质点系的牛顿运动定律
- 格式:doc
- 大小:236.00 KB
- 文档页数:6
4.质点动力学——牛顿运动定律目前为止我们已经根据物理运动学知识创建了一个最基本的物理引擎,只需设置质点的初位置、初速度和加速度,物理引擎就会计算出任意时刻质点的速度和位置,现在我们将要讨论物体的加速度是由什么决定的,这个规律就是大名鼎鼎的牛顿第二定律,这在物理上属于动力学。
物理知识牛顿第二定律的内容为:物体的加速度与所受合外力成正比,与物体的质量成反比,公式为:ΣF=m a在二维平面上,此方程可以表示成:ΣF x=ma xΣF y=ma y其中ΣF x表示x方向上的合力,a x表示x方向上的加速度,其中ΣF y表示y方向上的合力,a y表示y方向上的加速度,这种处理方法在高中物理中叫做正交分解法,其本质就是将矢量运算分解成同方向上的标量运算。
高中物理的知识告诉我们:力学问题通常有两类,一是根据物体的运动情况求它的受力情况,二是根据物体的受力情况求它的运动情况,对于物理引擎来说,我们关注的就是第二种情况,你只需指定物体所受的力,我们就可以根据牛顿第二定律求出物体的加速度,再根据初始速度和初始位移,通过运动学方程就可以解出物体在任意时刻的速度和位置了。
重力若物理只受重力作用,因为重力G=mg,根据牛二定律,a=G/m=g,式中的g称为重力加速度,在地球表面为9.8m/s2,在赤道上这个值要比两极小一些,通常取9.8就可以了,在高中物理计算中通常取10m/s2让计算更加简单。
上面的结论还揭示了一个更重要的事实:若物体只受重力,那么轻重物体下落的快慢是相同的,这一点在几百年前就由伽利略通过比萨斜塔上的实验证明了(虽然比萨斜塔实验的真实性令人怀疑,但伽利略作为物理学的开山鼻祖是无可辩驳的)。
若你想实现卫星的运动,重力加速度就不是一个常量,而是与地球球心的距离成反比。
例如,距地球表面高度正好为地球半径的高空的重力加速度只有地表的四分之一。
在Stun2DPhysics中的实现基于以上物理知识,我们要在引擎中添加新的代码。
质点动力学的三个基本定律
质点动力学的三个基本定律分别是:牛顿运动定律,动量定理和动量守恒定律,角动量定理和角动量守恒定律。
牛顿运动定律第一定律(惯性定律):任何质点如不受力的作用,则将保持原来静止或匀速直线运动状态。
第二定律:质点的质量与加速度的乘积等于作用于质点的力的大小,加速度的方向与力的方向相同。
第三定律:对应每个作用力必有一个与其大小相等、方向相反且在同一直线上的反作用力。
物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量(用字母I表示),即力与力作用时间的乘积,数学表达式为:
I=FΔt=Δp=mΔv=mv2-mv1
式中F指物体所受的合外力,mv1与mv2为发生Δt的初末态动量。
该式为矢量式,列式前一定要规定正方向!
动量守恒定律是现代物理学中三大基本守恒定律之一,若一个系统不受外力或所受合外力为零时,该系统的总动量保持不变。
角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律;反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质
点和质点系围绕该点(或轴)运动的普遍规律。
角动量守恒定律是对于质点,角动量定理可表述为质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。
第二章 质点动力学质点动力学的任务研究物体之间的相互作用,以及由于这种相互作用所引起的物体运动状态变化的规律,它的研究对象是质点和可以当作质点对待的质点系。
牛顿在1687年发表著作《自然哲学的数学原理》,在伽利略、开普勒等人工作的基础上,建立了牛顿三定律和万有引力定律,从牛顿运动定律出发可以导出刚体、流体、弹性体等的运动规律,从而建立起整个经典力学的体系。
一、牛顿第一定律 (1) 定律表述任何物体若不受其他物体对它的作用(或所受合力为零)将继续保持其静止的或匀速直线运动的状态。
数学形式:0F =∑ 时,=恒矢量v 。
