_二次函数图像与性质
- 格式:ppt
- 大小:490.00 KB
- 文档页数:15
二次函数的图像与性质二次函数是高中数学中重要的概念之一,它具有独特的图像与性质。
本文将系统地介绍二次函数的图像与性质,帮助读者更好地理解和应用二次函数。
一、基本概念二次函数是指具有形式为f(x) = ax² + bx + c的函数,其中a、b和c为实数且a ≠ 0。
在该函数中,x为自变量,而f(x)为因变量。
a决定了二次函数的开口方向,具体可分为向上开口和向下开口两种情形。
二、图像特征1. 开口方向:当a > 0时,二次函数的图像向上开口;当a < 0时,二次函数的图像向下开口。
2. 顶点坐标:二次函数的顶点坐标可通过顶点公式计算得到。
对于f(x) = ax² + bx + c形式的二次函数,其顶点坐标为(-b/2a, f(-b/2a))。
3. 对称轴:二次函数的对称轴是与顶点坐标垂直的直线,其方程为x = -b/2a。
4. 零点:二次函数的零点是使得f(x) = 0的x值,可通过求解二次方程ax² + bx + c = 0得到。
三、性质分析1. 最值:当二次函数开口向上时,它的最小值为顶点的纵坐标;当二次函数开口向下时,它的最大值为顶点的纵坐标。
2. 单调性:二次函数的单调性取决于a的正负。
当a > 0时,函数在对称轴两侧递增;当a < 0时,函数在对称轴两侧递减。
3. 范围:函数的值域取决于二次函数的开口方向。
对于向上开口的二次函数,其值域为[f(-b/2a), +∞);对于向下开口的二次函数,其值域为(-∞, f(-b/2a)]。
4. 判别式:二次方程ax² + bx + c = 0的判别式Δ = b² - 4ac可以用来判断二次函数的图像与性质。
当Δ > 0时,函数有两个不同的实根,图像与x轴有两个交点;当Δ = 0时,函数有一个重根,图像与x轴有一个交点;当Δ < 0时,函数没有实根,图像与x轴没有交点。
二次函数图像与性质完整归纳二次函数的图像与性质二次函数是高中数学中的重要内容之一,掌握其图像与性质是必不可少的。
二次函数的基本形式是y=ax^2,其中a表示开口方向和抛物线开口大小,x^2表示自变量的平方。
根据a的正负,抛物线的开口方向和顶点的坐标可以得到不同的性质。
当a>0时,抛物线开口向上,顶点坐标为(0,0),对称轴为y轴;当a<0时,抛物线开口向下,顶点坐标为(0,0),对称轴为y轴。
在y=ax^2的基础上,加上常数项c可以得到y=ax^2+c的形式,其中c表示抛物线在y轴上的截距。
根据a和c的正负,抛物线的开口方向、顶点坐标和对称轴可以得到不同的性质。
当a>0,c>0时,抛物线开口向上,顶点坐标为(0,c),对称轴为y轴;当a>0,c0时,抛物线开口向下,顶点坐标为(0,c),对称轴为y轴;当a<0,c<0时,抛物线开口向下,顶点坐标为(0,c),对称轴为y轴。
除了基本形式和加上常数项的形式,二次函数还有一种顶点式的形式y=a(x-h)^2+k,其中(h,k)表示顶点坐标。
根据a的正负,抛物线的开口方向和顶点坐标可以得到不同的性质。
当a>0时,抛物线开口向上,顶点坐标为(h,k),对称轴为直线x=h;当a<0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h。
在顶点式的基础上,加上常数项k可以得到y=a(x-h)^2+k的形式。
根据a和k的正负,抛物线的开口方向、顶点坐标和对称轴可以得到不同的性质。
当a>0,k>0时,抛物线开口向上,顶点坐标为(h,k),对称轴为直线x=h;当a>0,k0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h;当a<0,k<0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h。
二次函数图象的平移二次函数的图像可以通过平移来得到新的图像。
