质点的运动方程
- 格式:pptx
- 大小:1.19 MB
- 文档页数:67
1第1章 质点力学1—1 一质点的运动方程为x = 6t-t 2(SI ),则在t 由0至4s 的时间间隔内,质点的位移大小为 ;质点所走过的路程为 .1-3 一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为a=2+6x 2(SI ),如果质点在原点处的速度为零,试求其在任意位置处的速度。
1-4一质点沿半径R 的圆周运动,运动方程为 θ=3+2t 2(SI ),则t 时刻质点的法向加速度大小为 an;角加速度 β= 。
1—5 某质点的运动方程为x= 3t —5t 3+6(SI),则该质点作 (A)匀加速直线运动,加速度沿x 轴正方向. (B )匀加速直线运动,加速度沿x 轴负方向。
(C )变加速直线运动,加速度沿x 轴正方向。
(D )变加速直线运动,加速度沿x 轴负方向。
[ ] 1—9 一质点作直线运动,其坐标x 与时间t 的函数曲线如图所示,则该质点在第秒瞬时速度为零;在第 秒至第 秒间速度与加速度同方向。
1—10 一物体作斜抛运动,初速度0v与水平方向夹角为θ, 如图所示,则物体到达最高点处轨道的曲率半径ρ为 .1-11一物体作如图所示的斜抛运动,测得在轨道A 点处速度v的大小为v ,其方向与水平方向夹角成30°。
则物体在A 点的切向加速度a t = ,轨道的曲率半径ρ= 。
6t(s)题1—10图 题1-11图21-12 在相对地面静止的坐标系内,A 、B 二船都以2 m/s 的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。
今在船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i 、j表示),那么在A 船的坐标系中,B 船的速度(以m/s 为单位)为 :(A)j 2i 2 + (B )j 2i 2+-(C )j 2i 2 -- (D )j 2i 2- [ ]1—13 一飞机相对空气的速度大小为200km/h ,风速为56 km/h ,方向从西向东,地面雷达测得飞机速度大小为192 km/h ,方向是(A)南偏西 16。
质点运动的基本概念与运动学公式在物理学中,质点是指质量可忽略不计,仅具有位置和速度等运动属性的物体。
质点运动是运动学的一个基本概念,运动学是研究物体运动规律的学科。
本文将探讨质点运动的基本概念以及相关的运动学公式。
1. 位置、位移和路径位置是指物体在空间中的具体位置,通常可以用一个坐标系来表示。
位移是指物体从初位置到末位置的变化量,用Δx表示。
路径是物体在运动过程中所经过的轨迹。
2. 速度和速度公式速度是指物体在单位时间内所经过的位移,用v表示。
速度的大小可以通过位移除以时间来计算,即v=Δx/Δt。
当时间趋近于无穷小的时候,即Δt趋近于0,可以得到瞬时速度的定义:v=dx/dt,其中dx表示无穷小的位移变化,dt表示无穷小的时间变化。
3. 加速度和加速度公式加速度是指物体的速度变化率,用a表示。
加速度的大小可以通过速度除以时间来计算,即a=Δv/Δt。
当时间趋近于无穷小的时候,即Δt 趋近于0,可以得到瞬时加速度的定义:a=dv/dt,其中dv表示无穷小的速度变化,dt表示无穷小的时间变化。
4. 运动学公式根据速度和加速度的定义,我们可以得到一些与质点运动相关的运动学公式。
以下是一些常见的运动学公式:- 位移公式:Δx = v0t + (1/2)at^2- 速度公式:v = v0 + at- 加速度公式:v^2 = v0^2 + 2aΔx这些公式可以通过代入已知的初始条件,如初速度v0、时间t、位移Δx等来求解物体在运动过程中的运动参数。
5. 简谐振动简谐振动是质点运动中的一种特殊形式,它具有以下特点:- 振动的周期是恒定的,表示为T;- 振动的频率是周期的倒数,表示为f=1/T;- 振动的位移随时间的变化呈正弦或余弦函数。
对于简谐振动,还有一些与振动特性相关的公式:- 谐振频率公式:f = (1/2π) √(k/m),其中k表示弹性系数,m表示质量;- 谐振周期公式:T = 1/f;- 谐振角频率公式:ω = 2πf。
质点动力学知识点总结基本概念:质点:具有质量但没有体积和形状的物体模型。
力:质点动力学研究的核心内容,包括恒力、变力和约束力。
运动方程:描述质点在外力作用下的运动规律的基本方程。
动量:描述质点运动状态的重要物理量,等于质点的质量乘以速度。
动能:描述质点运动状态的另一个重要物理量,等于质点的质量乘以速度的平方再乘以1/2。
势能:描述质点在外力场中的势能状态的物理量,势能的大小与质点所处位置有关。
角动量和角动量定理:与质点的旋转运动相关的物理量和定理。
基本理论:牛顿运动定律:描述了质点在作用力作用下运动的规律,即F=ma,其中F表示合外力,m表示质点的质量,a表示质点的加速度。
动量定理:通过动量的概念揭示了力与运动之间的内在联系,即合外力的冲量等于物体动量的变化量,表达式为Ft=mV-mv。
动能定理:引入动能的概念,建立了力学与能量之间的关系,即合外力做的功等于物体的动能的改变量,表达式为W=1/2mV^2-1/2mv^2。
分析方法:矢量方法:利用矢量运算符对问题进行矢量分析。
微分方程方法:将运动方程化为微分方程,然后求解微分方程获得运动规律。
能量方法:利用能量守恒定律等能量原理分析运动问题。
实际应用:军事方面:应用在导弹、卫星、航天器和飞机等领域,研究其受力情况和运动规律,从而提高军事制式的效率和效果。
经济方面:应用在金融市场和交通运输领域,分析市场变化和流动性,以及货运运输的效益和优化策略。
社会方面:研究城市交通拥堵问题、人口迁移以及城市规律,以提高城市的运作效率和质量。
总的来说,质点动力学涉及到质点的运动规律、动量、动能、势能等基本物理量的研究,以及相关的理论和实际应用。
通过学习和掌握质点动力学的知识,可以更好地理解物体在外力作用下的运动规律,以及如何利用这些规律解决实际问题。
质点运动方程公式质点运动方程公式是描述质点运动规律的数学公式。
在物理学中,质点是一个理想化的物体,忽略其大小和形状,只考虑其质量和位置。
质点运动方程公式可以用来描述质点在空间中的位置、速度和加速度随时间的变化关系。
质点运动方程公式可以分为两种情况:匀速直线运动和变速直线运动。
对于匀速直线运动,质点的加速度为零,速度保持不变,质点运动方程公式可以简化为s = v × t,其中s表示质点的位移,v表示质点的速度,t表示时间。
