对变压器微机差动保护误动原因的分析探讨
- 格式:doc
- 大小:28.50 KB
- 文档页数:5
变压器差动保护误动的原因与对策摘要:电力变压器的正常运行是对电力系统安全、可靠、优质、经济运行的重要保证。
一旦发生故障遭到损坏,就要造成很大的经济损失,同时对地区的供电造成影响,因此一定要有完善可靠的继电保护装置来确保护其正常的工作;同时防止任何情况下的误动也是一项十分重要的工作,本文将从几个面来探讨变压器差动保护的误动原因以及防止措施。
关键字:变压器差动保护误动中图分类号:tm4文献标识码: a 文章编号:一.引言差动保护是变压器的主保护,其原理是反应流人和流出被保护变压器各端的电流差。
变压器在电力系统中的主要作用是变换电压,以利于电功率的传输和电能的分配,是发电厂、电网、用户之间的桥梁和纽带。
为了防止因为变压器产生故障而给电力系统的安全性和可靠性带来影响,对电力变压器采取了多种保护措施,变压器差动保护误动就是其中最为普遍的一种做法。
然而,系统运行中发现,因为电流不平衡、励磁涌流等因素经常会导致差动保护发生误动现象,更为重要的是差动保护误动经常影响到整个电力系统的安全可靠运行。
所以,关于变压器差动保护误动问题的研究具有十分重要的意义和价值。
二.变压器的差动保护概括变压器差动保护一般包括:差动速断保护、比率差动保护、二次(五次)谐波制动的比率差动保护。
差动保护的工作原理基尔霍夫电流定律,当变压器正常工作或区外故障时,内部不消耗能量,则流入变压器的电流和流出电流(折算后的电流)相等,差动保护不动作。
当变压器内部故障时,内部消耗能量,由电源侧向变压器内部提供短路电流,差动保护感受到差电流,差动保护动作。
差动保护由比率差动和差动速断两个保护功能组成。
二次谐波制动主要区别是故障电流还是励磁涌流,因为变压器空载投运时会产生比较大的励磁涌流.并伴随有二次谐波分量,为了使变压器不误动,采用谐波制动原理。
通过判断二次谐波分量,是否达到设定值来确定是变压器故障还是变压器空载投运,从而决定比率差动保护是否动作。
差动速断保护是在较严重的区内故障情况下,快速跳开变压器各侧断路器,切除故障点。
对变压器微机差动保护误动原因的分析探讨作者:杜兆慧来源:《科技创新导报》2012年第01期摘要:微机比率制动式差动保护作为变压器的主保护,它因有灵敏度高,选择性强,接线简单的优点而得到广泛应用。
但是,由于运行经验不足、接线错误、设计错误等原因,使实际运行中常出现投入运行又误动的现象,严重影响到了变电站安全运行。
本文对微机变压器差动保护装置投入运行后误动原因进行了分析,并提出改进措施。
关键词:励磁涌流不平衡电流接线错误 TA误差设计缺陷中图分类号:TM772 文献标识码:A 文章编号:1674-098X(2012)01(a)-0078-011 问题的提出微机比率制动式差动保护作为变压器的主保护,能反映变压器内部相间短路故障,高压侧单相接地短路及匝间层间短路等故障。
它较常规保护具有灵敏度高,选择性强,接线简单等优点,因此得到广泛应用。
但是,由于种种原因使差动保护投入运行后又误动,严重影响了变电站安全运行。
2 差动保护误动原因的分析及措施2.1 励磁涌流造成的误动当变压器空载投入和外部故障切除后电压恢复时,因铁心饱和及存在剩磁会出现很大的励磁电流即励磁涌流,其特点是含有很大成分的非周期分量、含有大量的高次谐波分量且以二次谐波为主、波形之间有间断,对于三相交流变压器,由于三相之间相差120°,所以任何瞬间合闸至少有两相出现不同的励磁涌流,容易在合闸瞬间引起变压器差动保护误动,而在稳态运行及差动范围外发生故障时则影响不大。
