储层物理性质
- 格式:ppt
- 大小:1.32 MB
- 文档页数:21
储层物性特征范文储层物性特征指的是描述储层岩石和流体性质的一系列参数和特征。
这些特征对于石油和天然气储层的勘探、开发和生产具有重要意义。
下面将详细介绍储层物性特征,包括孔隙度、渗透率、饱和度、孔喉结构和岩石力学性质等。
首先,孔隙度是指储层岩石中的孔隙体积与总体积之比。
它是评价岩石贮藏岩石孔隙系统开发利用的重要物性参数。
高孔隙度的岩石具有更大的储层容量,可以储存更多的石油和天然气。
孔隙度通常使用插入管法、水饱法和密度法等方法进行测量。
其次,渗透率是指储层岩石中流体通过岩层的能力。
它反映了岩石对流体流动的阻力大小。
渗透率是衡量储层岩石储集性能的重要指标,也是评价岩石渗流性质和油气开采条件的关键参数。
渗透率的测量常使用压汞法、导纳法和核磁共振法等。
第三,饱和度是指储层中孔隙内所含有的有效流体体积与总孔隙体积之比。
饱和度可以分为原油饱和度和水饱和度。
它对评价石油和天然气藏的丰度和储层质量有着重要的意义。
测量饱和度的方法主要有物理推算法、测井法和实验测定法等。
此外,孔喉结构是指储层岩石中孔隙和孔喉的尺寸、形状和连通程度。
不同的孔隙结构对流体的储集和流动具有不同的影响。
例如,细颗粒和细孔喉可以增加流体的剪切力和黏滞力,降低渗透率和渗透能力。
孔隙结构的表征可以使用孔隙度、渗透率、孔喉直径分布和孔隙连通度等参数。
最后,岩石力学性质是指储层岩石的抗压强度、抗剪强度和变形特性。
它们对地层的稳定性和流体运移具有重要影响。
例如,岩石的抗压强度决定了储层的破坏压力,而抗剪强度则影响储层的剪切破裂。
测定岩石力学性质的常用方法包括三轴压缩试验、剪切试验和变形试验等。
综上所述,储层物性特征对于评价储层岩石的储集性能和开采条件具有重要意义。
通过测量和分析储层物性特征,可以更好地理解储层的储存能力、流动性质和稳定性,为石油和天然气的勘探、开发和生产提供科学依据。
第三章储层流体的物理特性所谓储层流体,这里指的是储存于地下的石油、天然气和地层水。
其特点是处于地下的高压、高温下,特别是其中的石油溶解有大量的气体,从而使处于地下的油气藏流体的物理性质与其在地面的性质有着很大的差别。
例如,当储层流体从储层流至井底,再从井底流至地面的过程中,流体压力、温度都会不断降低,此时会引起一系列的变化—原油脱气、体积收缩、原油析蜡;气体体积膨胀、气体凝析出油;油田水析盐—即离析和相态转化过程,而这一系列变化过程对于油藏动态分析、油井管理、提高采收率等都有重要的影响。
又如,进行油田开发设计和数值模拟时,必须掌握有关地下流体的动、静态物理参数,如石油和天然气的体积系数、溶解系数、压缩系数、粘度等;在进行油气田科学预测方面,如在开采初期及开采过程中,油田有无气顶、气体是否会在地层中凝析等,都需要对油气的物理化学特性及相态变化有深刻的认识,才能作出判断。
因此可以毫不夸张地说,不了解石油、天然气和水的性质及其问的相互关系,不掌握它们的高压物性参数,那么,科学地进行油田开发、采油及油气藏数值模拟等便无从讲起。
第一节油气藏烃类的相态特征石油和天然气是多种烃类和非烃类所组成的混合物。
在实际油田开发过程中,常常可以发现:在同一油气藏构造的不同部位或不同油气藏构造上同一高度打井时,其产出物各不相同,有的只产纯气,有的则油气同产。
在油气藏条件下,有的烃是气相,而成为纯气藏;有的是单一液相的纯油藏;也有的油气两相共存,以带气顶的油藏形式出现。
在原油从地下到地面的采出过程中,还伴随有气体从原油中分离和溶解的相态转化等现象。
那么,油藏开采前烃类究竟处于什么相态,为什么会发生一系列相态的变化,其主要原因是什么?用什么方式来描述烃类的相态变化?按照内因是事物变化的根据,外因则是事物变化的条件,可以发现油藏烃类的化学组成是构成相态转化的内因,压力和温度的变化是产生相态转化的外部条件。
因此,我们从研究油藏烃类的化学组成人手,然后再进一步研究压力温度变化时对相态变化的影响。
