“数形结合”巧计算
- 格式:doc
- 大小:35.50 KB
- 文档页数:2
浅谈“数形结合”在计算教学中的运用一、数形结合的意义数形结合的意义还在于激发学生的创造力和想象力。
通过将数学概念通过图形的方式进行呈现,可以让学生更加感受到数学的美感,从而激发他们的创造力和想象力,使得数学变得更加有趣和吸引人。
数形结合的意义在于帮助学生更好地理解数学概念,培养解决问题的能力,激发学生的创造力和想象力,从而提高数学教学的效果。
二、数形结合的运用方法数形结合的方法其实并不难,只要教师能够灵活运用和巧妙设计,就可以在日常的数学教学中进行运用。
以下是一些常见的数形结合的运用方法:1. 利用图形进行数学概念的呈现:在教学中,可以通过画图的方式将抽象的数学概念进行呈现,如利用圆、三角形、矩形等形状来呈现面积、周长等概念。
通过图形的方式呈现,可以帮助学生更加直观地理解概念,从而加深他们对数学知识的理解。
2. 利用图形进行问题的解析:在解决数学问题的过程中,可以通过画图的方式进行问题的解析,如解决几何问题时,可以通过画图的方式帮助学生更直观地理解问题,从而更容易解决问题。
3. 利用图形进行数学定理的证明:在学习数学定理时,可以通过图形的方式对定理进行呈现和证明,这可以帮助学生更加直观地理解定理,并且可以激发学生的创造力,从而更好地掌握数学知识。
三、数形结合在计算教学中的实际效果数形结合的方法运用在计算教学中,可以取得很好的实际效果。
数形结合可以帮助学生更加直观地理解计算概念,如加减乘除等,通过图形的方式呈现,可以让学生更加直观地理解这些概念,从而更容易掌握计算的方法和技巧。
数形结合还可以激发学生对计算的兴趣,由于计算问题通常都很枯燥,而通过数形结合的方法可以让学生更感受到计算的美感,从而提高他们对计算的兴趣,使得学习变得更有趣。
三年级数形结合案例数形结合是指将数学知识与几何图形相结合,通过几何图形的形状、大小、位置等特征来解决数学问题。
三年级是学习数学和几何的关键阶段,以下是符合要求的一些数形结合案例:1. 小明家里有一块长方形的花坛,他想要在花坛的四周铺上一圈石子,用来美化花坛。
他测量了花坛的长和宽,发现长是5米,宽是3米。
他需要计算一下需要多少块石子才能够铺满整个花坛的四周。
2. 小红正在学习面积的概念,她拿着一个正方形的纸板,边长是4厘米。
她想要知道这个正方形的面积是多少,并用纸板上的方格来计算。
3. 小明和小红正在进行一个游戏,他们需要分别画一个正三角形和一个正方形,然后比较它们的面积。
小明画的正三角形的底边长是6厘米,高是4厘米;小红画的正方形的边长是5厘米。
他们需要计算一下谁画的图形面积更大。
4. 小明正在学习周长的概念,他拿着一个长方形的纸板,长是8厘米,宽是3厘米。
他需要计算一下这个长方形的周长是多少,并用纸板上的方格来计算。
5. 小红家里有一个圆形的花坛,她想要在花坛中间种一棵树,并围上一个圆形的栅栏,用来保护树苗。
她测量了花坛的直径,发现直径是10米。
她需要计算一下围栅栏需要多长的铁丝。
6. 小明正在学习体积的概念,他拿着一个正方体的木块,边长是4厘米。
他想要知道这个正方体的体积是多少,并通过拼装小木块的方式来计算。
7. 小红和小明正在进行一个游戏,他们需要分别画一个长方形和一个正三角形,然后比较它们的周长。
小红画的长方形的长是7厘米,宽是3厘米;小明画的正三角形的底边长是5厘米,高是4厘米。
他们需要计算一下谁画的图形周长更大。
8. 小明正在学习体积的概念,他拿着一个长方体的木块,长是6厘米,宽是3厘米,高是2厘米。
他想要知道这个长方体的体积是多少,并通过拼装小木块的方式来计算。
9. 小红正在学习面积的概念,她拿着一个长方形的纸板,长是7厘米,宽是4厘米。
她想要知道这个长方形的面积是多少,并用纸板上的方格来计算。
巧用数形结合,助力问题解决
数形结合是一种将数学问题和图形问题相结合的方法,通过将数学问题转化成图形问题,可以更好地理解和解决问题。
下面将通过几个例子来说明如何巧用数形结合来解决问题。
例1:矩形面积
问题:一个矩形的长度是5厘米,宽度是3厘米,求矩形的面积。
解法:我们可以将矩形的长度和宽度都用线段表示,在纸上画出一个5厘米长的线段
和一个3厘米长的线段,并将它们相连,就可以得到一个矩形。