变压器微机差动保护中常用的涌流闭锁方法有二次谐波制动、间断角闭锁、波形对称原理等,基本能够有效解决励磁涌流造成的误动。
2.2 不平衡电流造成的误动从理论上讲,变压器在正常运行和区外故障时,应该有Ij=I1"- I2"=0(Ij:二次计算电流;I1"、I2"为变压器高低压侧二次电流)。
然而,由于变压器在结构和运行上的特点,实际运行中很多因素使Ij=Ibp≠0,(Ibp为不平衡电流),即当保护范围内无故障时也存在不平衡电流,这些不平衡电流有可能引起保护误动。
变压器差动保护误动原因及防范措施的探讨【摘要】本文简单介绍了变压器差动保护的原理,从生产实际出发总结及分析了运行中变压器差动保护误动的常见原因,并针对这些误动原因提出具体有效的防范措施——通过极性试验、带负荷测试等试验方法及在运行维护中采取措施防止变压器差动保护误动,在生产中具有一定的实际应用价值。
【关键词】差动保护;误动;试验;运行维护;防误动引言变压器作为电力系统中的电能传递元件在电力系统中有着重要的地位,而且变压器的造价高损坏修复不易。
变压器的安全运行对电网的安全稳定运行有重要的意义。
差动保护是变压器的主保护,它对变压器安全运行起着极其重要的作用,其误动会对设备及电网的安全运行造成重大影响。
然而变压器差动保护的误动事件时有发生,如笔者所在的江门供电局的220kV恩平变电站于2006年就曾发生了主变差动保护误动的事故,对电网的正常供电产生了严重的影响。
故研究防止变压器差动保护误动对电网的安全运行有重大意义。
目前国内外研究防止主变差动保护误动多是针对怎样改善微机差动保护装置本身的研究,如采用新算法、新判据等。
然而笔者作为电力生产一线人员更关心的是在保护装置及CT等设备已定的情况下怎样在生产运行过程中防止其的误动。
在实际生产现场由于安装质量出现问题接线错误、调试工作没到位及装置的内部控制字的整定错误等原因使差动保护误动时有发生。
但这方面的总结及研究不多,本文笔者主要从生产实际出发总结及提出防止由上述原因所产生的误动的方法,具有一定的实际意义。
2常见误动原因分析由于安装质量出现问题接线错误、调试工作没到位及装置的内部控制字的整定错误等原因使差动保护误动时有发生。
现针对常见的误动原因分析如下。
2.1内部控制字的整定错误造成的误动笔者所在的江门供电局就曾发生由该原因引起的误动。
现对事故的过程及原因分析进行详细介绍。
2.1.1事故过程及初步检查结果2006年9月6日13时30分,220kV恩平站220kV圣恩线发生BC相接地故障,高频保护及阻抗I段保护动作,跳圣恩线两侧开关。
变压器励磁涌流引起线路差动保护误动分析变压器励磁涌流是指当变压器通电时,由于磁路的存在导致瞬态电流增大,这种瞬态电流称为励磁涌流。
励磁涌流一般在变压器通电后的几个周期内逐渐减小并趋于稳定。
然而,励磁涌流的存在可能会引起线路差动保护的误动,从而导致保护装置误动跳闸。
下面对这一问题进行详细分析:首先,励磁涌流引起线路差动保护误动的原因主要有两方面:1.励磁涌流造成的差动电流:当励磁涌流通过变压器的绕组时,会引起电流相位和大小的差别,形成差动电流。
这会导致差动保护动作,误判为线路故障。
2.励磁涌流带来的谐波电流:励磁涌流中常含有很多谐波成分,特别是2次和3次谐波。
这些谐波电流会经过线路的绕组,产生线路差动保护的误判。
其次,线路差动保护误动的分析主要从两个方面入手:1.励磁涌流的大小和减小趋势:首先需要了解励磁涌流的大小及其减小的趋势。
通过实际测量和计算分析,可以确定励磁涌流的大小,以及其在变压器通电后的几个周期内的变化情况。
这样可以为保护装置的调整提供参考依据。
