大学数值计算方法(第6章 常微分方程数值解法)
- 格式:ppt
- 大小:637.00 KB
- 文档页数:76
常微分方程的数值解法在自然科学的许多领域中,都会遇到常微分方程的求解问题。
然而,我们知道,只有少数十分简单的微分方程能够用初等方法求得它们的解,多数情形只能利用近似方法求解。
在常微分方程课中已经讲过的级数解法,逐步逼近法等就是近似解法。
这些方法可以给出解的近似表达式,通常称为近似解析方法。
还有一类近似方法称为数值方法,它可以给出解在一些离散点上的近似值。
利用计算机解微分方程主要使用数值方法。
我们考虑一阶常微分方程初值问题⎪⎩⎪⎨⎧==00)(),(yx y y x f dx dy在区间[a, b]上的解,其中f (x, y )为x, y 的已知函数,y 0为给定的初始值,将上述问题的精确解记为y (x )。
数值方法的基本思想是:在解的存在区间上取n + 1个节点b x x x x a n =<<<<= 210这里差i i i x x h -=+1,i = 0,1, …, n 称为由x i 到x i +1的步长。
这些h i 可以不相等,但一般取成相等的,这时na b h -=。
在这些节点上采用离散化方法,(通常用数值积分、微分。
泰勒展开等)将上述初值问题化成关于离散变量的相应问题。
把这个相应问题的解y n 作为y (x n )的近似值。
这样求得的y n 就是上述初值问题在节点x n 上的数值解。
一般说来,不同的离散化导致不同的方法。
§1 欧拉法与改进欧拉法 1.欧拉法1.对常微分方程初始问题(9.2))((9.1) ),(00⎪⎩⎪⎨⎧==y x y y x f dx dy用数值方法求解时,我们总是认为(9.1)、(9.2)的解存在且唯一。
欧拉法是解初值问题的最简单的数值方法。
从(9.2)式由于y (x 0) = y 0已给定,因而可以算出),()('000y x f x y =设x 1 = h 充分小,则近似地有:),()(')()(00001y x f x y hx y x y =≈-(9.3)记 ,n ,,i x y y i i 10 )(== 从而我们可以取),(0001y x hf y y ==作为y (x 1)的近似值。
第六章 常微分方程的数值解法 §6.0 引言§6.1 算法构造的主要途径§6.2 Runge-Kutta Method 算法§6.3 线性多步法§6.4 线性多步法的一般形式§6.5 算法的稳定性、收敛性§6.0 引 言1. 主要考虑如下的一阶常微分方程初值问题的求解:()()00,dy f x y dx y x y ⎧=⎪⎪⎨=⎪⎪⎩ 微分方程的解就是求一个函数y=y(x),使得该函数满足微分方程并且符合初值条件。
2. 例如微分方程:xy '-2y=4x ;初始条件: y(1)=-3。
于是可得一阶常微分方程的初始问题24(1)3y y x y ⎧'=+⎪⎨⎪=-⎩。
显然函数y(x)=x 2-4x 满足以上条件,因而是该初始问题的微分方程的解。
3. 但是,只有一些特殊类型的微分方程问题能够得到用解析表达式表示的函数解,而大量的微分方程问题很难得到其解析解,有的甚至无法用解析表达式来表示。
因此,只能依赖于数值方法去获得微分方程的数值解。
4. 微分方程的数值解:设微分方程问题的解y(x)的存在区间是[a,b ],初始点x 0=a ,将[a,b ]进行划分得一系列节点x 0 , x 1 ,...,x n ,其中a= x 0< x 1<…< x n =b 。
y(x)的解析表达式不容易得到或根本无法得到,我们用数值方法求得y(x)在每个节点x k 的近似值y(x k ),即y≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分方程的数值解。
如图所示:§6.1 算法构造的主要途径x 0 x 1 x 2 ...1 欧拉公式1.1 构造的思想:利用差商代替一阶导数,即010()()x x y x y x dy dx h =-≈,则 1000()()(,)y x y x f x y h -≈。
介绍常微分方程数值解法常微分方程(ordinary differential equations,ODE)可用于描述许多日常存在的物理系统。
处理ODE问题常常被称为数值求解法,这指的是找到概括ODE或者其他适用于数学模型的解决方案来模括这些ODE。
这种解决方案可能在一系列不同方案中发挥重要作用,以此来提供更好的解释和预测。
常微分方程与几何图形更为相关,它利用二维或者三维空间中曲线的绘制以及分析。
通过引入一些不同的方法,可以对不同的常微分方程中的量进行描述,使得可以通过数值方法的解析来进行研究。
数值解法可能是时间消耗较多的,但有助于验证几何图形中的某些过程,以此帮助揭示数学模型。