平移的步骤是先确定顶点坐标,然后根据顶点坐标的变化来确定平移方向和距离。
二次函数的性质二次函数是数学中的一个重要概念,它具有许多独特的性质。
在本文中,我们将探讨二次函数的性质,包括其图像的形状、顶点、轴对称性、零点和判别式等方面。
一、二次函数的图像形状二次函数的图像形状通常为一个开口向上或向下的抛物线。
它的开口方向由二次项的系数决定。
当二次项系数大于0时,抛物线开口向上;当二次项系数小于0时,抛物线开口向下。
二、二次函数的顶点二次函数的顶点是其图像的最低点(开口向上)或最高点(开口向下)。
顶点的横坐标称为函数的轴对称轴,可以通过公式 x = -b/2a 来计算。
顶点的纵坐标即为函数的最值。
三、二次函数的轴对称性由于二次函数是关于轴对称轴对称的,其图像可以通过轴对称轴进行折叠。
例如,如果一个点 (x, y) 在二次函数上,则点 (-x, y) 也在同一二次函数上。
四、二次函数的零点二次函数的零点即为函数与 x 轴相交的点,也就是函数的根。
我们可以通过求解二次方程 ax^2 + bx + c = 0 来找到二次函数的零点。
其中,a、b 和 c 分别代表二次函数的三个系数。
五、二次函数的判别式二次函数的判别式可以用来判断二次函数的零点情况。
判别式的计算公式为Δ = b^2 - 4ac。
当判别式大于0时,二次函数有两个不同的实根;当判别式等于0时,二次函数有两个相同的实根;当判别式小于0时,二次函数没有实根,只有虚根。
六、二次函数的导数与凹凸性二次函数的导数是一个一次函数,其斜率与二次函数切线的斜率相等。
根据导数的正负可以判断二次函数的凹凸性。
当导数大于0时,二次函数在该区间上是上凹的;当导数小于0时,二次函数在该区间上是下凹的。
七、二次函数的平移和缩放二次函数通过平移和缩放可以变换其图像的位置和形状。
平移是通过在函数中加上或减去一个常数来实现,而缩放是通过在函数的系数前面乘以一个常数来实现。
综上所述,二次函数是一个具有多种性质的函数,包括图像形状、顶点、轴对称性、零点、判别式、导数与凹凸性以及平移和缩放等方面。
二次函数的性质二次函数是高中数学中一个重要的概念,它是一种形如y=ax²+bx+c的函数,其中a、b、c是实数且a≠0。
在本文中,我将详细介绍二次函数的性质,包括定义、图像、顶点、对称轴、零点、判别式以及二次函数的分类。
一、二次函数的定义二次函数是一种多项式函数,它的最高次项是二次项,即x的平方项。
一般地,我们可以表示为y=ax²+bx+c,其中a、b、c为实数,且a≠0。
常见的二次函数包括抛物线、开口方向为上或下的曲线。
二、二次函数的图像二次函数的图像通常是一个U形或者倒U形的曲线,也即抛物线。
抛物线开口的方向取决于二次函数的系数a的正负。
1. 当a>0时,抛物线开口向上,图像在坐标系的正半轴上方;2. 当a<0时,抛物线开口向下,图像在坐标系的负半轴上方。
三、二次函数的顶点二次函数的顶点是抛物线的最低点(开口向上)或最高点(开口向下)。
顶点的横坐标可以通过用-b/2a求得,纵坐标可以通过将横坐标代入函数得出。
四、二次函数的对称轴二次函数的对称轴是指通过顶点并垂直于x轴的一条直线。
对称轴的方程为x=-b/2a。
五、二次函数的零点二次函数的零点是指使函数取值为零的x的值。
可以通过求解二次方程ax²+bx+c=0来得到零点。
根据一元二次方程的求根公式,可得x=(-b±√(b²-4ac))/(2a)。
当判别式b²-4ac>0时,方程有两个不相等的实根;当b²-4ac=0时,方程有两个相等的实根;当b²-4ac<0时,方程没有实根。
六、二次函数的判别式二次函数的判别式D=b²-4ac可以用来判断二次函数的图像和零点的性质。
1. 当D>0时,方程有两个不相等的实根,图像与x轴有两个交点;2. 当D=0时,方程有两个相等的实根,图像与x轴有一个交点;3. 当D<0时,方程没有实根,图像与x轴无交点。
二次函数的性质及图像分析引言:二次函数是高中数学中一个重要的概念,它在数学和实际问题中都有广泛的应用。