油层物理知识点总结一、油气储层的物理性质1. 储层岩石的物理性质储层岩石的物理性质是指岩石在外部作用下表现出来的物理特征,主要包括孔隙度、渗透率、孔隙结构、孔隙连通性等。
储层岩石的物理性质直接影响着岩石的储集能力和渗流性能。
孔隙度是指储层岩石中孔隙空间所占的比例,其大小直接影响着岩石的储集能力。
渗透率是指流体在岩石中运移的能力,它受孔隙度、孔隙连通性和岩石孔隙结构的影响。
孔隙结构是指储层岩石中孔隙的形态和大小分布特征,它直接影响着岩石对流体的储集和运移能力。
孔隙连通性是指储层岩石孔隙之间的互相连接程度,对于流体的渗流性能具有重要影响。
2. 储层流体的物理性质储层流体的物理性质包括油气的密度、粘度、饱和度、渗透率等。
油气的密度是指油气的质量与体积的比值,它直接影响着油气在地下的运移和驱替过程。
粘度是指液体的内摩擦力,它直接影响着油气在储层中的流动能力。
饱和度是指储层岩石中的孔隙空间中含有流体的比例,它直接影响着储层中的流体储集能力。
渗透率是指储层流体在岩石孔隙中渗流的能力,它受孔隙度、孔隙连通性和流体的物理性质的影响。
3. 储层的物理模型储层的物理模型是指将储层岩石和流体的物理性质用数学模型来描述,以便进行评价和预测储层的性质和行为。
常见的储层物理模型包括孔隙模型、细观模型、孔隙介质模型等。
这些模型可以帮助地质学家和工程师更好地理解和分析储层的物理性质,为油气田的勘探和开发提供科学依据。
二、油层物理测井技术1. 测井装备和工具油层物理测井是研究储层的物理性质和流体性质的一种技术,主要通过在井孔中使用测井装备和工具来获取储层的物理数据。
常见的测井装备和工具包括γ射线测井仪、自感应测井仪、声波测井仪、电阻率测井仪等。
这些测井装备和工具可以在井孔中获取储层的物理数据,并通过数据处理和解释来分析和评价储层的性质。
2. 测井曲线及解释测井曲线是指通过测井仪器在井孔中获取的物理数据所绘制出来的曲线,主要包括γ射线曲线、自感应曲线、声波曲线、电阻率曲线等。
(完整版)第三章储层岩⽯的物理性质第三章储层岩⽯的物理性质3-0 简介⽯油储集岩可能由粒散的疏松砂岩构成,也可能由⾮常致密坚硬的砂岩、⽯灰岩或⽩云岩构成。
岩⽯颗粒可能与⼤量的各种物质结合在⼀起,最常见的是硅⽯、⽅解⽯或粘⼟。
认识岩⽯的物理性质以及与烃类流体的相互关系,对于正确和评价油藏的动态是⼗分必要的。
岩⽯实验分析是确定油藏岩⽯性质的主要⽅法。
岩⼼是从油藏条件下采集的,这会引起相应的岩⼼体积、孔隙度和流体饱和度的变化。
有时候还会引起地层的润湿性的变化。
这些变化对岩⽯物性的影响可能很⼤,也可能很⼩。
主要取决于油层的特性和所研究物性参数,在实验⽅案中应考虑到这些变化。
有两⼤类岩⼼分析⽅法可以确定储集层岩⽯的物理性质。
⼀、常规岩⼼实验1、孔隙度2、渗透率3、饱和度⼆、特殊实验1、上覆岩⽯压⼒,2、⽑管压⼒,3、相对渗透率,4、润湿性,5、表⾯与界⾯张⼒。
上述岩⽯的物性参数对油藏⼯程计算必不可少,因为他们直接影响这烃类物质的数量和分布。
⽽且,当与流体性质结合起来后,还可以研究某⼀油藏流体的流动状态。
3-1 岩⽯的孔隙度岩⽯的孔隙度是衡量岩⽯孔隙储集流体(油⽓⽔)能⼒的重要参数。
⼀、孔隙度定义岩⽯的孔隙体积与岩⽯的总体积之⽐。
绝对孔隙度和有效孔隙度。
特征体元和孔隙度:对多孔介质进⾏数学描述的基础定义是孔隙度。
定义多孔介质中某⼀点的孔隙度⾸先必须选取体元,这个体元不能太⼩,应当包括⾜够的有效孔隙数,⼜不能太⼤,以便能够代表介质的局部性质。
ii p U U U U M i ??=?→?)(lim)(0φ,)(lim )(M M M M '='→φφ称体积△U 0为多孔介质在数学点M 处的特征体元—多孔介质的质点。
这样的定义结果,使得多孔介质成为在每个点上均有孔隙度的连续函数。
若这样定义的孔隙度与空间位置⽆关,则称这种介质对孔隙度⽽⾔是均匀介质。
对于均匀介质,孔隙度的简单定义为:绝对孔隙度:V V V V V GP a -==φ有效孔隙度:VV V V V V nG eP --==φ孔隙度是标量,有线孔隙度、⾯孔隙度、绝对孔隙度、有效孔隙度之分。