然后使用尺子或直尺测量
该矩形的长度和宽度,即可得到面积为15平方厘米。
例2:圆的周长和面积
问题:一个半径为4厘米的圆,求圆的周长和面积。
解法:我们可以使用一个图钉和一根绳子来画圆。
首先将图钉固定在纸上,然后将绳
子绕在图钉上,再将绳子的另一端拉直,并用铅笔固定住。
然后用尺子或直尺测量绳子的
长度,这个长度就是圆的周长。
将测量的周长值记为L=8π厘米。
然后使用公式C=2πr,将半径的数值代入公式,即C=2π×4=8π厘米。
同样,我们可以使用尺子或直尺测量绳子的宽度,这个长度就是圆的直径,将直径的数值代入公式A=πr²,即A=π×2²=4π平方
厘米。
通过巧用数形结合的方法,我们可以更好地理解和解决问题。
无论是几何问题还是代
数问题,数形结合都能提供一种可视化的方法,将抽象的数学问题转化成具体的图形问题,使问题更加直观,更容易解决。
通过数形结合,我们还可以培养对图形的观察和分析能力,提升数学思维的综合性和创造性。
所以,巧用数形结合,可以助力问题的解决。
数学篇通过观察图形来探究数量关系,或利用数量关系来描述图形特征,从而使复杂的问题简单化,这种思想方法称为数形结合思想.用数形结合的思想解题可分为两类:①利用几何图形的直观性表示数的问题,它常常借用数轴、直角坐标系、函数图象等;②运用数量关系来研究几何图形问题,常常要建立方程(组)或建立函数关系等.下面简单介绍“数形结合”巧解初中数学题的几种情形.一、数形结合巧解图形变化规律问题初中阶段的图形变化规律题中往往涉及数字的变化,图形关系在发生规律性的变化时,数量关系也会随之出现规律性的变化.解题时我们应从分析图形结构的形成过程入手,从简单到复杂进行归纳猜想,从而获得隐含的数字规律,并用代数式描述出来,进而解答相关问题.例1图1是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴_________根.图1分析:本题虽然是图形问题,但依然可以采用数形结合思想来解.可以将火柴棒摆成的金鱼“形”转化为火柴棒的“数”量.解:1条金鱼,有8根火柴;2条金鱼,有14根火柴,比1条金鱼多6根;3条金鱼,有20根火柴,比2条金鱼多6根,比1条金鱼多2×6根;……n 条金鱼,有()根火柴,比(n -1)条金鱼多6根,比(n -2)条金鱼多2×6根,……,比1条金鱼多(n -1)×6根;这样,利用递推的方法就可以推算出第n 条金鱼需要8+6×(n -1)=6n +2根.点评:本题主要考查图形的变化规律.解答此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点.二、数形结合巧解二元一次方程组问题二元一次方程组和一次函数的结合很好地诠释了“数”与“形”的结合,我们可以利用两直线的交点坐标确定方程组的解,也可以利用方程组的解确定两直线的交点坐标.在利用一次函数图象解二元一次方程组时,两函数图象的交点的横坐标是x 的值,纵坐标是y 的值,正确找出交点坐标是解题的关键.例2用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图2所示),则所解的二元一次方程组是()图2A.{x +y -2=03x -2y -1=0 B.{2x -y -1=03x -2y -1=0C.{2x -y -1=03x +2y -5=0D.{x +y -2=02x -y -1=0数形结合巧解题江苏省启东市南阳中学黄烨华学思导引27数学篇分析:题目已经给出方程组的图象,我们根据图象可以明确两条直线的斜率,进而直接将图象中两直线的交点坐标P带入方程即可以验证准确与否.解:由图可知,两直线都过P(1,1)点,其中一条直线斜率为k=-1,另一条直线斜率为k=2.对比选项,只有选项D满足条件,其中直线x+y-2=0的斜率为k=-1,直线2x-y-1=0的斜率为k=2,而且都满足过P(1,1).答案为D项.评注:通过图象求解二元一次方程组问题,除了关注交点坐标外,还要看图象能提供哪些其他信息,同时要关注选项,对比出选项的异同点.三、数形结合巧解二次函数问题二次函数蕴含了丰富的数形结合思想,在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.