本文将介绍二次函数的性质及图像分析,帮助读者更好地理解和应用二次函数。
一、二次函数的定义与一般形式二次函数是指形如y=ax^2+bx+c的函数,其中a、b、c为实数且a≠0。
其中,a决定了二次函数的开口方向和开口的大小,b决定了二次函数的对称轴位置,c决定了二次函数的纵轴截距。
二、二次函数的图像特点1. 开口方向:当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。
2. 对称轴:二次函数的对称轴是一个垂直于x轴的直线,其方程为x=-b/2a。
3. 零点:二次函数与x轴的交点称为零点,即使y=0的解,可以通过求解二次方程ax^2+bx+c=0得到。
4. 极值点:当二次函数开口向上时,函数的最小值称为极值点;当二次函数开口向下时,函数的最大值称为极值点。
5. 函数增减性:二次函数的增减性与a的正负有关,当a>0时,二次函数在对称轴两侧递增;当a<0时,二次函数在对称轴两侧递减。
三、二次函数图像的分析与应用1. 开口方向的影响:二次函数的开口方向决定了函数的增减性和极值点的位置。
在实际问题中,可以通过二次函数的开口方向来判断某一现象的趋势,例如物体的抛射运动中,开口向上的二次函数可以表示物体上升的高度,开口向下的二次函数可以表示物体下降的高度。
2. 对称轴的作用:二次函数的对称轴决定了函数图像的对称性。
在实际问题中,对称轴可以帮助我们找到函数图像的关键点,例如求解二次函数的最值、求解二次函数与其他图像的交点等。
3. 零点的意义:二次函数的零点表示函数与x轴的交点,即函数的解。
在实际问题中,零点可以帮助我们求解方程,解决实际问题,例如求解二次方程来确定某一物体的位置、时间等。
4. 极值点的应用:二次函数的极值点表示函数的最值,可以帮助我们求解最优解问题。
在实际问题中,可以通过求解二次函数的极值点来确定某一问题的最优解,例如求解最短路径、最大利润等。
二次函数的图像与性质二次函数的性质二次函数()02≠++=a c bx ax y 的顶点坐标是(-a b 2,a b ac 442-),对称轴直线x=-a b 2,二次函数y=ax 2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax 2+bx+c(a≠0)的开口向上,x<-a b 2时,y 随x 的增大而减小;x>-a b 2时,y 随x 的增大而增大;x=-a b 2时,y 取得最小值a b ac 442-,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax 2+bx+c(a≠0)的开口向下,x<-a b 2时,y 随x 的增大而增大;x>-a b 2时,y 随x 的增大而减小;x=-a b 2时,y 取得最大值a b ac 442-,即顶点是抛物线的最高点.③抛物线y=ax 2+bx+c(a≠0)的图象可由抛物线y=ax 2的图象向右或向左平移a b 2个单位,再向上或向下平移ab ac 442-个单位得到的.二次函数上点坐标的特征二次函数y=ax 2+bx+c(a≠0)的图象是抛物线,顶点坐标是(-a b 2,ab ac 442-).①抛物线是关于对称轴x=-a b 2成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.②抛物线与y 轴交点的纵坐标是函数解析中的c 值.③抛物线与x 轴的两个交点关于对称轴对称,设两个交点分别是(x 1,0),(x 2,0),则其对称轴为x=221x x +【例1】已知()()212232m x m x m m y m m +-+-=--是关于x 的二次函数,求出它的解析式,并写出其二次项系数、一次项系数及常数项.