第二章煤储层及其基本物理性质煤储层是指在地层条件下储集煤层气的煤层。
煤储层具有双重孔隙介质、渗透性较低、孔隙比表面积较大、吸附能力极强、储气能力大等特点。
第一节主要内容:煤储层是由固态、气态、液态三相物质所构成。
固态物质:是煤基质液态物质:一般是煤层中的水(有时也含有液态烃类物质)气态物质:即煤层气一、煤储层固态物质组成:1、宏观煤岩组成煤是一种有机岩类,包括三种成因类型:①主要来源于高等植物的腐植煤②主要有低等生物形成的腐泥煤③介于前两者之间的腐植腐泥煤(自然界中以腐植煤为主,也是煤层气赋集的主要煤储层类型)2、显微煤岩组成显微煤岩组成包括显微组分和矿物质。
显微组分是在光学显微镜下能够识别的煤的基本有机成分,其鉴别标志包括:颜色,突起,反射力,光学各向异性,结构,形态等。
矿物质是煤及煤储层中含有数量不等的无机成分,主要为黏土类和硫化类矿物,其次为碳酸盐类、氧化硅类矿物以颗粒状。
团块状散布于煤中,常见显微条带状产出的黏土矿物。
3、煤的大分子结构煤中有机质大分子结构基本结构单元(BSU)的骨架结构由缩合芳香体系组成,其基本化学结构为芳香环。
煤中有机质大分子结构基本结构单元的缩聚过程主要起源于三种反应机制:芳构化作用、环缩合作用和拼叠作用。
芳构化作用是指:非芳香化合物经由脱氢生成芳香化合物的作用,可通过碳数不低于六个的链烃的闭环、五圆或六圆脂环和杂环的脱氢等方式实现,是煤中有机质生气的主要机理。
环缩合作用通过单个芳香环间联结、稠环芳香分子间或分子内联结、自由基分子间重新结合等方式得以实现,是中~高级无烟煤阶段芳香体系缩聚的主要机理。
拼叠作用是指基本结构单元之间相互联结而使煤中有机质化学结构短程有序化范围(有序畴)增大的作用,与自由基反应密切相关,是高级无烟煤阶段基本结构单元增大和秩理化程度增高的主要机理。
二、煤储层液态物质组成煤储层中液态物质包括裂隙、大孔隙中的自由水(油)及煤基质中的束缚水。
在煤化学中,将煤中水划分为三类,即外在水分、内在水分和化合水。
《火山岩气藏储层特征及数值模拟研究》篇一一、引言火山岩气藏是当今能源开发领域的重要组成部分,其储层特征直接关系到气藏的开采效率和经济效益。
因此,对火山岩气藏储层特征及数值模拟的研究显得尤为重要。
本文旨在深入探讨火山岩气藏储层的物理性质、地质特征及数值模拟技术,为该类型气藏的开发与利用提供科学依据。
二、火山岩气藏储层特征(一)岩性特征火山岩气藏主要由火山岩组成,包括玄武岩、安山岩、流纹岩等。
这些岩石具有多孔、多裂隙的特点,为天然气提供了良好的储集空间。
火山岩的成分、结构、孔隙度和渗透率等特性因火山活动时期的差异而有所不同。
(二)储层物理性质火山岩气藏储层的物理性质主要包括岩石的密度、孔隙度、渗透率等。
这些性质直接影响着气藏的储集能力和开采效率。
一般而言,火山岩的孔隙度和渗透率较高,有利于天然气的储集和运移。
(三)地质特征火山岩气藏通常分布于盆地、凹陷等构造单元中,受断裂、不整合等地质因素的控制。
其空间分布、埋藏深度及规模等均受地质条件的影响。
此外,火山岩气藏往往与油页岩、煤系等地层紧密相关,具有较高的采收率和经济效益。
三、数值模拟研究(一)数值模拟方法针对火山岩气藏的数值模拟,主要采用地质统计学方法、流体动力学方法等。
这些方法能够有效地描述储层的物理性质、地质特征及流体的运动规律,为开采方案设计提供重要依据。
(二)模型建立与验证在数值模拟过程中,首先需要建立储层的地质模型和流体模型。
通过收集地质资料、岩石物理数据等信息,结合地质统计学方法,建立三维地质模型。
然后,利用流体动力学方法,对储层中的流体运动进行模拟,并验证模型的准确性。
(三)开采方案设计及优化基于数值模拟结果,可以制定出合理的开采方案。
通过调整井位、生产参数等措施,优化开采过程,提高采收率。
同时,数值模拟还能够预测气藏的开采动态,为气藏的长期开发提供科学依据。
四、结论本文通过对火山岩气藏储层特征的深入研究,揭示了其物理性质、地质特征及与天然气储集和运移的关系。