对于变速直线运动,质点的加速度不为零,速度随时间变化,质点运动方程公式可以表示为s = ut + 1/2at^2,其中s表示质点的位移,u表示质点的初速度,a表示质点的加速度,t表示时间。
质点运动方程公式的应用非常广泛。
在日常生活中,我们可以通过质点运动方程公式计算出物体的位移、速度和加速度,从而了解物体的运动规律。
在工程领域,质点运动方程公式可以用来设计机械运动系统,优化运动轨迹,提高工作效率。
在天文学中,质点运动方程公式可以用来研究行星、卫星等天体的运动轨迹和速度变化规律。
质点运动方程公式还可以与其他物理公式相结合,进一步研究质点的运动特性。
例如,与牛顿第二定律结合可以得到质点的运动方程F = ma,其中F表示作用在质点上的力,m表示质点的质量,a表示质点的加速度。
通过解方程可以求解出质点的加速度,进而得到质点的速度和位移。
质点运动方程公式还可以应用于求解各种实际问题。
例如,可以用质点运动方程公式来计算汽车的行驶距离、飞机的飞行时间等。
在物理实验中,质点运动方程公式也是分析和解释实验结果的重要工具。
质点运动方程公式是描述质点运动规律的基本工具,应用广泛且具有重要意义。
通过理解和应用质点运动方程公式,我们可以更好地认识和掌握物体在空间中的运动规律,为解决实际问题提供有效的数学工具。
1、一质点运动方程为t R R y t R Rt x ωωωcos sin -=-= 式中ω、R 是常量,求当ωπ=t 时,质点位置矢量r 、速度V 、加速度a 。
2、一质点沿x 轴运动,其速度与时间的关系式为V=4+t 2cm/s,当t=3s 时,质点位于x=9cm 处,求(1)质点的位置与时间关系?(2)求t=8s 时,质点的速度和加速度大小?3、水和油边界的表面张力系数为α=18⨯10-3N/m,为了使2.0⨯10-3kg的油在水内散布成小油滴(认为是球形)需0.24 J的功,问小油滴的半径多大?散布过程认为是等温的,油的密度ρ=90 kg/m3。
4、假设树干外层是一些木质的细管子,每个细管都是均匀的圆柱体,树液完全由于毛细现象而上升,接触角为450,表面张力系数为α=50×10-3N/m,问高为20米的树,木质管子的最大半径是多少?树液密度近似取水的密度。
5、用液滴法测农药的表面张力系数时,已知移液管口内半径为0.35mm,滴出的318个药滴的重量为0.049N 。
求该农药的表面张力系数。
6、沉降法也可用于测定土壤颗粒的大小,若已知200c 时土粒密度33/1065.2m kg ⨯=ρ,水的密度320/1098.9m kg ⨯=ρ,水的粘滞系数s Pa ⋅⨯=-310005.1η。
土粒在水中匀速下降0.15m 时所需的时间为67s 。
求土粒的半径为多少?7、在一横截面积为S1的园柱形容器里,S1盛有深度为H的水,并在底部开一个面积为S2(S1》S2)的小孔,当S2打开后,试求水全部流出所需要的时间。
8、使用压水泵,把水加压到6.0×105Pa,水以5.0m/s 的流速沿内直径4.0cm的地下管道向楼房供水,若进入楼房时,水管内直径为 2.0cm,水管升高 1.0m,计算进入楼房时,水管内水流速度和压强。
9、把狗的一根大动脉中流动的血液转换到一个截面不均匀的小管中,小管宽部分的面积为S1= 0.08cm2,它等于这根动脉的横截面积,小管窄的部分面积S2=0.04cm2,小管中的压强降落25Pa,求动脉中血液流动的速度V1。
第1章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.解:(1)质点在第1s 末的位移大小为x (1) = 6×12 - 2×13 = 4(m). 在第2s 末的位移大小为x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为v =Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为v (t ) = d x /d t = 12t - 6t 2, 因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0, 质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m .(3)质点的瞬时加速度大小为a (t ) = d v /d t = 12 - 12t , 因此1s 末的瞬时加速度为a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2). [注意]第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t -=+.并由上述数据求出量值.证:依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t ------- (1) 根据速度与位移的关系式 v t 2 = v o 2 + 2as , 得a = (n 2 – 1)v o 2/2s ------- (2) (1}平方之后除以 (2)式证得22(1)(1)n sa n t -=+.计算得加速度为22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问: (1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角?解:方法一:分步法.(1)夹角用θ表示,人和车(他)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当他达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式v t 2 - v 02 = 2a s , 可得上升的最大高度为h 1 = v y 02/2g = 30.94(m).他从最高点开始再做自由落体运动,下落的高度为h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为图1.32t =. 因此他飞越的时间为t = t 1 + t 2 = 6.98(s).他飞越的水平速度为v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得他落地的竖直速度大小为v y = gt = 69.8(m·s -1), 落地速度为v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上的方向为正,他在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得0(sin t v g θ=. 