶段的任务。
厌氧发酵产酸微生物种群主要包括乳酸菌、醋酸菌、丙酸菌和丁酸菌等。
这些微生物在厌氧条件下通过不同的代谢途径,将复杂的有机物质分解为简单的有机酸,如乳酸、醋酸、丙酸和丁酸等。
这些有机酸不仅可以用作生物能源和生物化工的原料,还参与后续的厌氧发酵过程。
污泥处理中厌氧发酵过程模型构建及优化研究一、引言近年来,越来越多的城市和工业企业面临着污水处理的问题。
其中,污泥处理是污水处理的重要环节之一。
传统的污泥处理方法包括厌氧消化和好氧消化。
但这些方法不能充分地将污泥中的有机物分解并转化为可利用的气体或产物,从而造成了浪费和环境污染。
厌氧发酵技术因其具有操作简便、产气量高等优点而成为了一种先进的污泥处理技术。
本文旨在探究厌氧发酵过程模型构建及其在污泥处理中的优化研究。
二、厌氧发酵过程模型构建厌氧发酵过程的关键在于厌氧发酵微生物的生长和代谢过程。
厌氧发酵微生物的生长受到诸多因素的影响,包括温度、pH值、残余假基质等。
因此,在构建厌氧发酵过程模型时,需同时考虑这些因素对反应的影响。
目前,常用的厌氧发酵过程模型有Methane Potential(MP)模型、 Anaerobic Digestion Model(ADM)和Biochemical Methane Potential(BMP)模型等。
MP模型主要用于预测餐厨垃圾等有机废弃物产生的甲烷。
该模型假设产生甲烷的过程为单一反应,因此在实际应用中存在一定的误差。
ADM模型是针对厌氧发酵过程中的微生物群落和生化反应过程提出的。
在该模型中,将微生物群落分为四类:亚甲基蓝细菌、乙酸菌、产甲烷菌和硫酸还原菌等,并描述它们在反应中的代谢过程。
BMP模型则是完全考虑反应动力学的一种模型。
它将反应从宏观上分为厌氧水解和产甲烷反应两部分,并考虑了酸碱平衡、基础催化和动力学控制等因素的影响。
三、厌氧发酵过程的优化研究为了提高厌氧发酵过程的效率和稳定性,可对厌氧反应条件进行优化。
常见的优化措施包括温度、pH值、C/N比和进料速率等。
(一)温度温度是影响厌氧反应速率和可行性的重要因素。
一般来说,20℃-40℃之间是厌氧反应的适宜温度范围。
在此范围内,厌氧微生物可以生长繁殖并代谢底物,产生甲烷等气体。
但如果温度过低或过高,将会抑制微生物代谢活动,降低产气效率。
污泥中的厌氧微生物群落结构及抗生素抗性基因摘要:污水处理厂中抗生素的来源包括人们的日常使用,畜牧业、水产养殖业以及医疗和制药过程中药物残留及排放,而抗生素的存在会诱导产生抗生素抗性基因(ARGs),这使得污水处理厂特别是活性污泥成为巨大的抗性基因库。
ARGs通过基因水平转移扩散到病原微生物会威胁人类健康。
污泥作为污水处理厂的主要副产物,其产量在2017年已达4.328×107t(含水率80%计)[1]。
剩余污泥一般含有大量有机物、重金属和病原体,若未得到妥善处置将严重威胁环境。
目前,有多种技术可对污泥进行资源化利用,如燃烧、热解和厌氧消化[2],其中厌氧发酵是污泥资源化利用的重要途径。
1.污泥中常见的厌氧微生物群落分布污泥在厌氧消化过程中主要涉及水解酸化细菌和产甲烷古菌。
其中,水解酸化细菌在污泥厌氧消化过程中发挥作用。
水解细菌能将污泥中的碳水化合物、蛋白质和脂质转化为简单的溶解性单体物质,酸化细菌能将水解产物进一步转化为酸性产物(挥发性脂肪酸),从而为微生物的生长提供碳源。
显然,细菌不仅对污泥中有机物的水解和酸化起关键作用,而且还会影响厌氧消化的效率。
以往的研究发现,古菌在厌氧体系中约占微生物总量的10%[3]。
细菌在微生物总量中所占比例高于古菌,所以细菌群落结构的变化会影响古菌群落[4]。
根据Ahring的报道,厌氧微生物至少涵盖了20个门的细菌,包括变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、绿弯菌门(Chloroflexi)、螺旋体门(Spirochaetes)、拟杆菌门(Bacteroidetes)、放线菌门(Actinobacteria)等。
在上述菌群中,Bacteroidetes和Firmicutes是水解过程中主要的菌群;Chloroflexi、Proteobacteria、Bacteroidetes和Firmicutes是酸化过程中主要的菌群[5]。
污泥厌氧发酵沼气产生规律研究摘要利用自制的沼气发生器和沼气净化装置,以污水处理厂污泥为原料进行厌氧发酵产沼气研究。
结果表明:污泥含水率在93%以上,但是c/n只有20.,厌氧发酵过程中codcr 不断下降,而在第6天时沼气产量达到0.63 l。
以氢氧化钠溶液吸收二氧化碳和硫化氢,浓度为2 mol/l时吸收率可达到99%以上。
关键词污泥;厌氧发酵;沼气;产生规律随着我国国民经济的发展和城市的现代化建设以及对城市的环境和生态平衡的要求,城市污水处理厂的兴建与运行管理已经成为现代化城市建设不可分割的一部分。
随着城市污水处理率的逐年提高,城市污水厂的污泥产生量也急剧增加。
据估算[1],目前我国城市污水处理厂每年排放的污泥量(干重)大约为130万t,而且其年增长率大于10%,特别是在我国城市化水平较高的几个城市与地区,污泥的出路问题已经十分突出。
如果城市污泥全部得到处理,则将产生污泥量(干重)840万t,占我国固体废弃物总量的3.2%。
污泥是城市污水处理和废水处理不可避免的副产物,含有大量的有机质和营养元素,能量巨大。
另一方面,我国正面临着巨大的能源与环境压力,矿物能源和资源日益耗尽,开发并生产各种可再生能源替代煤炭、石油和天然气等化石燃料是世界今后解决能源紧缺的一种有效途径[2]。
在德国,城市污水厂通过污泥沼气发电,可满足其自用电力的7%[3]。
因此,利用污泥消化产沼气不仅能够解决污泥出路的问题,还使得污泥作为一种资源得到了利用。
1材料与方法1.1仪器与试剂1.1.1仪器。
注射器(0 ml)、电子天平(bs124s,北京赛多利斯仪器系统有限公司)、干燥箱(101-3y(a),苏州市大隆仪器仪表有限公司)、电炉(00 w,永康市豪鹰电器有限公司)、总碳测定仪(ww-0,上海谷雨环保科技有限公司)。
1.1.2供试原料与试剂。
供试原料为沉淀池污泥,南昌市朝阳污水处理厂提供。
试剂:硼酸、尿素、cuso4·h2o,北京化工厂产;无水氯化钙,上海市奉贤奉城试剂厂产;硫酸、硫酸汞、盐酸,上海振兴化工二厂有限公司产;硫酸亚铁氨,上海试四赫维化工有限公司产;重铬酸钾、硫酸银、氢氧化钠、三氧化铁、k2so4、甲基红,上海试剂一厂产。
污水厂剩余污泥水解及其厌氧发酵产氢技术研究污水厂剩余污泥水解及其厌氧发酵产氢技术研究引言:随着城市化进程的不断加快,污水排放量不断增加,给环境带来了严重的污染问题。
