热力学第二定律
- 格式:pptx
- 大小:2.94 MB
- 文档页数:31
解释热力学第二定律
热力学第二定律是热力学中的一个基本定律,也被称为熵增定律。
它提供了一个描述自然界中热现象发生方向的规律。
热力学第二定律有多种表述方式,其中最常见的是克劳修斯表述和开尔文表述。
克劳修斯表述,不可能将热量从低温物体自发地传递给高温物体,而不产生其他效果。
这个表述可以解释为,热量不会自发地从冷的物体转移到热的物体,而不产生其他变化。
例如,我们无法将热量从一个冷水杯中传递到一个热水杯中,而不使用外部能量(如加热器)。
开尔文表述,不可能通过一个循环过程将热量完全转化为功而不产生其他效果。
这个表述可以解释为,不可能通过一个循环过程将热量完全转化为有用的功而不产生其他变化。
换言之,不可能将热量全部转化为有用的能量,而不产生其他形式的能量损失。
热力学第二定律的核心思想是熵的增加。
熵是描述系统无序程度的物理量,热力学第二定律指出,一个孤立系统的熵总是趋向于增加,而不会减少。
换句话说,自然界中的过程总是朝着更高熵(更大的无序)的方向发展。
总结来说,热力学第二定律告诉我们,热现象具有一种不可逆性,热量不会自发地从冷物体传递到热物体,而且热量无法完全转化为有用的功而不产生其他形式的能量损失。
这个定律对于理解自然界中的热现象和能量转化过程非常重要。
热力学第二定律(英文:second law of thermodynamics)是热力学的四条基本定律之一,表述热力学过程的不可逆性——孤立系统自发地朝着热力学平衡方向──最大熵状态──演化,同样地,第二类永动机永不可能实现。
这一定律的历史可追溯至尼古拉·卡诺对于热机效率的研究,及其于1824年提出的卡诺定理。
定律有许多种表述,其中最具代表性的是克劳修斯表述(1850年)和开尔文表述(1851年),这些表述都可被证明是等价的。
定律的数学表述主要借助鲁道夫·克劳修斯所引入的熵的概念,具体表述为克劳修斯定理。
虽然这一定律在热力学范畴内是一条经验定律,无法得到解释,但随着统计力学的发展,这一定律得到了解释。
这一定律本身及所引入的熵的概念对于物理学及其他科学领域有深远意义。
定律本身可作为过程不可逆性[2]:p.262及时间流向的判据。
而路德维希·玻尔兹曼对于熵的微观解释——系统微观粒子无序程度的量度,更使这概念被引用到物理学之外诸多领域,如信息论及生态学等克劳修斯表述克劳修斯克劳修斯表述是以热量传递的不可逆性(即热量总是自发地从高温热源流向低温热源)作为出发点。
虽然可以借助制冷机使热量从低温热源流向高温热源,但这过程是借助外界对制冷机做功实现的,即这过程除了有热量的传递,还有功转化为热的其他影响。
1850年克劳修斯将这一规律总结为:不可能把热量从低温物体传递到高温物体而不产生其他影响。
开尔文表述参见:永动机#第二类永动机开尔文勋爵开尔文表述是以第二类永动机不可能实现这一规律作为出发点。
第二类永动机是指可以将从单一热源吸热全部转化为功,但大量事实证明这个过程是不可能实现的。
功能够自发地、无条件地全部转化为热;但热转化为功是有条件的,而且转化效率有所限制。
也就是说功自发转化为热这一过程只能单向进行而不可逆。
1851年开尔文勋爵把这一普遍规律总结为:不可能从单一热源吸收能量,使之完全变为有用功而不产生其他影响。
热力学第二定律的理解与应用热力学第二定律是热力学基本原理之一,它描述了热能传递的不可逆性以及自然界中的一些普遍现象。
本文将深入探讨热力学第二定律的原理、应用以及它在现实生活中的意义。
一、热力学第二定律的基本原理热力学第二定律是指在孤立系统中,热量不会自发地从低温物体传递给高温物体。
这一定律可以用来解释很多自然现象,比如热流的方向、热机效率等。
根据热力学第二定律,热量只能自发地从高温物体传递给低温物体,而不能反向传递。
这是因为热量传递是以熵的增加为代价的。
熵是一个描述系统混乱程度的量,它与物质的无序程度有关。
系统的熵增加意味着物质更趋向于无序状态,而热量的传递恰恰是增加了系统的熵。
二、热力学第二定律的应用热力学第二定律在工程和科学领域有着广泛的应用。