这里y = -70m ,根号项就是他落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为t = 6.98(s). 由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数. (1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k=+. 证:(1)分离变量得2d d vk t v=-, 积分020d d vtv vk t v =-⎰⎰, 可得 011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分 00001d d(1)(1)xtx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕. [讨论] 当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma .由于a = d 2x /d t 2,而 d x /d t = v ,所以 a = d v /d t ,分离变量得方程 d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=-,积分得ln v = -kt + C . 当t = 0时,v = v 0,所以C = ln v 0,因此ln v/v 0 = -kt ,得速度为 v = v 0e -kt .而d v = v 0e -kt d t ,积分得0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此 0(1-e )ktv x k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-.当t = 0时,v = v 0,所以101n v C n-=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-, 读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值?解:(1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1), 法向加速度为 a n = rω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =2r r ω=, 即22(12)24t = 解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2,即 24t = (12t 2)2, 解得 t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a =m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少? 解:建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ,v 0y = v 0sin θ.加速度的大小为a x = a cos α,a y = a sin α.运动方程为2012x x x v t a t =+,2012y y y v t a t =-+.即 201cos cos 2x v t a t θα=⋅+⋅,201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,例如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.解:圆盘边缘的切向加速度大小等于物体A 下落加速度. 由于212t h a t =∆,所以a t = 2h /Δt 2 = 0.2(m·s -2). 物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算: (1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.解:在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+; 螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t =.算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程 h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02l t v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =-;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.证:(1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u ,所以飞行时间为1222l l vlt v u v u v u=+=+-- 022222/1/1/t l v u v u v ==--. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为V =,所以飞行时间为22l t V ==== 证毕.AAB vv + uv - uABvu uvv1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?解:雨对地的速度2v r 等于雨对车的速度3v r 加车对地的速度1v r,由此可作矢量三角形.根据题意得tan α = l/h . 方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ,因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+, 即 12(sin cos )lv v hθθ=+.方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t ,h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.图1.101h l α。