传统的污水处理工艺往往依靠化学物理方法对污水进行处理,但这种方法造成的剩余污泥处理却给环境带来了新的问题。
剩余污泥处理通常是通过厌氧消化、堆肥和焚烧等方式进行,但这些方法存在能源浪费、污染排放和占地过多等问题。
近年来,研究人员开始关注污水厂剩余污泥中的潜在能源——生物质能。
水解发酵技术作为生物质能转化的关键环节,能够将污泥中的有机物以有机酸为主进行分解,进一步转化为氢气、甲烷等可再生能源,并产生有机肥料。
因此,研究污水厂剩余污泥水解及其厌氧发酵产氢技术具有重要的理论和实践意义。
一、剩余污泥的特性及水解机理剩余污泥主要由固体、水分和有机物组成,其中有机物含量较高。
水解是将有机物通过生物分解等方式进行分解转化的过程。
剩余污泥水解主要受到微生物的影响,通过微生物的代谢活动,将有机物分解为有机酸、氨氮等溶解性物质。
水解的主要机理可以分为两种:酸型和碱型。
在酸型水解中,水解产物主要是挥发性脂肪酸、醇类和氨氮等,反应产生大量的氢气。
而在碱型水解中,水解产物主要是脂肪酸和醇类,反应产生较少的氢气。
二、厌氧发酵产氢的技术原理厌氧发酵产氢是利用厌氧发酵微生物将有机物转化为氢气的过程。
厌氧发酵产氢技术主要包括两个步骤:水解和产氢。
水解是将剩余污泥中的有机物经由微生物作用分解为有机酸和其他溶解性物质,并同时释放出氧化还原等能量。
水解过程需保持中性或微酸性的条件,并通过调节温度、搅拌等措施促进微生物的活性和有机物的水解。
产氢是水解产物中的有机酸通过厌氧发酵微生物转化为氢气。
产氢过程需要在无氧状态下进行,适宜的温度和pH值可以提高产氢的效果。
厌氧发酵产氢技术的关键是选择适宜的发酵菌群,并通过调节温度、pH值、氢气浓度等参数,促进微生物的生长和产氢。
三、污水厂剩余污泥水解及产氢技术在实践中的应用许多研究表明,污水厂剩余污泥经水解处理后可有效产生氢气并降解有机物。
污泥厌氧发酵产酸的研究进展及应用污泥厌氧发酵产酸的研究进展及应用引言:污泥处理一直是城市生活污水处理的重要环节。
传统的污泥处理方法主要是利用好氧生物处理技术,将污泥中的有机物和微生物氧化分解为二氧化碳和水。
然而,这种处理方式存在着处理时间长、消耗能源多、产生污泥量多等问题。
近年来,污泥厌氧发酵产酸技术逐渐引起人们的关注。
本文将介绍污泥厌氧发酵产酸的研究进展及应用。
一、污泥厌氧发酵产酸原理污泥厌氧发酵是一种利用无氧条件下厌氧微生物将污泥中的有机物分解为有机酸的过程。
在厌氧条件下,厌氧微生物通过产酸发酵将污泥中的有机物转化为乙酸、丙酸等有机酸。
这种发酵过程与传统的好氧处理不同,不需要消耗大量氧气,也可以在短时间内将有机物转化为有机酸。
二、污泥厌氧发酵产酸的优势1. 能源利用:污泥厌氧发酵产酸可以产生大量有机酸,这些有机酸可以用作生物燃料、生物润滑剂等,从而实现能源的转化和利用。
2. 污泥减量化:传统的污泥处理方法在处理过程中会产生大量污泥,需要经过多个阶段的处理才能达到合格排放标准。
而污泥厌氧发酵产酸可以将有机物在短时间内利用厌氧菌分解为有机酸,从而减少处理过程中产生的污泥量。
3. 降解有机物:污泥中的有机物含量较高,通过厌氧发酵可以快速降解有机物,减少有机物对水环境的污染。
三、污泥厌氧发酵产酸的应用1. 生物燃料的生产:厌氧发酵产酸可以产生大量有机酸,这些有机酸可以通过进一步处理生产生物甲醇、生物乙醇等生物燃料,达到能源的转化和利用。
2. 生物润滑剂的生产:有机酸可以作为生物润滑剂的原料,通过混合、加工等工艺可以生产出高性能的生物润滑剂,用于机械设备的润滑。
3. 农业领域的应用:污泥厌氧发酵产酸可以将有机物转化为有机酸,有机酸有一定的肥料作用,可以作为有机肥料用于农田的施肥,提高农作物的产量和质量。
结论:污泥厌氧发酵产酸技术是一种能够快速将污泥中的有机物转化为有机酸的处理方式。
它具有能源利用、污泥减量化、有机物降解等优势,并且在生物燃料生产、生物润滑剂生产等多个领域具有广阔的应用前景。
0引言先进的水处理技术不仅包括水质的处理、污染物的资源化,还包括技术的低能耗。
如何使城市污水处理工艺实现低能耗、高效率、剩余污泥量少、脱氮除磷已经是目前水处理技术研究的方向。
在众多的处理工艺中,人们逐渐认识到采用厌氧生物处理工艺处理有机废水和有机废物的优势,厌氧法适于处理高浓度的有机废水,而且厌氧生物法可把有机物转化为生物能———沼气。
但由于对厌氧处理技术的理论研究远远不够,在以往的污水厂处理工艺和运行管理中,技术人员由于缺乏理论的指导,在设计中出现问题,导致很大的资源浪费[1]。
数学模型法是现代科学研究的重要手段,利用数学模型预测进水水质和水量变化的影响以及适应这些变化所需要采取的运行措施,能够使处理效果最优化。
它有助于描述和理解生物处理系统的反应过程,对设计提供理论上的指导;还有助于工艺的优化和控制,从而更好地指导实际生产运行[2]。
国内外厌氧消化模型研究进展杨双春,邓丹,梁丹丹,潘一辽宁石油化工大学环境与生物工程学院,辽宁抚顺113001摘要厌氧生物法是一种适用于处理高浓度有机废水的高效低能耗的处理工艺,厌氧消化模型是表述兼性细菌和厌氧细菌将可生物降解的有机物分解成二氧化碳、甲烷和水的过程模型。
它是一个具有分解和水解、产酸、产乙酸和产甲烷等过程的复杂的结构化模型。
本文主要介绍了国内外污泥厌氧消化模型的研究现状及其进展,模型包括厌氧消化1号模型(ADM1)、好氧活性污泥-厌氧消化模型(ASM1-ADM1)、单相中温-厌氧消化模型(SPMT-ADM1)、单相高温-厌氧消化模型(SPHT-ADM1)、两相-厌氧消化模型(TP-ADM1)、厌氧消化-活性污泥复合模型(ADM1-ASMs)、硫酸盐还原-厌氧消化模型(SR-ADM1)、硝酸盐还原-厌氧消化模型(NR-ADM1)、产气-厌氧消化模型(GPAE-ADM1)、沉淀池-厌氧消化模型(ST-ADM1)和抑制因子-厌氧消化模型(IK-ADM1)。
厌氧消化法:在无氧的条件下,由兼性菌及专性 厌氧细菌降解有机物,最终产物是二氧化碳和甲 烷气(biogas ),是污泥得到稳定。