2.励磁涌流引起的差动电流和谐波电流:其次需要计算励磁涌流引起的差动电流以及谐波电流。
可以通过建立励磁涌流的模型,计算励磁涌流对不同线路绕组的影响,得出相应的差动电流和谐波电流。
根据这些计算结果,分析差动保护装置可能的误动情况。
最后,根据上述分析,可以采取一系列措施来减小变压器励磁涌流引起的线路差动保护误动:1.调整保护装置的动作阈值:根据励磁涌流的特点和分析结果,适当调整保护装置的动作阈值,使其能够识别出真正的故障信号,并避免误动。
2.加装滤波器:通过在变压器的绕组或者线路的末端加装滤波器,可以有效地减小励磁涌流带来的谐波成分,从而避免谐波电流对差动保护的干扰。
3.优化变压器的设计:在变压器的设计和制造过程中,可以采取一些措施,如合理设置变压器的磁路和绕组结构,减小励磁涌流的大小和持续时间。
4.增加辅助保护手段:在线路差动保护的基础上,增加其他的辅助保护手段,如零序电流保护、过零保护等,可以提高差动保护的可靠性和准确性。
对变压器微机差动保护误动原因的分析探讨摘要:微机比率制动式差动保护作为变压器的主保护,它因有灵敏度高,选择性强,接线简单的优点而得到广泛应用。
但是,由于运行经验不足、接线错误、设计错误等原因,使实际运行中常出现投入运行又误动的现象,严重影响到了变电站安全运行。
本文对微机变压器差动保护装置投入运行后误动原因进行了分析,并提出改进措施。
关键词:励磁涌流不平衡电流接线错误TA误差设计缺陷
1 问题的提出
微机比率制动式差动保护作为变压器的主保护,能反映变压器内部相间短路故障,高压侧单相接地短路及匝间层间短路等故障。
它较常规保护具有灵敏度高,选择性强,接线简单等优点,因此得到广泛应用。
但是,由于种种原因使差动保护投入运行后又误动,严重影响了变电站安全运行。
2 差动保护误动原因的分析及措施
2.1 励磁涌流造成的误动
当变压器空载投入和外部故障切除后电压恢复时,因铁心饱和及存在剩磁会出现很大的励磁电流即励磁涌流,其特点是含有很大成分的非周期分量、含有大量的高次谐波分量且以二次谐波为主、波形之间有间断,对于三相交流变压器,由于三相之间相差120°,所以任何瞬
间合闸至少有两相出现不同的励磁涌流,容易在合闸瞬间引起变压器差动保护误动,而在稳态运行及差动范围外发生故障时则影响不大。
变压器微机差动保护中常用的涌流闭锁方法有二次谐波制动、间断角闭锁、波形对称原理等,基本能够有效解决励磁涌流造成的误动。
2.2 不平衡电流造成的误动
从理论上讲,变压器在正常运行和区外故障时,应该有Ij=I1”- I2”=0(Ij:二次计算电流;I1”、I2”为变压器高低压侧二次电流)。
然而,由于变压器在结构和运行上的特点,实际运行中很多因素使Ij=Ibp≠0,(Ibp为不平衡电流),即当保护范围内无故障时也存在不平衡电流,这些不平衡电流有可能引起保护误动。
2.2.1 因各侧绕组的接线方式不同造成电流相位不同而产生不平衡电流
我国规定的五种变压器标准联结组中,35kV Y/D-11双绕组变压器常被使用。
这种联结方式的变压器两侧电流相差30O,要使差动保护不误动就要设法调整CT二次回路的接线和变比以进行相位校正,使电源侧和负荷侧的CT二次电流相差180 O且大小相等,这样就能消除Y/D-11变压器接线对差动保护的影响。
其它方式依此类推。
2.2.2 因CT计算变比与实际变比不同而产生不平衡电流
由于各侧的CT变比都是标准的,如:600/5、800/5、1000/5、1200/5
等,变压器的变比也是一定的,很难完全满足(nl2/nl1)-nb或nl2/nl1√3=nf的要求,即Ij≠0,产生Ibp,此时差动回路就有不平衡电流流过使保护可能误动。