【例2】下列各式中,一定是二次函数的有()①y=2x 2﹣4xz +3;②y=4﹣3x +7x 2;③y=(2x ﹣3)(3x ﹣2)﹣6x 2;④y=21x﹣3x +5;⑤y=ax 2+bx +c (a ,b ,c 为常数);⑥y=(m 2+1)x 2﹣2x ﹣3(m 为常数);⑦y=m 2x 2+4x ﹣3(m 为常数).A .1个B .2个C .3个D .4个【例3】(2017•东莞市一模)在同一坐标系中,一次函数y=ax+b 与二次函数y=bx 2+a 的图象可能是()A.B.C.D.【例4】(2017•辽阳)如图,抛物线y=x 2﹣2x﹣3与y 轴交于点C,点D 的坐标为(0,﹣1),在第四象限抛物线上有一点P,若△PCD 是以CD 为底边的等腰三角形,则点P 的横坐标为()A.1+2B.1﹣2C.2﹣1D.1﹣2或1+2【例5】(2017•唐河县三模)如图,在平面直角坐标系中,抛物线y=31x 2经过平移得到抛物线y=ax 2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为38,则a、b 的值分别为()A.31,34B.31,﹣38C.31,﹣34D.﹣31,34【例6】(2016•北仑区一模)如图,抛物线y=﹣x 2+5x﹣4,点D 是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD 的面积的最大值是多少?1、(2011秋•无锡期末)下列函数中,(1)y ﹣x 2=0,(2)y=(x +2)(x ﹣2)﹣(x ﹣1)2,(3)x x y 12+=,(4)322-+=x x y ,其中是二次函数的有()A .4个B .3个C .2个D .1个2、(2015秋•五指山校级月考)函数y=(m ﹣n )x 2+mx +n 是二次函数的条件是()A .m 、n 是常数,且m ≠0B .m 、n 是常数,且m ≠nC .m 、n 是常数,且n ≠0D .m 、n 可以为任何常数3、(2014•葫芦岛二模)在同一直角坐标系中,函数y=mx +m 和函数y=mx 2+2x +2(m 是常数,且m ≠0)的图象可能是()A .B .CD .4、(2017•扬州)如图,已知△ABC 的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x 2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b 的取值范围是()A.b≤﹣2B.b<﹣2C.b≥﹣2D.b>﹣25、(2012秋•高安市期末)把抛物线y=﹣2x 2﹣4x﹣6经过平移得到y=﹣2x 2﹣1,平移方法是()A.向右平移1个单位,再向上平移3个单位B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向左平移1个单位,再向下平移3个单位6、(2017•泸州)已知抛物线y=41x 2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线y=41x 2+1上一个动点,则△PMF 周长的最小值是()A .3B .4C .5D .67、(2016•陕西校级模拟)如图,已知点A(8,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=6时,这两个二次函数的最大值之和等于()A.5B.358C.10D.528、(2010秋•西城区校级期中)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,抛物线经过点(1,0),则下列结论:①ac>0;②方程ax2+bx+c=0的两根之和大于0;③y随x的增大而增大;④a﹣b+c<0,其中正确的是.9、(2017•孝感模拟)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确的结论有(填序号).10、(2016•黄冈校级自主招生)方程2x﹣x 2=x 2的正实数根有个.11、(2011•路南区一模)已知二次函数y=(x﹣3a)2﹣(3a+2)(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.