8.3.1厌氧消化的机理 (间歇实验)二阶段理论:产酸阶段--产甲烷阶段四阶段理论:水解、酸化、酸退、甲烷化根据参与甲烷发酵的不同营养类群微生物对基质的代谢厌氧降解过程分为三个阶段:三阶段理论 :Toenen et al (1970) Substrate flow in anaerobic digestion, 5thInternational Conference on water pollution research. San Francisco,CA.书上:Eryant 1979 20% 52 少 生成乙酸与脱氢 (产氢产酸菌) 第一阶段…亠-第二阶段-碳水化合物分解菌 CH3CH2COOH+2H2O …CH3COOH+3H2+CO2 蛋白质分解菌,脂肪分解菌)产酸菌是兼性厌氧菌和专性厌氧菌,对PH .VFA ,温度变化适应性强, 増殖速度快;甲烷菌是专氧菌,PH=6・4・7・4 ■对PH . VFA .腿变8.3 污泥的厌氧消化 4%复杂有机物卜水解与发酵'(水解与发酵菌) 细菌原生动物 真菌 2+COjTCH4+2H9 __ metliane 2CH3COOHT2CH4+2CO2 Acetic acid 生成甲烷 (产甲烷菌)第三阶段(纤维素分解菌 产氢产乙酸菌 甲烷杆菌球菌 CH 4 单糖 VFA CO2 H2较高级的有机酸 HAc化敏感,増殖速度慢。
产甲烷阶段的能量分析:(以乙酸钠为例)在好氧消化时:C2H3O2Na+2O2——NaHCO3+H2O+CO2+848.8 KJ /mol在厌氧消化时:C2H3O2Na +H2 O —> NaHCO3+CH4+29.3 KJ /mol 在底物相同的条件下,厌氧消化产生的能量仅是好氧消化的1/20 - 1/30•这些能量大部分都用于维持细菌的生活,而只有很少能量由于细胞合成•(这就是厌氧法产生剩余污泥量少的缘故)虽然厌氧消化过程是要经历多个阶段,但是在连续操作的厌氧消化反应器中这几个阶段同时存在,并保持某种平衡状态.8.3.2厌氧消化动力学(与好氧相似)甲烷发酵阶段是厌氧消化速率的控制因素。
Cao2对城市污水处理中剩余污泥厌氧发酵产酸性能与生物酶活性的影响作者:钮劲涛金宝丹周萍牛佳慧张局张钟方陶泓帆马志刚代菁雯李诺楠来源:《郑州轻工业学院学报(社会科学版)》2019年第04期关键词:剩余污泥;厌氧发酵;CaO2;水解酸化;短链脂肪酸;生物酶活性0引言目前,活性污泥法是应用最广泛的污水处理方法,具有处理效果好、成本低等特点.然而运用活性污泥法处理城市污水会产生大量副产物———剩余污泥,其处理问题成为当前污水处理工作面临的新挑战.据统计,至2017年,我国城市污泥年产生量约为7000万吨,而且污水处理厂约60%的运行费用于污泥处理[1].污泥中含有丰富的有机资源(如蛋白质、糖类、脂类等)和无机资源(如氮、磷等),可回收利用,但其中还含有大量的病菌、病毒等微生物,如果不能妥善处理,将造成环境污染,严重影响环境安全.污泥厌氧发酵是目前高效且低成本的一种污泥处理技术,其处理过程分为水解、酸化和产甲烷3个阶段:污泥水解将微生物体内蛋白质和多糖释放至发酵系统,水解酶能够将蛋白质和多糖分解成氨基酸、单糖等小分子物质;酸化菌则利用水解产物生成可挥发性短链脂肪酸(SCFAs);产甲烷菌再利用SCFAs生成甲烷.污泥水解是污泥厌氧发酵的关键步骤,而产生于酸化阶段的SCFAs是污水生物处理过程的优质碳源[2],SCFAs中的乙酸、丙酸、异丁酸等也是重要的工业生产原料,因此污泥厌氧发酵产酸研究受到了广泛关注.研究发现,在NaOH,KOH,Ca(OH)2 等碱性条件下,产甲烷菌活性受到抑制,水解酸化菌将污泥中大部分有机物转化为SCFAs,蛋白质,多糖等,其中Ca(OH)2型发酵系统中乙酸含量最高[3].刘常青等[4]发现,用Ca(OH)2,CaCl2等联合热水解法预处理污泥有助于有机物的溶出.由此可见,钙制品化学药剂对于污泥厌氧发酵有较好的促进作用,但是经Ca(OH)2 处理的发酵污泥中仍含有大量的有机物未提取、未利用.CaO2是一种安全、多功能的氧化剂,有“固体”双氧水之称,溶于水后能够生成·OH,H2O2,Ca(OH)2等[5],已广泛用于水产养殖业、农业、制药业和水处理行业.近期研究发现,CaO2能够提高污泥脱水性[6],与游离氨联合可提高污泥厌氧发酵产酸性能[7],但是对于其作用机理研究不够深入.鉴于此,本文拟以CaO2作为剩余污泥处理药剂,研究不同添加量的CaO2 对剩余污泥水解酸化性能的影响,考察其对污泥厌氧发酵系统中生物酶活性的影响,探索CaO2 在污泥厌氧发酵过程中的作用机理,以期为污水处理厂剩余污泥资源化研究提供参考.1材料与方法1.1污泥来源与实验装置本实验使用的污泥取自郑州市某城市污水处理厂的曝气池,将其用自来水清洗3次后进行浓缩,得实验用污泥,即后文称剩余污泥,其性质如表1所示.实验反应器材质为有机玻璃,总体积为2.5L,有效容积为2.0L,采用磁力搅拌器进行匀速搅拌.主要试剂:CaO2,浓H2SO4,CuSO4,酒石酸钾钠,天津市大茂化学试剂厂产;吡喃葡萄糖苷、硝基-a-d-吡喃葡萄糖苷、对硝基苯磷酸二钠、碘硝基四唑紫、Folin试剂,阿拉丁试剂有限公司产.以上试剂均为分析纯.主要仪器:754紫外-可见分光光度计,FA2004电子天平,上海舜宇恒平科学仪器有限公司产;TG16-WS离心机,湘仪离心机仪器有限公司产;5B-1F(V8)COD快速检测仪,连华科技有限公司产;GC6890B气相色谱仪,安捷伦科技有限公司产;PHS-25雷磁水质测定仪,上海仪电科学仪器股份有限公司产.1.2取样方法分别取2L剩余污泥投加至1#—4#反应器,再向反应器中投加CaO2,控制其添加量分别为0.1mg/mgSS(该单位指每mg悬浮污泥中添加CaO2 的质量,下同),0.2mg/mgSS,0.3mg/mgSS,0.4mg/mgSS.启动磁力搅拌器,隔天取样测定理化指标.1.3测定方法化学需氧量(COD),悬浮污泥质量浓度(MLSS)和可挥发性污泥质量浓度(MLVSS)根据国标方法测定[8];DNA质量浓度用分光光度计测定;pH值用雷磁水质测定仪测定.在污泥发酵过程中部分有机氮和有机磷以NH4+ -N和PO43- -P的形式释放,其释放量是表征污泥厌氧发酵效果的指标之一,根据国标方法测定[8].污泥在厌氧发酵过程中释放大量的蛋白质、多糖等物质,但是酸化菌不能直接利用这些物质进行产酸活动.水解菌先利用自身水解酶(如蛋白酶)和α-葡萄糖苷酶将大分子的蛋白质和多糖水解生成氨基酸、单糖等[9],而酸化菌则利用水解产物生成SCFAs.所以,蛋白酶和α-葡萄糖苷酶,在污泥厌氧发酵过程中有重要作用.SCFAs的产量用气相色谱仪测定[10],发酵系统中的多糖和蛋白质质量浓度采用分光光度法测定[8-9],蛋白酶和α-葡萄糖苷酶含量采用分光光度法测定[10-11].剩余污泥发酵系统中含有大量的有机磷,碱性磷酸酶(ALP)和酸性磷酸酶(ACP)可以将其水解成无机磷(PO43- -P)并随着有机物的水解酸化而释放,ALP和ACP活性采用分光光度法测定[10-11].乳酸脱氢酶(LDH)是脱氢酶(DH)的一种,是催化乳酸与丙酮酸之间氧化还原反应的重要生物酶.