现在变压器微机保护通常采用差动平衡系数来平衡或减小这个差值,从微机保护装置内部计算弥补实际变比与理想值之差,使差动两臂电流差接近零,从而消除或尽量减小不平衡电流。
2.3 接线错误造成的误动
差动保护电流回路接线,要求变压器一侧TA为正极极性接线:TA 一次和二次侧同极性两个线头排在同一面的接线;而变压器另一侧TA 为负极极性接线; 把TA一次和二次不同极性的两个线头排在同一面的接线。
若把变压器两侧TA极性都接成正极极性接线。
变压器在正常负荷和差动保护范围以外发生短路故障时,流进差动保护内A相、B相、C相的电流方向相同,差流为两侧TA电流叠加之和。
当差电流值大于差动保护定值时,必然引起差动保护误动作,使变压器两侧开关跳闸。
将一侧极性修改为负极极性后,在变压器正常负荷和差保范围外发生短路故障时,流进差动保护的电流为两侧TA 的A相、B相、C 相电流方向相反,差流为侧TA电流之差,差电流仅为不平衡电流,小于差动保护定值,所以差动保护不会发生误动作。
只有当变压器内部和两侧TA范围以内发生短路故障时,差动保护才会有选择性动作,跳开变压器两侧开关。
2.4 TA误差造成的误动
用于差动保护的TA,应保证在变压器正常负荷和差动保护范围以外发生短路时,TA变比误差、角差符合要求,使流进保护的差电流近似为零。
但实际上即使选用相同型号的TA,其特性曲线也总是存在某种程度的差异。
这是由于钢导磁体特性不同及装配的情况不同所致。
因此,使导磁体的磁阻改变,并使励磁电流改变,这就出现了TA的电流比误差和角差。
选用不同型号不同容量的TA,在二次负载Z和磁饱和程度不同时,对TA误差影响更大。
差动保护应选用TA的准确等级为D级(具有较大的铁芯截面),同时对所选TA应作极性和伏安特性的变比试验,保证变比误差和角差在规定范围内,并按10%误差特性条件进行校验。
2.5 微机保护程序设计缺陷造成的误动
一般对于Y/D型双绕组变压器,微机差动保护设计程序中因为考虑高低压侧之间存在30o的相角差,高压侧参与差动计算电流一般为IA‘=IA-IB、IB‘=IB-Ic、Ic‘=Ic-IA,低压侧参与差动计算电流一般为Ia‘=Ia-Ib、Ib‘=Ib-Ic、Ic‘=Ic-Ia,而差动电流的计算公式则为Icda=IA ‘+Ia‘、Icdb=IB‘+Ib‘、Icdc=Ic‘+Ic‘,这种计算方法可以有效地滤去由于接地、不完全相短路造成的零序电流;但对于Y/Y型双绕组变压器,由于高低压侧同相位,因此有些微机保护装置未考虑到以上因素,高压侧参与差动计算电流一般为IA‘、IB‘、Ic‘,低压侧参与差
动计算电流一般为Ia‘、Ib‘、Ic‘,而差动电流的计算公式则为Icda=IA ‘+Ia‘、Icdb=IB‘+Ib‘、Icdc=Ic‘+Ic‘,这种计算方法只考虑到了各相正序分量,而忽视了零序分量,因此在实际运行中出现了中性点接地运行变压器在差动保护范围外故障引起变压器差动保护误动跳闸的事故,经过修改保护装置程序软件后隐患消除,变压器运行正常。
2.6 二次线安装质量引起的误动
二次线安装质量较差。
差动保护电流回路二次线在电流端子、设备端子处接触不良,差动保护在投入运行前没有认真检查。
差动保护投入运行后,差动电流突变大时,造成TA二次回路断线,闭锁功能退出时,造成差动保护误动。
3 结语
提高变压器保护的可靠性对电网的安全稳定运行有极其重要的作用,有效地采用各种方式方法,减少和杜绝变压器误动,同时结合当前微机保护的迅速成熟和应用,变压器保护的灵敏度和鉴别各种故障的能力必将大大提高,变压器保护的可靠性也必将大大提升。