因此,在解答二次函数问题时,要把图形的性质特征与数量关系相互转化,通过观察图象分析图形与数量之间的关系,通过分析数量关系的变化判断函数图象的运动轨迹,从而求解.例3图3为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;④当x>1时,y随x的增大而增大;⑤2a-b=0;⑥b2=4ac>0.结论一定成立的是().图3A.①②④⑥B.①②③⑤C.②③④⑤⑥D.①②③④⑤⑥分析:此题考查了二次函数的图象.我们可以借助于二次函数的图象和性质特征完成解题.解:∵抛物线开口向上,∴a>0,∵抛物线和y轴的交点在y轴的负半轴上,∴c<0,∴ac<0,∴①正确;∵图象与x轴的交点坐标是(-1,0),(3,0),∴方程ax2+bx+c=0的根是x1=-1,x2=3,∴②正确;把x=1代入y=ax2+bx+c得:a+b+c<0,∴③错误;根据图象可知:当x>1时,y随x的增大而增大,∴④正确;∵-b2a=1,∴2a=-b,∴2a+b=0,不是2a-b=0,∴⑤错误;∵图象和x轴有两个交点,∴b2-4ac>0,∴⑥正确;故选A项.评注:“数形结合”要牢牢地抓住“数”的性质和“形”的特征,本题考查了同学们对二次函数的图象与系数的关系的理解和运用,同时也考查了观察图象的能力.同学们一定要重视对定义、概念以及原理的学习,这些都是数形结合的根源.四、数形结合巧解统计问题解答统计问题的重点在于收集数据、分析数据、将数据用图形的方式表达出来,这充分显示了数形结合思想方法的灵活运用.条形统计图、扇形统计图和折线统计图是初中数学统计学中的重点.如果是关于比重的问题,可以使用扇形统计图.如果是关于数据集中分析的问题,可以使用条形统计图.如果是关于数据变化规律问题,可以使用折线统计学思导引28数学篇图.利用统计图简洁明了的特点展示数据,可以让我们对结果或者规律一目了然.例4某自行车公司调查阳光中学的学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”“比较了解”“一般了解”“不了解”四种类型,分别记为A 、B 、C 、D.根据调查结果绘制了如下尚不完整的统计图.图4(1)本次问卷共随机调查了名学生,扇形统计图中m =.(2)请根据数据信息补全条形统计图.(3)若该校有1000名学生,估计选择“非常了解”“比较了解”共约有多少人?分析:(1)由A 的数据即可得出调查的人数,得出m =1650×100%=32;(2)求出C 的人数即可;(3)由1000×(16%+40%),计算即可.解:(1)8÷16%=50(人),m =1650×100%=32故答案为:50,32;(2)50×40%=20(人),补全条形统计图如图5所示:图5(3)1000×(16%+40%)=560(人);答:估计选择“非常了解”“比较了解”共约有560人.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.总之,数形结合思想在解答各类数学问题时都有用武之地.同学们要注意结合题目信息以及知识点之间的联系,把握“数”的性质与“形”的特征,充分挖掘隐含条件,灵活实现“以形助数”或“以数解形”,进而准确、快捷、高效地解题.上期《<二次根式>拓展精练》参考答案1.C ;2.B ;3.B ;4.C ;5.A ;6.0;7.30;8.4;9.-1;10.解:(1)当d =20m ,f =1.2时,v =1620×1.2=326(km/h ),答:肇事汽车的速度是326km/h ;(2)v =326≈78>70,∴肇事汽车已经超速.11.解:(1)13;75(2)①3153×151515;②1125-3=11×(25+3)(25-3)×(25+3)=25+3;(3⋯+22023+2021=3-1+5-3+7-5+⋯+2023-2021=2023-1.学思导引29。
数形结合是一种重要的数学思想,通过将抽象的数学语言与直观的图形相结合,可以帮助学生更好地理解数学概念和解决问题。
以下是一些适合四年级学生的数形结合经典题目:
1.小明用棋子摆成一个正方形实心方阵,最外边的一层共用96个棋子。
小明摆这个方
阵共用了多少个棋子?
2.小军用棋子摆成了一个空心方阵,最外边的一层共用棋子80个。
最里边的一层共用
棋子48个。
这个空心方阵共有几层?