因此,DH可以代表发酵过程中的LDH.与LDH一样,由于膜的损伤,DH也可能被释放[11-12].因此,可利用DH研究微生物细胞膜与不同添加量CaO2 的相互作用,揭示CaO2在厌氧发酵过程中可能存在的毒性机制,DH的活性采用分光光度法测定[10-11].1.4计算方法污泥厌氧发酵的过程,是污泥中微生物解体、有机物释放的过程,而污泥溶液化率(SCOD)和污泥分解性率(DDCOD)可表征污泥中微生物解体程度,计算公式分別如下[13-14]:式中,CODs 为溶解性COD 值/(mg·L-1);CODs0为原始溶液中溶解性COD值/(mg·L-1);CODp0为污泥原始颗粒COD值/(mg· L-1);CODNaOH为实验温度下,1mol/LNaOH 处理剩余污泥24 h后的COD 值/(mg·L-1).2结果与讨论2.1CaO2对污泥水解性能的影响2.1.1不同添加量的CaO2对污泥溶解的影响图1为不同添加量的CaO2 对剩余污泥厌氧发酵系统中pH值、DNA质量浓度、SCOD值和DDCOD值的影响.由图1可以看出,CaO2对系统中SCOD值和DDCOD值均具有显著影响,两者均随着CaO2添加量的增加而增大,SCOD值由8.84%增至41.37%,DDCOD 值由11.84% 增至55.42%.其中,0.4mg/mgSS发酵系统中的SCOD值和DDCOD值是0.1mg/mgSS发酵系统的4~5倍.该结果与X.Li等[15]研究的污泥碱性发酵过程中SCOD值的变化(23.2% ~53.8%,15~55℃)相似,但是高于Naddeo超声破碎处理污泥中SCOD值的变化(22%,19000kJ/kg)[16],这说明CaO2 能够有效地促进污泥溶液化和分解.这是因为CaO2溶于水后生成的OH-能够破坏微生物细胞壁,促进有机质释放[17],随着CaO2 添加量的增加,系统内pH值升高至12(如图1a)所示),直接破坏了微生物细胞壁.同时CaO2作用发酵系统后生成大量的活性物质如H2O2,·OH和·O2-等,这些活性物质能够破坏微生物细胞膜,使细胞内容物流失[18],从而使剩余污泥有效溶解.在溶解过程中,DNA随着细胞质的溶出而释放(如图1b)所示),DNA质量浓度随着CaO2添加量的增加而增大,发酵末期(17d)其值为8.5~193.3mg/L.2.1.2不同添加量的CaO2对可溶性蛋白质和多糖质量浓度的影响不同添加量的CaO2对剩余污泥厌氧发酵过程中蛋白质和多糖质量浓度的影响如图2所示.由图2可以看出,发酵过程中蛋白质和多糖质量浓度均随着CaO2添加量的增加而增大,发酵后期蛋白质质量浓度显著下降,而多糖质量浓度相对较为稳定.反应至第5~6d时,0.4mg/mgSS发酵系统中蛋白质和多糖质量浓度最大,分别为931.12mg/L和343.62mg/L,是0.1mg/mgSS发酵系统(150.83 mg/L 和34.56mg/L)的6.17倍和9.94倍,即使发酵末期蛋白质和多糖质量浓度(514.47mg/L和392.44mg/L)下降,仍为0.1mg/mgSS发酵系统(55.03mg/L 和15.95mg/L)的9.35倍和24.60倍,说明CaO2能够有效提高剩余污泥的水解性能.同时还发现,发酵末期0.4mg/mgSS发酵系统中蛋白质质量浓度是多糖质量浓度的1.31倍,低于其他碱性发酵(NaOH,KOH,Ca(OH)2)方式[3],但是高于单过硫酸氢钾、高铁酸钾等发酵方式[19-20].CaO2 溶于水后形成大量的OH-,这些OH-和CaO2对细胞壁均有破坏作用,使大量的蛋白质和多糖类释放至系统,但是其水解过程中形成的H2O2,· OH,·O2-能够氧化蛋白质,减少系统中蛋白质的质量浓度.由于CaO2氧化性低于·SO4-(单过硫酸氢钾溶于水后的产物),因此,该发酵过程产生的蛋白质和多糖的比例高于单过硫酸氢钾发酵方式.2.2不同添加量的CaO2对污泥酸化的影响图3为不同添加量的CaO2 对剩余污泥厌氧发酵过程中污泥酸化的影响.由图3a)可以看出,系统中SCFAs的产量随着CaO2添加量的增加基本呈先增大后降低的趋势,发酵至第5d时,0.2mg/mgSS发酵系统中SCFAs产量最大(876.12mg/L),是0.1mg/mgSS发酵系统(35.00 mg/L)的25.03倍;发酵至第9d时,0.3mg/mgSS发酵系统中SCFAs的产量迅速增至最大,但是0.2mg/mgSS发酵系统中SCFAs产量迅速下降.该结果表明,当CaO2添加量为0.3mg/mgSS时,能够显著提高发酵系统中SCFAs的产量,这是因为该发酵系统中含有丰富的蛋白质和多糖等物质,且系统pH值为9~10(见图1a)),该环境下较适合产酸菌的生长,但严重抑制产甲烷菌活性.在0.3mg/mgSS发酵系统中,随着发酵时间的延长,SCFAs产量升高,其原因可能是,在发酵后期,系统内的pH值下降,产酸菌活性得到恢复,能够有效利用系统内丰富的蛋白质和多糖生成SCFAs.而发酵后期0.2mg/mgSS发酵系统中SCFAs产量迅速降低是因为系统中pH值迅速下降至7~8,导致系统中产甲烷菌活性恢复,SCFAs被大量消耗.由图3b)可以看出,在0.4mg/mgSS发酵系统中,蛋白质和多糖的质量浓度较其他发酵系统均升高,但当发酵系统中pH值增至12,不仅抑制产甲烷菌生长,同时也影响产酸菌的活性.邢立群等[21]也发现,发酵系统经强碱(pH=10~12)处理后,产酸菌活性受到严重抑制,SCFAs产量显著下降.而且CaO2 发酵系统中较高的·OH,·O2-等强氧化物质对系统内微生物的生长存在抑制作用,所以,CaO2 添加量过高时不利于剩余污泥厌氧发酵产酸.表2为不同添加量的CaO2 对剩余污泥厌氧发酵系统中酸成分的影响.由表2可以看出,发酵系统中SCFAs乙酸占比差别较显著,随着CaO2添加量的增加呈先增大后降低的趋势,分别为52.85%,66.96%,63.94%和48.72%.高于作者前期研究的Ca(OH)2 污泥厌氧发酵系统中的乙酸占比(62.27%)[3],但是低于单过硫酸钾氢钾污泥厌氧发酵系统中的乙酸占比(75.55%)[19-22].可见,CaO2,Ca(OH)2与单过硫酸氢钾在污泥发酵过程中的化学性质相似,其水解过程中释放的高氧化物质会强化乙酸的积累.SCFAs中的丙酸占比随着CaO2添加量的增加而降低,分别为7.41%,5.09%,5.18%和3.63%,均低于Ca(OH)2型污泥發酵系统的丙酸占比(10% ~15%)[3]和单过硫酸氢钾发酵系统的丙酸占比(3.42% ~11.29%)[22].这说明CaO2能够提高微生物对丙酸的利用率,进而提高发酵系统中乙酸占比.