第一定律是大量观察与实验事实的抽象与概括,它给出了物体机械运动状态改变的原因,即物体受到力的作用(合外力不为零),物体的机械运动状态(瞬时速度矢量)发生改变。
(2) 惯性和力的概念惯性的概念:任何物体保持原有运动状态不变的能力,是物质运动不灭性的表现,物体的惯性大小与参考系有关,或者说与所处时空性质有关。
牛顿第一定律也称为惯性定律。
力的概念:物体间的相互作用,在力的作用下物体的运动状态——瞬时速度矢量v 会发生改变。
(3) 惯性参考系牛顿第一定律的意义在于它表明一定存在着这样一类的参考系,在该系中所有不受力的物体都保持自己的速度不变。
这类参考系,称为惯性参考系,或称惯性系,不能成立的参考系称为非惯性系。
牛顿第一定律可作为判断一个参考系是惯性系还是非惯性系的理论依据。
通过力学实验可以判定一个参考系中牛顿第一定律是否成立,是不是惯性系。
对一般力学现象来说,地面参考系是一个足够精确的惯性系,可以应用牛顿运动定律求解质点动力学问题。
对于大量天文现象,以太阳中心为坐标原点、以指向任一恒星的直线为坐标轴建立的坐标系中,太阳系是一个惯性系。
牛顿定律只有在惯性系中才成立。
二、牛顿第二定律 (1) 定律表述物体受到合外力作用时,它所获得的加速度的大小与合外力的大小成正比,并与物体的质量成反比,加速度的方向与合外力的方向相同。
质点系的牛顿运动定律 The manuscript was revised on the evening of 2021质点系的牛顿运动定律两个或两个以上相关联的质点组成物体系统,称为质点系.高中物理又常称之为连接体。
对于质点系,同样可以运用牛顿运动定律求解。
解答连接体问题的基本方法解答连接体问题的基本技巧和方法主要有整体法和隔离法。
一整体法:将相对位置不变的物体系作为一个整体来研究的方法. 二隔离法:将研究对象与周围物体分隔开来研究的方法.例1、用质量为m 、长度为L 的绳沿着光滑水平面拉动质量为M 的物体,在绳的一端所施加的水平拉力为F , 如图1所示,求:(1)物体与绳的加速度; (2)绳中各处张力的大小(假定绳的质量分布均匀,下垂度可忽略不计。
)分析与解:(1)以物体和绳整体为研究对象,根据牛顿第二定律可得:F=(M+m )a,解得a=F/(M+m).(2)以物体和靠近物体x 长的绳为研究对象,如图2所示。
根据牛顿第二定律可得:F x =(M+mx/L)a=(M+x L m )mM F+ .由此式可以看出:绳中各处张力的大小是不同的,当x=0时,绳施于物体M 的力的大小为F mM M+。
连接体问题的类型连接体问题的类型有两类: 一是连接体中各物体加速度相同; 二是连接体中各物体加速度不同。
如果连接体中各物体加速度相同,可以把系统中的物体看成一个整体,先用整体法求出连接体的共同加速度. 若加速度不同,一般采用隔离法. 如果要求连接体中各物体之间的相互作用力,则可采用整体法和隔离法联合使用.图1M 图2M例2.两重叠在一起的滑块,置于固定的、倾角为θ的斜面上,如图所示,滑块A、B质量分别为m1、m2,A与斜面间的动摩擦因数为μ1,B与A之间的动摩擦因数为μ2,已知两滑块都从静止开始以相同的加速度从斜面滑下,滑块B受到的摩擦力().A.等于零B.方向沿斜面向上C.大小等于μ1m2gcosθD.大于等于μ2m2gcosθ【解析】把A、B两滑块作为一个整体,设其下滑加速度为a,由牛顿第二定律(m1 +m2)gsinθ-μ1(m 1 +m 2)gcosθ=(m1 +m 2)a,得: a=g(sinθ-μ1 cosθ).由于a<gsinθ,可见B随A一起下滑过程中,必须受到A 对它沿斜面向上的静摩擦力,设摩擦力为F B(如图所示).由牛顿第二定律:m 2 gsinθ-F B =m 2 a,得:F B =m 2 gsinθ-m 2 a=m 2 gsinθ-m 2 g(sinθ-μ1 cosθ)=μ1 m2 gcosθ.【答案】 C例3.如图所示,质量为M 的木板放在倾角为θ的光滑斜面上,质量为m 的人在木板上跑,假如脚与板接触处不打滑。