3.小丽用棋子摆成了一个三角形实心方阵,最外边的一层共用72个棋子。
小丽摆这个
方阵共用了多少个棋子?
4.小华用棋子摆成一个空心三角形,最外边的一层共用96个棋子。
最里边的一层共用
24个棋子。
这个空心三角形共有几层?
5.小明用棋子摆成一个长方形实心方阵,最外边的一层共用88个棋子。
如果最外边一
边有n个棋子,那么这个长方形方阵共有多少个棋子?
这些题目需要学生通过观察图形,理解数形结合的思想,并运用数学公式和推理方法来解决问题。
浅谈“数形结合”在计算教学中的运用数形结合是一种在教学中常用的方法,它将数学与图形结合起来,使得抽象的数学概念更加具体化,帮助学生更好地理解和掌握知识。
在计算教学中,数形结合也是一种非常有效的教学方法,可以帮助学生更好地理解计算规律,加深对数学概念的理解。
本文将就数形结合在计算教学中的运用进行探讨。
二、数形结合在计算教学中的运用1. 利用图形进行计算在教学中,可以通过图形来展示计算过程,让学生能够直观地看到具体的计算过程,从而更好地理解和掌握计算规律。
在教学加法时,可以利用图形让学生看到两个数相加的过程,通过图形的展示,学生可以更清晰地理解加法的本质和规律,从而更好地掌握加法运算。
3. 利用图形解决问题数形结合还可以用来解决实际问题。
在教学中,可以将实际问题转化为图形问题,通过图形的展示来解决实际问题。
通过这种方式,学生可以更加直观地看到问题的解决过程,更好地理解问题的本质,从而更好地解决实际问题。
三、数形结合在计算教学中的优势1. 增强学生的学习兴趣数形结合可以通过图形的展示来呈现问题,让学生能够更加直观地看到问题的解决过程,从而增强学生的学习兴趣,促进学生的学习积极性。
2. 深化学生对知识的理解通过图形的展示,学生可以更加直观地看到问题的解决过程,更好地理解知识的本质和规律,从而深化对知识的理解。
3. 帮助学生综合运用知识数形结合可以帮助学生将所学的知识综合运用到实际问题中,通过图形的展示来解决实际问题,培养学生的综合运用能力。
4. 提高教学效果数形结合可以通过图形的展示来直观地呈现问题和解决过程,帮助学生更好地理解知识和掌握技能,提高教学效果。
2. 利用图形展示计算规律可以通过图形的展示来让学生看到计算的规律和特点,深化学生对知识的理解。
3. 利用图形解决问题可以将实际问题转化为图形问题,通过图形的展示来解决实际问题,帮助学生更好地掌握知识。
巧用数形结合,助力问题解决数形结合指的是在解决数学问题时,利用几何图形的形状、位置、大小等特征与数学公式进行结合和利用。
这种方法很大程度上可以使问题解决变得更加简单,同时也可以提高我们的数学思维能力和创新能力。
接下来就让我们看几个例子来理解一下数形结合的具体应用。
例1、圆的面积和周长问题描述:一个圆的半径为r,求它的面积和周长。
解题思路:我们可以利用数学公式直接求解。
圆的面积公式为:S = πr² ,圆的周长公式为:C = 2πr 。
但是如果我们将圆形的面积和周长与具体图形相结合,就会更容易理解和记住这些公式。
比如,我们可以将一个圆分成许多小的扇形,然后利用这些扇形构成一个圆柱体。
这时圆柱体的表面积就是圆形的周长乘以高度,也就是2πrh(h表示圆柱体高度)。
同时,圆柱体的底面积就是圆形的面积πr²。
这种结合几何图形的方法,可以使我们更加深刻地理解圆形的面积和周长的概念。
例2、三角形的面积和角度问题描述:已知三角形ABC的三个顶点坐标分别为A(x1, y1), B(x2, y2), C(x3, y3)。
求三角形的面积和角度。
解题思路:我们可以首先根据三角形的顶点坐标求出三条边的长度,然后再根据海伦公式求出三角形的面积。
但如果我们将具体的三角形形状与数学公式进行结合,就可以运用更加深层次的数学知识来解决问题。
比如,我们可以将三角形ABC分别作为直角三角形和锐角三角形看待,然后再利用三角函数(正弦、余弦和正切)来求解三角形的边长和角度。
这可以更加直观地理解三角函数的概念,并且可以使我们更加快速地求解三角形的面积和角度。
总之,数形结合是一种相当有效的求解数学问题的方法。
在实际运用中,我们可以根据具体情况灵活地运用这种方法,使问题解决变得更加简单,同时也更能够理解数学知识的内涵和意义。
数形结合解题五例“数形结合”是一门研究两类问题之间相互联系的学科,它是数学和几何学的实践性结合。
一个经典的数形结合解题模型是,利用数学分析的方法来解答具有几何关系的问题。
在这种情况下,解决问题的核心是发现数学模型,以及数学和几何知识之间的关系。