此外,系统中可能含有大量的Erysipelothrix,Tissierella,Peptostreptococcaceaeincertae_sedis等产乙酸微生物[3].在系统中,SCFAs中正丁酸和正戊酸的占比与丙酸相似,均随着CaO2添加量的增大而降低;异丁酸的占比随着CaO2添加量的增加先降低后升高;异戊酸的占比随着CaO2添加量的增加先增加后降低.这是因为,正丁酸和正戊酸属于直链酸,更容易被微生物利用,故二者在系统中的占比低于异丁酸和异戊酸.2结果与讨论2.1CaO2对污泥水解性能的影响2.1.1不同添加量的CaO2对污泥溶解的影响图1为不同添加量的CaO2 对剩余污泥厌氧发酵系统中pH值、DNA质量浓度、SCOD值和DDCOD值的影响.由图1可以看出,CaO2对系统中SCOD值和DDCOD值均具有显著影响,两者均随着CaO2添加量的增加而增大,SCOD值由8.84%增至41.37%,DDCOD 值由11.84% 增至55.42%.其中,0.4mg/mgSS发酵系统中的SCOD值和DDCOD值是0.1mg/mgSS发酵系统的4~5倍.该结果与X.Li等[15]研究的污泥碱性发酵过程中SCOD值的变化(23.2% ~53.8%,15~55℃)相似,但是高于Naddeo超声破碎处理污泥中SCOD值的变化(22%,19000kJ/kg)[16],这说明CaO2 能够有效地促进污泥溶液化和分解.这是因为CaO2溶于水后生成的OH-能够破坏微生物细胞壁,促进有机质释放[17],随着CaO2 添加量的增加,系统内pH值升高至12(如图1a)所示),直接破坏了微生物细胞壁.同时CaO2作用发酵系统后生成大量的活性物质如H2O2,·OH和·O2-等,这些活性物质能够破坏微生物细胞膜,使细胞内容物流失[18],从而使剩余污泥有效溶解.在溶解过程中,DNA随着细胞质的溶出而释放(如图1b)所示),DNA质量浓度随着CaO2添加量的增加而增大,发酵末期(17d)其值为8.5~193.3mg/L.2.1.2不同添加量的CaO2对可溶性蛋白质和多糖质量浓度的影响不同添加量的CaO2对剩余污泥厌氧发酵過程中蛋白质和多糖质量浓度的影响如图2所示.由图2可以看出,发酵过程中蛋白质和多糖质量浓度均随着CaO2添加量的增加而增大,发酵后期蛋白质质量浓度显著下降,而多糖质量浓度相对较为稳定.反应至第5~6d时,0.4mg/mgSS发酵系统中蛋白质和多糖质量浓度最大,分别为931.12mg/L和343.62mg/L,是0.1mg/mgSS发酵系统(150.83 mg/L 和34.56mg/L)的6.17倍和9.94倍,即使发酵末期蛋白质和多糖质量浓度(514.47mg/L和392.44mg/L)下降,仍为0.1mg/mgSS发酵系统(55.03mg/L 和15.95mg/L)的9.35倍和24.60倍,说明CaO2能够有效提高剩余污泥的水解性能.同时还发现,发酵末期0.4mg/mgSS发酵系统中蛋白质质量浓度是多糖质量浓度的1.31倍,低于其他碱性发酵(NaOH,KOH,Ca(OH)2)方式[3],但是高于单过硫酸氢钾、高铁酸钾等发酵方式[19-20].CaO2 溶于水后形成大量的OH-,这些OH-和CaO2对细胞壁均有破坏作用,使大量的蛋白质和多糖类释放至系统,但是其水解过程中形成的H2O2,· OH,·O2-能够氧化蛋白质,减少系统中蛋白质的质量浓度.由于CaO2氧化性低于·SO4-(单过硫酸氢钾溶于水后的产物),因此,该发酵过程产生的蛋白质和多糖的比例高于单过硫酸氢钾发酵方式.2.2不同添加量的CaO2对污泥酸化的影响图3为不同添加量的CaO2 对剩余污泥厌氧发酵过程中污泥酸化的影响.由图3a)可以看出,系统中SCFAs的产量随着CaO2添加量的增加基本呈先增大后降低的趋势,发酵至第5d时,0.2mg/mgSS发酵系统中SCFAs产量最大(876.12mg/L),是0.1mg/mgSS发酵系统(35.00 mg/L)的25.03倍;发酵至第9d时,0.3mg/mgSS发酵系统中SCFAs的产量迅速增至最大,但是0.2mg/mgSS发酵系统中SCFAs产量迅速下降.该结果表明,当CaO2添加量为0.3mg/mgSS时,能够显著提高发酵系统中SCFAs的产量,这是因为该发酵系统中含有丰富的蛋白质和多糖等物质,且系统pH值为9~10(见图1a)),该环境下较适合产酸菌的生长,但严重抑制产甲烷菌活性.在0.3mg/mgSS发酵系统中,随着发酵时间的延长,SCFAs产量升高,其原因可能是,在发酵后期,系统内的pH值下降,产酸菌活性得到恢复,能够有效利用系统内丰富的蛋白质和多糖生成SCFAs.而发酵后期0.2mg/mgSS发酵系统中SCFAs产量迅速降低是因为系统中pH值迅速下降至7~8,导致系统中产甲烷菌活性恢复,SCFAs被大量消耗.由图3b)可以看出,在0.4mg/mgSS发酵系统中,蛋白质和多糖的质量浓度较其他发酵系统均升高,但当发酵系统中pH值增至12,不仅抑制产甲烷菌生长,同时也影响产酸菌的活性.邢立群等[21]也发现,发酵系统经强碱(pH=10~12)处理后,产酸菌活性受到严重抑制,SCFAs产量显著下降.而且CaO2 发酵系统中较高的·OH,·O2-等强氧化物质对系统内微生物的生长存在抑制作用,所以,CaO2 添加量过高时不利于剩余污泥厌氧发酵产酸.表2为不同添加量的CaO2 对剩余污泥厌氧发酵系统中酸成分的影响.由表2可以看出,发酵系统中SCFAs乙酸占比差别较显著,随着CaO2添加量的增加呈先增大后降低的趋势,分别为52.85%,66.96%,63.94%和48.72%.高于作者前期研究的Ca(OH)2 污泥厌氧发酵系统中的乙酸占比(62.27%)[3],但是低于单过硫酸钾氢钾污泥厌氧发酵系统中的乙酸占比(75.55%)[19-22].可见,CaO2,Ca(OH)2与单过硫酸氢钾在污泥发酵过程中的化学性质相似,其水解过程中释放的高氧化物质会强化乙酸的积累.SCFAs中的丙酸占比随着CaO2添加量的增加而降低,分别为7.41%,5.09%,5.18%和3.63%,均低于Ca(OH)2型污泥发酵系统的丙酸占比(10% ~15%)[3]和单过硫酸氢钾发酵系统的丙酸占比(3.42% ~11.29%)[22].这说明CaO2能够提高微生物对丙酸的利用率,进而提高发酵系统中乙酸占比.此外,系统中可能含有大量的Erysipelothrix,Tissierella,Peptostreptococcaceaeincertae_sedis等产乙酸微生物[3].在系统中,SCFAs中正丁酸和正戊酸的占比与丙酸相似,均随着CaO2添加量的增大而降低;异丁酸的占比随着CaO2添加量的增加先降低后升高;异戊酸的占比随着CaO2添加量的增加先增加后降低.这是因为,正丁酸和正戊酸属于直链酸,更容易被微生物利用,故二者在系统中的占比低于异丁酸和异戊酸.。