四种常见的常微分方程数值解法四种常见的常微分方程数值解法是:前向差分法、向后差分法、中点法和全分方法。
•前向差分法:前向差分法的基本概念是利用ODE的特定解来表达时间步的影响。
这是一种基本的数值法,可以在ODE中确定任意位置的点作为终点。
在这里,任何这样的点都可以表示为ODE右边的时间步。
•向后差分法:它是反过来基于前向差分法。
它要求对ODE中的时间步进行逆向推导,以获得某一特定点的解。
向后差分法要求推导反向解中点,以便可以从每一步中获取该点的解。
•中点法:这是一种非常基本的数值解法,可以用来求解ODE中的某一步的解,但不具有直观的方法解释。
主要的思想是在每一次时间步中通过求出ODE的中点来寻找解。
•全分方法:这是一种更复杂的数值解法,它要求将ODE中的每一步解细分并解决。
与前面提到的三种解法不同,它首先要求将ODE分解成若干离散区间,然后计算每一段区间中的点。
这种解法可以更准确地进行处理,但时间消耗较多,因此比较少被使用。
优化方案在需要解决常微分方程时,为了得到最佳的结果,有必要考虑一些优化措施。
•首先,应考虑将一个复杂的ODE拆分成一些更易解决的问题。
这样做的结果是,预见到解决此ODR的总耗时将会降低。
•其次,为了加快计算速度,可以考虑使用预解算法。
实验09 数值微积分与方程数值求解(第6章 MATLAB 数值计算)一、实验目的二、实验内容1. 求函数在指定点的数值导数232()123,1,2,3026x x x f x x xx x==2. 用数值方法求定积分(1) 210I π=⎰的近似值。
程序及运行结果:《数学软件》课内实验王平(2) 2221I dx x π=+⎰程序及运行结果:3. 分别用3种不同的数值方法解线性方程组6525494133422139211x y z u x y z u x y z u x y u +-+=-⎧⎪-+-=⎪⎨++-=⎪⎪-+=⎩ 程序及运行结果:4. 求非齐次线性方程组的通解1234123412342736352249472x x x x x x x x x x x x +++=⎧⎪+++=⎨⎪+++=⎩5. 求代数方程的数值解(1) 3x +sin x -e x =0在x 0=1.5附近的根。
程序及运行结果(提示:要用教材中的函数程序line_solution ):(2) 在给定的初值x 0=1,y 0=1,z 0=1下,求方程组的数值解。
23sin ln 70321050y x y z x z x y z ⎧++-=⎪+-+=⎨⎪++-=⎩6. 求函数在指定区间的极值(1) 3cos log ()xx x x xf x e ++=在(0,1)内的最小值。
(2) 33212112122(,)2410f x x x x x x x x =+-+在[0,0]附近的最小值点和最小值。
7. 求微分方程的数值解,并绘制解的曲线2250(0)0'(0)0xd y dyy dx dx y y ⎧-+=⎪⎪⎪=⎨⎪=⎪⎪⎩程序及运行结果(注意:参数中不能取0,用足够小的正数代替):令y 2=y,y 1=y ',将二阶方程转化为一阶方程组:'112'211251(0)0,(0)0y y y x x y y y y ⎧=-⎪⎪=⎨⎪==⎪⎩8. 求微分方程组的数值解,并绘制解的曲线123213312123'''0.51(0)0,(0)1,(0)1y y y y y y y y y y y y =⎧⎪=-⎪⎨=-⎪⎪===⎩程序及运行结果:三、实验提示四、教程:第6章 MATLAB 数值计算(2/2)6.2 数值微积分 p155 6.2.1 数值微分1. 数值差分与差商对任意函数f(x),假设h>0。
常微分方程的数值解法常微分方程是研究变量的变化率与其当前状态之间的关系的数学分支。
它在物理、工程、经济等领域有着广泛的应用。
解常微分方程的精确解往往十分困难甚至不可得,因此数值解法在实际问题中起到了重要的作用。
本文将介绍常见的常微分方程的数值解法,并比较其优缺点。
1. 欧拉方法欧拉方法是最简单的数值解法之一。
它基于近似替代的思想,将微分方程中的导数用差商近似表示。
具体步骤如下:(1)确定初始条件,即问题的初值。
(2)选择相应的步长h。
(3)根据微分方程的定义使用近似来计算下一个点的值。
欧拉方法的计算简单,但是由于误差累积,精度较低。
2. 改进欧拉方法为了提高欧拉方法的精度,改进欧拉方法应运而生。
改进欧拉方法通过使用两个点的斜率的平均值来计算下一个点的值。
具体步骤如下:(1)确定初始条件,即问题的初值。
(2)选择相应的步长h。
(3)根据微分方程的定义使用近似来计算下一个点的值。
改进欧拉方法相较于欧拉方法而言,精度更高。
3. 龙格-库塔法龙格-库塔法(Runge-Kutta)是常微分方程数值解法中最常用的方法之一。