以下将介绍五个典型的数形结合解题案例。
第一个案例是:一只蚊子被困在圆柱形水桶内,现在要让它自由起飞,需要给桶中加多少水?这是一道数形结合案例,我们可以使用几何知识来解答这个问题。
首先,由于蚊子被困在圆柱形水桶内,我们可以确定桶的容积公式:容积=πr^2 h,其中r是桶的半径,h是桶的高度。
现在,我们需要确定桶中有多少水,因此需要求出桶中水的容积。
由于蚊子不能跨越水面,因此桶中水的容积必须超过蚊子跳过水面所需的高度,那么桶中水的容积就是h高度加上空气高度,因此总容积就是πr^2 (h+空气高度),空气高度可以根据蚊子跳出水面所必须的高度来计算。
最后,我们只需将总容积减去桶内现有水的容积,就可以得到桶中需要加的水的容积。
第二个案例是:在XY平面上,有一直角三角形ABC,AB=3,BC=4,求角A的大小。
这是一道解三角形的数形结合问题,我们可以使用勾股定理来解答,即a^2 + b^2 = c*2。
由此可知,a=3,b=4,那么角A的大小就是A=cos--1((a*2 - b*2)/2ab)=cos--1(-5/24)=90°-cos--1(5/24)。
通过以上的运算,可以知道 ABC的三角中,角A的大小是90°-cos--1(5/24)。
第三个案例是:以圆心A为原点,有一个半径为R的完整圆,两个圆心分别为B、C,B和C的距离为d,要求确定BC两点的坐标和圆心A的半径R。
这是一道数形结合问题,我们首先要求出圆心A的半径R,首先可以使用勾股定理求出R=√(d2-d2A)可以求得圆心A的半径R。
然后确定圆心B和C在XY平面上的坐标,我们需要知道圆心A的坐标,以及两个圆心B和C之间的夹角α,也就是两个圆心所在线段的切线夹角。
“数形结合”巧计算
数形结合使“代数问题几何化,几何问题代数化”。
比如列方程解应用题时常画线段图、有理数用数轴上的点来表示等等,都是数形结合的典型例子。
对于一些较难的数学问题,采用由形思数、由数想形,结合具体问题,灵活进行数形转化,往往可使复杂问题简单化、抽象问题具体化。
下面就以举例谈谈“数形结合”解问题。
例如,求1+2+3+4+…+n的值,其中n是正整数.
分析:对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对正整数n是奇数,还是偶数进行讨论.
如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n的值,方案如下.
方案一:如图1,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n 个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n 的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行
四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为
21)
(+
n
n
,
即1+2+3+4+…+n=
21)
(+
n
n
.
图1
方案二:设计图形如图2所示.
图2
因为组成此正方形的小圆圈共有n行,每行有n个,所以共有(n×n)个,即n2个.∴1+3+5+7+…+(2n-1)=n×n=n2.
(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中n 是正整数.(要求:画出图形,并利用图形做必要的推理说明)(2)试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)
【分析】这是一道通过材料阅读,从中得出“解题方法型”的试题;试题中渗透了运用“数形结合”的思想。
即用图示法来揭示所要求的n个连续正整数的各的问题.仔细阅读后,求解问题也就不难了.
解:(1)设计图形如图②.
图②
因为组成此平行四边形的小圆圈共有n行,每行有[(2n-1)+1]个,即2n个,所以组成此平行四边形的小圆圈共有(n×2n)个,即2n2个.
∴1+3+5+7+…+(2n-1)=
21)1
2
n n
⨯-+
〔(〕
=n2.
(2)设计图形如图③.
图③
因为组成此正方形的小圆圈共有n行,每行有n个,所以共有(n×n)个,即n2个.∴1+3+5+7+…+(2n-1)=n×n=n2.
【点评】我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.。