研究对象:质点、质点系研究内容:质点运动状态变化的原因及遵循规律研究基础:以牛顿三定律为基础的经典力学理论提出提出定义了dt公式是瞬时关系,公式中的运动量定义1式在相对论力学中仍然有效,定义2公式定义的质量F=12二力同时存在、同时消失、相互依存;分别作用在两个物体上,不是平衡力;作用力和反作用力具有相同性质。
=G这里定义的物体质量反映了引力性质,称为引力质量重力是地球对其表面物体的引力引起的,有弹性力、张力、压力、摩擦力等都是原子、分子之间电磁力的宏观表现。
(1)弹簧中的弹性力弹性力可由虎克定律(Hooke law)确定。
即=−F kx(2)正压力接触是产生正压力的前提,挤压发生形变是产生正压力的关键。
(3)绳中的张力一般说来绳中各处的张力不一定相同,与绳子各处的形变、绳子的质量分布及运动状态有关。
(4)摩擦力是一种接触力,当两相互接触的物体之间有相对运动(或运动趋势)时,在接触面处产生一种切向力,其方向总是与相对运动(或运动趋势)的方向相反。
万有引力和电磁力都是长程力(与距离平方成反比),在宏观现象中起着重要作用。
3.强力存在于基本粒子之间的一种相互作用,力程短,作用范围在10-15米至10-16米。
强度大。
4.弱力粒子之间的另一种作用力,力程更短、强度很弱。
电弱相互作用已经统一,正在努力建立4种二、牛顿定律的适用范围1.牛顿定律只适用于惯性系牛顿定律成立的参照系叫做惯性系。
牛顿定律不成立参照系叫做非惯性系。
2.牛顿定律只适用于低速宏观平动物体低速:物体速度远低于光速.宏观:物体尺寸远大于原子的尺度.三、利用牛顿定律解题步骤选惯性系,取隔离体。
受力分析,列矢量方程。
建立坐标,写投影方程。
求解分析。
ROt F f nF N分析受力,列出矢量方程:选地面参照系和隔离体:选择坐标求解分析:ROt F f nF N经典时空观综述:θiF mgTF引入平均冲力动量定理由牛顿第二定律导出,它适用于惯性在应用中一般采用分量形式:F 12F21m2F 1 F 2m10()0n n n t i i i i i t i 1i 1i 1F dt m m υυ====−∑∑∑∫∫−==tt 0P P dt F I或可写为2.动量守恒定律当满足:0F i=∑由动量定理得i i m υ=∑恒矢量对n 个质点构成系统有作用于系统的合外力的冲量等于系统动量的增量。
质点系的功能原理质点系是研究物体运动的重要概念,它是由若干质点组成的系统。
在物理学中,质点系的功能原理是一个重要的研究对象,它涉及到质点的运动规律、相互作用和系统的整体性质。
本文将从质点系的定义、功能原理和应用等方面进行探讨。
首先,质点系是由若干质点组成的系统。
质点是物体的简化模型,它没有形状和大小,只有质量和位置。
质点系可以由有限个或无限个质点组成,它们之间通过各种相互作用相互联系。
在研究质点系的功能原理时,我们需要考虑每个质点的运动规律,以及它们之间的相互作用。
其次,质点系的功能原理涉及到质点的运动规律。
根据牛顿运动定律,质点的运动状态受到外力的影响。
在质点系中,每个质点都受到外力的作用,根据牛顿第二定律,质点的加速度与作用力成正比,与质点的质量成反比。
因此,我们可以通过对每个质点的运动规律进行分析,来研究整个质点系的运动状态。
另外,质点系的功能原理还涉及到质点之间的相互作用。
在质点系中,质点之间可能存在引力、斥力、弹簧力等各种相互作用。
这些相互作用会影响质点的运动状态,导致质点系整体的运动规律发生变化。
因此,我们需要考虑质点之间的相互作用对整个系统的影响,从而揭示质点系的功能原理。
最后,质点系的功能原理在实际应用中具有重要意义。
例如,在天体运动的研究中,我们可以将行星视为质点,通过对质点系的功能原理进行分析,来揭示行星运动的规律。
在材料科学中,我们也可以将晶格中的原子视为质点,通过研究质点系的功能原理,来理解材料的力学性质和热学性质。
总之,质点系的功能原理是物理学中一个重要的研究领域,它涉及到质点的运动规律、相互作用和系统的整体性质。
通过对质点系的功能原理进行深入研究,我们可以更好地理解物体的运动规律和系统的行为,为实际应用提供理论支持。
希望本文的讨论能够对读者有所启发,引起对质点系功能原理的更深入探讨。