图中分别是当a=﹣1,a=﹣31,a=1时二次函数的图象.则它们的顶点所满足的函数关系式为.12、(2015•泗洪县校级模拟)若直线y=m (m 为常数)与函数y=的图象恒有三个不同的交点,则常数m 的取值范围是.13、(2017春•昌江区校级期中)记实数x 1,x 2中的最小值为min{x 1,x 2},例如min{0,﹣1}=﹣1,当x 取任意实数时,则min{﹣x 2+4,3x}的最大值为.14、(2016•锡山区一模)二次函数y=﹣x 2﹣2x 图象x 轴上方的部分沿x 轴翻折到x 轴下方,图象的其余部分保持不变,翻折后的图象与原图象x 轴下方的部分组成一个“M”形状的新图象,若直线y=21x+b 与该新图象有两个公共点,则b 的取值范围为.15、(2017春•平南县月考)抛物线238942++-=x x y 与y 轴交于点A,顶点为B.点P 是x 轴上的一个动点,当点P 的坐标是时,|PA﹣PB|取得最小值.16、(2014•上城区二模)已知当x=2m+n+2和x=m+2n 时,多项式x 2+4x+6的值相等,且m﹣n+2≠0,则当x=6(m+n+1)时,多项式x 2+4x+6的值等于.17、(2017•港南区二模)二次函数y=(a﹣1)x 2﹣x+a 2﹣1的图象经过原点,则a 的值为.18、(2017•西华县二模)已知y=﹣41x 2﹣3x+4(﹣10≤x≤0)的图象上有一动点P,点P 的纵坐标为整数值时,记为“好点”,则有多个“好点”,其“好点”的个数为.19、(2017•鄂州)已知正方形ABCD 中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m 个单位(m>0)与正方形ABCD 的边(包括四个顶点)有交点,则m 的取值范围是.20、作出下列函数的图象:(1)y=x 2﹣4x +3;(2)y=x 2﹣4|x |+3;(3)y=|x 2﹣4|x |+3|.21、(2017•海安县一模)在平面直角坐标系xOy 中,直线y=﹣41x+n 经过点A(﹣4,2),分别与x,y 轴交于点B,C,抛物线y=x 2﹣2mx+m 2﹣n 的顶点为D.(1)求点B,C 的坐标;(2)①直接写出抛物线顶点D 的坐标(用含m 的式子表示);②若抛物线y=x 2﹣2mx+m 2﹣n 与线段BC 有公共点,求m 的取值范围.22、(2011•泰州)已知二次函数y=x 2+bx ﹣3的图象经过点P (﹣2,5)(1)求b 的值并写出当1<x ≤3时y 的取值范围;(2)设P 1(m ,y 1)、P 2(m +1,y 2)、P 3(m +2,y 3)在这个二次函数的图象上,①当m=4时,y 1、y 2、y 3能否作为同一个三角形三边的长?请说明理由;②当m 取不小于5的任意实数时,y 1、y 2、y 3一定能作为同一个三角形三边的长,请说明理由.23、(2017•邵阳县模拟)(1)已知函数y=2x+1,﹣1≤x≤1,求函数值的最大值.(2)已知关于x的函数y=(m≠0),试求1≤x≤10时函数值的最小值.(3)己知直线m:y=2kx﹣2和抛物线y=(k2﹣1)x2﹣1在y轴左边交于A、B两点,直线l 过点P(﹣2、0)和线段AB的中点M,求直线1与y轴的交点纵坐标b的取值范围.24、(2015秋•长兴县月考)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=5,点E在CB边上,以每秒1个单位的速度从点C向点B运动,运动时间为t(s),过点E作AB的平行线,交AC边于点D,以DE为边向上作等边△DEF,设△ABC与△DEF重叠部分的面积为S.(1)当点F恰好落在AB边上时,求t的值;(2)当t为何值时,S有最大值?最大值是多少?。