它通过迭代逼近精确解,并在每一步中计算出多个斜率的加权平均值。
具体步骤如下:(1)确定初始条件,即问题的初值。
(2)选择相应的步长h。
(3)计算各阶导数的导数值。
(4)根据权重系数计算下一个点的值。
与欧拉方法和改进欧拉方法相比,龙格-库塔法的精度更高,但计算量也更大。
4. 亚当斯法亚当斯法(Adams)是一种多步法,它利用之前的解来近似下一个点的值。
具体步骤如下:(1)确定初始条件,即问题的初值。
(2)选择相应的步长h。
(3)通过隐式或显式的方式计算下一个点的值。
亚当斯法可以提高精度,并且比龙格-库塔法更加高效。
5. 多步法和多级法除了亚当斯法,还有其他的多步法和多级法可以用于解常微分方程。
多步法通过利用多个点的值来逼近解,从而提高精度。
而多级法则将步长进行分割,分别计算每个子问题的解,再进行组合得到整体解。
数值分析中的常微分方程数值求解常微分方程是自然科学中一类最为普遍的数学模型,涉及到热力学、物理、化工等多个领域。
然而,解常微分方程并非易事。
尤其是当我们面对一些复杂、非线性、多维的方程组时,常微分方程数值求解成为了一个十分关键的问题。
因此,数值求解方法成为了常微分方程研究中的重要组成部分。
本文将介绍一些数值解常微分方程的常见方法和应用。
1. 一般线性方法一般线性方法(general linear methods)是经典的常微分方程数值解法之一。
它以一种特殊的形式给出步进公式:$$ y_{n+1}=\sum_{i=0}^{s-1}\alpha_i y_{n-i}+h\sum_{i=0}^{s-1}\beta_i f(t_{n-i},y_{n-i}) $$ 其中,$y_{n}$为第$n$步的项值,$f(t_n,y_n)$为时间$t_n$处函数$y(t)$的导数。
$\alpha_i$和$\beta_i$是常数,可以通过确定如下特征方程来选择:$$ \sum_{i=0}^{s-1}\alpha_i\ lambda^{i}=0,~(\lambda\in C) $$ 与此同时,也可以通过选择$\beta_i$来使方法达到一定的准确性和稳定性。
2. Runge-Kutta方法比一般线性方法更为流行的方法是Runge-Kutta方法。
通常附加一个或多个修正以获得更好的数值稳定性和误差控制。
第1阶Runge-Kutta方法仅使用导数$f(t_n,y_n)$估算下一个项的值:$$y_{n+1}=y_n+hf(t_n,y_n)$$ 许多高阶方法可以使用中间的“插值”来更准确地估计下一个步骤:$$y_{n+1}=y_n+h\sum_{i=1}^kb_ik_i$$$$k_i=f(t_n+c_ih,y_n+h\sum _{j=1}^{i-1}a_{ij}k_j)$$ $k_i$是第$i$台车的估计值,$a_{ij}$和$b_i$在经典Runge-Kutta方法和其他变体中具有不同的取值。
《数值计算方法》复习资料(总20页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。
第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。
二复习要求1. 知道产生误差的主要来源。
2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。
3. 知道四则运算中的误差传播公式。
22三例题例1设x*= =…近似值x==×101,即m=1,它的绝对误差是- 592 6…,有即n=3,故x=有3位有效数字.x=准确到小数点后第2位.又近似值x=,它的绝对误差是…,有即m=1,n=5,x=有5位有效数字.而近似值x=,它的绝对误差是…,有即m=1,n=4,x=有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:4 - 00 9 000 9解因为x1= 4= 04×101, 它的绝对误差限 05=×10 1―5,即m=1,n=5,故x= 4有5位有效数字. a1=2,相对误差限33x=- 00,绝对误差限 005,因为m=-2,n=3,x2=- 00有3位有效2数字. a1=2,相对误差限r== 5x=9 000,绝对误差限为×100,因为m=4, n=4, x3=9 000有4位有效数3字,a=9,相对误差限r== 056x=9 ,绝对误差限,因为m=4,n=6,x4=9 有6位有效数字,相对误4差限为r== 000 56由x3与x4可以看到小数点之后的0,不是可有可无的,它是有实际意义的.例3ln2=0.…,精确到10-3的近似值是多少?解精确到10-3=,意旨两个近似值x1,x2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是=,故至少要保留小数点后三位才可以。