负载高铁酸钾对剩余污泥厌氧发酵产酸的影响及作用机制负载高铁酸钾对剩余污泥厌氧发酵产酸的影响及作用机制摘要:随着城市化进程的不断加快,污水处理厂生产的剩余污泥排放量逐年增加。
而剩余污泥处理的方法中,厌氧发酵是一种较为常用的处理方式。
本研究通过加入不同浓度的高铁酸钾,对剩余污泥进行厌氧发酵实验,探究高铁酸钾对厌氧发酵产酸的影响及作用机制。
实验结果表明,在相同初生质量浓度的条件下,加入高铁酸钾可以提高产酸速率以及总产酸量,其中以1.5g/L浓度时效果最好。
同时,通过分析微生物群落和代谢产物的变化,发现高铁酸钾的作用机制可能与调节微生物群落的组成,优化代谢途径以及增加有机酸类代谢的相关酶的活性有关。
本研究为剩余污泥厌氧发酵处理提供了一种可行的技术改进方法。
关键词:剩余污泥;厌氧发酵;高铁酸钾;产酸速率;微生物群落;代谢产物1. 引言剩余污泥是污水处理过程中产生的废弃物,由于其高水分、低干物质、富含有机质等特点,对环境造成的影响日益加剧。
因此,剩余污泥的处理和利用成为环境人士关注的重点问题之一。
目前,剩余污泥处理的方法包括填埋、焚烧、肥料化利用等多种方式。
其中,利用生物处理方式进行资源化处理是一种较为环保、经济的方法。
厌氧发酵是一种常用的污泥处理方式,可将有机质转化为沼气和有机酸等有用产物。
目前,在厌氧发酵过程中加入外源物质进行调控已成为一种常见的提高产酸效果的方法。
高铁酸钾作为一种化学添加剂,具有促进菌群增殖和代谢、调节代谢过程等作用。
因此,本研究对高铁酸钾在剩余污泥厌氧发酵中的应用进行了研究,旨在探究高铁酸钾对厌氧发酵产酸的影响及作用机制。
2. 材料与方法2.1 实验材料剩余污泥样品:来自某市污水处理厂,经过压滤、干燥反复处理得到。
高铁酸钾:分别加入浓度为0.5、1.0、1.5、2.0 g/L的高铁酸钾进行实验。
2.2 实验方法2.2.1 实验装置厌氧罐、搅拌器、温度计、pH 仪、沼气分析仪。
2.2.2 实验流程将剩余污泥样品加入厌氧罐中,并加入不同浓度的高铁酸钾试剂,以相同的初生质量浓度为基础进行实验。
外源添加剂强化剩余污泥厌氧发酵产酸的影响研究
孙鸿;罗进财;王欣芸;董姗燕;朱易春
【期刊名称】《水处理技术》
【年(卷),期】2024(50)3
【摘要】挥发性脂肪酸(VFA)是污水生物处理中反硝化脱氮和厌氧释磷过程必需的碳源,还能作为底物生产高附加值的产品,而利用剩余污泥进行厌氧发酵是产VFA的重要途径之一。
为了提高污泥产酸效率,利用外源添加剂促进和强化污泥厌氧发酵
产酸的研究逐渐引起重视。
文章总结了抗生素、表面活性剂、植物化学物质和盐类四类外源添加剂对污泥厌氧发酵产酸过程的影响,分别从外源添加剂对污泥的增溶、水解、产酸和产甲烷四个过程进行了分析,同时阐述了外源添加剂在污泥中的降解、残留状况,最后提出对两种或两种以上的外源添加剂联用促进产酸和寻找能促进污
泥产酸的共发酵基质也是今后的研究重点。
【总页数】6页(P7-12)
【作者】孙鸿;罗进财;王欣芸;董姗燕;朱易春
【作者单位】江西理工大学土木与测绘工程学院;赣江流域水质安全保障技术创新
中心
【正文语种】中文
【中图分类】X703
【相关文献】
1.混合外源菌强化剩余污泥微氧水解产酸
2.紫外耦合游离亚硝酸强化剩余污泥厌氧发酵产酸研究
3.不同初始pH值下磷钼酸对剩余污泥厌氧发酵产酸的影响
4.老化轮胎微塑料对剩余污泥厌氧发酵产酸的影响
5.不同电解质对电化学预处理剩余污泥厌氧发酵产挥发性脂肪酸的影响
因版权原因,仅展示原文概要,查看原文内容请购买。
碱性条件促进植物生物质厌氧水解及发酵产酸的研究徐超;阎宏;闻岳;周琪【摘要】In this study, biomass (cattail litter) fermentation tests were conducted with 6 identical reactors at different pH values ranging from 7.0-12.0. Biomass hydrolysis, volatile fatty acids (VFAs) accumulation, distribution and related stechiometry under alkaline conditions were investigated. The results showed that hydrolysis and soluble organic production were significantly improved with the increase of pH value. Acetic acid was the most prevalent product accounting for over 90% of total VFAs. Under alkaline conditions, not only the production of VFAs was significantly improved, but also the conversion rate of biomass was observably enhanced. The VFAs yield at pH 12. 0 was 196. 57mgVFAs/g biomass, and it was 2. 2 times of those at pH 7.0. In conclusion, biomass hydrolysis and the production of VFAs could be significantly improved under alkaline conditions.%[目的]研究碱性条件对植物生物质厌氧水解和发酵产酸的促进作用.[方法]采用半连续流式试验,考察了在pH分别为7.0、8.0、9.0、10.0、11.0和12.0条件下的水生植物生物质(香蒲枯叶)水解、挥发性脂肪酸(Volatile Fatty Acids,VFAs)的积累和分布规律.[结果]在pH 10.0~12.0的强碱性条件下,VFAs产量随着pH的增大显著增加;生成的VFAs中,乙酸含量大部分在90%以上;强碱性条件使单位质量生物质转化成VFAs的效率显著提高,pH 12.0条件下VFAs产率为196.57 mg( VFAs)/g(生物质),是pH 7.0条件下的2.2倍.[结论]生物质的水解效率和溶解性有机物浓度随着强碱性的增强而显著提高,碱性条件能够有效促进生物质水解及发酵产酸.【期刊名称】《安徽农业科学》【年(卷),期】2011(039)036【总页数】4页(P22518-22520,22555)【关键词】生物质;发酵产酸;碱性;挥发性脂肪酸【作者】徐超;阎宏;闻岳;周琪【作者单位】同济大学环境科学与工程学院,上海200092;同济大学环境科学与工程学院,上海200092;同济大学环境科学与工程学院,上海200092;同济大学环境科学与工程学院,上海200092【正文语种】中文【中图分类】X703.1我国现有的常规二级生化污水处理厂一般是以去除碳源污染物为目标,经处理达标后的出水排入水体后仍将会引起“富营养化”等水环境问题。