二次函数与三角函数的图像与性质一、二次函数的图像与性质1.图像特点:二次函数的图像是一条开口向上或向下的抛物线。
开口向上的抛物线顶点在最低点,开口向下的抛物线顶点在最高点。
2.性质:二次函数的图像具有对称性,对称轴是抛物线的轴线,即x = -b/2a。
对称轴上的点关于抛物线对称。
3.顶点:二次函数的顶点坐标为(-b/2a, c - b^2/4a)。
顶点是抛物线的最高点或最低点,取决于a的正负。
4.零点:二次函数与x轴的交点称为零点。
二次函数最多有两个零点。
5.开口方向:当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。
6.增减性:当a > 0时,随着x的增大,y值增大;当a < 0时,随着x的增大,y值减小。
二、三角函数的图像与性质1.正弦函数(sin x):–图像特点:正弦函数的图像是一条周期性波动的曲线,周期为2π。
–性质:正弦函数的值域为[-1, 1],在0°到π之间,正弦函数是增函数;在π到2π之间,正弦函数是减函数。
2.余弦函数(cos x):–图像特点:余弦函数的图像与正弦函数相似,也是一条周期性波动的曲线,周期为2π。
–性质:余弦函数的值域为[-1, 1],在0°到π之间,余弦函数是减函数;在π到2π之间,余弦函数是增函数。
3.正切函数(tan x):–图像特点:正切函数的图像是一条周期性波动的曲线,周期为π。
–性质:正切函数的值域为全体实数,在每个周期内,正切函数是增函数。
4.弧度制与角度制的转换:–弧度制:π rad = 180°。
–角度制:1° = π/180 rad。
5.三角函数的定义:–正弦函数:sin x = 对边/斜边。
–余弦函数:cos x = 邻边/斜边。
–正切函数:tan x = 对边/邻边。
三、二次函数与三角函数的图像与性质的联系与区别1.联系:二次函数与三角函数都是周期性函数,具有周期性波动的特点。
二次函数的图像和性质1.二次函数的图像与性质:解析式a 的取值开口方向函数值的增减顶点坐标对称轴图像与y轴的交点y = ax2当a0时;开口向上;在对称轴的左侧y随x的增大而减小,在对称轴的右侧 y 随 x 的增大而增大。
当a0时;开口向下;在对称轴的左侧y随 x 的增大而增大,在对称轴的右侧 y 随 x 的增大而减小。
(0,0)x=0(0,0)y = ax2+ k(0,c)x =0 (0,k)y = a( x + h)2(- h,0)x = - h(0,ah2)y=a(x+h)2+k(- h,k)x = - h(0,ah2+ k)y = ax2+bx+c b 4ac - b2 (- , )2a4a b x=-2a(0,c)2.抛物线的平移法则:(1)抛物线y = ax2+ k的图像是由抛物线y = ax2的图像平移k个单位而得到的。
当k 0时向上平移;当k0时向下平移。
(2)抛物线y = a(x + h)2的图像是由抛物线y = ax2的图像平移h个单位而得到的。
当h0时向左平移;当h0时向右平移。
(3)抛物线的y = a(x + h)2+ k图像是由抛物线y = ax2的图像上下平移k个单位,左右平移h个单位而得到的。
当k0时向上平移;当k0时向下平移;当h0时向左平移;当h0 时向右平移。
3.二次函数的最值公式:形如y =ax + bx + c的二次函数。
当a0时,图像有最低点,函数有最小值4ac-b24ac-b2y最小值=4a;当a0时,图像有最高点,函数有最大值,y最大值=4a;4.抛物线y =ax + bx + c与y轴的交点坐标是(0,c)5.抛物线的开口大小是由a决定的,a越大开口越小。
6.二次函数y =ax + bx + c的最值问题:(1)自变量的取值范围是一切实数时求最值的方法有配方法、公式法、判别式法。
(2)自变量的取值范围不是一切实数:b 自变量的取值范围不是一切实数时,应当抓住对称轴x = -2a ,把他与取值范围相比较,再进行求最值。