以下是其中几个重要的应用:1. 热机效率根据热力学第二定律,热机的效率受到一定的限制。
卡诺热机是满足最高效率的热机,其效率与工作温度之差有关。
利用热力学第二定律,我们可以计算出热机的最大理论效率。
2. 熵增原理熵增原理是热力学第二定律的重要推论之一。
它表明孤立系统的熵总是增加的,从而增加了系统的混乱程度。
这一原理可以应用于许多方面,比如环境保护和能源利用等。
在能源利用方面,通过最大限度地减少系统的熵增,可以提高能量利用效率。
3. 低温物体的制冷原理制冷原理是热力学第二定律的重要应用之一。
根据热力学第二定律,热量不会自发地从低温物体传递给高温物体。
这一原理被应用于制冷技术中,通过对高温物体吸热,从而使低温物体降温,实现循环制冷。
三、热力学第二定律的意义热力学第二定律是自然界存在的一个普遍规律,它对我们的生活和科学研究具有重要意义。
首先,热力学第二定律揭示了自然界的不可逆性和混乱趋势。
它帮助我们理解为什么事物在自然界中总是朝着更加无序的状态发展。
其次,热力学第二定律对于能源利用和环境保护具有指导意义。
通过最大限度地减少系统的熵增,我们可以提高能源利用效率,减少能源浪费。
第二章 热力学第二定律§2–1 引言(一) 热力学第一定律的局限性:凡是违背第一定律的过程一定不能实现,但是不违背第一定律的过程并不是都能自动实现的。
例如:1.两块不同温度的铁相接触,究竟热从哪一块流向哪一块呢?按热力学第一定律,只要一块铁流出的热量等于另一块铁吸收的热量就可以了,但实际上,热必须温度从较高的一块流向温度较低的那块,最后两块温度相等,至于反过来的情况,热从较冷的一块流向热的一块,永远不会自动发生。
2.对于化学反应:以上化学反应计量方程告诉我们,在上述条件下,反应生成1mol NO 2,则放热57.0KJ,若1mol NO 2分解,吸热57.0KJ ,均未违反热力学第一定律,但热力学第一定律不能告诉我们,在上述条件下的混合物中,究竟是发生NO 2的分解反应,还是NO 2的生成反应?假定是生成NO 2的反应能自动进行,那么进行到什么程度呢?这些就是过程进行的方向和限度问题,第一定律无法解决,要由第二定律解决。
(二) 热力学第二定律的研究对象及其意义:1. 研究对象:在指定条件下,过程自发进行的方向和限度:当条件改变后,方向和限度有何变化。
2. 意义:过程自发进行的方向和限度是生产和科研中所关心和要解决的重要问题。
例如:在化工及制药生产中,不断提出新工艺,或使用新材料,或合成新药品这一类的科学研究课题,有的为了综合利用,减少环境污染,有的为了改善劳动条件不使用剧毒药品,……等。
这些方法能否成功?也就是在指定条件下,所需要的化学反应能否自动进行?以及在什么条件下,能获得更多新产品的问题。
当然,我们可以进行各种实验来解决这一问题,但若能事先通过计算作出正确判断,就可以大大节省人力,物力。
理论计算认为某条件下根本不可能进行的反应,就不要在该条件下去进行实验了。
3. 研究方法:以自然界已知的大量事实为基础,从中抽象出它们的共性,进而导出几个新的状态函数:熵(s),亥姆霉兹自由能(F)和吉布斯自由能(G),用来判断过程的方向和限度,以达到问题的解决。
热力学第二定律具体内容:热力学第二定律是热力学定律之一,是指热永远都只能由热处转到冷处.热力学第二定律是描述热量的传递方向的分子有规则运动的机械能可以完全转化为分子无规则运动的热能;热能却不能完全转化为机械能.此定律的一种常用的表达方式是,每一个自发的物理或化学过程总是向著熵(entropy)增高的方向发展.熵是一种不能转化为功的热能.熵的改变量等于热量的改变量除以绝对温度.高、低温度各自集中时,熵值很低;温度均匀扩散时,熵值增高.物体有秩序时,熵值低;物体无序时,熵值便增高.现在整个宇宙正在由有序趋于无序,由有规则趋于无规则,宇宙间熵的总量在增加.克劳修斯表述不可能把热量从低温物体传到高温物体而不引起其他变化.开尔文表述不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响.开尔文表述还可以表述成:第二类永动机不可能造成.若要简捷热能不能完全转化为机械能,只能从高温物体传到低温物体。