污泥厌氧发酵产酸研究1 引言据统计,至“十二五”期末我国湿污泥量(含湿量80%)将突破4600万t,而污泥厌氧消化技术以其低能耗、高产出的经济优势成为污泥资源化利用的主要技术之一.除厌氧消化产甲烷以外,污泥产挥发性脂肪酸(VFA)也是实现污泥资源化的有效途径,近年来,越来越多的学者开始关注污泥厌氧发酵产挥发性脂肪酸.目前,有关污泥厌氧发酵产酸的研究主要集中在通过改进装置构型、产酸微生物生态、优化控制运行条件,如控温、pH等条件因素来提高产酸效率.已有研究表明,通过调节发酵污泥底物的C/N比可增加发酵产酸量并调控其产酸类型,然而,目前研究人员对污泥厌氧发酵产酸过程中不同C/N比与关键酶酶活及有机酸产酸量间的关系并不清楚.仅有为数不多的研究,如优化C/N比条件作为酒精发酵的实验模型研究,而对于数学模型则没有报道.数学模型法作为现代科学研究的重要手段,它有助于描述和理解生物处理系统的反应过程,可为工程设计提供理论上的指导;还有助于工艺的优化和控制,从而更好地指导实际生产运行.多元线性回归是一种理想的描述多个因素之间关系的数学方法,能较好地确定被解释变量和解释变量之间的关系,在很多领域得到了应用(常盛等,2011).因此,本研究通过设置不同C/N比条件来调控污泥厌氧发酵产酸,在Matlab7.0平台上建立多元线性回归函数模型,拟合C/N比、关键酶酶活和产酸类型之间的关系,以期为今后污泥发酵产酸条件调控研究和工程放大提供参考.2 材料与方法2.1 实验材料2.1.1 污泥与种泥原始污泥取自无锡市太湖新城污水处理厂,发酵底物是经过热碱预处理的污泥上清液.污泥采集后置于阴凉处,风干10 d,采用机械粉碎仪粉碎,再过30目筛,密封置于-15 ℃冰柜中保存.接种污泥来源于无锡某柠檬酸厂上流式厌氧污泥反应器(UASB)中的厌氧颗粒污泥.在100 ℃下煮沸2 h以杀死产甲烷菌(Logan et al., 2002),然后导入有效容积为2 L的UASB中进行驯化,活化种泥中的产酸菌(郭磊等,2008),驯化温度为35 ℃.每日监测驯化种泥的pH值,待种泥驯化后出水pH值降低至4.0左右,稳定3~5 d后,认为种泥驯化成功.原始污泥和污泥预处理液及接种种泥的性质见表 1.表 1 原始污泥、污泥预处理液和接种污泥的性质2.1.2 厌氧发酵调节热-碱预处理后离心液pH为10.0,取500 mL离心液置于1000 mL的厌氧反应瓶中,分别加入不同量葡萄糖,以使得底物混合液的初始C/N比为12、56、69、156.接入驯化后的种泥,种泥接种量为10%(种泥和待处理水的体积比).污泥发酵前充氮气10 min以去除氧气,然后迅速密封置于转速为120 r·min-1和温度(35±1)℃的摇床厌氧发酵.在发酵期间,每12 h调节pH为初始的10.0(Logan et al., 2002).每24 h取样1次,用针管吸出部分发酵液,取样完成后调节pH 并充氮气保持厌氧.2.1.3 实验药品和材料本实验采用的药品包括4-甲基戊酸(0.83 g·L-1)、磷酸溶液(3 mol·L-1)、NaOH(3 mol·L-1)、HCL(3 mol·L-1)等;主要仪器包括pH计(Mettler Toledo,Switzerland)、气相色谱仪(GC-2010 Shimadzu Corporation,Tokyo,Japan)、马弗炉、凯氏定氮仪(Buchi,Switzerland),离心机(Eppendorff,Germany)等.2.2 试验方法 2.2.1 污泥初始指标测定污泥预处理前后的总固体(TS)、溶解性固体(SCOD)及污泥挥发性固体(VS)的测定采用重量法(Bligh et al., 1959),具体操作详见GB11901-89和《水和废水监测分析方法》.pH值测定参照国标法.污泥中的总脂类物质采用Bligh-Dyer方法提取后,在 80 ℃下干燥直至溶剂完全挥发后,采用重量法测定(Bligh et al., 1959).总氮采用凯氏定氮法测定.总蛋白含量通过凯氏氮减去氨氮后再乘以 6.25计算得到(Miron et al., 2000).氨氮采用纳氏试剂比色法测定,污泥中的总碳水化合物采用甲醛离心法提取后(Aquino et al., 2004),再用苯酚-硫酸法测定(Dubois et al., 1956).用 Liquid TOC 分析仪测定总有机碳,详见《水质总有机碳的测定燃烧氧化-非分散红外吸收法》(HJ/T71-2001).污泥中的总磷含量用钼酸铵分光光度法测定,详见《水质总磷的测定钼酸铵分光光度法》(GB11893-89).2.2.2 关键酶活测定乙酸激酶(AK)的活性采用文献(Rose,1955)的方法提取并测定.磷酸转移乙酰酶(PTA)的提取方法同乙酸激酶,活性测定参照文献(Andersch et al., 1983)方法.丁酸激酶(BK)微生物细胞的破壁方法和提取方法同乙酸激酶,活性测定采用文献(Zhu et al., 2003)方法.磷酸转移丁酰酶(PTB)微生物细胞的破壁和提取方法同乙酸激酶,活性测定采用文献(Zhu et al., 2003)方法. 甲基丙二酰CoA变位酶(MCM)活性测定采用文献(Kellermeyer et al., 1969)方法.2.2.3 挥发性短链脂肪酸的测定采用GC法检测挥发性短链脂肪酸的质量浓度,样品处理及色谱条件等参见文献(Liu et al., 2008).为方便不同条件下产酸效率的比较,将测得的VFAs浓度折算成 COD值,换算方法参见文献(Liu et al., 2008).3 结果与讨论3.1 有机酸浓度的变化分别设定底物初始C/N比值为12、56、156,进行厌氧发酵.发酵过程中时,体系中有机酸的产量分别如图 1所示.由图 1可以看出,底物初始C/N比不同,厌氧发酵产生的末端酸化产物也不同.C/N比为12时,产量最大的为乙酸,在第5 d达到9.45 kg·m-3(以COD计,下同);其次是丙酸,第5 d时可以达到3.55 kg·m-3;最低是丁酸,第5 d时产量约为2.35 kg·m-3(图 2a).当C/N 比为56时,产量最大的为丙酸,在第5 d可达到10.36 kg·m-3;其次是乙酸,可以达到7.79 kg·m-3;最低是丁酸,产量约为2.79 kg·m-3(图 2b).当C/N比为156时,产量最大的为丁酸,在第5 d达到13.59 kg·m-3;其次是乙酸,可以达到5.89 kg·m-3;最低是丁酸,产量约为4.72 kg·m-3(图2c).图 1 C/N比对发酵产酸的影响(a.C/N=12,b.C/N=56,c. C/N=156)图 2 底物发酵产酸的代谢途径3.2 多项式关系的数学模型的建立在发酵过程中,通过设定不同C/N比条件,测定不同C/N比下关键酶的酶活和产酸量,则三者可以建立函数关系.短链脂肪酸的生成途径如图 2所示(Feng et al., 2009),乙酸生成的关键酶分别为乙酸激酶(AK)和磷酸转移乙酰酶(PTA),丁酸合成的关键酶有丁酸激酶(BK)和磷酸转移丁酰酶(PTB);丙酮酸转化为乙酸过程中,关键酶为甲基丙二酰CoA变位酶(MCM).由于底物C/N比的改变会导致产酸微生物体内的酶活性改变,从而改变微生物不同代谢途径的代谢通量,并最终导致各种短链脂肪酸的生成受到影响,由此产生了不同的产酸类型.因此,C/N比是自变量,而关键酶活性和产酸类型是因变量.根据以上理论分析,为了建立C/N比、关键酶活、不同酸产量之间的函数关系模型,采用多元非线性回归(霍倩等,2002)的方法,建立了二元二次多项式模型(1)、二元三次多项式模型(2)、二元三次多项式模型(3).式中,Z为因变量,表示有机酸产量,X和Y为自变量,分别表示C/N比和关键酶活性,bi表示函数中的常数.根据实测数据对以上3种多项式模型进行拟合优度的检验,结果如表 2所示.表 2 模型拟合优度分析表 2中,A、B、C分别表示3种关系式模型,乙酸-AK、乙酸-PTA等分别表示各种产物酸与其对应的关键酶.根据优度拟合理论,R2大于 0.9的较好,因此,在多项式A乙酸-AK、B乙酸-AK和C乙酸-AK的R2检验中,C乙酸-AK效果最好,为0.9327.同样的,C乙酸-PTA、C丙酸-MCM、C丁酸-BK、C丁酸-PTB的R2分别为0.9348、0.9494、0.9880和0.9771,均具有最高的R2.模型拟合优度检验同时要求模型残差平方和越小越好,因此,在多项式A乙酸-AK、B乙酸-AK和C乙酸-AK的残差平方和检验中,C乙酸-AK的效果最好,为0.0292.同样的,C乙酸-PTA、C丙酸-MCM、C丁酸-BK、C丁酸-PTB的残差平方和分别为0.0076、1.8556、0.0038和3.1362,均具有最小的残差平方和.综合以上分析,可以判定二元三次多项式C模型拟合度最好.依据二元三次多项式C标准结构,结合实验测得的不同C/N比条件下的关键酶活和各种有机酸产量,建立了可视化的三者之间的曲面模型.3.3 C/N比-关键酶-乙酸曲面模型的建立根据上述多项式C的形式,利用Matlab软件进行拟合,得到多项式当中相应bi的值,进而得出C/N比-关键酶AK-乙酸之间的定量关系表达式(4)和C/N比-关键酶PTA-乙酸之间的定量关系表达式(5).根据定量关系式(4)和(5)绘制得到图 3的可视化曲面模型.从图 3的曲面模型可以看出:在初始C/N比为10~50时,酶活性较低,乙酸激酶(AK)和磷酸转乙酰酶(PTA)平均酶活性分别为1.06 U·mg-1和0.67 U·mg-1,而乙酸浓度从2.8 kg·m-3(以COD计,下同)上升到7.8 kg·m-3.在初始C/N比为50~150时,AK和PTA酶活性较高,平均值分别为2.79 U·mg-1和1.08 U·mg-1,而乙酸浓度为2.6 kg·m-3.从以上数据可知,酶活性水平和乙酸产量不一致,说明在此C/N比条件下,乙酸主要不是通过丙酮酸途径合成,而可能是通过丙酸、丁酸的转化形成.其他学者的研究都表明(任南琪等,2005;刘晓玲,2008),C/N比通过直接或间接影响产能过程及NADH(或NADPH)/NAD+(或NADP+)的氧化还原偶联过程,促使不同发酵产酸类型的形成.在低C/N比条件下,乙酸的产生主要是通过氨基酸之间的Stickland反应形成,本文的曲面模型很好地解释了这一结论.图 3 C/N比、产乙酸关键酶和不同酸产量之间的曲面模型(a.乙酸激酶(AK),b.磷酸转移乙酰酶(PTA)3.4 C/N比-关键酶MCM-丙酸曲面关系的数学模型的建立C/N比-关键酶MCM-丙酸之间的定量关系表达式如式(6)所示.由C/N比-关键酶MCM-丙酸曲面模型可以看出,当 C/N比为 55~70时,甲基丙二酰CoA变位酶(MCM)活性都有大幅度增加,同时丙酸的产量也开始上升,这与任南琪等(2005)的研究一致,表明丙酸型发酵中,丙酸产生于糖酵解丙酮酸途径.根据已有的理论研究,通常情况下,丙酸型发酵代谢途径有利于NADH+H+的氧化,而丁酸型发酵缺乏对 NADH 的再生能力.所以当 C/N 值处于56~69(王勇等,2004;任南琪等,2005)时,微生物的细胞合成速率较小,丙酸型发酵比丁酸型发酵有更高的稳定性,产酸结果就形成丙酸型发酵,这也解释了本文曲面模型当中丙酮酸的产量和关键酶活性大幅提升的原因.3.5 C/N比-关键酶BK-丁酸曲面关系的数学模型的建立C/N比-关键酶BK-丁酸之间的定量关系如式(7)所示,C/N比-关键酶PTB-丁酸之间的定量关系如式(8)所示.在初始C/N比为150及更高时,丁酸激酶(BK)和磷酸转移丁酰酶(PTB)的活性均有大幅度增加.以前的研究表明,丁酸的产生主要由糖酵解丙酮酸形成(任南琪等,2005).随着C/N值升高到156,碳作为微生物细胞的重要组成元素,促使了细胞合成代谢速率的提高,有机质分解代谢过程中产生的部分NADH(或NADPH)能够被厌氧微生物迅速地用于细胞合成而得以再生,所以,呈现较稳定的丁酸型发酵类型.已有研究表明,通过调控污泥预处理液的初始 C/N 值可实现乙酸、丙酸和丁酸不同厌氧发酵类型之间的转变.在初始C/N比为10~50时,此时发酵是乙酸型发酵.而当 C/N 值为 55~70时,此时厌氧发酵类型则转变为丙酸型.在初始C/N比为150及更高时,此时,丙酸型发酵类型则转变为丁酸型(任南琪等,2005).本文图 3~5建立的曲面模型结果表明,所建立的模型能很好地反映这一趋势,说明模型能较好地模拟C/N比调控下的污泥发酵产酸实验结果.具体参见污水宝商城资料或更多相关技术文档。